KR100418379B1 - Thin Film Solar Cell Using a Surface Modified Indium Tin Oxide and Method for Preparing the Same - Google Patents

Thin Film Solar Cell Using a Surface Modified Indium Tin Oxide and Method for Preparing the Same Download PDF

Info

Publication number
KR100418379B1
KR100418379B1 KR10-2001-0031401A KR20010031401A KR100418379B1 KR 100418379 B1 KR100418379 B1 KR 100418379B1 KR 20010031401 A KR20010031401 A KR 20010031401A KR 100418379 B1 KR100418379 B1 KR 100418379B1
Authority
KR
South Korea
Prior art keywords
surface modification
layer
tin oxide
indium tin
oxide film
Prior art date
Application number
KR10-2001-0031401A
Other languages
Korean (ko)
Other versions
KR20020092643A (en
Inventor
김동환
허장은
고석근
Original Assignee
학교법인고려중앙학원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 학교법인고려중앙학원 filed Critical 학교법인고려중앙학원
Priority to KR10-2001-0031401A priority Critical patent/KR100418379B1/en
Publication of KR20020092643A publication Critical patent/KR20020092643A/en
Application granted granted Critical
Publication of KR100418379B1 publication Critical patent/KR100418379B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

본 발명은 인듐주석산화막(ITO) 표면개질을 이용한 박막 광전지 및 그 제조방법에 관한 것으로서, 본 발명의 광전지는 유리기판 상에 광투과도가 높은 전면전극과 상기 전면전극의 상층부에 형성하는 표면개질층과 상기 표면개질층과 접촉하며 밴드 갭 에너지가 넓어서 광투과층으로 작용하는 n형 반도체층과 상기 n형 반도체층과 p/n 접합을 형성하며 광흡수층으로 작용하는 p형 반도체층 및 상기 p형 반도체층과 오믹 접촉을 하는 후면전극으로 구성된 것을 특징으로 하기 때문에 전면전극인 인듐주석산화막의 표면개질을 통하여 표면에너지를 높이고 접촉각을 줄여 n형 반도체층과의 접합성을 높임으로써 n형 반도체의 광투과도와 표면평탄도 및 표면형상을 향상시킬 수 있으며 특히, 전면전극과 n형 반도체층의 접합에서 완충막으로 작용하여 계면간의 결함을 크게 줄여 광전지의 효율을 증가시킬 수 있는 뛰어난 효과가 있다.The present invention relates to a thin film photovoltaic cell using an indium tin oxide film (ITO) surface modification and a method of manufacturing the same. The photovoltaic cell of the present invention is a front electrode having a high light transmittance on a glass substrate and a surface modification layer formed on an upper layer of the front electrode. And the p-type semiconductor layer and the p-type semiconductor layer, which are in contact with the surface modification layer and have a wide band gap energy, which act as a light transmitting layer, form a p / n junction with the n-type semiconductor layer, and act as a light absorption layer. It is characterized in that it consists of a rear electrode which is in ohmic contact with the semiconductor layer, so that the surface energy of the indium tin oxide film, which is the front electrode, increases the surface energy and decreases the contact angle, thereby improving the adhesion to the n-type semiconductor layer, thereby increasing the light transmittance of the n-type semiconductor. And surface flatness and surface shape can be improved, and in particular, it acts as a buffer film at the junction of the front electrode and the n-type semiconductor layer There are excellent effects that can significantly reduce the defect increases the efficiency of the photovoltaic cell.

Description

인듐주석산화막 표면개질을 이용한 박막 광전지 및 그 제조방법{Thin Film Solar Cell Using a Surface Modified Indium Tin Oxide and Method for Preparing the Same}Thin Film Solar Cell Using a Surface Modified Indium Tin Oxide and Method for Preparing the Same}

본 발명은 ITO 표면 개질을 이용한 박막 광전지 및 그 제조방법에 관한 것이며, 더욱 상세하게는 본 발명은 전면전극인 인듐주석산화막(In2O3/Sn doped; 이하, "ITO"이라 함)의 표면을 이온조사(irradiation)를 통하여 표면처리(surface treatment)하여 표면개질층을 형성함으로써 n형 반도체층인 황화카드뮴(이하, "CdS"이라 함)과의 접합을 향상시키고 표면개질을 통하여 표면에너지를 높이고 접촉각을 줄여 ITO와 CdS의 접합성을 높임으로써 n형 반도체의 광투과도와 표면평탄도 및 미세 조직의 치밀성을 향상시킬 수 있는 ITO 표면 개질을 이용한 박막 광전지 및 그 제조방법에 관한 것이다.The present invention relates to a thin film photovoltaic cell using ITO surface modification and a method of manufacturing the same, and more particularly, to the surface of an indium tin oxide film (In 2 O 3 / Sn doped; hereinafter referred to as "ITO") as a front electrode. Surface treatment through ion irradiation to form a surface modification layer to improve the bonding with n-type semiconductor layer cadmium sulfide (hereinafter referred to as "CdS") and to improve the surface energy through surface modification The present invention relates to a thin film photovoltaic cell using ITO surface modification that can improve light transmittance, surface flatness, and microstructure of n-type semiconductors by increasing the adhesion between ITO and CdS by increasing the contact angle and reducing the contact angle.

일반적으로, 광전지는 반도체의 p-n 접합의 특성을 이용하여 태양의 빛에너지를 전기에너지로 변환시키는 장치이다. 지상용 광전지는 주로 박막형 광전지가 적용되어 지고 있는데, 그 종류는 CdTe 광전지, 비정질 Si 광전지, 그리고 CuInSe2계가 있다. 그 중에서 카드뮴 텔루라이드(이하, "CdTe"이라 함)를 사용한 광전지는 상온에서 1.5eV 정도의 밴드 갭 에너지(band gap energy)를 갖는 Ⅱ-Ⅵ족 화합물 반도체로서 태양 빛 스펙트럼과 잘 맞는 이상적인 밴드 갭 에너지와 높은 광흡수도 때문에 박막형 태양전지 재료로 유용하다. 그러나, CdTe는 높은 광 흡수도와 높은 전기 비저항 때문에 동종접합(homojunction)을 피하고 CdS와 같은 n형 반도체와 이종접합(heterojunction)구조로 제작한다. CdS는 CdTe와 격자상수의 차이가 적고 2.42eV 정도의 비교적 큰 밴드 갭 에너지를 가지므로 대부분의 태양 빛을 흡수층인 CdTe로 투과시키는 투과층(window layer)로 사용한다. 태양전지의 직렬저항을 줄이기 위하여 전면전극(front electrode)으로 ITO를 사용한다.In general, a photovoltaic cell is a device that converts light energy of the sun into electrical energy by using the characteristics of the pn junction of the semiconductor. Ground photovoltaic cells are mainly applied to thin-film photovoltaic cells, which include CdTe photovoltaic cells, amorphous Si photovoltaic cells, and CuInSe 2 . Photovoltaic cells using cadmium telluride (hereinafter referred to as "CdTe") are group II-VI compound semiconductors having a band gap energy of about 1.5 eV at room temperature. It is useful as a thin film solar cell material because of its energy and high light absorption. However, CdTe avoids homojunctions due to high light absorption and high electrical resistivity, and is fabricated in heterojunction structures with n-type semiconductors such as CdS. Since CdS has a small difference between CdTe and lattice constant and has a relatively large band gap energy of about 2.42eV, CdS is used as a window layer that transmits most of the sunlight to the absorbing layer, CdTe. In order to reduce the series resistance of the solar cell, ITO is used as the front electrode.

최근 화학용액증착법(chemical bath deposition; 이하 "CBD법"이라 함)으로 형성한 CdS와 전면전극 ITO간의 접합에 관한 연구가 활발히 전개되고 있다.Recently, studies on bonding between CdS and front electrode ITO formed by chemical bath deposition (hereinafter referred to as "CBD method") have been actively conducted.

도 1은 종래기술의 박막 광전지를 나타낸 개략도로서, 유리기판(1) 상에 ITO로 전면전극(3)을 도포하고 상기 전면전극(3)인 ITO 상에 n형 반도체층(5)인 CdS를 도포한다. 상기 CdS 상에 p형 반도체층(7)인 CdTe과 후면전극(9)을 차례로 도포한다.1 is a schematic view showing a thin film photovoltaic cell of the prior art, in which a front electrode 3 is coated with ITO on a glass substrate 1 and an n-type semiconductor layer 5 CdS is applied on ITO, which is the front electrode 3. Apply. CdTe, which is the p-type semiconductor layer 7, and the back electrode 9 are sequentially coated on the CdS.

태양광은 상기 유리기판(1), ITO(3) 및 n형 반도체층(5)을 차례로 투과한 후 p형 반도체층(7)에서 흡수된다.The sunlight passes through the glass substrate 1, the ITO 3, and the n-type semiconductor layer 5 in turn, and is then absorbed by the p-type semiconductor layer 7.

도 2는 종래기술의 개략적인 에너지 밴드를 나타낸 개략도로서, 열적 평형 상태에서 p형 반도체 CdTe와 n형 반도체 CdS의 접합으로 이루어진 다이오드(diode)에서는 캐리어(carrier)의 농도 구배에 의한 확산으로 차지 언밸런스(charge unbalance)가 생기고 이로 인해 전기장이 형성되어 확산의 효과를 상충한다. 즉, 농도구배에 의한 확산과 전기장에 의한 드리프트(drift)의 기여로 생기는 전류의 크기는 같고 방향이 반대여서 전류의 차이는 0(zero)이 된다.FIG. 2 is a schematic view showing a schematic energy band of the prior art, in a diode made of a junction of a p-type semiconductor CdTe and an n-type semiconductor CdS in a thermal equilibrium, charge unbalance due to diffusion due to a concentration gradient of a carrier. (charge unbalance) occurs, which causes an electric field to be created that counteracts the effects of diffusion. That is, the magnitude of the current caused by the diffusion due to the concentration gradient and the contribution of the drift by the electric field is the same and the direction is opposite, so the difference in the current is zero.

도 3은 종래기술의 ITO상에 도포한 CdS의 표면형상을 나타낸 SEM 사진이다.3 is a SEM photograph showing the surface shape of CdS coated on the ITO of the prior art.

도 3a에서 보면, 유리 기판 상에 ITO와 CBD법으로 CdS를 차례로 도포한 후, 주사전자현미경(scanning electron microscope; 이하, "SEM"이라 함)으로 관찰한 CdS의 표면을 나타낸다. SEM 사진에서 (a)부분은 ITO표면에서 바람직하게 불균일(heterogeneous) 핵생성(nucleation) 및 성장(growth)한 것이다. 하지만 (b)부분은 바람직하지 못하게 수용액 내에서 균일(homogeneous) 핵생성 및 성장한입자(colloid)를 나타낸다.3A shows the surface of CdS observed with a scanning electron microscope (hereinafter, referred to as "SEM") after sequentially applying CdS on the glass substrate by ITO and CBD method. Part (a) of the SEM photograph is preferably heterogeneous nucleation and growth on the surface of the ITO. However, part (b) undesirably exhibits homogeneous nucleation and grown particles in aqueous solution.

이러한 상기 종래방법에 따르면, 균일 성장한 입자가 불균일 성장막에 흡착되어 표면형상이 불균일하게 만들며 광투과도를 감소시킨다. 또한, CdS막의 치밀도(density) 저하로 인해 핀-홀(pin-hole)을 형성하여 전기적 성질을 저하한다.According to this conventional method, uniformly grown particles are adsorbed on the heterogeneous growth film, thereby making the surface shape uneven and reducing the light transmittance. In addition, pin-holes are formed due to a decrease in density of the CdS film, thereby deteriorating electrical properties.

도 3b에서 보면, 유리기판 상에 ITO와 CBD법으로 CdS를 차례로 도포하고, 질소 분위기에서 450℃, 30분간 열처리한 것을 SEM 사진으로 나타내고 있다.3B, CdS was sequentially coated on the glass substrate by ITO and CBD, and heat-treated at 450 ° C. for 30 minutes in a nitrogen atmosphere.

이러한 상기 종래방법에 따르면, 열처리로 인해 SEM 사진의 (c)부분인 금속성 카드뮴 입자(metallic cadmium cluster)가 형성된다. 이러한 입자는 빛을 산란시키거나 반사시켜서 광투과도를 현저히 감소시키는 원인을 초래한다.According to this conventional method, the metallic cadmium cluster (c) part of the SEM photograph is formed by the heat treatment. These particles scatter or reflect light, causing a significant reduction in light transmittance.

도 4는 종래기술의 ITO상에 도포한 CdS막을 분석한 RBS 도면이다.4 is an RBS diagram of a CdS film coated on a conventional ITO.

도 4에서 보면, 러더포드 후방산란법(rutherford backscattering spectrometry, 이하"RBS"이라 함)으로 표면개질층이 없는 ITO상에 도포한 CdS 막을 분석한 것이다.In FIG. 4, CdS films coated on ITO without a surface modification layer were analyzed by Rutherford backscattering spectrometry (hereinafter referred to as “RBS”).

상기 수학식 1에서 x는 카드뮴(cadmium; 이하, "Cd"이라 함)의 분율 원자 농도(fractional atomic concentration)이며, 1-x는 황(sulfur; 이하 "S"라함)의 분율 원자농도, H는 모서리-높이(edge-heights), σ는 산란교차 부분(scattering cross-section), 그리고 ε는 종결 중지파워(resultant stopping powers)를 나타내므로, Cd와 S의 피크(peak)아래 면적을 적분하여 구한 Cd와 S의 분율은 약 1/0.9를 나타낸다. 다시 말해 Cd1S0.9,의 비화확양론비를 가짐으로서 CdS막 내에 Cd이 S보다 10%이상 많게 되어 상기 도 3에서 보이는 (c)부분, 즉 금속성 카드뮴 입자가 표면에 형성되게 되는 것이다.In Equation 1, x is a fractional atomic concentration of cadmium (hereinafter referred to as "Cd"), and 1-x is a fractional atomic concentration of sulfur (hereinafter referred to as "S"), H. Is the edge-heights, σ is the scattering cross-section, and ε is the stopping stopping powers, so we integrate the area under the peaks of Cd and S The obtained fractions of Cd and S represent about 1 / 0.9. In other words, Cd has a non-stoichiometric ratio of Cd 1 S 0.9 , so that Cd is more than 10% higher than S in the CdS film, so that the part (c) shown in FIG. 3, that is, the metallic cadmium particles are formed on the surface.

특히, 후속공정의 열처리로 인해 금속성 카드뮴 입자가 CdTe막 내로 확산해 들어가면서, CdS와 CdTe계면에 공공(pore)을 형성하게 된다. 이로 인해 CdS와 CdTe의 접합에서 누설전류(leakage current)를 증가시켜 전기 전도도를 저하시키는 원인을 초래하며 광전지의 병렬 저항을 감소시켜서 광전지의 효율을 현저히 감소시키는 단점이 있다.In particular, the metallic cadmium particles diffuse into the CdTe film due to the heat treatment of the subsequent process, thereby forming pores in the CdS and CdTe interfaces. This causes the leakage current (leakage current) at the junction of the CdS and CdTe causes a decrease in the electrical conductivity, and has a disadvantage in reducing the efficiency of the photovoltaic cell by reducing the parallel resistance of the photovoltaic cell.

따라서, 본 발명의 목적은 상술한 문제점을 해소하기 위하여 본 발명에서는 ITO 표면에 이온 조사를 통하여 표면 처리(surface treatment)하여 표면 개질층을 형성함으로써 n형 반도체층인 CdS와 접합을 향상시키고, 표면 개질을 통하여 표면 에너지를 높이고 접촉각을 줄여 ITO와 CdS의 접합성을 높임으로써 n형 반도체의 광투과도와 표면 평탄도 및 미세 조직의 치밀도를 향상시킬 수 있는 ITO 표면 개질을 이용한 박막 광전지의 제조방법을 제공하는 데 있다. 본 발명의 다른 목적은 상기 방법에 의하여 제조된 박막 광전지를 제공하는데 있다.Accordingly, an object of the present invention is to improve the bonding with n-type semiconductor layer CdS by forming a surface modification layer by surface treatment through ion irradiation on the surface of the ITO in order to solve the above-mentioned problems, A method of manufacturing a thin film photovoltaic cell using ITO surface modification that can improve light transmittance, surface flatness, and microstructure density of n-type semiconductors by improving surface energy and reducing contact angle to improve contact between ITO and CdS. To provide. Another object of the present invention is to provide a thin film photovoltaic cell produced by the above method.

본 발명의 상기 목적은 유리기판 상에 광투과도가 높은 전면 전극과 상기 전면 전극의 상층부에 형성하는 표면 개질층과 상기 표면 개질층과 접촉하며 밴드 갭 에너지가 넓어서 광투과층으로 작용하는 n형 반도체층과 상기 n형 반도체층과 p/n 접합을 형성하며 광흡수층으로 작용하는 p형 반도체층 및 상기 p형 반도체층과 오믹 접촉을 하는 후면 전극으로 구성되는 ITO 표면 개질을 이용한 박막 광전지를 제공 함으로써 달성하였다.The object of the present invention is an n-type semiconductor having a high light transmittance on a glass substrate and a surface modification layer formed on an upper layer of the front electrode and the surface modification layer and having a wide band gap energy to act as a light transmission layer. By providing a thin film photovoltaic cell using ITO surface modification consisting of a p-type semiconductor layer forming a p / n junction with the layer and the n-type semiconductor layer and acts as a light absorption layer and a back electrode in ohmic contact with the p-type semiconductor layer Achieved.

이하, 본 발명의 구성 및 작용을 설명한다.Hereinafter, the configuration and operation of the present invention.

도 1은 종래기술의 박막 광전지를 나타낸 개략도이다.1 is a schematic view showing a thin film photovoltaic cell of the prior art.

도 2는 종래기술의 에너지 밴드를 나타낸 개략도이다.2 is a schematic view showing an energy band of the prior art.

도 3은 종래기술의 ITO상에 도포한 CdS막의 표면형상을 나타낸 SEM 사진이다.3 is a SEM photograph showing the surface shape of a CdS film coated on ITO of the prior art.

도 4는 종래기술의 ITO상에 도포한 CdS막을 분석한 RBS 그래프이다.4 is an RBS graph of a CdS film coated on a conventional ITO.

도 5는 본 발명에 따른 ITO 표면개질을 이용한 박막 광전지를 나타낸 개략적인 단면도이다.5 is a schematic cross-sectional view showing a thin film photovoltaic cell using ITO surface modification according to the present invention.

도 6은 본 발명에 따른 ITO 표면개질층의 표면에너지의 변화를 나타낸 그래프이다.6 is a graph showing the change in the surface energy of the ITO surface modification layer according to the present invention.

도 7은 본 발명에 따른 ITO 표면개질층의 접촉각의 변화를 나타낸 그래프이다.7 is a graph showing a change in contact angle of the ITO surface modification layer according to the present invention.

도 8은 본 발명에 따른 ITO 표면개질층에 도포한 CdS막의 표면형상을 나타낸 SEM 사진이다.8 is a SEM photograph showing the surface shape of the CdS film coated on the ITO surface modification layer according to the present invention.

도 9는 본 발명에 따른 ITO 표면개질층에 도포한 CdS막을 분석한 RBS 그래프이다.9 is an RBS graph of a CdS film coated on an ITO surface modification layer according to the present invention.

도 10은 본 발명에 따른 ITO 표면개질층에 도포한 CdS막의 광투과도를 나타낸 그래프이다.10 is a graph showing the light transmittance of the CdS film coated on the ITO surface modification layer according to the present invention.

도 11은 본 발명에 따른 ITO 표면 개질을 이용한 박막 광전지 제조방법의 단계별 순서를 나타낸 공정도이다.11 is a process chart showing the step-by-step procedure of the method for manufacturing a thin film photovoltaic cell using ITO surface modification according to the present invention.

* 도면의 주요 부분에 대한 부호의 설명 *Explanation of symbols on the main parts of the drawings

1 : 유리기판 3 : 전면전극1 glass substrate 3 front electrode

5 : CdS 7 : CdTe5: CdS 7: CdTe

9 : 후면전극 11 : 유리 기판9 back electrode 11 glass substrate

13 : 전면 전극 14 : 표면 개질층13 front electrode 14 surface modification layer

15 : n형 반도체층 17 : p형 반도체층15: n-type semiconductor layer 17: p-type semiconductor layer

19 : 후면 전극19: back electrode

본 발명의 ITO 표면 개질을 이용한 박막 광전지 및 그 제조방법은 유리 기판 상에 인듐주석산화막(ITO)을 도포하는 단계; 상기 인듐주석산화막(ITO) 상에 이온 조사로 표면 처리하여 표면 개질층을 도포하는 단계; 상기 표면 개질층 상에 n형 반도체인 황화카드뮴(CdS)을 도포하는 단계; 상기 n형 반도체인 황화카드뮴(CdS) 상에 카드뮴텔루라이드(CdTe)를 도포하는 단계; 상기 카드뮴텔루라이드(CdTe)가 도포된 유리 기판을 염화카드뮴(이하 CdCl2라 칭함) 용액에 침적한 후 열처리하는 단계; 및 상기 열처리된 카드뮴텔루라이드(CdTe) 상에 브롬-메탄올로 식각한 후 후면전극을 형성하는 단계로 이루어지는 것을 특징으로 한다.The thin film photovoltaic cell using the ITO surface modification of the present invention and a method of manufacturing the same include the steps of applying an indium tin oxide film (ITO) on a glass substrate; Surface treatment by ion irradiation on the indium tin oxide film (ITO) to apply a surface modification layer; Applying cadmium sulfide (CdS), an n-type semiconductor, on the surface modification layer; Applying cadmium telluride (CdTe) on the n-type cadmium sulfide (CdS); Immersing the glass substrate coated with cadmium telluride (CdTe) in a cadmium chloride (hereinafter referred to as CdCl 2 ) solution and then heat-treating it; And forming a back electrode after etching with bromine-methanol on the heat treated cadmium telluride (CdTe).

이하, 본 발명의 바람직한 실시예를 첨부한 도면에 의하여 더욱 상세히 설명한다.Hereinafter, with reference to the accompanying drawings, preferred embodiments of the present invention will be described in more detail.

도 5는 본 발명의 ITO 표면 개질을 이용한 박막 광전지의 개략적인 단면도이다.5 is a schematic cross-sectional view of a thin film photovoltaic cell using ITO surface modification of the present invention.

도 5에 따르면, 본 발명의 ITO 표면개질을 이용한 박막 광전지는 유리기판(11) 상에 광투과도가 높은 ITO로 전면 전극(13)을 도포한다. 상기 전면전극(13)은 1000∼5000Å이 바람직하나 3000Å이 가장 바람직하다. 상기 전면전극(13) 상에 이온조사로 표면처리하여 표면개질층(14)을 형성한다. 특히, 상기 표면개질층은 전면전극의 일부로서 두께는 인듐주석산화막의 두께의 1∼10%가 바람직하나 30Å이 가장 바람직하다. 바람직한 실시예로서, 상기 표면개질은 이온에너지(Ion energy)가 1keV이며, 이온도즈(Ion dose)량이 1E14∼5E17ions/㎠이 바람직하나 1E17ions/㎠이 가장 바람직하다. 상기 표면개질층(14) 상에 n형 반도체층(15)를 형성한다. 상기 n형 반도체층(15)은 CBD법으로 형성하며, 두께가 0.1∼5㎛가 바람직하나 2000Å이 가장 바람직하다. 상기 n형 반도체층(15)상에 CdTe로 p형 반도체층(17)을 형성한다. 상기 p형 반도체층(17)은 광흡수층으로 카드뮴텔루라이드(CdTe), 수은카드뮴텔루라이드(Hg1-xCdxTe), 구리인듐셀레니움(CuInSe)2, 구리인듐칼륨셀레니움[Cu(InGa)Se2] 또는 황화구리인듐(CuInS2) 중 어느 하나를 사용하며, 그 두께는 2∼7㎛가 바람직하나 5㎛로 형성함이 가장 좋다. 상기 p형 반도체층(17) 상에 오믹접합으로 후면전극(19)을 도포한다. 상기 후면전극(19)은 구리가 도핑된 카본(C paste /Cu doped)으로 하고 이밖에 안티몬텔루라이드(Sb2Te3), 아연텔루라이드(ZnTe) 또는 금(Au) 중 선택 사용 할 수 있다.According to FIG. 5, the thin film photovoltaic cell using the ITO surface modification of the present invention is coated on the glass substrate 11 with the front electrode 13 with ITO having high light transmittance. The front electrode 13 is preferably 1000 to 5000 mW but most preferably 3000 mW. The surface modification layer 14 is formed by surface treatment by ion irradiation on the front electrode 13. In particular, the surface modification layer is preferably a portion of the front electrode, the thickness of which is preferably 1 to 10% of the thickness of the indium tin oxide film, but most preferably 30 kPa. In a preferred embodiment, the surface modification is ion energy of 1keV, ion dose of 1E14-5E17ions / cm 2 is preferred, but 1E17ions / cm 2 is most preferred. An n-type semiconductor layer 15 is formed on the surface modification layer 14. The n-type semiconductor layer 15 is formed by the CBD method, the thickness is preferably 0.1 to 5㎛, but most preferably 2000 kPa. The p-type semiconductor layer 17 is formed of CdTe on the n-type semiconductor layer 15. The p-type semiconductor layer 17 is a light absorption layer cadmium telluride (CdTe), mercury cadmium telluride (Hg 1-x Cd x Te), copper indium selenium (CuInSe) 2 , copper indium potassium selenium [Cu (InGa) Se 2 ] or copper indium sulfide (CuInS 2 ) is used, the thickness is preferably 2 ~ 7㎛ but is best formed in 5㎛. The back electrode 19 is coated on the p-type semiconductor layer 17 by ohmic bonding. The back electrode 19 is made of carbon doped with copper (C paste / Cu doped), and may be selected from among antimony telluride (Sb 2 Te 3 ), zinc telluride (ZnTe), and gold (Au). .

도 6은 본 발명의 ITO 표면개질층의 표면에너지를 나타낸 그래프이다.6 is a graph showing the surface energy of the ITO surface modification layer of the present invention.

도 6에 나타난 바와 같이 ITO의 표면처리가 없을 경우에는 약 30(energy/㎠)이지만, ITO를 아르곤이온으로 표면처리를 하면, 약 65(energy/㎠)이상 증가함을 알 수 있다. 고 에너지를 가진 표면개질층은 후속 공정인 CdS를 도포할 경우에 표면 에너지를 낮추기 위해서, 빠른 핵생성을 갖추려는 경향을 가지고 있다. 따라서, 표면개질층상에 불균일 CdS의 초기 핵생성 속도가 더욱 증가하게 된다. 이와 같은 결과로 인해, 도 4에서 표면개질층이 없는 ITO 상에 CdS를 도포할 경우 1950Å이었으나, 표면개질층 상에 도포한 CdS막의 두께가 2050Å으로 약 100Å 더 성장하게 되는 원인이 된다.As shown in FIG. 6, when there is no surface treatment of ITO, it is about 30 (energy / cm 2), but when ITO is surface treated with argon ions, it can be seen that the increase of about 65 (energy / cm 2) or more. The high energy surface modification layer tends to have fast nucleation in order to lower the surface energy when applying CdS, which is a subsequent process. Thus, the initial nucleation rate of heterogeneous CdS on the surface modification layer is further increased. As a result, in the case of applying CdS on the ITO without the surface modification layer in FIG. 4, it was 1950 ms, but the thickness of the CdS film coated on the surface modification layer was increased to 2050 ms by about 100 ms.

도 7은 본 발명의 ITO 표면개질층의 접촉각을 나타낸 도면이다.7 is a view showing a contact angle of the ITO surface modification layer of the present invention.

도 7에서 나타난 바와 같이 표면개질층이 없는 ITO막의 접촉각(water contact angle)이 80°이상의 소수성표면(hydrophobic surface)을 나타낸다. 그러나 표면개질층을 지닌 ITO막의 접촉각은 15°이하의 친수성표면(hydrophilic surface)을 나타낸다. 그러므로 접촉각의 감소로 인해 ITO막과 CdS막의 접합성이 향상되는 특징을 가진다.As shown in FIG. 7, the water contact angle of the ITO membrane without the surface modification layer exhibits a hydrophobic surface of 80 ° or more. However, the contact angle of the ITO membrane with the surface modification layer shows a hydrophilic surface of less than 15 °. Therefore, the adhesion between the ITO film and the CdS film is improved due to the decrease in the contact angle.

도 8은 본 발명의 ITO 표면개질층에 도포한 CdS막의 표면형상을 나타낸 SEM 사진이다.8 is a SEM photograph showing the surface shape of a CdS film coated on the ITO surface modification layer of the present invention.

도 8(a)은 유리기판 상에 ITO를 도포하고, 아르곤 이온을 주사하여 표면개질층을 형성한 후, CBD법으로 CdS를 도포하고 SEM으로 관찰한 CdS의 표면을 나타낸것이다. SEM 사진에서 불균일 핵생성 및 성장한 막상에 바람직하지 않은 균일 핵생성 및 성장한 입자는 현저히 줄어들었다. 특히 막이 치밀하게 형성하여 핀-홀이 보이지 않는다.FIG. 8 (a) shows the surface of CdS observed by SEM after coating ITO on a glass substrate, scanning surface with argon ions to form a surface modification layer, applying CdS by CBD method, and SEM. The heterogeneous nucleation and undesirable uniform nucleation and grown particles on the grown film in the SEM photographs were markedly reduced. In particular, the film is densely formed so that pin-holes are not visible.

도 8(b)은 유리기판 상에 ITO를 형성하고, 이온조사하여 표면개질층을 형성한 후 CBD법으로 CdS를 도포하고, 질소 분위기에서 450℃, 30분간 열처리한 것을 SEM 사진으로 나타내고 있다. 바람직하지 않은 금속성 카드뮴 입자가 현저히 줄었다.FIG. 8 (b) shows SEM images of ITO formed on a glass substrate, ion-irradiated to form a surface modification layer, CdS coated by CBD method, and heat treatment at 450 ° C. for 30 minutes in a nitrogen atmosphere. Undesired metallic cadmium particles were significantly reduced.

도 9는 본 발명의 ITO 표면 개질층에 형성한 CdS막을 분석한 RBS 도면이다.9 is an RBS diagram of a CdS film formed on the ITO surface modification layer of the present invention.

도 9에 나타난 바와 같이 아르곤이온으로 표면개질층을 형성하고, 상기 식 1을 이용하여 구한 Cd와 S의 분율은 약 1/1를 나타낸다. 즉, 바람직하게 Cd1S1의 화확양론비를 가짐으로써 상기 도 8(b)에서 금속성 카드뮴 입자가 현저히 줄어든 것을 증명한다.As shown in FIG. 9, the surface modification layer is formed of argon ions, and the fractions of Cd and S obtained using Equation 1 represent about 1/1. That is, it is preferable to have a stoichiometric ratio of Cd 1 S 1 to significantly reduce the metallic cadmium particles in FIG. 8 (b).

도 10은 본 발명의 ITO 표면개질층에 형성한 CdS막의 광투과도를 나타낸 SEM 사진이다.10 is a SEM photograph showing the light transmittance of a CdS film formed on the ITO surface modification layer of the present invention.

도 10에 나타난 바와 같이 표면개질층을 아르곤 이온으로 표면처리한 것이다. 이온 에너지는 1keV이며, 이온 도즈량은 5E15 ions/㎠, 1E16 ions/㎠, 5E16 ions/㎠, 1E17 ions/㎠이다. 표면 개질층이 없는 CdS막의 광투과도보다 표면개질층상에 형성한 CdS의 광투과도가 단파장에서 현저히 증가함을 나타낸다.As shown in FIG. 10, the surface modification layer is surface treated with argon ions. The ion energy is 1 keV, and the ion dose is 5E15 ions / cm 2, 1E16 ions / cm 2, 5E16 ions / cm 2, and 1E17 ions / cm 2. It is shown that the light transmittance of CdS formed on the surface modification layer is significantly increased in the short wavelength than that of the CdS film without the surface modification layer.

도 11은 본 발명의 ITO 표면 개질을 이용한 박막 광전지 제조방법의 단계별순서를 나타낸 공정도이다.11 is a process chart showing the step-by-step sequence of the method for manufacturing a thin film photovoltaic cell using ITO surface modification of the present invention.

도 11에 나타낸 바와 같이 먼저 유리 기판(glass substrate) 상에 스퍼터링 방식(ion beam sputtering)으로 ITO를 형성한다. 상기 ITO상에 이온빔 조사법(ion beam irradiation depositon; 이하, 'IBID'이라 함)으로 표면개질층을 형성한다. IBID로 표면개질층을 형성할 때 이온에너지는 1keV, 이온도즈량은 각각 5E15 ions/㎠, 1E16 ions/㎠, 5E16 ions/㎠, 1E17 ions/㎠로 각각 아르곤이온, 질소이온, 산소이온, 수소이온 또는 그 이온들의 혼합이온으로 형성하는 것이 바람직하다. 다음 상기 표면개질층 상에 CBD법으로 CdS를 형성한다. CBD법으로 상기 CdS를 도포함에 있어서, 상기 표면개질층은 표면에너지가 높고 접촉각이 낮으므로 수용액 내에서 CdS의 핵생성사이트(nucleation site)를 증가시킴으로서 CdS의 불균일핵생성(heterogeneous nucleation)을 촉진시키며 ITO와 CdS의 계면간의 접착성을 향상시킨다. 상기 CdS 상에 근접승화법(closed space sublimation)으로 CdTe를 도포한다. 진성(intrinsic) 반도체인 CdTe가 도포된 기판을 CdCl2에 침적한 후 열처리한다. 상기 열처리로 인해 Te가 풍부(rich)함으로서 CdTe가 p형 반도체층으로 형성된다. 상기 열처리는 온도를 200∼600℃에서 시간은 10∼60분으로 하며 가장 바람직하기로는 온도를 400℃에서 시간은 30분간 수행하는 것이 좋다. 상기 CdTe가 형성된 기판을 브롬-메탄올(Br-CH3OH) 용액에 담군 후 즉각 세척한다. 상기 식각 세척된 CdTe 상에 후면 전극을 도포한다.As shown in FIG. 11, ITO is first formed on a glass substrate by ion beam sputtering. A surface modification layer is formed on the ITO by ion beam irradiation depositon (hereinafter referred to as 'IBID'). When forming the surface modification layer with IBID, ion energy is 1keV, ion dose is 5E15 ions / ㎠, 1E16 ions / ㎠, 5E16 ions / ㎠, 1E17 ions / ㎠, respectively, argon ion, nitrogen ion, oxygen ion, hydrogen It is preferable to form with ions or mixed ions thereof. Next, CdS is formed on the surface modification layer by CBD. In applying the CdS by the CBD method, the surface modification layer has high surface energy and low contact angle, thereby promoting heterogeneous nucleation of CdS by increasing the nucleation site of the CdS in the aqueous solution. Improve the adhesion between the interface of ITO and CdS. CdTe is coated on the CdS by a closed space sublimation method. The substrate coated with CdTe, which is an intrinsic semiconductor, is deposited on CdCl 2 and then heat-treated. Due to the heat treatment, Te is rich, thereby forming CdTe as a p-type semiconductor layer. The heat treatment is performed at a temperature of 200 to 600 ° C. for 10 to 60 minutes, and most preferably at a temperature of 400 ° C. for 30 minutes. The substrate on which the CdTe is formed is immersed in a bromine-methanol (Br-CH 3 OH) solution and immediately washed. The back electrode is coated on the etch washed CdTe.

이상 도면 및 상세한 설명을 통하여 본 발명의 바람직한 실시예를 설명했으나, 이는 이하의 청구범위에 개시되어 있는 발명의 범주로 이를 제한하고자 하는 목적이 아니다. 따라서 본 발명은 특허청구의 범위에 한정되지 않고 당업자의 수준에서 그 변형 및 개량이 얼마든지 가능하며 그와 같은 공정순서 및 수치의 변경은 본 발명의 권리범위에 포함되는 것은 물론이다.Although the preferred embodiments of the present invention have been described with reference to the drawings and the detailed description, this is not intended to limit the scope of the invention disclosed in the claims below. Therefore, the present invention is not limited to the scope of the claims, and modifications and improvements are possible at the level of those skilled in the art, and such changes in process order and numerical value are of course included in the scope of the present invention.

상기에서 설명한 바와 같이, 본 발명은 전면 전극인 ITO의 상부를 표면 개질하여 표면 에너지를 높이고 접촉각을 낮춤으로서 CBD법으로 증착하는 CdS의 표면 형성에 영향을 줌으로서, 균일 핵생성 및 성장한 입자를 현저히 감소시켜서 CdS의 광투과도를 현저히 향상시키고, 막을 치밀하게 형성하고 Cd/S의 비가 1:1로 되어, 열처리로 인한 금속성 카드뮴 입자의 형성을 줄일 수 있는 효과 가 있을 뿐만아니라, 병렬 저항을 줄여서 광전지 효율을 크게 향상시킬 수 있는 뛰어난 효과가 있으므로 반도체 산업상 매우 유용한 발명인 것이다.As described above, the present invention affects the surface formation of CdS deposited by the CBD method by surface modification of the upper surface of the ITO, which is the front electrode, to increase the surface energy and lower the contact angle, thereby significantly increasing uniform nucleation and growing particles. By reducing the light transmittance of CdS significantly improved, the film is densely formed and the ratio of Cd / S is 1: 1, which not only reduces the formation of metallic cadmium particles due to heat treatment, but also reduces the parallel resistance to reduce photovoltaic cells. It is a very useful invention for the semiconductor industry because it has an excellent effect that can greatly improve the efficiency.

Claims (18)

이종접합 p/n 광전지에 있어서,In heterojunction p / n photovoltaic cells, 유리기판(11) 상에 광투과도가 높은 전면전극(13)인 인듐주석산화막(ITO);An indium tin oxide film (ITO), which is a front electrode 13 having a high light transmittance on the glass substrate 11; 상기 인듐주석산화막의 상층부에 형성하는 표면개질층(14);A surface modification layer 14 formed on an upper layer of the indium tin oxide film; 상기 표면개질층(14)과 접촉하며 밴드갭 에너지가 넓어서 광투과층으로 작용하는 n형 반도체층(15)인 황화카드뮴(CdS)층;A cadmium sulfide (CdS) layer, which is an n-type semiconductor layer 15 in contact with the surface modification layer 14 and acting as a light transmitting layer due to a wide band gap energy; 상기 황화카드뮴층과 p/n 접합을 형성하며 광흡수층으로 작용하는 p형 반도체층(17)인 카드뮴텔루라이드(CdTe), 수은카드뮴텔루라이드(Hg1-xCdxTe), 구리인듐셀레니움(CuInSe)2, 구리인듐갈륨셀레니움 (Cu(InGa)Se2) 및 황화구리인듐(CuInS2)으로 이루어진 군으로부터 선택된 어느하나의 층; 및The p-type semiconductor layer 17 acts as a light absorption layer and forms a p / n junction with the cadmium sulfide layer, cadmium telluride (CdTe), mercury cadmium telluride (Hg 1-x Cd x Te), and copper indium selenium ( Any one layer selected from the group consisting of CuInSe) 2 , copper indium gallium selenium (Cu (InGa) Se 2 ), and copper indium sulfide (CuInS 2 ); And 상기 p형 반도체층(17)과 오믹 접촉을 하는 후면전극(19)으로 구성된 것을 특징으로 하는 인듐주석산화막 표면개질을 이용한 박막 광전지.A thin film photovoltaic cell using indium tin oxide film surface modification, comprising a back electrode 19 having ohmic contact with the p-type semiconductor layer 17. 삭제delete 삭제delete 제 1항에 있어서, 상기 표면개질층(14)은 아르곤 이온, 질소 이온, 산소 이온 또는 수소 이온으로 표면개질 하는 것을 특징으로 하는 인듐주석산화막 표면개질을 이용한 박막 광전지.2. The thin film photovoltaic cell according to claim 1, wherein the surface modification layer (14) is surface modified with argon ions, nitrogen ions, oxygen ions, or hydrogen ions. 삭제delete 제 1항에 있어서, 상기 n형 반도체층(15)인 황화카드뮴층의 두께는 0.1∼5㎛인 것을 특징으로 하는 인듐주석산화막 표면개질을 이용한 박막 광전지.The thin film photovoltaic cell using indium tin oxide film surface modification according to claim 1, wherein the cadmium sulfide layer, which is the n-type semiconductor layer (15), has a thickness of 0.1 to 5 µm. 삭제delete 제 1항에 있어서, 상기 p형 반도체층(17)의 두께는 2∼7㎛인 것을 특징으로 하는 인듐주석산화막 표면개질을 이용한 박막 광전지.The thin film photovoltaic cell using indium tin oxide film surface modification according to claim 1, wherein the p-type semiconductor layer has a thickness of 2 to 7 µm. 제 1항에 있어서, 상기 후면전극(19)은 금(Au), 구리가 도핑된 카본(C paste/Cu doped), 안티몬텔루라이드(Sb2Te3) 및 아연텔루라이드(ZnTe)로 이루어진 군으로부터 선택되는 것을 특징으로 하는 인듐주석산화막 표면개질을 이용한 박막 광전지.The group of claim 1, wherein the back electrode 19 is made of gold (Au), copper doped with carbon (C paste / Cu doped), antimony telluride (Sb 2 Te 3 ), and zinc telluride (ZnTe). Thin film photovoltaic cell using indium tin oxide film surface modification, characterized in that selected from. 유리기판(11) 상에 인듐주석산화막(ITO)을 도포하는 단계;Applying an indium tin oxide film (ITO) on the glass substrate 11; 상기 인듐주석산화막(ITO) 상에 이온조사로 표면처리하여 표면개질층(14)을 형성하는 단계;Surface treatment by ion irradiation on the indium tin oxide film (ITO) to form a surface modification layer 14; 상기 표면개질층(14) 상에 n형 반도체인 황화카드뮴(CdS)을 도포하는 단계;Applying cadmium sulfide (CdS), which is an n-type semiconductor, on the surface modification layer 14; 상기 n형 반도체인 황화카드뮴(CdS) 상에 카드뮴텔루라이드(CdTe)를 도포하는 단계;Applying cadmium telluride (CdTe) on the n-type cadmium sulfide (CdS); 상기 카드뮴텔루라이드(CdTe)가 도포된 유리기판을 염화카드뮴(CdCl2) 용액에 침적한 후 열처리하는 단계; 및Immersing the glass substrate coated with cadmium telluride (CdTe) in a cadmium chloride (CdCl 2 ) solution and then heat-treating it; And 상기 열처리된 카드뮴텔루라이드(CdTe) 상에 브롬-메탄올로 식각한 후 후면전극을 형성하는 단계를 포함하는 것을 특징으로 하는 인듐주석산화막 표면개질을 이용한 박막 광전지의 제조방법.And forming a back electrode after etching with bromine-methanol on the heat treated cadmium telluride (CdTe). 제 10 항에 있어서, 상기 인듐주석산화막의 두께는 1000∼5000Å으로 하는 것을 특징으로 하는 인듐주석산화막 표면개질을 이용한 박막 광전지의 제조방법.The method of manufacturing a thin film photovoltaic cell using indium tin oxide film surface modification according to claim 10, wherein the indium tin oxide film has a thickness of 1000 to 5000 kPa. 제 10 항에 있어서, 상기 표면개질층(14)의 두께는 상기 인듐주석산화막의 두께의 1∼10%로 하는 것을 특징으로 하는 인듐주석산화막 표면개질을 이용한 박막 광전지의 제조방법.The method of manufacturing a thin film photovoltaic cell using indium tin oxide film surface modification according to claim 10, wherein the thickness of the surface modification layer (14) is 1 to 10% of the thickness of the indium tin oxide film. 제 10 항에 있어서, 상기 표면개질층(14)은 아르곤이온, 질소이온, 산소이온 또는 수소이온으로 표면개질 하는 것을 특징으로 하는 인듐주석산화막 표면개질을 이용한 박막 광전지의 제조방법.The method of claim 10, wherein the surface modification layer (14) is surface modified with argon ions, nitrogen ions, oxygen ions, or hydrogen ions. 삭제delete 제 10 항에 있어서, 상기 표면개질층(14)은 1E14∼5E17ions/㎠의 이온도즈량으로 이온조사하는 것을 특징으로 하는 인듐주석산화막 표면개질을 이용한 박막 광전지의 제조방법.The method of manufacturing a thin film photovoltaic cell using indium tin oxide film surface modification according to claim 10, wherein the surface modification layer (14) is ion irradiated with an ion dose of 1E14 to 5E17ions / cm2. 삭제delete 삭제delete 제 10 항에 있어서, 상기 열처리는 200∼600℃에서 10∼60분 동안 하는 것을 특징으로 하는 인듐주석산화막 표면개질을 이용한 박막 광전지의 제조방법.The method of claim 10, wherein the heat treatment is performed at 200 to 600 ° C. for 10 to 60 minutes.
KR10-2001-0031401A 2001-06-05 2001-06-05 Thin Film Solar Cell Using a Surface Modified Indium Tin Oxide and Method for Preparing the Same KR100418379B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2001-0031401A KR100418379B1 (en) 2001-06-05 2001-06-05 Thin Film Solar Cell Using a Surface Modified Indium Tin Oxide and Method for Preparing the Same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2001-0031401A KR100418379B1 (en) 2001-06-05 2001-06-05 Thin Film Solar Cell Using a Surface Modified Indium Tin Oxide and Method for Preparing the Same

Publications (2)

Publication Number Publication Date
KR20020092643A KR20020092643A (en) 2002-12-12
KR100418379B1 true KR100418379B1 (en) 2004-02-11

Family

ID=27707892

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2001-0031401A KR100418379B1 (en) 2001-06-05 2001-06-05 Thin Film Solar Cell Using a Surface Modified Indium Tin Oxide and Method for Preparing the Same

Country Status (1)

Country Link
KR (1) KR100418379B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101134568B1 (en) 2010-04-21 2012-04-13 한국과학기술연구원 Growth Method of Single Crystalline CdTe layer on Si substrates

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100847220B1 (en) * 2006-01-09 2008-07-17 주식회사 엘지화학 Organic light emitting device comprising surface-treated bottom electrode
KR100809440B1 (en) * 2007-03-09 2008-03-05 한국전자통신연구원 Thin film transistor having n-type and p-type cis thin films and the method of manufacturing the same
KR101538817B1 (en) * 2007-09-25 2015-07-22 퍼스트 솔라, 인코포레이티드 Photovoltaic devices including heterojunctions
KR101222559B1 (en) * 2010-12-27 2013-01-16 주식회사 아바코 Solar cell and method of manufacturing the same
KR101238335B1 (en) * 2011-07-08 2013-03-04 한국과학기술원 Manufacturing methods of heterojunction solar cells using zinc compounds

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06232436A (en) * 1993-02-04 1994-08-19 Matsushita Electric Ind Co Ltd Solar cell and manufacture thereof
KR960037742A (en) * 1995-04-19 1996-11-19 박원훈 A method of modifying a material surface and thereby a surface-
WO1997021252A1 (en) * 1995-12-07 1997-06-12 Japan Energy Corporation Method of producing photoelectric conversion device
JP2000243987A (en) * 1999-02-23 2000-09-08 Citizen Watch Co Ltd Solar cell device and its manufacture

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06232436A (en) * 1993-02-04 1994-08-19 Matsushita Electric Ind Co Ltd Solar cell and manufacture thereof
KR960037742A (en) * 1995-04-19 1996-11-19 박원훈 A method of modifying a material surface and thereby a surface-
KR100316586B1 (en) * 1995-04-19 2002-02-28 박호군 Method of modification of material surface and material having surface modified by the method
WO1997021252A1 (en) * 1995-12-07 1997-06-12 Japan Energy Corporation Method of producing photoelectric conversion device
JP2000243987A (en) * 1999-02-23 2000-09-08 Citizen Watch Co Ltd Solar cell device and its manufacture

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101134568B1 (en) 2010-04-21 2012-04-13 한국과학기술연구원 Growth Method of Single Crystalline CdTe layer on Si substrates

Also Published As

Publication number Publication date
KR20020092643A (en) 2002-12-12

Similar Documents

Publication Publication Date Title
US11164989B2 (en) Photovoltaic devices and method of making
Kumar et al. Physics and chemistry of CdTe/CdS thin film heterojunction photovoltaic devices: fundamental and critical aspects
US5078804A (en) I-III-VI2 based solar cell utilizing the structure CuInGaSe2 CdZnS/ZnO
US6107562A (en) Semiconductor thin film, method for manufacturing the same, and solar cell using the same
JPH04233772A (en) Manufacture of chacopyrite solar battery
JP2005228975A (en) Solar battery
US20160190368A1 (en) Photovoltaic Device and Method of Making
US20130327398A1 (en) Thin-Film Photovoltaic Devices and Methods of Manufacture
KR101542343B1 (en) Thin film solar cell and method of fabricating the same
JP3311873B2 (en) Manufacturing method of semiconductor thin film
US20120322198A1 (en) METHODS FOR SUBLIMATION OF Mg AND INCORPORATION INTO CdTe FILMS TO FORM TERNARY COMPOSITIONS
KR100418379B1 (en) Thin Film Solar Cell Using a Surface Modified Indium Tin Oxide and Method for Preparing the Same
JP3589380B2 (en) Method of manufacturing semiconductor thin film and method of manufacturing thin film solar cell
US11417785B2 (en) Photovoltaic devices and method of making
US20160005916A1 (en) Method of Making Photovoltaic Devices
US8912037B2 (en) Method for making photovoltaic devices using oxygenated semiconductor thin film layers
Hayakawa et al. Control of donor concentration in n-type buffer layer for high-efficiency Cu (In, Ga) Se 2 solar cells
US9447489B2 (en) Methods of making photovoltaic devices and photovoltaic devices
WO2011123117A1 (en) Photovoltaic cells with improved electrical contact
Bayhan et al. Eects of Post Deposition Treatments on Vacuum Evaporated CdTe Thin Films and CdS= CdTe Heterojunction Devices
JP3408618B2 (en) Solar cell manufacturing method
KR100374020B1 (en) Thin film solar cell and method for its manufacture
KR102596328B1 (en) Preparation method for CZTS thin film solar cell absorbing layer, CZTS thin film solar cell absorbing layer prepared therefrom
KR102021571B1 (en) Flexible thin film solar cell comprising pretreated flexible substrate for removing oxygen
KR101924538B1 (en) Chalcogenide solar cell having a transparent conductive oxide back electrode and method for manufacturing the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20111209

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20130111

Year of fee payment: 10

LAPS Lapse due to unpaid annual fee