KR101542342B1 - Fabrication of thin film for CZTS or CZTSe solar cell and solar cell made therefrom - Google Patents

Fabrication of thin film for CZTS or CZTSe solar cell and solar cell made therefrom Download PDF

Info

Publication number
KR101542342B1
KR101542342B1 KR1020130115670A KR20130115670A KR101542342B1 KR 101542342 B1 KR101542342 B1 KR 101542342B1 KR 1020130115670 A KR1020130115670 A KR 1020130115670A KR 20130115670 A KR20130115670 A KR 20130115670A KR 101542342 B1 KR101542342 B1 KR 101542342B1
Authority
KR
South Korea
Prior art keywords
precursor
solar cell
layer
thin film
czts
Prior art date
Application number
KR1020130115670A
Other languages
Korean (ko)
Other versions
KR20150035298A (en
Inventor
전동환
고병수
황대규
강진규
Original Assignee
재단법인대구경북과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 재단법인대구경북과학기술원 filed Critical 재단법인대구경북과학기술원
Priority to KR1020130115670A priority Critical patent/KR101542342B1/en
Publication of KR20150035298A publication Critical patent/KR20150035298A/en
Application granted granted Critical
Publication of KR101542342B1 publication Critical patent/KR101542342B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0326Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising AIBIICIVDVI kesterite compounds, e.g. Cu2ZnSnSe4, Cu2ZnSnS4
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

본 기재는 CZTS계 태양전지의 박막 제조방법에 관한 것으로,Cu 전구체, Zn 전구체, Sn 전구체 및 VI족 원소 전구체를 포함하는 금속 전구체를 제공하는 단계; 기판을 준비하는 단계; 기판 위에 후면 전극을 형성하는 단계; 상기 후면 전극 위에 상기 금속 전구체를 증착하여 전구체층을 형성하는 단계; 및 상기 전구체층을 열처리하여 광흡수층을 제조하는 단계를 포함하며, 상기 금속 전구체 내의 [VI족 원소]/[Cu+Zn+Sn]의 원소비가 1.2 이상인 것을 특징으로 하는 방법에 관한 것이다. The present invention relates to a method for producing a thin film of a CZTS-based solar cell, comprising the steps of: providing a metal precursor including a Cu precursor, a Zn precursor, a Sn precursor and a VI element precursor; Preparing a substrate; Forming a back electrode on the substrate; Depositing the metal precursor on the back electrode to form a precursor layer; And a step of heat treating the precursor layer to produce a light absorbing layer, wherein the original consumption of [VI group element] / [Cu + Zn + Sn] in the metal precursor is 1.2 or more.

Description

CZTS계 태양전지의 박막 제조방법 및 이로부터 제조된 태양전지 {Fabrication of thin film for CZTS or CZTSe solar cell and solar cell made therefrom}TECHNICAL FIELD [0001] The present invention relates to a method of manufacturing a thin film of a CZTS-based solar cell and a solar cell produced therefrom,

본 발명은 CZTS계 태양전지의 박막 제조방법 및 이로부터 제조된 태양전지에 관한 것이다. The present invention relates to a method for producing a thin film of a CZTS-based solar cell and a solar cell produced therefrom.

최근 환경 문제와 화석 에너지 고갈에 대한 관심이 높아지면서, 에너지 자원이 풍부하고 환경 오염에 대한 문제점이 없으며, 에너지 효율이 높은 대체 에너지로서 태양전지에 대한 관심이 높아지고 있다. 태양전지의 연구 초기에는 결정질 실리콘을 이용하여 태양전지를 제조하였다. 하지만 결정질 실리콘 태양전지의 두께는 수 백 μm 정도로, 효율이 떨어지고 원재료가 낭비된다는 등의 문제가 제기되었다. 또한, 결정질 실리콘은 기판 소재 비용이 전체 가격 대비 차지하는 비중이 높고, 잉곳-웨이퍼-전지-모듈 등의 단속적이고 복잡한 공정을 거쳐야 하기 때문에 가격 저감에 있어서 한계가 있다. 또한 최근의 실리콘 원소재 가격 급등은 전체적인 태양광 발전 시스템의 발전 단가에 부담이 되고 있다.Recently, as interest in environmental problems and depletion of fossil energy has increased, there is no problem about enviromental resources, environmental pollution, and attention is increasing to solar cells as an alternative energy with high energy efficiency. In the early days of solar cell research, crystalline silicon was used to manufacture solar cells. However, the thickness of the crystalline silicon solar cell is several hundreds of μm, which causes problems such as low efficiency and wasted raw materials. In addition, since the cost of the substrate material is high in the total cost of the crystalline silicon and the intermittent and complicated processes such as ingot-wafer-battery-module are required, the price of the crystalline silicon is limited. In addition, the recent surge in the price of silicon raw materials is burdensome for the overall unit price of solar power generation systems.

이러한 문제를 극복하기 위하여 실리콘 웨이퍼의 두께를 줄이는 기술과 함께 박막형 태양전지가 대안으로 제시되고 있다. 박막 태양전지는 수 μm 두께의 박막을 태양전지 광광흡수층으로 이용함으로써 원소재의 소모가 극히 적으며, 반도체 공정을 사용하기 때문에 연속공정이 가능하다. 또한 유리, 금속 등의 기판을 사용하여 저가의 건물일체형 태양전지 모듈도 제조 가능하다. In order to overcome these problems, a thin film solar cell is proposed as an alternative to the technique of reducing the thickness of a silicon wafer. Thin film solar cells use a thin film of several μm thickness as a solar cell absorbing layer, which consumes a very small amount of raw material, and a continuous process is possible because it uses a semiconductor process. In addition, it is possible to manufacture a solar cell module with a low cost building-integrated type using a glass or metal substrate.

최근에는 효율이 높고 저가로 제조 가능한 칼코겐화물 박막 태양전지 셀에 대한 관심이 증대되고 있으며, 구리-인듐-갈륨-황(이하, CIGS)을 이용한 박막 태양 전지가 차세대 태양전지로 주목을 받고 있다. CIGS 박막 태양전지는 저가, 고효율, 장기간 안정성, 약한 조명하에서 뛰어난 성능 및 방사선 조사에 대한 적절한 저항성을 나타낸다. 그러나, CIGS 박막 태양전지의 상업적 대량 생산은 실현이 어려운데, 그 이유는 CIGS 박막 태양전지의 광흡수층 제작에 필요한 In 과 Ga의 가격이 치솟고 있어 CIGS 박막의 제조 비용을 줄이는데 한계가 있고 대량 생산이나 대형화에는 적합하지 않은 문제가 있다.In recent years, there is a growing interest in chalcogenide thin film solar cell cells that can be manufactured at a high efficiency and low cost, and thin film solar cells using copper-indium-gallium-sulfur (hereinafter referred to as CIGS) are attracting attention as next generation solar cells . CIGS thin film solar cells exhibit low cost, high efficiency, long term stability, excellent performance under low light, and adequate resistance to irradiation. However, commercial mass production of CIGS thin film solar cells is difficult to realize because the price of In and Ga required for the CIGS thin film solar cell to make a light absorbing layer is so high that there is a limit in reducing the manufacturing cost of the CIGS thin film, There is a problem that is not suitable for enlargement.

이러한 배경 하에 구리-아연-주석-황(또는 셀레늄)(이하, CZTS)가 고효율 박막 태양전지 셀을 제조하기 위한 대안으로 떠오르고 있다. 그 이유로는 저가의 물질을 이용하면서 흡수 계수를 크게 할 수 있기 때문이다. Cu2ZnSnSe4(CZTSe), Cu2ZnSnS4(CZTS) 또는 Cu2ZnSn(S,Se)4(CZTSSe) 와 같은 Cu-Zn-Sn-(S,Se)계 (이하, CZTS계) 화합물 반도체는 CIGS 내 희소원소인 In과 Ga이 범용원소인 Zn 및 Sn으로 대체된 소재로서 미래형 저가 태양전지 개발을 위해 활발히 연구되고 있는데, 그 화합물 조합에 따라 0.8 eV부터 1.5 eV까지의 에너지 밴드갭을 갖는 것으로 알려져 있다.Under this background, copper-zinc-tin-sulfur (or selenium) (hereinafter referred to as CZTS) has emerged as an alternative for manufacturing high efficiency thin film solar cell cells. This is because the absorption coefficient can be increased while using a low-cost material. Cu 2 ZnSnSe 4 (CZTSe), Cu 2 ZnSnS 4 (CZTS) or Cu 2 ZnSn (S, Se) 4 Cu-Zn-Sn- (S, Se) system (hereinafter, CZTS system), such as (CZTSSe) compound semiconductor In and Ga, which are rare elements in CIGS, are replaced with Zn and Sn, which are general-purpose elements, and they are actively researched for the development of future low-cost solar cells. Depending on the combination of them, they have energy band gaps of 0.8 eV to 1.5 eV .

그러나 CZTS계 박막 태양전지를 상용화하기에는 여러 가지 사항들을 보완해야 해야 하는 필요성이 있다. 일반적으로 전구체를 다양한 방법(스퍼터, 동시증발증착기, 전착법, 스프레이법 등)으로 증착하고 열처리하여 광흡수층을 제작하는데, 이 때 VI족 원소(Se 혹은 S)를 지속적으로 공급하며 일정 분위기 내에서 열처리를 하고 있다. VI족 소스를 공급하기 위해 소스크래커(Source cracker)를 통해 공급하거나 가스(H2S, H2Se)를 사용하므로 매우 위험하고, 모듈 상용화에 있어 비용 상승으로 작용할 수 있다. However, in order to commercialize CZTS thin film solar cells, it is necessary to complement a variety of matters. In general, the precursor is deposited by various methods (sputtering, co-evaporation, electrodeposition, spraying, etc.) and heat treated to produce a light absorbing layer. At this time, the VI group element (Se or S) Heat treatment is performed. (H 2 S, H 2 Se) through the source cracker to supply the Group VI source, which is very dangerous and can increase the cost of commercialization of the module.

이에, 본 발명은 상기 문제점들을 해결하고자, 열처리 전 전구체층 형성시, VI족 원소를 포함시킴으로써 보다 안전하면서도 비용 절감 효과가 큰 CZTS계 태양전지의 박막 제조방법을 제공하고자 한다. Accordingly, it is an object of the present invention to provide a thin film manufacturing method of a CZTS-type solar cell which is more safe and cost-effective by including a VI group element in forming a precursor layer before heat treatment.

본 발명의 또 다른 목적은 상기 제조방법에 의한 광전환 효율 및 전지 특성이 우수한 태양전지를 제공하는 것이다. It is still another object of the present invention to provide a solar cell having excellent light conversion efficiency and cell characteristics by the above-described production method.

본 발명의 일 구현예는 CZTS계 태양전지의 박막 제조방법으로서, Cu 전구체, Zn 전구체, Sn 전구체 및 VI족 원소 전구체를 포함하는 금속 전구체를 제공하는 단계; 기판을 준비하는 단계; 기판 위에 후면 전극을 형성하는 단계; 후면 전극 위에 금속 전구체를 증착하여 전구체층을 형성하는 단계; 및 전구체층을 열처리하여 광흡수층을 제조하는 단계를 포함하며, 상기 금속 전구체에서 [VI족 원소]/[Cu+Zn+Sn]의 원소비가 1.2 이상인 방법을 제공한다. According to an embodiment of the present invention, there is provided a method of manufacturing a thin film of a CZTS-based solar cell, comprising: providing a metal precursor including a Cu precursor, a Zn precursor, a Sn precursor, and a VI precursor; Preparing a substrate; Forming a back electrode on the substrate; Depositing a metal precursor on the back electrode to form a precursor layer; And a step of heat treating the precursor layer to produce a light absorbing layer, wherein the original consumption of [VI group element] / [Cu + Zn + Sn] in the metal precursor is 1.2 or more.

본 발명의 일 구현예에서, 상기 금속 전구체 내의 [Cu]/[Zn+Sn] 원소비는 0.7 내지 0.95 일 수 있다.In one embodiment of the present invention, the [Cu] / [Zn + Sn] source consumption in the metal precursor may be 0.7 to 0.95.

본 발명의 일 구현예에서, 상기 금속 전구체 내의 [Zn]/[Sn]의 원소비는 0.8 내지 1.4 일 수 있다.In one embodiment of the present invention, the elemental consumption of [Zn] / [Sn] in the metal precursor may be 0.8 to 1.4.

본 발명의 일 구현예에서, 상기 VI족 원소는 Se 또는 S 일 수 있다.In one embodiment of the present invention, the VI group element may be Se or S.

본 발명의 일 구현예에서, 상기 열처리는 500 내지 650℃의 온도 범위에서 1 내지 20 분 동안 열처리될 수 있다. In one embodiment of the present invention, the heat treatment may be heat treated for 1 to 20 minutes at a temperature range of 500 to 650 占 폚.

본 발명의 일 구현예에서, 상기 열처리 시의 압력은 700 내지 800 Torr일 수 있다.In one embodiment of the present invention, the pressure during the heat treatment may be 700 to 800 Torr.

본 발명의 일 구현예에서, 상기 열처리는 불활성 기체 분위기 하에서 수행될 수 있다. In one embodiment of the present invention, the heat treatment may be performed under an inert gas atmosphere.

본 발명의 일 구현예에서, 상기 후면 전극은 몰리브덴일 수 있다. In one embodiment of the present invention, the back electrode may be molybdenum.

본 발명의 다른 구현예는 상기 방법 중 어느 하나의 방법에 의하여 제조된 박막을 포함하는 CZTS계 태양전지를 제공한다. Another embodiment of the present invention provides a CZTS-based solar cell comprising a thin film produced by any one of the above methods.

CZTS계 태양전지의 광흡수층 층을 형성하기 위하여 전구체층 형성 후, Se 또는 S 분위기 하에서 열처리하는 종래 방법과 달리, 본 발명은 Se 또는 S 등의 VI족 원소를 포함하는 전구체층을 형성하고, 이를 열처리함으로써 보다 안전하고 간단한 제조방법을 제공한다.Unlike a conventional method in which a precursor layer is formed to form a light absorbing layer of a CZTS system solar cell and then heat treatment is performed under an atmosphere of Se or S, the present invention forms a precursor layer containing a VI group element such as Se or S, The heat treatment provides a safer and simpler manufacturing method.

뿐만 아니라, 본 발명의 제조방법에 의하는 경우 열처리시 전구체층 내의 원소의 손실을 방지하여 제조비용을 절감할 수 있으며, 광전환 효율이 우수한 태양전지를 제공한다. In addition, according to the production method of the present invention, it is possible to prevent the loss of elements in the precursor layer during heat treatment, to reduce the manufacturing cost, and to provide a solar cell having excellent light conversion efficiency.

도 1은 CZTSe 태양전지의 단면도를 나타내는 것이다.
도 2a 및 도 2b는 실시예 1에서 열처리 전 및 후에 촬영한 전구체층의 SEM 사진이다.
도 3a 및 도 3b은 실시예 1에서 열처리 전 및 후에 측정한 전구체층의 XRD 그래프를 나타낸 것이다.
도 4는 실시예 1에서 제조된 CZTSe 박막 태양전지의 전류-전압 특성 그래프를 나타낸 것이다.
1 is a cross-sectional view of a CZTSe solar cell.
FIGS. 2A and 2B are SEM photographs of the precursor layer taken before and after the heat treatment in Example 1. FIG.
FIGS. 3A and 3B are XRD graphs of the precursor layer measured before and after the heat treatment in Example 1. FIG.
FIG. 4 is a graph showing a current-voltage characteristic of the CZTSe thin film solar cell manufactured in Example 1. FIG.

본 발명은 하기의 설명에 의하여 모두 달성될 수 있다. 하기의 설명은 본 발명의 바람직한 구체예를 기술하는 것으로 이해되어야 하며, 본 발명이 반드시 이에 한정되는 것은 아니다.The present invention can be all accomplished by the following description. The following description should be understood to describe preferred embodiments of the present invention, but the present invention is not necessarily limited thereto.

또한, 첨부된 도면은 이해를 돕기 위하여 실제 층의 두께(또는 높이) 또는 다른 층과의 비율에 비하여 다소 과장되게 표현된 것일 수 있으며, 그 의미는 후술하는 관련 기재의 구체적 취지에 의하여 적절히 이해될 수 있다.The accompanying drawings may be exaggeratedly expressed relative to the actual layer thickness (or height) or the ratio with respect to other layers in order to facilitate understanding, and the meaning thereof may be appropriately understood according to the concrete purpose of the related description to be described later .

본 명세서에 있어서, "상에" 및 "위에"라는 표현은 상대적인 위치 개념을 언급하기 위하여 사용되는 것으로서, 언급된 층에 다른 구성 요소 또는 층이 직접적으로 존재하는 경우뿐만 아니라, 그 사이에 다른 층(중간층) 또는 구성 요소가 개재되거나 존재할 수 있다.
In this specification, the expressions "on" and "on" are used to refer to the relative position concept and include not only the case where other elements or layers are directly present in the mentioned layer, (Intermediate layer) or component may be present or present.

본 발명의 일 구현예는 CZTS계 태양전지의 박막 제조방법을 제공한다. One embodiment of the present invention provides a method of manufacturing a thin film of a CZTS-based solar cell.

보다 구체적으로 상기 제조방법은 Cu 전구체, Zn 전구체, Sn 전구체 및 VI족 원소를 포함하는 금속 전구체를 제공하는 단계, 기판을 준비하는 단계, 기판 위에 후면 전극을 형성하는 단계, 후면 전극 위에 금속 전구체를 증착하여 전구체층을 형성하는 단계; 및 전구체층을 열처리하여 광흡수층을 제조하는 단계를 포함하며,이때 상기 금속 전구체 내의 [VI족 원소]/[Cu+Zn+Sn]의 원소비는 1.2 이상이다. VI 족 원소로는 Se 또는 S를 사용할 수 있다.
More specifically, the method comprises providing a metal precursor comprising a Cu precursor, a Zn precursor, a Sn precursor, and a VI group element, preparing a substrate, forming a back electrode on the substrate, Depositing a precursor layer to form a precursor layer; And a step of heat treating the precursor layer to form a light absorbing layer, wherein the atomic ratio of [VI group element] / [Cu + Zn + Sn] in the metal precursor is 1.2 or more. Se or S may be used as the VI group element.

금속 전구체의 제조Preparation of metal precursors

본원 발명의 일 구현예는, VI족 원소 전구체를 함유하는 금속 전구체를 제조하는 단계를 포함한다. One embodiment of the present invention comprises the step of preparing a metal precursor containing a Group VI element precursor.

종래, 태양전지의 광흡수층을 제조하기 위해서는 기판 위에 금속 전구체를 증착한 뒤, Se 또는 S 등의 VI족 원소 분위기 하에서 전구체층을 고온으로 열처리하였다. 이와 달리, 본 발명은 과량의 VI족 원소를 함께 포함한 금속 전구체를 기판 상에 증착하여 전구체층을 형성하는 단계를 포함한다. 본 발명의 일 구현예로, 금속 전구체 내의 과량의 VI족 원소의 함량은 [VI족 원소]/[Cu+Zn+Sn]의 원소비는 1.2 이상이다. Conventionally, in order to manufacture a light absorbing layer of a solar cell, a metal precursor is deposited on a substrate, and then the precursor layer is heat-treated at a high temperature under a VI group element atmosphere such as Se or S. Alternatively, the present invention comprises depositing a metal precursor containing an excess of Group VI elements on a substrate to form a precursor layer. In one embodiment of the present invention, the content of the excess VI group element in the metal precursor is 1.2 or more in terms of the circle consumption of [VI group element] / [Cu + Zn + Sn].

본 발명의 일 구현예에서, 상기 금속 전구체 내의 [Cu]/[Zn+Sn] 비는 0.7 내지 0.95 이며, 더욱 바람직하게는 0.8 내지 0.9이다. In one embodiment of the present invention, the ratio of [Cu] / [Zn + Sn] in the metal precursor is 0.7 to 0.95, more preferably 0.8 to 0.9.

본 발명의 일 구현예에서, 상기 금속 전구체 내의 [Zn]/[Sn] 비는 0.8 내지 1.4 이며, 더욱 바람직하게는 1.0 내지 1.2일 수 있다. 상기 수치 범위를 만족하는 경우에는 형성되는 광흡수층의 결정립의 크기와 태양전지로서의 전기적 특성이 우수하다.
In one embodiment of the present invention, the [Zn] / [Sn] ratio in the metal precursor may be 0.8 to 1.4, more preferably 1.0 to 1.2. When the numerical range is satisfied, the size of crystal grains of the formed light absorbing layer and electrical characteristics as a solar cell are excellent.

기판 및 후면 전극의 제조Fabrication of substrate and back electrode

본 발명의 일 구현예는 기판을 준비하고, 기판 위에 후면 전극을 형성하는 단계를 포함한다. One embodiment of the present invention includes preparing a substrate and forming a back electrode on the substrate.

상기 기판으로는 투명한 절연 물질이 사용될 수 있다. 구체적으로 상기 기판으로 유리, 세라믹 또는 금속 등이 사용될 수 있으며, 소다 라임 유리(soda lime glass), 보로실리케이트 유리(borosilicate glass) 및 무알칼리 유리(alkali free glass) 기판 등 또한 이에 포함된다. As the substrate, a transparent insulating material may be used. Specifically, glass, ceramics, metal, or the like can be used as the substrate, and soda lime glass, borosilicate glass, and alkali free glass substrate are included.

상기 기판 위에 형성되는 후면 전극은 몰리브덴(Mo), 니켈(Ni), 텅스텐(W), 코발트(Co), 티탄(Ti), 구리(Cu), 금(Au) 또는 이들의 합금 중 어느 하나일 수 있다. 바람직하게는, 몰리브덴(Mo)의 박막이다. 몰리브덴(Mo)은 전기전도도, 저항성 접촉, 내열특성, 및 계면 접착력이 우수하며, 스퍼터링 공정 등에 의하여 형성될 수 있다. 한편, 상기 후면 전극의 두께는 0.2 μm 내지 5 μm일 수 있다
The back electrode formed on the substrate may be any one of molybdenum (Mo), nickel (Ni), tungsten (W), cobalt (Co), titanium (Ti), copper (Cu), gold (Au) . Preferably, it is a thin film of molybdenum (Mo). Molybdenum (Mo) is excellent in electrical conductivity, resistive contact, heat resistance, and interfacial adhesion, and can be formed by a sputtering process or the like. On the other hand, the thickness of the rear electrode may be between 0.2 μm and 5 μm

금속 전구체의 증착Deposition of metal precursors

본 발명의 일 구현예는, 상기 금속 전구체를 후면 전극 위에 증착하여 전구체층을 형성하는 단계를 포함한다. One embodiment of the present invention includes depositing the metal precursor on the back electrode to form a precursor layer.

본 발명의 일 구현예에서, 금속 전구체는 스퍼터링법(sputtering), 증발법(evaporation), CVD법(Chemical vapor deposition), 유기금속화학기상증착(MOCVD), 근접승화법(Close-spaced sublimation, CSS), 스프레이 피롤리시스(Spray pyrolysis), 화학 스프레이법(Chemical spraying), 스크린프린팅법(Screeen printing), 비진공 액상성막법, CBD법(Chemical bath deposition), VTD법(Vapor transport deposition), 및 전착법(electrodeposition) 중에서 어느 하나의 방법에 의하여 후면 전극 상에 증착될 수 있다.
In one embodiment of the present invention, the metal precursor may be formed by sputtering, evaporation, CVD (Chemical Vapor Deposition), MOCVD (Metal Organic Chemical Vapor Deposition), Close-spaced sublimation , Spray pyrolysis, chemical spraying, screen printing, non-vacuum liquid phase film deposition, CBD chemical vapor deposition, VTD vapor deposition, And may be deposited on the back electrode by any one of electrodeposition methods.

광흡수층의The light- 제조 Produce

본 발명의 일 구현예에는 후면 전극 상에 형성된 전구체층을 열처리하여 광흡수층을 제조하는 단계를 포함한다. 본 발명은 열처리시 별도의 VI족 원소(Se 혹은 S)의 공급을 필요로 하지 않는다. One embodiment of the present invention includes a step of heat treating the precursor layer formed on the back electrode to produce a light absorbing layer. The present invention does not require the supply of a separate Group VI element (Se or S) upon heat treatment.

일반적으로 CZTS계 화합물 태양전지용 흡수층 제작을 위해서 VI족 원소(Se 혹은 S)의 분위기 하에서 전구체층을 열처리하는 것이 필수적이었다. 하지만 지속적인 VI족 원소의 공급은 추가시설 및 장비가 필요하며 제어하기가 쉽지 않다. 또한 Cu, Sn 및 Zn을 포함하는 전구체층에서는 Sn이 단일 원소로서 존재하기 때문에 끓는점이 높아 쉽게 증발되지 않는다. 그러나, VI족 원소와 Sn 및 Zn가 함께 포함된 금속 전구체를 증착한 뒤, 일정 압력 이하에서 고온 열처리하면, Sn 등이 VI족 원소와 결합하게 되고, 그 결과 Sn의 끓는점이 낮아져 쉽게 소실되어 버림으로써, 광흡수층의 조성비 제어가 어렵다는 문제점이 있었다. 그러나, 본 발명은 이러한 문제점을 해결함으로써, 보다 안정하고, 추가적인 시설 및 장비가 필요로 하지 않아 공정 비용을 절감하고 공정을 단순화시킨다는 장점을 가진다. 또한, 본 발명의 일 구현예는 일정압력 이상에서 고온 열처리를 진행하여 Sn의 소실량을 최소화하여 광흡수층의 조성비 제어가 용이하다는 이점을 가진다. Generally, it is essential to heat-treat the precursor layer in the atmosphere of a VI group element (Se or S) in order to fabricate an absorption layer for a CZTS-based compound solar cell. However, continuous supply of VI elements requires additional facilities and equipment and is difficult to control. In the precursor layer containing Cu, Sn and Zn, since Sn is present as a single element, it has a high boiling point and is not easily evaporated. However, when a metal precursor containing a group VI element and Sn and Zn is deposited and then subjected to a high-temperature heat treatment at a certain pressure or less, Sn or the like is bonded to the VI group element, and as a result, the boiling point of Sn is lowered, , There is a problem that it is difficult to control the composition ratio of the light absorbing layer. However, the present invention solves this problem, and has the advantage that it is more stable, does not require additional facilities and equipment, reduces the process cost, and simplifies the process. In addition, one embodiment of the present invention has an advantage that the composition ratio of the light absorbing layer can be easily controlled by minimizing the disappearance amount of Sn by conducting a high-temperature heat treatment at a certain pressure or higher.

본 발명의 일 구현예에서, 증착된 전구체층은 챔버 내에서 열처리될 수 있다. 이 때, 열처리 챔버의 온도는 500 내지 650℃가 바람직하며, 더욱 바람직하게는 570 내지 590℃일 수 있다. 전구체층의 열처리 단계는 상기 온도 범위 내에서 1 내지 20 분 동안 유지될 수 있다. In one embodiment of the invention, the deposited precursor layer can be heat treated in a chamber. At this time, the temperature of the heat treatment chamber is preferably 500 to 650 ° C, more preferably 570 to 590 ° C. The heat treatment step of the precursor layer may be maintained for 1 to 20 minutes within the temperature range.

본 발명의 일 구현예에서, 상기 열처리는 불활성 기체 분위기 하에서 700 내지 800 Torr 의 조건하에서 수행될 수 있으며, 더욱 바람직한 압력 조건은 760 내지 770 Torr 일 수 있다. 상기 수치범위를 만족하는 압력 하에서 열처리를 하는 경우, 전구체층 내부의 원소들의 증발이 최소화되며, 전구체층 내의 조성비 변화를 줄임으로써 우수한 특성을 가지는 CZTS계 태양전지용 광흡수층을 제공할 수 있다. In one embodiment of the present invention, the heat treatment may be performed under an inert gas atmosphere at a temperature of 700 to 800 Torr, and a more preferable pressure condition may be 760 to 770 Torr. When the heat treatment is performed under the pressure that satisfies the above-described numerical range, evaporation of elements in the precursor layer is minimized, and a change in the composition ratio in the precursor layer is reduced, thereby providing a CZTS system light absorbing layer for a solar cell having excellent characteristics.

본 발명의 다른 구현예에서는, 광전환 효율이 우수한 CZTS계 태양전지를 제공한다. 상기 CZTS계 태양전지는 전술한 방법에 따라 제조된 CZTS계 태양전지의 박막을 포함하며, 광전환 효율이 5.0% 이상이다. 본 발명 일 구현예에서, 상기 CZTS계 태양전지는 버퍼층, 윈도우층 및 상부 전극을 추가로 포함할 수 있다. 도 1은 본 발명의 일 구현예로서, 기판(100), 후면 전극(200), 광흡수층(300), 버퍼층(400), 제 1윈도우층(500), 제 2 윈도우층(600), 및 상부전극(700)을 포함하는 CZTS계 태양전지를 보여준다. Another embodiment of the present invention provides a CZTS-type solar cell having excellent light conversion efficiency. The CZTS-based solar cell includes a thin film of a CZTS-type solar cell manufactured according to the above-described method, and has a light conversion efficiency of 5.0% or more. In one embodiment of the present invention, the CZTS-based solar cell may further include a buffer layer, a window layer, and an upper electrode. 1 is a cross-sectional view of a substrate 100, a rear electrode 200, a light absorbing layer 300, a buffer layer 400, a first window layer 500, a second window layer 600, And an upper electrode (700).

이하, 하기의 실시예를 통하여 본 발명을 보다 상세하게 설명한다.
Hereinafter, the present invention will be described in more detail with reference to the following examples.

실시예Example : : CZTSCZTS 계 태양전지용 흡수층의 제조Of solar cell type absorption layer

1 단계: 금속 전구체의 제조Step 1: Preparation of metal precursor

Cu, Zn, Sn, Se을 포함하는 금속 전구체를 준비하였다.Cu, Zn, Sn, and Se.

각 전구체의 함량은 금속 전구체 내에 존재하는 Cu, Zn, Sn 및 Se의 원소비가 [Cu]/[Zn+Sn]= 0.8이고, [Zn]/[Sn]= 1.2이며, [Se]/[Cu+Zn+Sn]의 원소비가 1.2 가 되도록 계량하였다.
The content of each precursor is such that the original consumption of Cu, Zn, Sn and Se in the metal precursor is [Cu] / [Zn + Sn] = 0.8, [Zn] / [Sn] Cu + Zn + Sn] was 1.2.

2 단계: 기판 준비Step 2: Prepare the board

기판 준비 단계로서 일반적으로 많이 사용되는 SLG(Soda lime glass)를 준비하였다. 세척은 아세톤, 메탄올로 각각 초음파 10분 세척 후 증류수(D.I. water)로 충분히 세척하여 준비하였다.
SLG (Soda lime glass), which is generally used as a substrate preparation step, was prepared. Washing was performed by thoroughly washing with ultrasonic waves for 10 minutes using acetone and methanol, followed by thorough washing with distilled water (DI water).

3 단계. 몰리브덴 후면전극 제조Step 3. Molybdenum back electrode manufacturing

SLG 위에 배면전극으로서 몰리브덴 박막을 DC 스퍼터링(Direct Current Sputtering) 공정으로 1 마이크로미터 두께로 형성시켰다. 그러나, 마이크로미터의 두께는 이 실시예에서 제시하는 하나의 예일 뿐이며, 사용자의 박막 제조공정에 따라서 더 얇거나 두꺼울 수 있다.
A molybdenum thin film was formed as a back electrode on the SLG by a direct current sputtering process to a thickness of 1 micrometer. However, the thickness of the micrometer is only an example presented in this embodiment, and may be thinner or thicker depending on the thin film manufacturing process of the user.

4 단계. Step 4. CZTSCZTS system 광흡수층의The light- 제조 Produce

상기 금속 전구체를 동시증발증착기(SNTEK사)를 이용하여 몰리브덴 위에 증착하였다. The metal precursor was deposited on molybdenum using a co-evaporation evaporator (SNTEK).

그 후, 증착된 전구체층을 급속열처리장비(SNTEK사, 09SN047)에 위치시키고, 로터리 펌프를 이용하여 급속열처리장비의 챔버 내부를 3 mTorr 이하 진공상태로 만들었다. 이후, Ar 가스를 주입하여 챔버 내부 압력을 760 내지 770 Torr 사이의 진공도를 갖도록 조절하고 590℃ 에서 5분간 열처리 하여 광흡수층을 제조하여, CZTS계 태양전지를 얻었다. The deposited precursor layer was then placed in a rapid thermal annealer (SNTEK, 09SN047) and vacuumed to below 3 mTorr inside the chamber of the rapid thermal annealer using a rotary pump. Then, Ar gas was injected to adjust the pressure inside the chamber to a degree of vacuum between 760 and 770 Torr, and heat treatment was carried out at 590 캜 for 5 minutes to produce a light absorbing layer to obtain a CZTS solar cell.

도 2a 및 도 2b는 각각 상기 열처리 전 및 후에 촬영한 전구체층의 SEM 사진이다. 도 2a 및 도 2b의 비교로부터 알 수 있듯이, 광흡수층의 결정상은 균일하고 결정성이 증가했음을 알 수 있다.2A and 2B are SEM photographs of the precursor layer taken before and after the heat treatment, respectively. As can be seen from the comparison of Figs. 2A and 2B, it can be seen that the crystal phase of the light absorption layer is uniform and the crystallinity is increased.

도 3a 및 도 3b은 각각 상기 열처리 전 및 후에 측정한 전구체층의 XRD 그래프를 나타낸 것이다. 또한, 도 3a 및 도 3b의 비교로부터 전극의 결정성에 변화가 생겼음을 알 수 있다.
3A and 3B are XRD graphs of the precursor layer measured before and after the heat treatment, respectively. It can also be seen from the comparison of Figs. 3A and 3B that the crystallinity of the electrode is changed.

실험예Experimental Example : : CZTSCZTS 계 태양전지의 특성 평가Evaluation of Solar Cell Characteristics

상기 1 단계 내지 4단계로부터 제조된 CZTS계 태양전지의 전지 특성을 하기의 방법에 따라 평가하였다. 도 1 구조를 갖도록 태양전지 소자를 제작하였으며 그 결과, 도 4의 그래프를 얻었다. 도 4의 그래프는 A.M.1.5 조건에서 측정하였으며 개방전압(Voc)은 0.39 V, 단락 전류(Jsc)는 29.21 mA/cm2, 효율은 5.0 %의 특성을 나타내었다.
The cell characteristics of the CZTS-type solar cell manufactured from steps 1 to 4 were evaluated according to the following methods. The solar cell device was fabricated to have the structure shown in FIG. 1, and the graph of FIG. 4 was obtained. The graph of FIG. 4 was measured under the condition of AM1.5. The open-circuit voltage (Voc) was 0.39 V, the short-circuit current (Jsc) was 29.21 mA / cm 2 and the efficiency was 5.0%.

이상에서 첨부된 실시예를 참조하여 본 발명의 효과에 대해 설명하였으나 본 발명의 기술적 구성은 상기에 상술한 특정의 바람직한 실시예에 한정되지 않으며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명에 속하는 기술 분야에서 통상의 지식을 가진 자라면 누구든지 다양한 변형의 실시가 가능하므로 이상에서 기술한 실시 예들은 모든 면에서 예시적인 것이며 한정적인 것이 아닌 것으로 이해되어야 한다. 또한 특허 청구범위의 의미 및 범위 그리고 그 등가 개념으로부터 도출되는 모든 변경 또는 변형된 형태는 본 발명의 범위에 포함되는 것으로 해석되어야 한다.
While the present invention has been described with reference to exemplary embodiments, it is to be understood that the invention is not limited to the disclosed exemplary embodiments, but, on the contrary, It will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the invention as defined by the appended claims. And all changes or modifications derived from the meaning and scope of the claims and their equivalents should be construed as being included within the scope of the present invention.

100 : 기판
200 : 제1전극(후면전극)
300 : 광흡수층
400 : 버퍼층
500 : 제1 윈도우층 (Intrinsic Layer)
600 : 제2 윈도우층
700 : 제2전극(상부전극)
100: substrate
200: first electrode (rear electrode)
300: light absorbing layer
400: buffer layer
500: first window layer (Intrinsic Layer)
600: second window layer
700: second electrode (upper electrode)

Claims (9)

CZTS계 태양전지의 박막 제조방법으로서,
Cu 전구체, Zn 전구체, Sn 전구체 및 VI족 원소 전구체를 포함하는 금속 전구체를 제공하는 단계;
기판을 준비하는 단계;
기판 위에 후면 전극을 형성하는 단계;
상기 후면 전극 위에 상기 금속 전구체를 동시증발증착법으로 증착하여 전구체층을 형성하는 단계; 및
VI족 원소의 공급없이 상기 전구체층을 700 내지 800 Torr의 압력에서 500 내지 650℃의 온도 범위로 1 내지 20 분 동안 열처리하여 광흡수층을 제조하는 단계를 포함하며,
상기 금속 전구체 내의 [VI족 원소]/[Cu+Zn+Sn]의 원소비가 1.2 이상인 것을 특징으로 하는 방법.
A thin film manufacturing method of a CZTS system solar cell,
Providing a metal precursor comprising a Cu precursor, a Zn precursor, a Sn precursor and a Group VI element precursor;
Preparing a substrate;
Forming a back electrode on the substrate;
Depositing the metal precursor on the back electrode by simultaneous evaporation deposition to form a precursor layer; And
Treating the precursor layer at a pressure of 700 to 800 Torr in a temperature range of 500 to 650 占 폚 for 1 to 20 minutes without supplying Group VI elements to produce a light absorbing layer,
Wherein the element ratio of [VI group element] / [Cu + Zn + Sn] in the metal precursor is 1.2 or more.
제1항에 있어서,
상기 금속 전구체 내의 [Cu]/[Zn+Sn] 원소비가 0.7 내지 0.95인 것을 특징으로 하는 방법.
The method according to claim 1,
Wherein the [Cu] / [Zn + Sn] source consumption in the metal precursor is 0.7 to 0.95.
제1항에 있어서,
상기 금속 전구체 내의 [Zn]/[Sn]의 원소비가 0.8 내지 1.4인 것을 특징으로 하는 방법.
The method according to claim 1,
Wherein the element ratio of [Zn] / [Sn] in the metal precursor is 0.8 to 1.4.
제1항에 있어서,
상기 VI족 원소가 Se 또는 S인 것을 특징으로 하는 방법.
The method according to claim 1,
Wherein the Group VI element is Se or S. < RTI ID = 0.0 > 8. < / RTI >
삭제delete 삭제delete 제1항 내지 제3항 중 어느 한 항에 있어서,
상기 열처리는 불활성 기체 분위기 하에서 수행되는 것을 특징으로 하는 방법.
4. The method according to any one of claims 1 to 3,
Wherein the heat treatment is performed in an inert gas atmosphere.
제1항 내지 제3항 중 어느 한 항에 있어서,
상기 후면 전극이 몰리브덴인 것을 특징으로 하는 방법.
4. The method according to any one of claims 1 to 3,
Wherein the back electrode is molybdenum.
제1항 내지 제3항 중 어느 한 항에 따른 방법에 의하여 제조된 박막을 포함하는 것을 특징으로 하는 CZTS계 태양전지.A CZTS solar cell comprising a thin film produced by the method according to any one of claims 1 to 3.
KR1020130115670A 2013-09-27 2013-09-27 Fabrication of thin film for CZTS or CZTSe solar cell and solar cell made therefrom KR101542342B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020130115670A KR101542342B1 (en) 2013-09-27 2013-09-27 Fabrication of thin film for CZTS or CZTSe solar cell and solar cell made therefrom

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020130115670A KR101542342B1 (en) 2013-09-27 2013-09-27 Fabrication of thin film for CZTS or CZTSe solar cell and solar cell made therefrom

Publications (2)

Publication Number Publication Date
KR20150035298A KR20150035298A (en) 2015-04-06
KR101542342B1 true KR101542342B1 (en) 2015-08-06

Family

ID=53030304

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020130115670A KR101542342B1 (en) 2013-09-27 2013-09-27 Fabrication of thin film for CZTS or CZTSe solar cell and solar cell made therefrom

Country Status (1)

Country Link
KR (1) KR101542342B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170036604A (en) 2015-09-24 2017-04-03 재단법인대구경북과학기술원 A preparation method of solar cell using ZnS buffer layer
KR20170036606A (en) 2015-09-24 2017-04-03 재단법인대구경북과학기술원 A CZTS based solar cell comprising a double light aborbing layer

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180034274A (en) * 2016-09-27 2018-04-04 재단법인대구경북과학기술원 CZTS-based thin film solar cell comprising silver and method the same
KR101969976B1 (en) * 2017-09-15 2019-04-18 한국과학기술연구원 Method for Producing CIGS Thin-Film, CIGS Thin-Film Produced by the Method and Solar Cell Having the Same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010215497A (en) 2009-02-20 2010-09-30 Toyota Central R&D Labs Inc Sulfide and photoelectric element
JP2012151221A (en) 2011-01-18 2012-08-09 Toyota Central R&D Labs Inc Chalcogenide-based compound semiconductor and method of producing the same
KR101179010B1 (en) 2011-02-01 2012-08-31 연세대학교 산학협력단 Chalcogenide semiconductor thin film and fabrication method thereof
JP2013004743A (en) 2011-06-16 2013-01-07 Showa Shell Sekiyu Kk Czts based thin film solar cell manufacturing method and czts based thin film solar cell

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010215497A (en) 2009-02-20 2010-09-30 Toyota Central R&D Labs Inc Sulfide and photoelectric element
JP2012151221A (en) 2011-01-18 2012-08-09 Toyota Central R&D Labs Inc Chalcogenide-based compound semiconductor and method of producing the same
KR101179010B1 (en) 2011-02-01 2012-08-31 연세대학교 산학협력단 Chalcogenide semiconductor thin film and fabrication method thereof
JP2013004743A (en) 2011-06-16 2013-01-07 Showa Shell Sekiyu Kk Czts based thin film solar cell manufacturing method and czts based thin film solar cell

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170036604A (en) 2015-09-24 2017-04-03 재단법인대구경북과학기술원 A preparation method of solar cell using ZnS buffer layer
KR20170036606A (en) 2015-09-24 2017-04-03 재단법인대구경북과학기술원 A CZTS based solar cell comprising a double light aborbing layer
KR20180005730A (en) 2015-09-24 2018-01-16 재단법인대구경북과학기술원 A preparation method of solar cell using ZnS buffer layer

Also Published As

Publication number Publication date
KR20150035298A (en) 2015-04-06

Similar Documents

Publication Publication Date Title
Ravindiran et al. Status review and the future prospects of CZTS based solar cell–A novel approach on the device structure and material modeling for CZTS based photovoltaic device
Song et al. A review on development prospect of CZTS based thin film solar cells
CN102569508B (en) Thin-film solar photovoltaic cell with nano wire array structure and preparation method for thin-film solar photovoltaic cell
KR101893411B1 (en) A preparation method of solar cell using ZnS buffer layer
KR101094326B1 (en) Cu-In-Zn-Sn-Se,S THIN FILM FOR SOLAR CELL AND PREPARATION METHOD THEREOF
TWI455333B (en) Solar cell
KR20130023608A (en) Solar cell comprising bulk heterojunction inorganic thin film and fabrication of the solar cell
KR101152202B1 (en) Method of making the photovoltaic CIGS absorber
TW201123465A (en) Photoelectric conversion device, method for producing the same, and solar battery
CN104143579A (en) Antimony-base compound thin film solar cell and manufacturing method thereof
Hossain et al. Ecofriendly and nonvacuum electrostatic spray-assisted vapor deposition of Cu (In, Ga)(S, Se) 2 thin film solar cells
KR101542342B1 (en) Fabrication of thin film for CZTS or CZTSe solar cell and solar cell made therefrom
JP2015233139A (en) Solar cell containing buffer layer formed by atomic layer deposition method and manufacturing method of the same
KR102070852B1 (en) CZTS solar cell and method of preparing thereof
US20140256082A1 (en) Method and apparatus for the formation of copper-indiumgallium selenide thin films using three dimensional selective rf and microwave rapid thermal processing
KR101656842B1 (en) PREPARATION METHOD OF CZTS/CZTSe-BASED THIN FILM AND CZTS/CZTse-BASED THIN FILM PREPARED BY THE SAME
Wu et al. Characterization of Cu (In, Ga) Se2 thin films prepared via a sputtering route with a following selenization process
KR20140047760A (en) Manufacturing method of solar cell light absortion layer
Peksu et al. Synthesis of ZnO Nanowires and Their Photovoltaic Application: ZnO Nanowires/AgGaSe2 Thin Film Core‐Shell Solar Cell
CN109841697B (en) Solar cell based on CuO/Se composite material film
Kavitha et al. Structural, photoelectrical characterization of Cu (InAl) Se 2 thin films and the fabrication of Cu (InAl) Se 2 based solar cells
KR101541450B1 (en) Method for manufacturing CZTS-based thin film solar cell
KR102057234B1 (en) Preparation of CIGS thin film solar cell and CIGS thin film solar cell using the same
KR101908472B1 (en) Method of manufacturing of CZTS-based absorber layer using metal and compound thin film
CN113078224A (en) Transparent conductive glass copper indium selenium thin-film solar cell device and preparation method and application thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)
FPAY Annual fee payment

Payment date: 20190701

Year of fee payment: 5