JPH08102546A - Manufacture of semiconductor thin film - Google Patents

Manufacture of semiconductor thin film

Info

Publication number
JPH08102546A
JPH08102546A JP6236333A JP23633394A JPH08102546A JP H08102546 A JPH08102546 A JP H08102546A JP 6236333 A JP6236333 A JP 6236333A JP 23633394 A JP23633394 A JP 23633394A JP H08102546 A JPH08102546 A JP H08102546A
Authority
JP
Japan
Prior art keywords
group
thin film
film
semiconductor thin
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6236333A
Other languages
Japanese (ja)
Other versions
JP3311873B2 (en
Inventor
Takayuki Negami
卓之 根上
Takahiro Wada
隆博 和田
Mikihiko Nishitani
幹彦 西谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP23633394A priority Critical patent/JP3311873B2/en
Publication of JPH08102546A publication Critical patent/JPH08102546A/en
Application granted granted Critical
Publication of JP3311873B2 publication Critical patent/JP3311873B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE: To improve the energy conversion efficiency of a solar battery by controlling carrier concentration of a compound semiconductor thin film consisting of group Ib, group IIIa and group VIa elements and by forming a carrier concentration distribution wherein light current can be obtained effectively. CONSTITUTION: A compound thin film 10 consisting of group Ia and group VIa elements is deposited on alumina or a metallic substrate 8 and a compound semiconductor thin film 9 consisting of group Ib, group IIIa and group VIa elements is formed thereon. After a substrate temperature when a compound semiconductor thin film is deposited is held at a high temperature of 500 deg.C or higher or a compound semiconductor thin film is deposited at a low temperature of a substrate temperature of 500 deg.C or below, and then it is thermally processed at a high temperature of 500 deg.C or higher; thereby, a group Ia element is diffused in a compound semiconductor thin film and carrier concentration in a semiconductor thin film is increased. A semiconductor thin film is useful to be used for optical absorption layer of a solar battery.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、化合物半導体薄膜の製
造方法に関する。さらに詳しくは、エネルギー変換効率
の高い太陽電池の光吸収層などに有用な半導体薄膜の製
造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a compound semiconductor thin film. More specifically, it relates to a method for producing a semiconductor thin film, which is useful for a light absorption layer of a solar cell having high energy conversion efficiency.

【0002】[0002]

【従来の技術】Ib族、 IIIa族とVIa族元素からなる
化合物半導体薄膜(カルコパイライト構造半導体薄膜)
であるCuInSe2 を光吸収層に用いた薄膜太陽電池
は高いエネルギー変換効率を示し、光照射等による効率
の劣化がないという利点を有していることが報告されて
いる。これらのCuInSe2 薄膜太陽電池は基板とし
て一般にソーダライムガラスを使用している。このソー
ダライムガラス中の Ia族元素Naが、CuInSe2
膜の膜質やキャリア濃度に影響を与えているという報告
がある。例えば、アムステルダムでの1994年4月1
1日〜15日の第12回ヨーロッパ光起電力太陽エネル
ギー会議(12th E.C. Photovoltaic SolarEnergy Confer
ence) において、ボーデガード(M. Bodegard)等
は、”ザ インフリューエンス オブ ソディウム オ
ン ザ グレイン ストラクチュア オブ CuInS
2 フィルムズ フォア フォトボルタイック アプ
リケイションズ (THE INFLUENCE OF SODIUM ON THE G
RAIN STRUCTURE OF CuInSe2 FILMS FOR PHOTOVOLTAIC
APPLICATIONS)”という題で作製したCuInSe2
中にソーダライムガラスのNaが拡散し、粒が成長する
ことを報告している。さらに、Naが拡散したCuIn
Se2 膜を用いた太陽電池の方がエネルギー変換効率が
高いという結果を示している。また、同会議において、
ホルツ(J. Holtz)等は、”ザ エフェクト オブ サ
ブストレイト イムピュリティズ オン ザエレクトロ
ニック コンダクティビティ イン CIS シン フ
ィルムズ(THE EFFECT OF SUBSTRATE IMPURITIES ON TH
E ELRCTRONIC CONDUCTIVITY IN CIS THIN FILMS)”と
いう題でサファイア基板上のCuInSe2 膜にNaを
イオン注入すると導電率が3桁増加することを報告して
いる。以上の報告からわかるように、CuInSe2
の成長の促進と導電率の制御にはNaの拡散が有効であ
る。しかし、太陽電池に用いる場合、従来はソーダライ
ムガラス中のNaの自然拡散を利用しており、CuIn
Se2 膜の作製過程において積極的にNaの混入を制御
するという方法は報告されていない。
2. Description of the Related Art Compound semiconductor thin films (chalcopyrite structure semiconductor thin films) consisting of Ib, IIIa and VIa elements
It has been reported that the thin film solar cell using CuInSe 2 as a light absorbing layer has a high energy conversion efficiency and has no advantage of deterioration of efficiency due to light irradiation or the like. These CuInSe 2 thin film solar cells generally use soda lime glass as a substrate. The group Ia element Na in this soda lime glass is CuInSe 2
There are reports that it affects the film quality and carrier concentration. For example, April 1, 1994 in Amsterdam
12th European Photovoltaic Solar Energy Confer
ence), M. Bodegard et al., "The Influence of Sodium on the Grain Structure of CuInS
e 2 Films For Photovoltaic Applications (THE INFLUENCE OF SODIUM ON THE G
RAIN STRUCTURE OF CuInSe 2 FILMS FOR PHOTOVOLTAIC
It has been reported that Na of soda lime glass diffuses into the CuInSe 2 film prepared under the title of “APPLICATIONS)” and grains grow.
The result shows that the solar cell using the Se 2 film has higher energy conversion efficiency. Also, at the conference,
Holtz (J. Holtz) and the like, "The Effect of Substrate Impurities on the Electronic Conductivity in CIS Shin Films (THE EFFECT OF SUBSTRATE IMPURITIES ON TH
E ELRCTRONIC CONDUCTIVITY IN CIS THIN FILMS) " When ion implantation of Na in CuInSe 2 film on the sapphire substrate titled conductivities are reported to increase 3 orders of magnitude. As can be seen from the above report, CuInSe 2 film The diffusion of Na is effective in promoting the growth of Cu and controlling the conductivity, but when used in solar cells, the conventional natural diffusion of Na in soda lime glass was used, and
No method has been reported for positively controlling Na contamination in the process of producing the Se 2 film.

【0003】[0003]

【発明が解決しようとする課題】ソーダライムガラスか
らのNaの拡散は、CuInSe2 の成膜温度によって
制御できると考えられる。しかしながら、制御可能な温
度範囲の問題がある。結晶性の良好なCuInSe2
作製するには500℃以上の成膜温度を必要とする。一
方、ソーダライムガラスの軟化温度は570℃であり、
600℃以上となると亀裂が生じる場合がある。従っ
て、制御可能な温度範囲は500〜600℃の範囲内で
あることから、成膜温度によってNaの拡散量を精密に
制御することは困難である。また、太陽電池に使用する
場合、ガラス上に電極(主にMo膜)を形成する必要が
ある。この電極膜が障害となり、Naの拡散量を減少さ
せる。また、電極膜の厚みによりNaの拡散量が異なる
ため、再現性や膜面内の不均一性が問題となる。以上よ
り、ソーダライムガラス中のNaをCuInSe2 成膜
中に自然拡散させる方法では、制御性が劣り、高品質で
太陽電池に適した導電率を有するCuInSe2 膜を再
現性よく均一に作製することは困難である。
It is considered that the diffusion of Na from soda lime glass can be controlled by the temperature of CuInSe 2 film formation. However, there is a problem with the controllable temperature range. A film forming temperature of 500 ° C. or higher is required to produce CuInSe 2 having good crystallinity. On the other hand, the softening temperature of soda lime glass is 570 ° C,
Cracks may occur at 600 ° C or higher. Therefore, since the controllable temperature range is within the range of 500 to 600 ° C., it is difficult to precisely control the diffusion amount of Na depending on the film forming temperature. Further, when used in a solar cell, it is necessary to form an electrode (mainly a Mo film) on glass. This electrode film becomes an obstacle and reduces the diffusion amount of Na. Further, since the diffusion amount of Na differs depending on the thickness of the electrode film, reproducibility and non-uniformity in the film surface become problems. As described above, the method of spontaneously diffusing Na in soda lime glass during CuInSe 2 film formation has poor controllability, and a CuInSe 2 film having high quality and conductivity suitable for a solar cell is uniformly formed with good reproducibility. Is difficult.

【0004】また、600℃以上の高温で結晶性に優れ
たカルコパイライト薄膜を形成し、より高い変換効率が
得られる太陽電池を作製するためにはアルミナや金属フ
ィルムを基板として用いる必要がある。また、使用範囲
の広い柔軟性のある太陽電池を作製するためにはポリイ
ミド等の有機フィルムを基板として用いる必要がある。
これらの基板上に作製したカルコパイライト薄膜に Ia
族元素を注入することは、太陽電池の効率向上のために
は有効である。ソーダライムガラス以外の基板を用いる
場合、Na等の Ia族元素をカルコパイライト薄膜に添
加する方法としては前記したホルツ等のNaのイオン注
入以外には報告されていない。イオン注入法には膜面内
の注入元素の分布やイオンによる膜の損傷等の問題があ
る。従って、 Ia族元素を有効にかつ制御良く添加する
方法が必要となる。
Further, in order to form a chalcopyrite thin film having excellent crystallinity at a high temperature of 600 ° C. or higher and to manufacture a solar cell having higher conversion efficiency, it is necessary to use alumina or a metal film as a substrate. Further, in order to manufacture a flexible solar cell having a wide range of use, it is necessary to use an organic film such as polyimide as a substrate.
Ia was deposited on the chalcopyrite thin films prepared on these substrates.
Implanting a group element is effective for improving the efficiency of the solar cell. When a substrate other than soda lime glass is used, no method other than ion implantation of Na such as Holtz described above has been reported as a method of adding a Group Ia element such as Na to a chalcopyrite thin film. The ion implantation method has problems such as distribution of implanted elements in the film surface and damage to the film due to ions. Therefore, a method of adding the Group Ia element effectively and with good control is required.

【0005】[0005]

【課題を解決するための手段】前記課題を解決するた
め、本発明は、 Ib族と IIIa族とVIa族元素からなる
化合物半導体薄膜に Ia族とVIa族元素からなる化合物
を混入させる半導体薄膜の製造方法を提供する。
In order to solve the above-mentioned problems, the present invention provides a semiconductor thin film in which a compound semiconductor thin film composed of an Ib group, a IIIa group and a VIa group element is mixed with a compound composed of a Ia group and a VIa group element. A manufacturing method is provided.

【0006】本発明では、 Ia族とVIa族元素からなる
化合物を混入させる方法として4つの方法がある。第1
の発明は、基体上に Ib族と IIIa族とVIa族元素から
なる化合物半導体薄膜を堆積する際に、 Ia族とVIa族
元素からなる化合物を同時に堆積する方法である。
In the present invention, there are four methods as a method of mixing the compound consisting of the group Ia and group VIa elements. First
The invention of (1) is a method of simultaneously depositing a compound comprising Ia group and VIa group elements when depositing a compound semiconductor thin film comprising Ib group, IIIa group and VIa group elements on a substrate.

【0007】第2の発明は、基体上に Ib族と IIIa族
とVIa族元素からなる化合物半導体薄膜を堆積した後
に、前記薄膜上に Ia族とVIa族元素からなる化合物薄
膜を堆積する方法である。
A second aspect of the present invention is a method of depositing a compound semiconductor thin film made of Ib group, IIIa group and VIa group elements on a substrate, and then depositing a compound thin film made of Ia group and VIa group element on the thin film. is there.

【0008】第3の発明は、基体上に Ia族とVIa族か
らなる化合物薄膜を堆積した後に、前記薄膜上に Ib族
と IIIa族とVIa族元素からなる化合物半導体薄膜を堆
積する方法である。
A third invention is a method of depositing a compound thin film of group Ia and group VIa on a substrate and then depositing a compound semiconductor thin film of group Ib, group IIIa and group VIa on the thin film. .

【0009】第4の発明は、 Ib族と IIIa族とVIa族
元素からなる化合物半導体薄膜と Ia族とVIa族元素か
らなる化合物薄膜を交互に少なくとも2層以上堆積する
方法である。
A fourth aspect of the present invention is a method of alternately depositing at least two layers of a compound semiconductor thin film made of Ib group, IIIa group and VIa group elements and a compound thin film made of Ia group and VIa group elements.

【0010】また、第1〜4の発明法で成膜した後に熱
処理することが好ましく、さらには、VIa族元素を含む
雰囲気中で熱処理することが好ましい。また、 Ia族と
VIa族元素からなる化合物としては、Li2 S、Li2
Se、Na2 S、Na2 Seからなる群の内の少なくと
も一つから構成されることが好ましい。
Further, it is preferable to perform the heat treatment after forming the films by the first to fourth invention methods, and further preferably to perform the heat treatment in the atmosphere containing the VIa group element. Also, with the Ia group
Examples of the compound composed of the VIa group element include Li 2 S and Li 2
It is preferably composed of at least one of the group consisting of Se, Na 2 S, and Na 2 Se.

【0011】さらに、本発明では、前記の半導体薄膜を
光吸収層に用いた太陽電池を提供する。
Further, the present invention provides a solar cell using the semiconductor thin film as a light absorption layer.

【0012】[0012]

【作用】Li、Na、K等の Ia族元素のみからなるア
ルカリ金属は、水分や酸素と激しく反応するため取り扱
いに注意を要する。従って、カルコパイライト構造半導
体薄膜に Ia族元素を添加する場合は、取扱が比較的簡
単な Ia族とVIa族の化合物(以下 Ia−VIa化合物と
記す)を用いることが有効である。ここで、化合物のVI
a族元素はカルコパイライト構造半導体薄膜の構成元素
の一つであるため、膜中に混入しても格子欠陥や不純物
欠陥が生じるといった問題はない。
Action Alkali metals consisting only of Group Ia elements such as Li, Na, and K react violently with water and oxygen, so handling must be done with caution. Therefore, when adding a group Ia element to the chalcopyrite structure semiconductor thin film, it is effective to use a compound of group Ia and group VIa (hereinafter referred to as compound Ia-VIa), which is relatively easy to handle. Where VI of the compound
Since the a-group element is one of the constituent elements of the chalcopyrite structure semiconductor thin film, there is no problem that a lattice defect or an impurity defect occurs even if it is mixed in the film.

【0013】まず、第1の発明のような、カルコパイラ
イト構造半導体薄膜を堆積する際に、同時に Ia−VIa
化合物を堆積する方法では、 Ia族元素を膜中に均一に
分布させることが可能とある。この時、 Ia−VIa化合
物の蒸発量あるいは蒸着速度により膜中のIa族の量を
制御することができる。
First, when depositing a chalcopyrite structure semiconductor thin film as in the first invention, at the same time as Ia-VIa.
In the method of depositing the compound, the group Ia element can be uniformly distributed in the film. At this time, the amount of group Ia in the film can be controlled by the evaporation amount or the deposition rate of the Ia-VIa compound.

【0014】次に、第2〜4の発明は、カルコパイライ
ト構造半導体薄膜の断面方向に Ia族元素を任意に分布
させる方法である。太陽電池の光吸収層内でpn接合面
から離れるにつれキャリア濃度が増加する分布を与える
と、キャリア濃度差による内部電界が生じる。光励起さ
れた少数キャリアはこの内部電界により移動しpn接合
面へと収集され外部へ取り出される。このような電界に
よるキャリアの移動では、拡散による移動に比べ、光吸
収層内での再結合確率が大幅に減少するため多くの光電
流が得られることになる。キャリア濃度の分布は、ほぼ
不純物の分布に対応する。従って、カルコパイライト薄
膜中に不純物である Ia族元素を分布させることによ
り、キャリア濃度分布による内部電界を誘起させること
が可能となる。
Next, the second to fourth inventions are methods for arbitrarily distributing the group Ia element in the cross-sectional direction of the chalcopyrite structure semiconductor thin film. When a distribution in which the carrier concentration increases as the distance from the pn junction surface increases in the light absorption layer of the solar cell, an internal electric field is generated due to the carrier concentration difference. The photoexcited minority carriers are moved by this internal electric field, collected at the pn junction surface, and taken out to the outside. In the movement of carriers due to such an electric field, the recombination probability in the light absorption layer is greatly reduced as compared with the movement due to diffusion, so that a large amount of photocurrent can be obtained. The carrier concentration distribution substantially corresponds to the impurity distribution. Therefore, it is possible to induce an internal electric field due to the carrier concentration distribution by distributing the impurity group Ia element in the chalcopyrite thin film.

【0015】第2、第3の発明は、それぞれpn接合を
形成した後と形成する前に、キャリア濃度分布を与える
方法として有効である。具体的には、第2の方法は、透
明電極上のn形窓層にp形のカルコパイライト構造半導
体薄膜を形成して構成されるスーパストレイト形太陽電
池に対して有効であり、第3の発明は、基板上の金属電
極上にp形カルコパイライト構造半導体薄膜を形成した
後にn形窓層を形成して構成されるサブストレイト形太
陽電池に対して有効である。また、第4の発明は、スー
パストレイト形及びサブストレイト形に関わらずカルコ
パイライト構造半導体薄膜中に任意のキャリア濃度分布
を形成することが可能である。
The second and third inventions are effective as a method of giving a carrier concentration distribution after the pn junction is formed and before the pn junction is formed. Specifically, the second method is effective for a superstrate solar cell formed by forming a p-type chalcopyrite structure semiconductor thin film on an n-type window layer on a transparent electrode, and the third method is INDUSTRIAL APPLICABILITY The invention is effective for a substrate-type solar cell constituted by forming a p-type chalcopyrite structure semiconductor thin film on a metal electrode on a substrate and then forming an n-type window layer. Further, according to the fourth invention, it is possible to form an arbitrary carrier concentration distribution in the chalcopyrite structure semiconductor thin film regardless of the superstrate type and the substrate type.

【0016】また、第1〜4までの発明において、 Ia
−VIa化合物を含むカルコパイライト構造半導体薄膜を
堆積した後に熱処理することにより、カルコパイライト
構造半導体薄膜中の Ib族元素の欠損箇所に Ia族元素
が埋まり、格子欠陥によるキャリアの捕獲を減少させる
ことになる。従って、キャリア濃度が増加する。さら
に、第2と第3の発明においては、 Ia−VIa化合物膜
のカルコパイライト構造半導体薄膜中への拡散を生じさ
せるために熱処理が必要となる。以上の熱処理において
カルコパイライト構造半導体薄膜からのVIa族元素の脱
離を防ぐためにはVIa族元素を含む雰囲気中で行う方法
が有効である。
In the first to fourth inventions, Ia
-By depositing a chalcopyrite structure semiconductor thin film containing a VIa compound and then performing heat treatment, the group Ia element is filled in the defect part of the group Ib element in the chalcopyrite structure semiconductor thin film, and carrier trapping by lattice defects is reduced. Become. Therefore, the carrier concentration increases. Further, in the second and third inventions, heat treatment is required to cause diffusion of the Ia-VIa compound film into the chalcopyrite structure semiconductor thin film. In the above heat treatment, in order to prevent desorption of the VIa group element from the chalcopyrite structure semiconductor thin film, it is effective to perform the method in an atmosphere containing the VIa group element.

【0017】カルコパイライト構造半導体薄膜中に添加
する Ia族元素としては、イオン半径が小さく拡散速度
が速いLiあるいはNaが特に有効である。従って、本
発明においてはLi及びNaの硫化物またはセレン化物
であるLi2 S、Li2 Se、Na2 S、Na2 Seが
適当である。特に、Li2 S及びNa2 Sは毒性がな
く、取り扱いが容易である。
Li or Na having a small ionic radius and a high diffusion rate is particularly effective as the group Ia element added to the chalcopyrite structure semiconductor thin film. Therefore, Li 2 S, Li 2 Se, Na 2 S and Na 2 Se which are sulfides or selenides of Li and Na are suitable for the present invention. Particularly, Li 2 S and Na 2 S have no toxicity and are easy to handle.

【0018】本発明を用いると Ia族元素の混入により
キャリア濃度及び分布を制御することが可能となるた
め、光励起されたキャリアを効率よく取り出すことがで
き太陽電池の変換効率が向上する。
The use of the present invention makes it possible to control the carrier concentration and distribution by mixing the group Ia element, so that the photoexcited carriers can be efficiently taken out and the conversion efficiency of the solar cell is improved.

【0019】[0019]

【実施例】以下、本発明の実施例について図面を参照し
て説明する。 (実施例1)図1は本発明の1実施例を示すカルコパイ
ライト構造半導体薄膜の製造に用いる装置の模式図であ
る。ここで、カルコパイライト構造半導体薄膜としてC
uInSe2 膜を作製した。真空容器1の中にある蒸着
源2、3、4にはそれぞれCuInSe2 の構成元素で
あるCu、In、Seを入れ同時に蒸発させた。各蒸着
源の典型的温度は、Cu、In、Seに対し、それぞれ
1200℃、870℃、180℃である。また、蒸着源
5には Ia−VIa化合物であるNa2 Seを入れ蒸発さ
せた。基板6としてはアルミナ板を用いた。また、蒸着
中はヒータ7により基板を750℃に保持した。今回、
Na2 Seの蒸着源の温度を変えた5種類の膜を作製し
た。蒸着源の温度が高いほどNa2 Seの蒸発速度が速
くなり、膜中に含まれるNa量が増加することになる。
図2にNa2 Seの蒸着源の温度に対する導電率の変化
を示す。図の左端に白丸印でNa2 Seを蒸着せず同様
な条件で作製した膜の導電率を表わす。図2からNa2
Seの蒸着源の温度の上昇に従い導電率が増加している
ことがわかる。つまり、膜中のNa量の増加により低抵
抗化することがわかる。蒸着源の温度1000℃で作製
した膜は、Naが混入していない膜より約2桁導電率が
上昇している。この膜の膜中のNaの分布を2次イオン
質量分析法(SIMS)で測定した。結果を図3に示
す。ここで、実線が本実施例で作製した膜のNaの分布
を表わしている。点線、破線、一点鎖線については後述
する。参照のためInの分布も示している。実線で示す
Naの結果とInの分布の比較からNaが膜中に均一に
分布していることがわかる。
Embodiments of the present invention will be described below with reference to the drawings. (Embodiment 1) FIG. 1 is a schematic view of an apparatus used for manufacturing a chalcopyrite structure semiconductor thin film showing an embodiment of the present invention. Here, C is used as the chalcopyrite structure semiconductor thin film.
A uInSe 2 film was prepared. Cu, In, and Se, which are constituent elements of CuInSe 2 , were placed in the vapor deposition sources 2, 3, and 4 in the vacuum chamber 1 and evaporated at the same time. Typical temperatures of the vapor deposition sources are 1200 ° C., 870 ° C., and 180 ° C. for Cu, In, and Se, respectively. Further, Na 2 Se, which is an Ia-VIa compound, was placed in the evaporation source 5 and evaporated. An alumina plate was used as the substrate 6. The substrate was kept at 750 ° C. by the heater 7 during the vapor deposition. this time,
Five types of films were prepared by changing the temperature of the vapor deposition source of Na 2 Se. The higher the temperature of the vapor deposition source, the faster the evaporation rate of Na 2 Se, and the more the amount of Na contained in the film increases.
FIG. 2 shows the change in conductivity with respect to the temperature of the vapor deposition source of Na 2 Se. The white circle at the left end of the figure shows the conductivity of a film prepared under the same conditions without vapor deposition of Na 2 Se. From Figure 2 Na 2
It can be seen that the conductivity increases as the temperature of the Se vapor deposition source increases. That is, it can be seen that the resistance is lowered by increasing the amount of Na in the film. The film formed at a vapor deposition source temperature of 1000 ° C. has a conductivity that is about two orders of magnitude higher than that of a film containing no Na. The distribution of Na in this film was measured by secondary ion mass spectrometry (SIMS). The results are shown in Fig. 3. Here, the solid line represents the distribution of Na in the film produced in this example. The dotted line, broken line, and chain line will be described later. The distribution of In is also shown for reference. From the comparison of the results of Na and the distribution of In shown by the solid line, it can be seen that Na is uniformly distributed in the film.

【0020】以上から、本実施例の方法を用いると、N
aが膜中に均一に分布し、Na2 Seの蒸着源の温度
(蒸発速度)によりCuInSe2 膜の導電率の制御が
可能となる。
From the above, when the method of this embodiment is used, N
a is uniformly distributed in the film, and the conductivity of the CuInSe 2 film can be controlled by the temperature (evaporation rate) of the Na 2 Se vapor deposition source.

【0021】なお、ここでは、カルコパイライト構造半
導体薄膜であるCuInSe2 を形成する方法として、
構成元素であるCu、In、Seの3元同時蒸着を用い
たが、2元化合物であるCu2 SeとIn2 Se3 の同
時蒸着やCuInSe2 化合物の蒸着を用いても同様な
結果が得られている。
Here, as a method of forming CuInSe 2 which is a chalcopyrite structure semiconductor thin film,
Although the ternary simultaneous vapor deposition of the constituent elements Cu, In, and Se was used, similar results were obtained using the simultaneous vapor deposition of the binary compounds Cu 2 Se and In 2 Se 3 or the vapor deposition of the CuInSe 2 compound. Has been.

【0022】(実施例2)図4は本発明の他の実施例を
示すカルコパイライト構造半導体薄膜の製造工程の一部
の略示断面図である。ここで、基板6としてアルカリ金
属を含まないガラスを用いた。このガラス上に太陽電池
のn形窓層8となるCdS膜を堆積した後に、カルコパ
イライト構造半導体薄膜9であるCuInSe2 膜を形
成した。その上に Ia−VIa化合物膜10であるNa2
Sを堆積した。その後、空気中において300℃で1時
間熱処理を行い、Na2 SをCuInSe2 膜中に拡散
させた。CdSとCuInSe2 膜の膜厚はそれぞれ
0.05、2.0μmである。ここで、Na2 Sの膜厚を
0.01〜0.10μmまで変化させた試料を作製した。
図5にNa2 Sの膜厚に対するCuInSe2 膜の導電
率の変化を示す。図5にはNa2 S膜を堆積していない
膜の導電率を白丸印で示している。Na2 Sの膜厚の増
加に従い導電率が増加していることがわかる。Na2
の膜厚が0.05μmの試料のNaのSIMS分布を図
3の点線に示す。膜表面にNaが高濃度に存在し、膜厚
0.5μmから急に減少している。これから、膜表面の
導電率が膜中より高くなっていることが推測される。導
電率の変化に対しキャリア濃度がほぼ対応することか
ら、膜表面近傍と膜中とのキャリア濃度の違いによる内
部電界が生じていると考えられる。
(Embodiment 2) FIG. 4 is a schematic sectional view showing a part of a process for manufacturing a chalcopyrite structure semiconductor thin film showing another embodiment of the present invention. Here, as the substrate 6, glass containing no alkali metal was used. After depositing a CdS film to be the n-type window layer 8 of the solar cell on this glass, a CuInSe 2 film which is a chalcopyrite structure semiconductor thin film 9 was formed. On top of that, Na 2 which is the Ia-VIa compound film 10 is formed.
S was deposited. Then, heat treatment was performed in air at 300 ° C. for 1 hour to diffuse Na 2 S into the CuInSe 2 film. The film thicknesses of the CdS and CuInSe 2 films are 0.05 and 2.0 μm, respectively. Here, samples were prepared in which the film thickness of Na 2 S was varied from 0.01 to 0.10 μm.
FIG. 5 shows the change in conductivity of the CuInSe 2 film with respect to the film thickness of Na 2 S. In FIG. 5, the conductivity of the film on which the Na 2 S film is not deposited is shown by white circles. It can be seen that the conductivity increases as the film thickness of Na 2 S increases. Na 2 S
The SIMS distribution of Na of the sample having a thickness of 0.05 μm is shown by the dotted line in FIG. Na is present at a high concentration on the film surface, and the film thickness is suddenly reduced from 0.5 μm. From this, it is assumed that the conductivity of the film surface is higher than that in the film. Since the carrier concentration almost corresponds to the change in conductivity, it is considered that the internal electric field is generated due to the difference in carrier concentration between the vicinity of the film surface and the inside of the film.

【0023】次に、図4の試料の構成に対し、ガラスと
CdS膜の間に電極となる透明導電膜ITO/ZnO積
層膜を挿入し、膜厚0.05μmのNa2 S膜を前記と
同様な条件で拡散した後に電極となるAu膜を形成した
構成のスーパーストレイト形太陽電池を作製した。比較
のために同様な構成でNa2 S膜を堆積していない太陽
電池も作製した。AM1.5の100mW/cm2 の光を
照射して電圧−電流特性を測定した結果、短絡光電流が
Na2 Sを堆積していない太陽電池では32.2mA/
cm2 であったのに対し、本実施例の素子では38.7
mA/cm2 であった。Na2 S膜の拡散により電流が
約2割増加したことがわかる。これは、SIMS結果か
ら考えられるキャリア濃度の分布によって生じた内部電
界によりAu電極付近(SIMS分布ではCuInSe
2 表面付近)で励起された光キャリアを有効に取り出せ
るためと考えられる。
Next, with respect to the structure of the sample of FIG. 4, a transparent conductive film ITO / ZnO laminated film serving as an electrode was inserted between the glass and the CdS film, and a Na 2 S film having a thickness of 0.05 μm was formed as described above. A super straight solar cell having a structure in which an Au film to be an electrode was formed after diffusion under the same conditions was produced. For comparison, a solar cell having a similar structure and having no Na 2 S film deposited was also manufactured. As a result of measuring the voltage-current characteristics by irradiating the light of AM1.5 of 100 mW / cm 2 , the short-circuit photocurrent was 32.2 mA / in the solar cell in which Na 2 S was not deposited.
Although it was cm 2 , in the device of this example, it was 38.7.
It was mA / cm 2 . It can be seen that the current increased by about 20% due to the diffusion of the Na 2 S film. This is due to the internal electric field generated by the distribution of carrier concentration that can be considered from the SIMS results (in the SIMS distribution, CuInSe
It is thought that this is because the photocarriers excited near the surface 2 can be effectively taken out.

【0024】以上より、本実施例は Ia−VIa化合物の
膜厚によりカルコパイライト構造半導体薄膜の導電率制
御ができ、膜表面から膜中へと Ia族元素が減少する分
布を形成することが可能である。このような Ia族元素
の分布によるキャリア濃度の変化はスーパーストレイト
形太陽電池の効率向上に有効である。
As described above, in the present embodiment, the conductivity of the chalcopyrite structure semiconductor thin film can be controlled by the film thickness of the Ia-VIa compound, and a distribution in which the group Ia element decreases from the film surface to the film can be formed. Is. The change in carrier concentration due to the distribution of the group Ia element is effective for improving the efficiency of the super straight solar cell.

【0025】(実施例3)図6は本発明の他の実施例を
示す太陽電池の製造工程の一部の略示断面図である。基
板6としてアルミナを用いた。アルミナ上に Ia−VIa
化合物膜10としてLi2 Seを堆積し、その上にカル
コパイライト構造半導体薄膜9であるCu(In0.8
0.2 )Se2 を堆積した。ここで、Cu(In0.8
0.2 )Se2 の成膜温度は550℃である。なお、C
u(In0.8 Ga0.2 )Se2 化合物中、InとGaの
組成比は、Inx Ga1-x (ただし0≦x≦1の範囲)
が可能であるので、以下Cu(In、Ga)Se2 と表
す。
(Embodiment 3) FIG. 6 is a schematic sectional view of a part of the manufacturing process of a solar cell showing another embodiment of the present invention. Alumina was used as the substrate 6. Ia-VIa on alumina
Li 2 Se is deposited as the compound film 10, and Cu (In 0.8 G) which is the chalcopyrite structure semiconductor thin film 9 is deposited thereon.
a 0.2 ) Se 2 was deposited. Here, Cu (In 0.8 G
The film forming temperature of a 0.2 ) Se 2 is 550 ° C. Note that C
In the u (In 0.8 Ga 0.2 ) Se 2 compound, the composition ratio of In and Ga is In x Ga 1-x (where 0 ≦ x ≦ 1).
Since it is possible, it is represented by Cu (In, Ga) Se 2 below.

【0026】以上のようにして、Cu(In、Ga)S
2 の膜厚は3μm一定として、Li2 Seの膜厚を変
えた試料を作製した。図7にLi2 Se膜の膜厚に対す
るCu(In、Ga)Se2 膜の導電率の変化を示す。
図7にはLi2 Se膜のないCu(In、Ga)Se2
膜の導電率を白丸印で示している。Li2 Seの膜厚に
対し導電率が増加することがわかる。図3の破線にLi
2 Seの膜厚0.1μmのCu(In、Ga)Se2
Liの膜中の分布を示す。膜表面から膜中へとLi濃度
が増加していることがわかる。この場合は、前記実施例
とは反対に基板から膜表面へと内部電界が生じているこ
とが考えられる。
As described above, Cu (In, Ga) S
The film thickness of e 2 was kept constant at 3 μm, and samples with different film thicknesses of Li 2 Se were prepared. FIG. 7 shows a change in conductivity of the Cu (In, Ga) Se 2 film with respect to the film thickness of the Li 2 Se film.
Cu (In, Ga) Se 2 without Li 2 Se film is shown in FIG.
The conductivity of the film is indicated by a white circle. It can be seen that the conductivity increases with the film thickness of Li 2 Se. The broken line in FIG.
2 shows the distribution of Li in Cu (In, Ga) Se 2 having a film thickness of 0.1 μm of 2 Se. It can be seen that the Li concentration increases from the surface of the film to the inside of the film. In this case, it is conceivable that an internal electric field is generated from the substrate to the film surface, contrary to the above-mentioned embodiment.

【0027】次に、アルミナ上に金属電極となるMo膜
を形成し、その上にLi2 Seを0.1μm堆積した。
Li2 Se膜上に前記と同様な条件でCu(In,G
a)Se2 膜を堆積した後に、CdS膜を0.05μ
m、ZnOとZnO:Al膜をそれぞれ0.1μmと1.
0μm順次形成し、サブストレイト形太陽電池を作製し
た。比較のために同様な構成でLi2 Se膜を堆積して
いない太陽電池も作製した。実施例2と同様な条件の光
を照射し電圧−電流特性を測定した。Li2 Se膜のな
い素子では短絡電流が30.3mA/cm2 であったの
に対し、Li2 Se膜を堆積した素子では37.4mA
/cm2 であった。Li2 Se膜を堆積することにより
短絡光電流が2割以上増加した。これは、実施例2と同
様にLi分布によって生じた内部電界によりpn接合面
から離れたMo膜近傍で励起された光キャリアを効率よ
く取り出せるためと考えられる。
Next, a Mo film to be a metal electrode was formed on alumina, and Li 2 Se was deposited thereon to a thickness of 0.1 μm.
Cu (In, G) on the Li 2 Se film under the same conditions as above.
a) After depositing the Se 2 film, deposit the CdS film by 0.05 μm.
m, ZnO and ZnO: Al films of 0.1 μm and 1.
Substrate type solar cells were manufactured by sequentially forming 0 μm. For comparison, a solar cell having a similar structure and having no Li 2 Se film deposited was also prepared. The voltage-current characteristics were measured by irradiating light under the same conditions as in Example 2. The short-circuit current was 30.3 mA / cm 2 in the element without the Li 2 Se film, whereas it was 37.4 mA in the element in which the Li 2 Se film was deposited.
Was / cm 2 . The short-circuit photocurrent increased by 20% or more by depositing the Li 2 Se film. It is considered that this is because the photo carriers excited near the Mo film separated from the pn junction surface can be efficiently taken out by the internal electric field generated by the Li distribution as in the second embodiment.

【0028】以上より、本実施例では Ia−VIa化合物
膜の膜厚によりカルコパイライト構造半導体薄膜の導電
率が制御でき、基板から膜表面へと Ia族元素の濃度を
減少させることができる。このような Ia族元素の分布
によるキャリア濃度の変化はサブストレイト形太陽電池
の効率向上に有効である。
As described above, in this embodiment, the conductivity of the chalcopyrite structure semiconductor thin film can be controlled by the film thickness of the Ia-VIa compound film, and the concentration of the group Ia element can be decreased from the substrate to the film surface. Such a change in carrier concentration due to the distribution of the group Ia element is effective for improving the efficiency of the substitute solar cell.

【0029】なお、本実施例では Ib族と IIIa族とVI
a族元素からなる化合物半導体膜を堆積する時の基板温
度を550℃に保持して Ia族元素を拡散したカルコパ
イライト構造半導体薄膜を作製しているが、前記化合物
薄膜を500℃以下の低温でIa−VIa化合物膜上に堆
積した後に、VIa族元素であるSeを蒸発させた雰囲気
中で500℃以上の熱処理を行った場合でも同様な Ia
族元素が拡散したカルコパイライト構造半導体薄膜が得
られる。
In this embodiment, Ib group, IIIa group and VI group are used.
The chalcopyrite structure semiconductor thin film in which the group Ia element is diffused is manufactured by maintaining the substrate temperature at the time of depositing the compound semiconductor film made of the group a element at 550 ° C. Even when the heat treatment is performed at 500 ° C. or higher in the atmosphere in which Se, which is the VIa group element, is evaporated after the deposition on the Ia-VIa compound film, the same Ia
A chalcopyrite structure semiconductor thin film in which a group element is diffused is obtained.

【0030】(実施例4)図8は本発明の他の実施例を
示す太陽電池の製造工程の一部の略示断面図である。基
板6として透明高分子材であるポリイミドを用いた。こ
の上に透明導電膜層11であるITO/ZnO膜とn形
窓層8となるCdS膜を形成した。CdS膜上にカルコ
パイライト構造半導体8であるCuInSe2 と Ia−
VIa族化合物9であるNa2 S膜を交互に積層する。こ
の際、一層のCuInSe2 膜の膜厚を0.2μmで一
定とし、Na2 S膜の膜厚を第1層目は2nmとし、2
nmずつ徐々に膜厚を増加させ、最終の第10層目の膜
厚を20nmとしてCuInSe2 膜を形成した。Na
2 Sの総膜厚は0.11μm(110nm)であった。
積層膜の堆積温度は350℃に保持した。この積層膜上
にAu膜を蒸着して太陽電池を作製した。
(Embodiment 4) FIG. 8 is a schematic cross-sectional view of a part of a manufacturing process of a solar cell showing another embodiment of the present invention. Polyimide, which is a transparent polymer material, was used as the substrate 6. An ITO / ZnO film which is the transparent conductive film layer 11 and a CdS film which is the n-type window layer 8 are formed thereon. On the CdS film, a chalcopyrite structure semiconductor CuInSe 2 and Ia-
Na 2 S films which are Group VIa compounds 9 are alternately laminated. At this time, the film thickness of the CuInSe 2 film of one layer is constant at 0.2 μm, and the film thickness of the Na 2 S film is 2 nm for the first layer.
The CuInSe 2 film was formed by gradually increasing the film thickness by nm, and setting the final film thickness of the tenth layer to 20 nm. Na
The total film thickness of 2 S was 0.11 μm (110 nm).
The deposition temperature of the laminated film was kept at 350 ° C. An Au film was vapor-deposited on this laminated film to manufacture a solar cell.

【0031】図3の一点鎖線にはCuInSe2 とNa
2 Seの積層膜中のNaの分布を表わしている。点線で
示す実施例2の方法で作製したCuInSe2 膜のNa
の分布と比較すると、ほぼ直線的に膜表面から膜中へと
減少していることがわかる。従って、膜中全体に内部電
界が生じていると考えられる。この積層膜の周期並びに
各層の膜厚を変えることにより分布を制御できる。
The chain line in FIG. 3 shows CuInSe 2 and Na.
2 shows the distribution of Na in the laminated film of 2 Se. Na of the CuInSe 2 film manufactured by the method of Example 2 shown by the dotted line
It can be seen that the distribution decreases linearly from the surface of the film to the inside of the film when compared with the distribution of. Therefore, it is considered that the internal electric field is generated in the entire film. The distribution can be controlled by changing the cycle of the laminated film and the film thickness of each layer.

【0032】この太陽電池を前記実施例と同様な条件の
光を照射して電圧−電流特性を測定した結果、短絡光電
流39.1mA/cm2 が得られた。基板は異なるが、
実施例2の素子より高い値が得られた。これはNaの直
線的な分布により膜中に広がった内部電界分布に起因し
ていると考えられる。
This solar cell was irradiated with light under the same conditions as in the above-mentioned example and the voltage-current characteristics were measured. As a result, a short-circuit photocurrent of 39.1 mA / cm 2 was obtained. The board is different,
A value higher than that of the device of Example 2 was obtained. It is considered that this is due to the internal electric field distribution spread in the film due to the linear distribution of Na.

【0033】なお、本実施例では、 Ia−VIa族化合物
薄膜としてNa2 Sを用いたが、 Ia族元素の分布を精
密に制御するためには、拡散速度が小さい原子量の大き
な元素がより有効である。従って、 Ia−VIa族化合物
としては、K2 S、K2 Se、Cs2 S、Cs2 Se等
が有効である。
In this example, Na 2 S was used as the thin film of the group Ia-VIa compound, but in order to precisely control the distribution of the group Ia element, an element having a small diffusion rate and a large atomic weight is more effective. Is. Therefore, as the Ia-VIa group compound, K 2 S, K 2 Se, Cs 2 S, Cs 2 Se and the like are effective.

【0034】(実施例5)本実施例では金属膜とガスと
の反応によりカルコパイライト構造半導体薄膜を形成す
る際にも本発明が有効であることについて述べる。基板
としてはMoシート板を用いた。Mo上に Ia−VIa化
合物であるLi2 S膜を約0.05μm堆積した後、 I
b金属であるCu膜と IIIa族金属であるIn膜をそれ
ぞれ膜厚が0.25μmと0.58μmとなるように順
次堆積した。この膜を10vol.%のH2 Sを含むA
r雰囲気中で650℃で1分間熱処理してCuInS2
膜を作製した。CuInS2 膜上に窓層となるn形半導
体CdSと透明電極となるZnO:Al膜を堆積し、太
陽電池を作製した。また、比較のために同様な方法でL
2 Sを堆積しない太陽電池も作製した。この太陽電池
に印加する電圧を変えて電気容量を測定し、p形半導体
のキャリアであるホール濃度を測定した。その結果、L
2 Sを用いない素子のホール濃度約1014/cm3
対し、Li2 Sを堆積した素子では約1016/cm3
増加していた。これから、Li2 Sを混入することによ
り、ホール濃度(キャリア濃度)が増加することがわか
る。2つの太陽電池を前記実施例と同様な光を照射して
電圧−電流特性を測定した結果、Li2 Sを用いない素
子では変換効率が6%であったのに対し、Li2 Sを堆
積した素子では約10%となった。以上の結果から、L
2 Sの混入によるホール濃度の増加が変換効率の向上
に寄与していると考えられる。
(Embodiment 5) In this embodiment, it will be described that the present invention is effective when a chalcopyrite structure semiconductor thin film is formed by a reaction between a metal film and a gas. A Mo sheet plate was used as the substrate. After depositing a Li 2 S film, which is an Ia-VIa compound, on Mo by about 0.05 μm, I
A Cu film, which is a metal b, and an In film, which is a Group IIIa metal, are sequentially deposited to have film thicknesses of 0.25 μm and 0.58 μm, respectively. This film was added to % Containing 2 % H 2 S
CuInS 2 by heat treatment for 1 minute at 650 ° C in r atmosphere
A membrane was prepared. An n-type semiconductor CdS to be a window layer and a ZnO: Al film to be a transparent electrode were deposited on the CuInS 2 film to fabricate a solar cell. Also, for comparison, L
A solar cell in which i 2 S was not deposited was also manufactured. The voltage applied to this solar cell was changed to measure the electric capacity, and the concentration of holes that were carriers of the p-type semiconductor was measured. As a result, L
The hole concentration of the element not using i 2 S was about 10 14 / cm 3, whereas the hole concentration of the element deposited with Li 2 S was increased to about 10 16 / cm 3 . From this, it is understood that the hole concentration (carrier concentration) is increased by mixing Li 2 S. The voltage-current characteristics were measured by irradiating the two solar cells with the same light as in the above-mentioned example, and as a result, the conversion efficiency was 6% in the element not using Li 2 S, whereas Li 2 S was deposited. It was about 10% for the manufactured element. From the above results, L
It is considered that the increase in hole concentration due to the incorporation of i 2 S contributes to the improvement in conversion efficiency.

【0035】[0035]

【発明の効果】本発明によって、カルコパイライト構造
半導体薄膜のキャリア濃度を制御することが可能とな
り、太陽電池に適した、効率よく光電流を取り出すキャ
リア濃度分布を形成することができる。また、 Ia族元
素を含まない多くの基板上に形成した太陽電池の高効率
化を図ることが可能となる。
According to the present invention, it is possible to control the carrier concentration of a chalcopyrite structure semiconductor thin film, and it is possible to form a carrier concentration distribution that is suitable for a solar cell and that efficiently extracts a photocurrent. In addition, it is possible to improve the efficiency of the solar cell formed on many substrates that do not contain the group Ia element.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に用いる半導体薄膜の製造装
置の模式図。
FIG. 1 is a schematic diagram of a semiconductor thin film manufacturing apparatus used in an embodiment of the present invention.

【図2】Na2 Se蒸着源の温度に対するCuInSe
2 膜の導電率の変化を示す図。
FIG. 2 CuInSe vs. Na 2 Se deposition source temperature.
The figure which shows the change of the electrical conductivity of 2 films.

【図3】I b族とIII a族とVIa族からなる化合物半導
体膜中の Ia族元素の分布を示す図。
FIG. 3 is a diagram showing a distribution of a group Ia element in a compound semiconductor film composed of a group Ib, a group IIIa, and a group VIa.

【図4】本発明の一実施例であるカルコパイライト構造
半導体薄膜の製造工程の一部を示す図。
FIG. 4 is a diagram showing a part of the manufacturing process of the chalcopyrite structure semiconductor thin film which is one embodiment of the present invention.

【図5】Na2 S膜の膜厚に対するCuInSe2 膜の
導電率の変化を示す図。
FIG. 5 is a diagram showing a change in conductivity of the CuInSe 2 film with respect to the film thickness of the Na 2 S film.

【図6】本発明の一実施例であるカルコパイライト構造
半導体薄膜の製造工程の一部を示す図。
FIG. 6 is a diagram showing a part of the manufacturing process of the chalcopyrite structure semiconductor thin film which is one embodiment of the present invention.

【図7】Li2 Se膜の膜厚に対するCu(In、G
a)Se2 膜の導電率の変化を示す図。
FIG. 7 shows Cu (In, G) with respect to the thickness of Li 2 Se film.
a) A diagram showing a change in conductivity of the Se 2 film.

【図8】本発明の一実施例である太陽電池の製造工程の
一部を示す図。
FIG. 8 is a diagram showing a part of the manufacturing process of the solar cell according to the embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 真空容器 2 Ib族元素であるCuの蒸着源 3 III a族元素であるInの蒸着源 4 VIa族元素であるSeの蒸着源 5 I a−VIa化合物であるNa2 Seの蒸着源 6 基板 7 基板加熱ヒータ 8 n形窓層(CdS) 9 I b族とIII a族とVIa族元素からなる化合物半導
体薄膜(カルコパイライト構造半導体薄膜) 10 I a族とVIa族元素からなる化合物薄膜 11 透明導電膜
DESCRIPTION OF SYMBOLS 1 Vacuum container 2 Deposition source of Cu which is a group Ib element 3 Deposition source of In which is a group IIIa element 4 Deposition source of Se which is a group VI VIa element 5 Deposition source of Na 2 Se which is a compound Ia-VIa 6 Substrate 7 Substrate heater 8 n-type window layer (CdS) 9 Ib group, IIIa group and VIa group compound semiconductor thin film (chalcopyrite structure semiconductor thin film) 10 Ia group and VIa group element thin film 11 Transparent Conductive film

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 Ib族と IIIa族とVIa族元素からなる
化合物半導体薄膜を堆積する際に、 Ia族とVIa族元素
からなる化合物を同時に堆積する半導体薄膜の製造方
法。
1. A method for producing a semiconductor thin film, wherein a compound containing Ia group and VIa group elements is simultaneously deposited when a compound semiconductor thin film containing Ib group, IIIa group and VIa group elements is deposited.
【請求項2】 基体上に Ib族と IIIa族とVIa族元素
からなる化合物半導体薄膜を堆積した後に、前記薄膜上
に Ia族とVIa族元素からなる化合物薄膜を堆積する半
導体薄膜の製造方法。
2. A method for producing a semiconductor thin film, comprising depositing a compound semiconductor thin film comprising a group Ib, a group IIIa and a group VIa on a substrate and then depositing a compound thin film comprising a group Ia and VIa on the thin film.
【請求項3】 基体上に Ia族とVIa族からなる化合物
薄膜を堆積した後に、前記薄膜上にIb族とIIIa族とVI
a族元素からなる化合物半導体薄膜を堆積する半導体薄
膜の製造方法。
3. After depositing a compound thin film comprising a group Ia and a group VIa on a substrate, a group Ib, a group IIIa and VI are deposited on the thin film.
A method for producing a semiconductor thin film, comprising depositing a compound semiconductor thin film comprising an a-group element.
【請求項4】 Ib族とIIIa族とVIa族元素からなる化
合物半導体薄膜と Ia族とVIa族元素からなる化合物薄
膜を交互に少なくとも2層以上堆積する半導体薄膜の製
造方法。
4. A method of manufacturing a semiconductor thin film, wherein at least two or more compound semiconductor thin films of group Ib, IIIa and VIa and compound thin films of group Ia and VIa are alternately deposited.
【請求項5】 半導体薄膜製造後に熱処理する工程を含
む請求項1〜4記載の半導体薄膜の製造方法。
5. The method for producing a semiconductor thin film according to claim 1, further comprising a step of heat treatment after producing the semiconductor thin film.
【請求項6】 VIa族元素を含む雰囲気中で熱処理する
工程を含む請求項5記載の半導体薄膜の製造方法。
6. The method for producing a semiconductor thin film according to claim 5, which includes a step of performing heat treatment in an atmosphere containing a VIa group element.
【請求項7】 Ia族とVIa族元素からなる化合物がL
2 S、Li2 Se、Na2 S、Na2 Seからなる群
の内の少なくとも一つから構成される請求項1〜4記載
の半導体薄膜の製造方法。
7. A compound comprising a group Ia and a group VIa element is L
The method for producing a semiconductor thin film according to claim 1, wherein the method comprises at least one selected from the group consisting of i 2 S, Li 2 Se, Na 2 S, and Na 2 Se.
【請求項8】 半導体薄膜が、太陽電池の光吸収層であ
る請求項1〜4記載の半導体薄膜の製造方法。
8. The method for producing a semiconductor thin film according to claim 1, wherein the semiconductor thin film is a light absorption layer of a solar cell.
JP23633394A 1994-09-30 1994-09-30 Manufacturing method of semiconductor thin film Expired - Lifetime JP3311873B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23633394A JP3311873B2 (en) 1994-09-30 1994-09-30 Manufacturing method of semiconductor thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23633394A JP3311873B2 (en) 1994-09-30 1994-09-30 Manufacturing method of semiconductor thin film

Publications (2)

Publication Number Publication Date
JPH08102546A true JPH08102546A (en) 1996-04-16
JP3311873B2 JP3311873B2 (en) 2002-08-05

Family

ID=16999258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23633394A Expired - Lifetime JP3311873B2 (en) 1994-09-30 1994-09-30 Manufacturing method of semiconductor thin film

Country Status (1)

Country Link
JP (1) JP3311873B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998033219A1 (en) * 1997-01-24 1998-07-30 Asahi Kasei Kogyo Kabushiki Kaisha p-TYPE SEMICONDUCTOR, METHOD FOR MANUFACTURING THE SAME, SEMICONDUCTOR DEVICE, PHOTOVOLTAIC ELEMENT, AND METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE
WO2005109525A1 (en) * 2004-05-11 2005-11-17 Honda Motor Co., Ltd. Method for manufacturing chalcopyrite thin-film solar cell
JP2007266626A (en) * 1994-12-01 2007-10-11 Shell Solar Gmbh Method of manufacturing solar cell on substrate, and solar cell with chalcopyrite absorbing layer
WO2009142316A1 (en) 2008-05-20 2009-11-26 昭和シェル石油株式会社 Manufacturing method of cis thin-film solar cell
WO2009142308A1 (en) 2008-05-19 2009-11-26 昭和シェル石油株式会社 Manufacturing method of cis thin-film solar cell
WO2011083646A1 (en) * 2010-01-07 2011-07-14 Jx日鉱日石金属株式会社 Sputtering target, compound semiconductor thin film, solar cell having compound semiconductor thin film, and method for manufacturing compound semiconductor thin film
US8097885B2 (en) 2007-06-11 2012-01-17 Canon Kabushiki Kaisha Compound semiconductor film, light emitting film, and manufacturing method thereof
WO2012165092A1 (en) * 2011-06-03 2012-12-06 日東電工株式会社 Method for manufacturing solar cell
JP2013214548A (en) * 2012-03-30 2013-10-17 Honda Motor Co Ltd Chalcopyrite solar cell and manufacturing method therefor
CN104342634A (en) * 2013-08-09 2015-02-11 台积太阳能股份有限公司 Apparatus and method for forming chalcogenide semiconductor absorber materials with sodium impurities
JP5877510B2 (en) * 2010-01-07 2016-03-08 Jx金属株式会社 Cu-Ga-based sputtering target, method for producing the target, light absorption layer, and solar cell using the light absorption layer
KR20210050564A (en) * 2018-09-22 2021-05-07 (씨엔비엠) 벵부 디자인 앤드 리서치 인스티튜트 포 글래스 인더스트리 컴퍼니 리미티드 Absorber layer post-treatment method

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007266626A (en) * 1994-12-01 2007-10-11 Shell Solar Gmbh Method of manufacturing solar cell on substrate, and solar cell with chalcopyrite absorbing layer
JP4646250B2 (en) * 1994-12-01 2011-03-09 シェル ソーラー ゲゼルシャフト ミット ベシュレンクテル ハフツング Method for manufacturing solar cell on substrate and solar cell having chalcopyrite absorbing layer
WO1998033219A1 (en) * 1997-01-24 1998-07-30 Asahi Kasei Kogyo Kabushiki Kaisha p-TYPE SEMICONDUCTOR, METHOD FOR MANUFACTURING THE SAME, SEMICONDUCTOR DEVICE, PHOTOVOLTAIC ELEMENT, AND METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE
WO2005109525A1 (en) * 2004-05-11 2005-11-17 Honda Motor Co., Ltd. Method for manufacturing chalcopyrite thin-film solar cell
JPWO2005109525A1 (en) * 2004-05-11 2008-03-21 本田技研工業株式会社 Method for producing chalcopyrite thin film solar cell
JP4680183B2 (en) * 2004-05-11 2011-05-11 本田技研工業株式会社 Method for producing chalcopyrite thin film solar cell
US8097885B2 (en) 2007-06-11 2012-01-17 Canon Kabushiki Kaisha Compound semiconductor film, light emitting film, and manufacturing method thereof
WO2009142308A1 (en) 2008-05-19 2009-11-26 昭和シェル石油株式会社 Manufacturing method of cis thin-film solar cell
US7989256B2 (en) 2008-05-19 2011-08-02 Showa Shell Sekiyu K.K. Method for manufacturing CIS-based thin film solar cell
WO2009142316A1 (en) 2008-05-20 2009-11-26 昭和シェル石油株式会社 Manufacturing method of cis thin-film solar cell
WO2011083646A1 (en) * 2010-01-07 2011-07-14 Jx日鉱日石金属株式会社 Sputtering target, compound semiconductor thin film, solar cell having compound semiconductor thin film, and method for manufacturing compound semiconductor thin film
JP5730788B2 (en) * 2010-01-07 2015-06-10 Jx日鉱日石金属株式会社 Sputtering target and manufacturing method of sputtering target
JP5877510B2 (en) * 2010-01-07 2016-03-08 Jx金属株式会社 Cu-Ga-based sputtering target, method for producing the target, light absorption layer, and solar cell using the light absorption layer
WO2012165092A1 (en) * 2011-06-03 2012-12-06 日東電工株式会社 Method for manufacturing solar cell
JP2013214548A (en) * 2012-03-30 2013-10-17 Honda Motor Co Ltd Chalcopyrite solar cell and manufacturing method therefor
CN104342634A (en) * 2013-08-09 2015-02-11 台积太阳能股份有限公司 Apparatus and method for forming chalcogenide semiconductor absorber materials with sodium impurities
KR20210050564A (en) * 2018-09-22 2021-05-07 (씨엔비엠) 벵부 디자인 앤드 리서치 인스티튜트 포 글래스 인더스트리 컴퍼니 리미티드 Absorber layer post-treatment method
JP2022501825A (en) * 2018-09-22 2022-01-06 (シーエヌビーエム)ボンブー デザイン アンド リサーチ インスティテュート フォー グラス インダストリー カンパニー,リミティド How to post-treat the absorbent layer

Also Published As

Publication number Publication date
JP3311873B2 (en) 2002-08-05

Similar Documents

Publication Publication Date Title
US5728231A (en) Precursor for semiconductor thin films and method for producing semiconductor thin films
US5626688A (en) Solar cell with chalcopyrite absorber layer
US8431430B2 (en) Method for forming a compound semi-conductor thin-film
Dimmler et al. Scaling‐up of CIS technology for thin‐film solar modules
Katagiri et al. Solar cell without environmental pollution by using CZTS thin film
US5474622A (en) Solar cell having chalcopyrite semiconductor film
WO2014012383A1 (en) Method for preparing copper indium gallium selenide film solar cell
JP3311873B2 (en) Manufacturing method of semiconductor thin film
JPH1074967A (en) Thin-film solar cell
JP2922465B2 (en) Manufacturing method of thin film solar cell
JP2001044464A (en) METHOD OF FORMING Ib-IIIb-VIb2 COMPOUND SEMICONDUCTOR LAYER AND MANUFACTURE OF THIN-FILM SOLAR CELL
JP3519543B2 (en) Precursor for forming semiconductor thin film and method for producing semiconductor thin film
JP4055064B2 (en) Method for manufacturing thin film solar cell
KR101734362B1 (en) Forming method for acigs film at low temperature and manufacturing method for solar cell by using the forming method
WO2011123117A1 (en) Photovoltaic cells with improved electrical contact
JP3408618B2 (en) Solar cell manufacturing method
JPH0555615A (en) Manufacture of thin film solar battery
WO2023109712A1 (en) Wide bandgap copper-gallium-selenium light absorption layer and preparation method therefor, and solar cell
KR20140047760A (en) Manufacturing method of solar cell light absortion layer
JPH10150212A (en) Precursor for semiconductor thin film formation use and manufacture of semiconductor thin film
KR101646556B1 (en) Method of manufacturimg of CZTS-based thin film solar cell and CZTS-based thin film solar cell thereby
KR100418379B1 (en) Thin Film Solar Cell Using a Surface Modified Indium Tin Oxide and Method for Preparing the Same
JP3520683B2 (en) Compound semiconductor thin film, method for manufacturing the same, and solar cell
JP2005117012A (en) Semiconductor film, its manufacturing method, solar cell using the same, and its manufacturing method
KR20190010483A (en) Preparation of CIGS thin film solar cell and CIGS thin film solar cell using the same

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090524

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100524

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110524

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110524

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120524

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120524

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130524

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130524

Year of fee payment: 11

EXPY Cancellation because of completion of term