KR100347106B1 - The manufacturing method of CuInSe2 thin film using vacuum evaporation of binary selenides - Google Patents

The manufacturing method of CuInSe2 thin film using vacuum evaporation of binary selenides Download PDF

Info

Publication number
KR100347106B1
KR100347106B1 KR1020000041222A KR20000041222A KR100347106B1 KR 100347106 B1 KR100347106 B1 KR 100347106B1 KR 1020000041222 A KR1020000041222 A KR 1020000041222A KR 20000041222 A KR20000041222 A KR 20000041222A KR 100347106 B1 KR100347106 B1 KR 100347106B1
Authority
KR
South Korea
Prior art keywords
thin film
vacuum evaporation
evaporation
manufacturing
cuinse
Prior art date
Application number
KR1020000041222A
Other languages
Korean (ko)
Other versions
KR20020007777A (en
Inventor
윤경훈
송진수
안병태
이두열
Original Assignee
한국에너지기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국에너지기술연구원 filed Critical 한국에너지기술연구원
Priority to KR1020000041222A priority Critical patent/KR100347106B1/en
Publication of KR20020007777A publication Critical patent/KR20020007777A/en
Application granted granted Critical
Publication of KR100347106B1 publication Critical patent/KR100347106B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0322Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03923Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate including AIBIIICVI compound materials, e.g. CIS, CIGS
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

본 발명은 이원화합물의 진공증발 증착에 의한 박막의 제조방법에 관한 것으로, 그 목적은 금속 원소인 Cu, In, Se 보다 낮은 온도에서 진공증발이 가능한 Se계 이원화합물(Cu2Se, In2Se3)과 Se을 진공에서 동시에 증발증착하여 저가 고효율의 CuInSe2박막을 제조하는 것을 목적으로 한다.The present invention relates to a method for manufacturing a thin film by vacuum evaporation of binary compounds, the object of which is a Se-based binary compound (Cu 2 Se, In 2 Se) capable of vacuum evaporation at a lower temperature than the metal elements Cu, In, Se 3 ) and Se are simultaneously evaporated and evaporated in vacuo to produce a low-cost, high-efficiency CuInSe 2 thin film.

본 발명의 구성은 CuInSe2(CIS) 화합물반도체를 광흡수층으로 하는 태양전지의 CIS 화합물반도체 박막을 제조하는 방법에 있어서,The structure of this invention is a method of manufacturing the CIS compound semiconductor thin film of the solar cell which uses CuInSe 2 (CIS) compound semiconductor as a light absorption layer,

금속원소가 아닌 Se계 이원화합물(Cu2Se, In2Se3)과 Se을 동시증발물질로 사용하여 진공증발증착실에서 기판의 온도에 변화를 주면서 순차적으로 증발증착하여 CuInSe2계 박막을 제조하는 것을 요지로 한다.A CuInSe 2- based thin film was prepared by sequentially evaporating while changing the temperature of a substrate in a vacuum evaporation chamber using Se-based binary compound (Cu 2 Se, In 2 Se 3 ) and Se as a co-evaporation material instead of a metal element. It is the point to do it.

Description

이원화합물의 진공증발 증착에 의한 CuInSe2 박막의 제조방법{The manufacturing method of CuInSe2 thin film using vacuum evaporation of binary selenides}The manufacturing method of CuInSe2 thin film using vacuum evaporation of binary selenides}

본 발명은 이원화합물의 진공증발 증착에 의한 박막의 제조방법에 관한 것으로, 상세하게는 금속 원소인 Cu, In, Se 보다 낮은 온도에서 진공증발이 가능한 인듐 셀레나이드(indium selenide)와 카파 셀레나이드(copper selenide)등의 이원화합물을 진공하에서 증발증착하는 CuInSe2박막의 제조방법에 관한 것이다.The present invention relates to a method for manufacturing a thin film by vacuum evaporation of binary compounds, and more particularly, indium selenide and kappa selenide capable of vacuum evaporation at lower temperatures than the metal elements Cu, In and Se. The present invention relates to a method for producing a CuInSe 2 thin film which evaporates and evaporates binary compounds such as copper selenide under vacuum.

일반적으로 화합물반도체 CuInSe2(CIS)를 광흡수층으로 이용한 박막태양전지는 소다석회유리를 기판으로 금속전극(Al, Ni, Ag)/ZnO/CdS/CuInSe2/Mo/soda-lime glass 구조로 4개 이상의 단위박막을 순차적으로 쌓아올려 제조한다.In general, a thin film solar cell using a compound semiconductor CuInSe 2 (CIS) as a light absorption layer has a soda-lime glass substrate as a metal electrode (Al, Ni, Ag) / ZnO / CdS / CuInSe 2 / Mo / soda-lime glass structure 4 It is prepared by stacking more than one unit thin film in sequence.

CIS계 박막 태양전지는 기존의 결정질실리콘(두께 : 수백 마이크론) 태양전지와는 달리 그 두께가 10 마이크론 이하로 제작이 가능하고, 장기적으로 안정성이 매우 뛰어난 특징을 지니고 있다.Unlike conventional crystalline silicon (thickness: hundreds of microns) solar cells, CIS-based thin-film solar cells can be manufactured with a thickness of less than 10 microns and have excellent stability in the long term.

또한 실험실적으로 최고변환효율이 18.8%로 여타 박막 태양전지에 비해 월등히 높아 기존 결정질실리콘을 대체할 수 있는 저가 고효율의 태양전지로 그 상업화 가능성이 매우 높다.In addition, the highest conversion efficiency in the laboratory is 18.8%, which is much higher than other thin film solar cells, and it is highly commercialized as a low-cost, high-efficiency solar cell that can replace existing crystalline silicon.

이러한 구조의 태양전지에서 가장 중요한 것은 CIS 박막으로 저가, 고효율, 대면적 공정이 필수적으로 요구되는 조건이다.The most important thing in this type of solar cell is CIS thin film, which is a condition that requires low cost, high efficiency and large area process.

CIS를 제외한 각 단위박막의 제조법으로 Mo는 D.C. 스퍼터링, CdS는 CBD(Chemical Bath Deposition), ZnO는 R.F. 스퍼터링, 금속전극은 전자선 증발증착이 이용되고 있다.Mo is the manufacturing method of each unit thin film except CIS. Sputtering, CdS for chemical bath deposition (CBD), ZnO for R.F. Electron beam evaporation is used for sputtering and metal electrodes.

가장 핵심층인 CIS계 박막의 제조에 관한 선행기술은 크게 2가지로 나누어지는데,Prior arts related to the manufacture of CIS-based thin films, which are the core layers, are largely divided into two types.

그 첫 번째는 진공하에서 금속원소를 동시에 증발증착하는 삼단공정(three stage process)(미국 특허 4,523,051, 1985. 6. 11)으로 현재까지 가장 높은 변환효율의 태양전지는 이 방법을 이용한 것이다.The first is a three stage process (e.g., U.S. Patent 4,523,051, June 11, 1985) that simultaneously evaporates and evaporates metal elements under vacuum.

두 번째 방법은 Cu-In 전구체(precursors)를 먼저 제조한 후 이를 H2Se 분위기에서 셀렌화(selenization) 하는 방법으로 제조하고 있다.The second method is to prepare a Cu-In precursor (precursors) first and then selenization (selenization) in H 2 Se atmosphere.

두 번째 방법에서 Cu-In 합금은 증발증착, 스퍼터링(미국 특허 4,798,660, 1989. 1. 17) 또는 전착법(미국 특허 5,730,852, 1998. 3. 24, 국내특허 특1999-0071500, 공개일 1999. 9. 27) 등으로 제조한다.In the second method, the Cu-In alloy may be evaporated, sputtered (US Pat. No. 4,798,660, Jan. 17, 1989) or electrodeposition method (US Pat. No. 5,730,852, Mar. 24, 1998, Korean Patent No. 1999-0071500, publication date 1999. 9). 27).

하지만 금속원소의 증발증착을 이용한 삼단공정(Three stage process)의 경우 금속원소의 증발기구로 비록 그 가치는 인정받고 있지만 값이 비싼 이퓨젼 셀(effusion cell)을 사용하기 때문에 필요로 하는 박막이 대면적으로 갈수록 비경제적이라는 단점이 있다.However, in the three stage process using evaporation of metal elements, although the value is recognized as an evaporation mechanism of metal elements, the thin film required due to the use of expensive fusion cells is required. The disadvantage is that it is more economical.

또한 셀렌화(selenization)법은 삼단공정(three stage process)과 마찬가지로 효율은 확보된 상태지만, 공정면에서 Cu-In 전구체를 증착하는 과정과 Se을 추가로 공급하는 과정이 분리되어 있어 비효율적이며, 증착시간이 매우 길기 때문에 대량생산에 적합하지 않다는 단점이 있다.In addition, the selenization method is as efficient as the three stage process, but is inefficient because the process of depositing a Cu-In precursor and the process of additionally supplying Se are separated. It is disadvantageous that it is not suitable for mass production because the deposition time is very long.

상기와 같은 문제점을 해결하기 위한 본 발명의 목적은 금속 원소인 Cu, In, Se 보다 낮은 온도에서 진공증발이 가능한 Se계 이원화합물(Cu2Se, In2Se3)과 Se을 진공에서 동시에 증발증착하여 저가 고효율의 CuInSe2박막을 제조하는 것을 목적으로 한다.An object of the present invention for solving the above problems is to simultaneously evaporate Se-based binary compounds (Cu 2 Se, In 2 Se 3 ) and Se capable of vacuum evaporation at a lower temperature than the metal elements Cu, In, Se The purpose of the deposition is to produce a low-cost, high-efficiency CuInSe 2 thin film.

도 1은 본 발명의 박막을 광흡수층으로 하는 태양전지의 단면구조도,1 is a cross-sectional structure diagram of a solar cell using the thin film of the present invention as a light absorption layer,

도 2는 본 발명의 CuInSe2박막 제조장치인 이원화합물 진공증발 증착장치의 개념도,2 is a conceptual diagram of a binary compound vacuum evaporation deposition apparatus which is a CuInSe 2 thin film manufacturing apparatus of the present invention;

도 3은 도 1의 장치도를 이용한 CuInSe2박막 진공증발 증착과정의 모식도,3 is a schematic diagram of a CuInSe 2 thin film vacuum evaporation deposition process using the device diagram of FIG.

도 4는 이원화합물 In2Se3와 Cu2Se를 도 3의 방법으로 제조한 CuInSe2박막의 X-선 회절패턴도,4 is an X-ray diffraction pattern diagram of a CuInSe 2 thin film prepared with the binary compounds In 2 Se 3 and Cu 2 Se by the method of FIG.

도 5는 이원화합물 In2Se3와 Cu2Se를 도 3의 방법으로 제조한 CuInSe2박막의깊이에 따른 조성분포도,5 is a composition distribution diagram according to the depth of the CuInSe 2 thin film prepared with the binary compounds In 2 Se 3 and Cu 2 Se by the method of FIG.

도 6은 본 발명의 CuInSe2박막을 광흡수층으로 이용하여 제작한 Ag/ZnO/CdS/CuInSe2/Mo/soda-lime glass 구조 태양전지의 전류-전압 곡선이다.6 is a current-voltage curve of an Ag / ZnO / CdS / CuInSe 2 / Mo / soda-lime glass structure solar cell fabricated using the CuInSe 2 thin film as the light absorption layer.

<도면의 주요부분에 대한 부호의 설명><Description of the symbols for the main parts of the drawings>

(1) : 기판 (유리) (2) : 이면전극 (Mo 박막)(1): substrate (glass) (2): back electrode (Mo thin film)

(3) : p형 반도체 (CuInSe2계 박막) (4) : n형 반도체 (CdS, InxSey박막)(3): p-type semiconductor (CuInSe 2 thin film) (4): n-type semiconductor (CdS, In x Se y thin film)

(5) : 창층 (ZnO, ITO 박막) (6) : p측 전극(5): Window layer (ZnO, ITO thin film) (6): p-side electrode

(7) : n측 전극 (8) : 진공증발 증착실(7): n-side electrode (8): vacuum evaporation deposition chamber

(9) : 기판회전용 모터 (10) : 박막두께 센서(9): substrate rotation motor (10): thin film thickness sensor

(11) : 기판가열용 할로겐램프 (12) : 기판홀더(11): halogen lamp for substrate heating (12): substrate holder

(13) : 기판 (14) : 창 (View port)(13): substrate 14: window (View port)

(15, 16, 17, 18) : W-boat or effusion cell(15, 16, 17, 18): W-boat or effusion cell

(19) : In2Se3(20) : Cu2Se(19): In 2 Se 3 (20): Cu 2 Se

(21) : Se (22) : In2Se3+ Se(21): Se (22): In 2 Se 3 + Se

(23) : Cu2Se + Se(23): Cu 2 Se + Se

(T1) : 250∼350 ℃ (T2): 550∼650 ℃(T 1 ): 250 to 350 ° C. (T 2 ): 550 to 650 ° C.

본 발명의 구성은 CuInSe2(CIS) 화합물반도체를 광흡수층으로 하는 태양전지의 CIS계 화합물반도체 박막을 제조하는 방법에 있어서,The structure of this invention is a method of manufacturing the CIS compound semiconductor thin film of the solar cell which uses CuInSe 2 (CIS) compound semiconductor as a light absorption layer,

금속원소가 아닌 Se계 이원화합물(Cu2Se, In2Se3)과 Se을 동시증발물질로 사용하여 진공증발증착실에서 기판의 온도에 변화를 주면서 순차적으로 증발증착하여 CuInSe2계 박막을 제조한다.A CuInSe 2- based thin film was prepared by sequentially evaporating while changing the temperature of a substrate in a vacuum evaporation chamber using Se-based binary compound (Cu 2 Se, In 2 Se 3 ) and Se as a co-evaporation material instead of a metal element. do.

상기 진공증발증착실에서 순차적으로 증발증착하여 박막을 제조하는 방법은기판온도를 T1으로 하여 인듐 셀레나이드(In2Se3)가 장착된 증발기구를 가열하고, 연속적으로 카파 셀레나이드(Cu2Se) 증발기구를 가열하여 진공증발시키는 단계와, 기판온도를 T2로 상승시켜 Se만을 진공증발 증착하여 기판 온도를 유지한 후, 다시 인듐 셀레나이드(In2Se3)와 Se이 들어있는 두 개의 증발기구를 가열하여 진공증발 증착시키는 단계를 거친 후 냉각하여 제조한다.A method of manufacturing a thin film by sequentially evaporating and evaporating in the vacuum evaporation chamber comprises heating an evaporation apparatus equipped with indium selenide (In 2 Se 3 ) with a substrate temperature of T 1 , and continuously kappa selenide (Cu 2). Se) heating the evaporation mechanism to vacuum evaporation, and increasing the substrate temperature to T 2 to maintain the substrate temperature by vacuum evaporation deposition of Se only, and again containing indium selenide (In 2 Se 3 ) and Se The two evaporation apparatuses are prepared by heating and then cooling them after vacuum evaporation deposition.

상기 진공증발증착실에서 순차적으로 증발증착하여 박막을 제조하는 방법은 기판온도를 T1으로 하여 인듐 셀레나이드(In2Se3)가 장착된 증발기구를 가열하고, 연속적으로 카파 셀레나이드(Cu2Se) 증발기구를 가열하여 진공증발시키는 단계를 거친 후, Se분위기를 가진 다른 장치에서 열처리하는 단계를 거쳐 제조된다.In the vacuum evaporation deposition chamber, a method of manufacturing a thin film by evaporating sequentially is to heat an evaporation apparatus equipped with indium selenide (In 2 Se 3 ) with a substrate temperature of T 1 , and continuously kappa selenide (Cu 2). Se) After the evaporation mechanism is heated and vacuum evaporated, it is manufactured by heat treatment in another apparatus having Se atmosphere.

상기 진공증발증착실에서 순차적으로 증발증착하여 박막을 제조하는 방법은 기판온도를 T1으로 하여 인듐 셀레나이드(In2Se3)와 Se이 들어있는 두 개의 증발기구를 가열하여 진공증발시키는 단계와, 기판을 T2로 승온시킨 후 카파 셀레나이드(Cu2Se)와 Se이 들어있는 두 개의 증발기구를 가열하여 증발증착시키고, 기판의 온도를 유지한 채 다시 인듐 셀레나이드(In2Se3)와 Se이 들어있는 두 개의 증발기구를 가열하여 증발증착시키는 단계를 거친 후 냉각하여 제조한다.The method of manufacturing a thin film by sequentially evaporating and evaporating in the vacuum evaporation chamber comprises heating two evaporation apparatuses containing indium selenide (In 2 Se 3 ) and Se at a substrate temperature of T 1 to vacuum evaporation; After heating the substrate to T 2 , two evaporation apparatuses containing kappa selenide (Cu 2 Se) and Se were heated and evaporated to evaporate, and indium selenide (In 2 Se 3 ) was maintained while maintaining the temperature of the substrate. After evaporation of two evaporation apparatuses containing and evaporating through evaporation step is prepared by cooling.

상기에서 기판온도 T1은 250 ∼350℃이고, 기판온도 T2는 550 ∼650℃로 한다.And at the substrate temperature T 1 is 250 ~350 ℃, the substrate temperature T 2 is a 550 ~650 ℃.

상기에서 진공증발증착실의 증발기구로는 텅스텐 보트(boat)나 이퓨젼 셀(effusion cell)중에서 선택하여 사용한다.The evaporation mechanism of the vacuum evaporation chamber is selected from tungsten boats or fusion cells.

이하 본 발명의 실시예인 구성과 그 작용을 첨부도면에 연계시켜 상세히 설명하면 다음과 같다.Hereinafter, the configuration and the operation of the embodiment of the present invention will be described in detail with reference to the accompanying drawings.

도 1은 본 발명의 CuInSe2계 박막을 광흡수층으로 하는 태양전지의 단면구조도인데 하부층으로부터 기판(1), 이면전극(Mo 전극, 2), p형 반도체(CuInSe2계 박막, 3), n형 반도체(Cds, InxSey, 4), 창층(ZnO, ITO 박막, 5)의 순서대로 적층되어 있다. 그리고 이면전극(2)위에 p측 전극(6)이 형성되어 있고, 창층(5)위에는 n측 전극이 형성되어 태양광에 노출시 발생한 전기가 외부로 흐르게 된다.1 is a cross-sectional structure diagram of a solar cell using the CuInSe 2- based thin film of the present invention as a light absorption layer, and the substrate 1, the back electrode (Mo electrode) 2, and the p-type semiconductor (CuInSe 2- based thin film, 3), n from the lower layer. The semiconductors Cds, In x Se y , 4, and the window layers ZnO, ITO thin film 5 are stacked in this order. The p-side electrode 6 is formed on the back electrode 2, and the n-side electrode is formed on the window layer 5 so that electricity generated when exposed to sunlight flows to the outside.

도 2는 본 발명의 CuInSe2계 박막 제조장치인 이원화합물 진공증발 증착장치의 개념도인데, 그 구성을 보면 내부가 진공을 유지하는 진공증발 증착실(8)의 내부 하부쪽에 텅스텐 보트 또는 이퓨젼 셀(effusion cell)(15, 16, 17, 18)이 장치되어 있다.2 is a conceptual diagram of a binary compound vacuum evaporation deposition apparatus which is a CuInSe 2- based thin film manufacturing apparatus of the present invention, and its structure shows a tungsten boat or an fusion cell at an inner lower side of a vacuum evaporation deposition chamber 8 in which a vacuum is maintained therein. (effusion cells) 15, 16, 17, 18 are provided.

진공증발 증착실(8)의 상부면에는 기판회전용 모터(9)가 장착되어 있고, 이와 연동하는 기판가열용 할로겐램프(11)와 기판홀더(12)와 기판(13), 박막두께센서(10)가 진공증발 증착실(8)의 내부에 장치되어 있다.A substrate rotating motor 9 is mounted on the upper surface of the vacuum evaporation deposition chamber 8, and the halogen lamp 11 for heating the substrate, the substrate holder 12, the substrate 13, and the thin film thickness sensor ( 10 is installed inside the vacuum evaporation deposition chamber 8.

그리고 내부의 상황을 검사할 수 있는 창(14)이 진공증발 증착실(8)의 일측면부를 관통하여 설치되어 있는 모습을 보인다.And the window 14 which can inspect the situation inside is shown penetrating the one side part of the vacuum evaporation deposition chamber 8, and is shown.

이원화합물의 증발기구는 텅스텐 보트 또는 이퓨젼 셀(effusion cell)이며, CuInSe2박막의 제조과정은 도 1의 장치도를 이용한 CuInSe2계 박막 진공증발 증착과정의 모식도를 도시한 도 3의 Ⅰ과 Ⅱ로 나타내었다.Evaporation mechanism of binary compounds of tungsten boat or a diffusion cell (effusion cell) and, CuInSe 2 thin-film manufacturing process diagram showing a schematic view of a CuInSe 2 based thin film vacuum evaporation process using the device in Fig. 1 3 Ⅰ and It is shown as II.

증착과정을 간략히 설명하면 세 개의 텅스텐 보트(boat) 또는 이퓨젼 셀(effusion cell)에 인듐 셀레나이드(indium selenide), 카파 셀레나이드(copper selenide), Se을 채우고 증착실의 진공도를 1×10-6torr로 유지한다.Briefly describing the deposition process, three tungsten boats or effusion cells are filled with indium selenide, kappa selenide and Se, and the vacuum degree of the deposition chamber is reduced to 1 × 10 −. Keep at 6 torr.

기판으로는 소다-회 유리(soda-lime glass)와 molybdenum(Mo)이 증착된 소다-회 유리(soda-lime glass)의 두 종류를 사용한다.Two kinds of substrates are used, soda-lime glass and soda-lime glass on which molybdenum (Mo) is deposited.

도 3의 Ⅰ의 텅스텐 보트를 이용한 공정은 다음과 같다.The process using the tungsten boat of I of FIG. 3 is as follows.

기판온도를 T1으로 하고 인듐 셀레나이드(indium selenide)가 장착된 보트를 가열하여 인듐 셀레나이드를 증발시킨 후 연속적으로 카파 셀레나이드(copper selenide)가 장착된 보트를 가열하여 카파 셀레나이드를 증발시키고, 그 후 기판온도를 T2로 승온하고 Se만의 진공증발과정을 통하여 CuInSe2박막을 제조한다.The substrate temperature is set to T 1 and the boat equipped with indium selenide is heated to evaporate the indium selenide, and then the boat equipped with copper selenide is continuously heated to evaporate the kappa selenide. Subsequently, the substrate temperature was raised to T 2 , and CuInSe 2 thin film was manufactured by Se evaporation.

이 후 동일한 기판온도를 유지하고, 인듐 셀레나이드(indium selenide)와 Se이 들어있는 두 개의 보트를 동시에 가열하여 진공증발시켜 제조된 박막표면에 인듐과잉(In-rich) CuInSe2물질을 형성시킨다.Thereafter, the same substrate temperature is maintained, and two boats containing indium selenide and Se are simultaneously heated to vacuum evaporate to form In-rich CuInSe 2 material on the thin film surface.

도 3의 Ⅱ는 삼단공정(three stage process)과 동일한 공정이나 3단계에 걸쳐 이원화합물과 Se을 동시에 증발증착하는 방법이다.3 is a method of evaporating and evaporating the binary compound and Se simultaneously in the same process or three steps as a three stage process.

이하 본 발명의 바람직한 한 실시예이다.The following is a preferred embodiment of the present invention.

<실시예 1><Example 1>

도 2에 나타낸 진공증발 증착장치를 이용하며, 박막제조공정은 다음과 같은 과정으로 수행된다.By using the vacuum evaporation deposition apparatus shown in Figure 2, the thin film manufacturing process is carried out in the following process.

장치내의 텅스텐 보트 또는 이퓨젼 셀(effusion cell)에 Se계 이원화합물 (Cu2Se, In2Se3)과 Se을 각각 정량하여 장착하고 진공하에서 도 3의 Ⅰ또는 Ⅱ의 과정으로 원료물질의 진공증발 증착을 수행한다.Se-based binary compounds (Cu 2 Se, In 2 Se 3 ) and Se were quantitatively mounted in a tungsten boat or an fusion cell in the apparatus, and the raw material was vacuumed in the process of I or II of FIG. 3 under vacuum. Perform evaporation deposition.

본 실시예에서 제조된 물질이 CuInSe2박막인지를 확인하기 위해 X-ray 특성 검사를 한 결과를 도 4에 나타내었다.4 shows the results of the X-ray characteristic test to confirm whether the material prepared in this example is a CuInSe 2 thin film.

도 4는 이원화합물 In2Se3와 Cu2Se를 도 3의 방법으로 제조한 CuInSe2박막의 X-선 회절패턴도인데, 이로부터 CuInSe2상이 형성된 것을 알 수 있다.4 is an X-ray diffraction pattern diagram of a CuInSe 2 thin film prepared with the binary compounds In 2 Se 3 and Cu 2 Se by the method of FIG. 3, from which the CuInSe 2 phase is formed.

태양전지는 다층막으로 제조되므로 CuInSe2박막의 표면특성은 계면특성에 매우 중요한 영향을 줄 것으로 판단된다.Since the solar cell is made of a multilayer, the surface characteristics of the CuInSe 2 thin film are considered to have a significant influence on the interfacial properties.

표면특성을 조사한 결과 평탄하고 균일한 표면특성을 관찰할 수 있었으며, 제조된 CuInSe2박막의 조성분포를 알아보기 위하여 오제전자분광(Auger electron spectroscopy : AES) 분석한 결과를 도 5에 나타내었다.As a result of investigating the surface properties, it was possible to observe the flat and uniform surface properties, and the results of Auger electron spectroscopy (AES) analysis to determine the composition distribution of the prepared CuInSe 2 thin film are shown in FIG. 5.

도 5는 이원화합물 In2Se3와 Cu2Se를 도 3의 방법으로 제조한 CuInSe2박막의 깊이에 따른 화학조성을 나타낸 것이다.Figure 5 shows the chemical composition according to the depth of the CuInSe 2 thin film prepared with the binary compound In 2 Se 3 and Cu 2 Se by the method of FIG.

박막내부는 구리(copper)의 함량이 인듐의 함량보다 약간 많은 상태이며, 표면근처는 인듐(indium)과 Se의 함량이 내부에 비하여 많은 상태로 이는 태양전지특성을 좌우하는 양질의 광흡수층으로서의 CuInSe2막의 조성분포를 보여주는 것이다.Inside the thin film, copper is slightly higher than indium, and near the surface, indium and Se are higher than that of Cu. In this case, CuInSe is a high-quality light absorbing layer that determines solar cell characteristics. 2 shows the composition distribution of the membrane.

도 6은 본 발명의 CuInSe2계 박막을 광흡수층으로 이용하여 제작한 Ag/ZnO/CdS/CuInSe2/Mo/soda-lime glass 구조 태양전지의 전류-전압 곡선을 도시하고 있는데, CuInSe2박막을 이용하여 Ag/ZnO/CdS/ CuInSe2/Mo/soda-lime glass 구조의 태양전지를 제조한 결과 증발기구를 텅스텐 보트를 이용한 경우에 5.4%(도 6의 a), effusion cell을 이용한 경우에는 9.59%(도 6의 b)의 태양전지 변화효율을 얻었다.6 is a CuInSe 2 type produced by using a thin film as the light absorption layer Ag / ZnO / CdS / CuInSe 2 / Mo / soda-lime glass current in the structure solar cell of the present invention there is shown the voltage curve, a CuInSe 2 thin film Using Ag / ZnO / CdS / CuInSe 2 / Mo / soda-lime glass structured solar cell, 5.4% (Fig. 6a) when the evaporator was used with tungsten boat, 9.59 when using effusion cell The solar cell change efficiency of% (b of FIG. 6) was obtained.

본 발명은 상술한 특정의 바람직한 실시예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 누구든지 다양한 변형실시가 가능한 것은 물론이고, 그와같은 변경은 청구범위 기재의 범위 내에 있게 된다.The present invention is not limited to the above-described specific preferred embodiments, and various modifications can be made by any person having ordinary skill in the art without departing from the gist of the present invention claimed in the claims. Of course, such changes will fall within the scope of the claims.

본 발명의 제조방법에서 제시하고 있는 Se계 이원화합물(Cu2Se, In2Se3)과 Se의 진공증발 증착법을 이용할 경우에 기존에 보고되고 있는 금속 원소를 이용하는 삼단공정(three stage process)법과 셀렌화법에서 얻을 수 있는 고효율 태양전지용 CuInSe2단일막을 제조할 수 있다.In the case of using the vacuum evaporation deposition method of Se-based binary compounds (Cu 2 Se, In 2 Se 3 ) and Se presented in the production method of the present invention, a three-stage process using a metal element that has been reported previously; The CuInSe 2 single film for high efficiency solar cells which can be obtained by selenization can be prepared.

그리고 이원화합물을 증발물질로 사용할 경우 Cu, In 등의 원소에 비해 증발이 용이하여 저가의 텅스텐 보트를 증발기구를 이용할 수 있고, 이퓨젼 셀(effusion cell)을 진공증발기구로 이용시에는 증발에 소요되는 전력량을 절감할 수 있다.In case of using binary compound as evaporation material, it is easier to evaporate compared to elements such as Cu and In, so it is possible to use low-cost tungsten boat for evaporation mechanism. When using fusion cell as vacuum evaporation mechanism, evaporation is required. The amount of power can be saved.

즉, 금속 원소인 Cu, In, Se 보다 낮은 온도에서 진공증발이 가능한 인듐 셀레나이드(indium selenide)와 카파 셀레나이드(copper selenide) 등 이원화합물을 진공하에서 증발증착하여 CuInSe2박막 및 태양전지를 제조하는 본 발명은 일정온도에서 이원화합물의 증기압이 금속원소의 증기압보다 높기 때문에 공정 온도를 그 만큼 낮출 수 있어 경제적이고, 다른 한편으로는 박막 증착에 소요되는 공정 시간을 줄일 수 있어서 제조공정의 저가화를 이룰 수 있다는 등의 장점이 있다.That is, CuInSe 2 thin films and solar cells are manufactured by evaporating binary compounds such as indium selenide and kappa selenide that can be evaporated at a lower temperature than the metal elements Cu, In and Se under vacuum. According to the present invention, since the vapor pressure of the binary compound is higher than the vapor pressure of the metal element at a constant temperature, the process temperature can be lowered by that much, and on the other hand, the process time required for thin film deposition can be reduced, thereby reducing the manufacturing cost. This can be achieved.

Claims (6)

CuInSe2(CIS) 화합물반도체를 광흡수층으로 하는 태양전지의 CIS계 화합물반도체 박막을 제조하는 방법에 있어서,In the method for producing a CIS compound semiconductor thin film of a solar cell using a CuInSe 2 (CIS) compound semiconductor as a light absorption layer, 금속원소가 아닌 Se계 이원화합물(Cu2Se, In2Se3)과 Se을 동시증발물질로 사용하여 진공증발증착실에서 진공상태로 기판의 온도에 변화를 주면서 순차적으로 증발증착하여 CuInSe2계 박막을 제조하는 것을 특징으로 하는 이원화합물의 진공증발 증착에 의한 박막의 제조방법.By using Se-based binary compounds (Cu 2 Se, In 2 Se 3 ) and Se as non-metal elements and Se as co-evaporation materials, CuInSe 2- based A method for producing a thin film by vacuum evaporation deposition of a binary compound, characterized in that the thin film is prepared. 제 1항에 있어서,The method of claim 1, 상기 진공증발증착실에서 순차적으로 증발증착하여 박막을 제조하는 방법은 기판온도를 T1으로 하여 인듐 셀레나이드(In2Se3)가 장착된 증발기구를 가열하고, 연속적으로 카파 셀레나이드(Cu2Se) 증발기구를 가열하여 진공증발시키는 단계와, 기판온도를 T2로 상승시켜 Se만을 진공증발 증착하여 기판 온도를 유지한 후, 다시 인듐 셀레나이드(In2Se3)와 Se이 들어있는 두 개의 증발기구를 가열하여 진공증발 증착시키는 단계를 거친 후 냉각하여 제조하는 것을 특징으로 하는 이원화합물의 진공증발 증착에 의한 박막의 제조방법.In the vacuum evaporation deposition chamber, a method of manufacturing a thin film by evaporating sequentially is to heat an evaporation apparatus equipped with indium selenide (In 2 Se 3 ) with a substrate temperature of T 1 , and continuously kappa selenide (Cu 2). Se) heating the evaporation mechanism to vacuum evaporation, and increasing the substrate temperature to T 2 to maintain the substrate temperature by vacuum evaporation deposition of Se only, and again containing indium selenide (In 2 Se 3 ) and Se Method for producing a thin film by vacuum evaporation of binary compounds, characterized in that the cooling by evaporating evaporation mechanism after the step of evaporation deposition. 제 1항에 있어서,The method of claim 1, 상기 진공증발증착실에서 순차적으로 증발증착하여 박막을 제조하는 방법은 기판온도를 T1으로 하여 인듐 셀레나이드(In2Se3)가 장착된 증발기구를 가열하고, 연속적으로 카파 셀레나이드(Cu2Se) 증발기구를 가열하여 진공증발시키는 단계를 거친 후, Se분위기를 가진 다른 장치에서 열처리하는 단계를 거쳐 제조되는 것을 특징으로 하는 이원화합물의 진공증발 증착에 의한 박막의 제조방법.In the vacuum evaporation deposition chamber, a method of manufacturing a thin film by evaporating sequentially is to heat an evaporation apparatus equipped with indium selenide (In 2 Se 3 ) with a substrate temperature of T 1 , and continuously kappa selenide (Cu 2). Se) A method of manufacturing a thin film by vacuum evaporation of a binary compound, characterized in that after the step of heating the evaporator by vacuum evaporation, the step of heat treatment in another apparatus having a Se atmosphere. 제 1항에 있어서,The method of claim 1, 상기 진공증발증착실에서 순차적으로 증발증착하여 박막을 제조하는 방법은 기판온도를 T1으로 하여 인듐 셀레나이드(In2Se3)와 Se이 들어있는 두 개의 증발기구를 가열하여 진공증발시키는 단계와, 기판을 T2로 승온시킨 후 카파 셀레나이드 (Cu2Se)와 Se이 들어있는 두 개의 증발기구를 가열하여 증발증착시키고, 기판의 온도를 유지한 채 다시 인듐 셀레나이드(In2Se3)와 Se이 들어있는 두 개의 증발기구를 가열하여 증발증착시키는 단계를 거친 후 냉각하여 제조하는 것을 특징으로 하는이원화합물의 진공증발 증착에 의한 박막의 제조방법.The method of manufacturing a thin film by sequentially evaporating and evaporating in the vacuum evaporation chamber comprises heating two evaporation apparatuses containing indium selenide (In 2 Se 3 ) and Se at a substrate temperature of T 1 to vacuum evaporation; After heating the substrate to T 2 , two evaporation apparatuses containing kappa selenide (Cu 2 Se) and Se were heated and evaporated to evaporate, and indium selenide (In 2 Se 3 ) was maintained again while maintaining the temperature of the substrate. And evaporating and evaporating two evaporation apparatuses containing Se and cooling the same to prepare the thin film by vacuum evaporation deposition of a binary compound. 제 2항 내지 제 4항의 어느 한 항에 있어서,The method according to any one of claims 2 to 4, 상기 기판온도 T1은 250 ∼350℃이고, 기판온도 T2는 550 ∼650℃인 것을 특징으로 하는 이원화합물의 진공증발 증착에 의한 박막의 제조방법.The substrate temperature T 1 is 250 ~ 350 ℃, the substrate temperature T 2 is a manufacturing method of a thin film by vacuum evaporation deposition of a binary compound, characterized in that. 제 1내지 제 4항의 어느 한 항에 있어서,The method according to any one of claims 1 to 4, 진공증발증착실의 증발기구로는 텅스텐 보트(boat)나 이퓨젼 셀(effusion cell)중에서 선택하여 사용하는 것을 특징으로 하는 이원화합물의 진공증발 증착에 의한 박막의 제조방법.A method of manufacturing a thin film by vacuum evaporation of a binary compound, characterized in that the evaporation mechanism of the vacuum evaporation chamber is selected from tungsten boats or fusion cells.
KR1020000041222A 2000-07-19 2000-07-19 The manufacturing method of CuInSe2 thin film using vacuum evaporation of binary selenides KR100347106B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020000041222A KR100347106B1 (en) 2000-07-19 2000-07-19 The manufacturing method of CuInSe2 thin film using vacuum evaporation of binary selenides

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020000041222A KR100347106B1 (en) 2000-07-19 2000-07-19 The manufacturing method of CuInSe2 thin film using vacuum evaporation of binary selenides

Publications (2)

Publication Number Publication Date
KR20020007777A KR20020007777A (en) 2002-01-29
KR100347106B1 true KR100347106B1 (en) 2002-07-31

Family

ID=19678660

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020000041222A KR100347106B1 (en) 2000-07-19 2000-07-19 The manufacturing method of CuInSe2 thin film using vacuum evaporation of binary selenides

Country Status (1)

Country Link
KR (1) KR100347106B1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100495925B1 (en) * 2005-01-12 2005-06-17 (주)인솔라텍 Optical absorber layers for solar cell and manufacturing method thereof
KR100850000B1 (en) * 2005-09-06 2008-08-01 주식회사 엘지화학 Process for Preparation of Absorption Layer of Solar Cell
EP2944383A3 (en) * 2006-11-09 2016-02-10 Alliance for Sustainable Energy, LLC Precursors for formation of copper selenide, indium selenide, copper indium diselenide, and/or copper indium gallium diselenide films
KR100977529B1 (en) * 2008-03-20 2010-08-23 엘지이노텍 주식회사 The method of manufacturing CIGS thin film by using three-step heat treatment and CIGS solar cell
KR101019639B1 (en) * 2009-01-30 2011-03-07 한국에너지기술연구원 Deposition Apparatus of CIS-based compound thin film for Absorber layer of Solar cell
KR101094326B1 (en) * 2009-12-15 2011-12-19 한국에너지기술연구원 Cu-In-Zn-Sn-Se,S THIN FILM FOR SOLAR CELL AND PREPARATION METHOD THEREOF
KR101085980B1 (en) * 2011-05-31 2011-11-22 주식회사 쎄믹스 Method and apparatus for fabricating an absorber of a solar cell using selenization process in the element selenuim atmosphere
CN103456830B (en) * 2012-05-30 2016-03-02 台技工业设备股份有限公司 The manufacture method of thin-film solar cells and manufacturing equipment thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0629560A (en) * 1992-07-07 1994-02-04 Fuji Electric Corp Res & Dev Ltd Manufacture of thin-film solar battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0629560A (en) * 1992-07-07 1994-02-04 Fuji Electric Corp Res & Dev Ltd Manufacture of thin-film solar battery

Also Published As

Publication number Publication date
KR20020007777A (en) 2002-01-29

Similar Documents

Publication Publication Date Title
US9881774B2 (en) Copper indium gallium selenide (CIGS) thin films with composition controlled by co-sputtering
EP2260506B1 (en) Method for forming a compound semi-conductor thin-film
Dimmler et al. Scaling‐up of CIS technology for thin‐film solar modules
Romeo et al. Low substrate temperature CdTe solar cells: A review
WO2005098968A1 (en) Process for producing chalcopyrite base light absorbing layer for thin-film solar cell
KR20130143109A (en) Method for producing the pentanary compound semiconductor cztsse, and thin-film solar cell
KR101170681B1 (en) Method for fabricating a CIGS thin film
KR101628312B1 (en) PREPARATION METHOD OF CZTSSe-BASED THIN FILM SOLAR CELL AND CZTSSe-BASED THIN FILM SOLAR CELL PREPARED BY THE METHOD
US20110232762A1 (en) Method for manufacturing photoelectric conversion element, and photoelectric conversion element and thin-film solar cell
US10211351B2 (en) Photovoltaic cell with high efficiency CIGS absorber layer with low minority carrier lifetime and method of making thereof
JPH1074967A (en) Thin-film solar cell
US5506426A (en) Compound semiconductor, a method for producing a thin film thereof, and a semiconductor device having the thin film
CN101632154B (en) Method for fabricating 1-3-6 2 compound thin film using single metal-organic chemical vapor deposition process
KR100347106B1 (en) The manufacturing method of CuInSe2 thin film using vacuum evaporation of binary selenides
JPH1074966A (en) Method for manufacturing thin-film solar cell
US8779283B2 (en) Absorber layer for thin film photovoltaics and a solar cell made therefrom
EP0534459B1 (en) A method for producing a compound semiconductor for thin film
KR101542342B1 (en) Fabrication of thin film for CZTS or CZTSe solar cell and solar cell made therefrom
JPH08102546A (en) Manufacture of semiconductor thin film
JP3468328B2 (en) Manufacturing method of semiconductor thin film
KR101708282B1 (en) Solar cell using -based film and preparing method of the same
JP2014506391A (en) Solar cell and method for manufacturing solar cell
KR101388458B1 (en) Preparation method for cigs thin film using rapid thermal processing
JP3520683B2 (en) Compound semiconductor thin film, method for manufacturing the same, and solar cell
Dimmler et al. Thin film solar modules based on CIS prepared by the co-evaporation method

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120718

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20130723

Year of fee payment: 12

LAPS Lapse due to unpaid annual fee