JPH1074966A - Method for manufacturing thin-film solar cell - Google Patents

Method for manufacturing thin-film solar cell

Info

Publication number
JPH1074966A
JPH1074966A JP8228411A JP22841196A JPH1074966A JP H1074966 A JPH1074966 A JP H1074966A JP 8228411 A JP8228411 A JP 8228411A JP 22841196 A JP22841196 A JP 22841196A JP H1074966 A JPH1074966 A JP H1074966A
Authority
JP
Japan
Prior art keywords
group
film
solar cell
manufacturing
group iii
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8228411A
Other languages
Japanese (ja)
Other versions
JP2922465B2 (en
Inventor
Tokio Nakada
時夫 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MORIRIKA KK
Original Assignee
MORIRIKA KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MORIRIKA KK filed Critical MORIRIKA KK
Priority to JP8228411A priority Critical patent/JP2922465B2/en
Publication of JPH1074966A publication Critical patent/JPH1074966A/en
Application granted granted Critical
Publication of JP2922465B2 publication Critical patent/JP2922465B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a solar cell which permits composition variation of a CIS Cu(In1-x Gax)y (S1-m Sem )z } based thin film in a wide range, and obtains high-energy conversion efficiency. SOLUTION: In a process for supplying group Ib elements, group III elements and group VIb elements onto a substrate for forming a compound semiconductor thin film as a light-absorbing layer, as the first step, the ratio of the supplying amount of the group Ib elements to that of the group III elements is made higher than the ratio of group Ib elements to group III elements, contained in the compound semiconductor thin film of a target composition. In addition, group Ia elements are supplied onto the substrate. As the second step, the ratio of the supplying amount of group Ib elements to that of group III elements is made lower than the first step.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、Cu(In1ーxGa
x)y(S1ーmSem)zで表されるCIS系材料の薄膜を光吸
収層に用いた太陽電池の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to Cu (In 1-x Ga
a thin film of CIS-based material represented by x) y (S 1 over m Se m) z a method of manufacturing a solar cell using the light absorbing layer.

【0002】[0002]

【従来の技術】安価な薄膜太陽電池として、組成Cu
(In1ーxGax)y(S1ーmSem)zで、結晶構造がカルコパ
イライト構造を有する薄膜を光吸収層として用いた薄膜
太陽電池の開発が行われている。
2. Description of the Related Art As an inexpensive thin-film solar cell, the composition Cu
In (an In 1 over x Ga x) y (S 1 over m Se m) z, crystal structure the development of thin-film solar cell using a thin film having a chalcopyrite structure as the light absorbing layer have been made.

【0003】近年では、CIS系薄膜を用いた太陽電池
のうち、基板としてソーダガラスを用いたものが高いエ
ネルギー変換効率を示すことが報告されたことから、N
a元素をCIS系薄膜に導入する研究が行われている。
In recent years, among solar cells using CIS-based thin films, those using soda glass as a substrate have been reported to exhibit high energy conversion efficiency.
Studies have been conducted to introduce element a into CIS-based thin films.

【0004】例えば、特開平8−102546号公報に
は、Ib族とIIIa族とVIa族元素からなる化合物半導
体薄膜を堆積する際に、Ia族とVIa族元素からなる
化合物を同時に堆積した半導体薄膜を用いた太陽電池
や、Ib族とIIIa族とVIa族元素からなる化合物半導
体薄膜と、Ia族とVIa族元素からなる化合物薄膜を
交互に少なくとも二層以上堆積した半導体薄膜を用いた
太陽電池が開示されている。
[0004] For example, Japanese Patent Application Laid-Open No. Hei 8-102546 discloses a semiconductor thin film in which a compound comprising a group Ia and a group VIa element is simultaneously deposited when depositing a compound semiconductor thin film comprising a group Ib group, a group IIIa and a group VIa element. And a solar cell using a semiconductor thin film formed by alternately depositing at least two or more compound semiconductor thin films composed of a group Ib group, a IIIa group and a VIa element, and a compound thin film composed of a group Ia and a VIa group element. It has been disclosed.

【0005】[0005]

【発明が解決しようとする課題】従来のCIS系薄膜を
用いた太陽電池は、変換効率がCIS系薄膜の組成に大
きく依存しており、高効率を得られる範囲は、CIS系
薄膜の組成のごく狭い範囲に限られていた。そのため、
CIS系薄膜を形成する際に精密な組成制御が必要であ
り、大面積化や量産化が困難であった。
In a conventional solar cell using a CIS-based thin film, the conversion efficiency greatly depends on the composition of the CIS-based thin film. It was limited to a very narrow range. for that reason,
Precise composition control is required when forming a CIS-based thin film, and it has been difficult to increase the area and mass production.

【0006】同様に、発明者らの実験によれば、Na元
素を導入したCIS系薄膜についても、Na導入のため
に通常の同時蒸着等の方法を用いた場合には、高効率を
得られる範囲がCIS系薄膜組成のごく狭い範囲に限定
されてしまう。
Similarly, according to experiments by the inventors, high efficiency can be obtained even for a CIS-based thin film into which Na element has been introduced, when a method such as ordinary simultaneous vapor deposition is used to introduce Na. The range is limited to a very narrow range of the CIS based thin film composition.

【0007】本発明は、CIS系薄膜の組成変動を広い
範囲で許容でき、しかも、高いエネルギー変換効率を得
ることが可能な太陽電池を製造する方法を提供すること
を目的とする。
It is an object of the present invention to provide a method of manufacturing a solar cell capable of tolerating composition variation of a CIS-based thin film in a wide range and obtaining high energy conversion efficiency.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に、本発明によれば、以下のような太陽電池の製造方法
が提供される。
According to the present invention, there is provided a method for manufacturing a solar cell as described below.

【0009】すなわち、光吸収層として、Ib族元素
と、III族元素と、VIb族元素とを含む化合物半導体薄
膜を用いる太陽電池の製造方法であって、前記化合物半
導体薄膜を成膜するために、基板上にIb族元素と、II
I族元素と、VIb族元素とを供給する工程を有し、前記
工程は、Ib族元素供給量のIII族元素供給量に対する
比率を、目的とする組成の前記化合物半導体薄膜に含ま
れるIb族元素のIII族元素に対する比率よりも高くす
るとともに、Ia族元素を前記基板上に供給する第1ス
テップと、Ib族元素供給量のIII族元素供給量に対す
る比率を、前記第1ステップよりも小さくする第2ステ
ップとを有する製造方法である。
That is, a method of manufacturing a solar cell using a compound semiconductor thin film containing a group Ib element, a group III element, and a group VIb element as a light absorbing layer. , A group Ib element on a substrate and a group II
A step of supplying a group I element and a group VIb element, wherein the step comprises controlling the ratio of the supply amount of the group Ib element to the supply amount of the group III element by adjusting the ratio of the Ib group contained in the compound semiconductor thin film having a desired composition. A first step of supplying the group Ia element onto the substrate while increasing the ratio of the element to the group III element, and making the ratio of the supply amount of the group Ib element to the supply amount of the group III element smaller than the first step. And a second step.

【0010】[0010]

【発明の実施の形態】本発明の一実施の形態について図
面を用いて説明する。
An embodiment of the present invention will be described with reference to the drawings.

【0011】本実施の形態の製造方法によって製造され
る薄膜太陽電池は、図1に示すように、青板ガラス基板
10上に、下部電極のMo膜11、p型の光吸収層のC
u(In1ーxGax)ySez膜12、i型または高抵抗n型
バッファ層のCdS膜13、n+型の透明導電膜14を
順に積層した構成のいわゆるサブストレート型のpin
ヘテロ接合薄膜太陽電池である。ただし、0≦x≦1、
0<y、0<zである。
As shown in FIG. 1, a thin-film solar cell manufactured by the manufacturing method of this embodiment has a Mo film 11 as a lower electrode and a C-type light absorbing layer on a blue glass substrate 10.
u (an In 1 over x Ga x) y Se z film 12, i-type or high-resistance n-type CdS film 13 of the buffer layer, n + -type pin called substrate type of the transparent conductive film 14 are laminated in this order structure of
It is a heterojunction thin-film solar cell. Where 0 ≦ x ≦ 1,
0 <y and 0 <z.

【0012】なお、Cu(In1ーxGax)ySez膜12
(以下、CIGS膜12という)には、後述する本発明
の成膜方法により、Ia族元素のNaを添加している。
[0012] Incidentally, Cu (In 1 over x Ga x) y Se z film 12
(Hereinafter referred to as the CIGS film 12), a group Ia element Na is added by a film forming method of the present invention described later.

【0013】また、Mo膜11の厚さは、0.8μm程
度、CIGS膜12の厚さは、1μm〜4μm、CdS
膜13の厚さは、数nm〜0.3μm、透明導電膜14
の厚さは、0.3μm〜2μmとしている。
The thickness of the Mo film 11 is about 0.8 μm, the thickness of the CIGS film 12 is 1 μm to 4 μm, and the thickness of the CdS
The thickness of the film 13 is several nm to 0.3 μm,
Has a thickness of 0.3 μm to 2 μm.

【0014】図1のサブストレート型の太陽電池では、
光は、図1のように透明導電膜14側から照射され、透
明導電膜14およびCdS膜13を透過してCIGS膜
12に吸収され、電流・電圧に変換される。
In the substrate type solar cell shown in FIG.
Light is irradiated from the transparent conductive film 14 side as shown in FIG. 1, passes through the transparent conductive film 14 and the CdS film 13, is absorbed by the CIGS film 12, and is converted into a current / voltage.

【0015】このような図1の太陽電池を製造するため
の本実施の形態の製造方法を説明する。
A manufacturing method of the present embodiment for manufacturing the solar cell of FIG. 1 will be described.

【0016】まず、青板ガラス基板10上にMo膜11
をスパッタ法により成膜する。
First, a Mo film 11 is formed on a blue glass substrate 10.
Is formed by a sputtering method.

【0017】つぎに、Mo膜11の上に、真空蒸着法に
よりCIGS膜12を成膜する。蒸着源としては、高純
度のCu、In、Ga、および、Seの各蒸着源と、I
a族元素の蒸着源とを用い、多源蒸着とする。なお、本
実施の形態では、Ia族元素の蒸着源として、Na2
eを用いる。
Next, a CIGS film 12 is formed on the Mo film 11 by a vacuum evaporation method. As the deposition source, high-purity Cu, In, Ga, and Se deposition sources, and I
Multi-source evaporation is performed using a group-a element evaporation source. Note that, in this embodiment, Na 2 S
e is used.

【0018】CIGS膜12を成膜する際には、各蒸着
源の蒸着量の時間的変化を図4〜図7のいずれかのよう
に制御する。これにより、本実施の形態では、CIGS
膜12の広い組成範囲において、高い変換効率の太陽電
池の製造を可能にしている。すなわち、図4のように、
CIGS膜12を成膜する際に、必要な膜厚が得られる
成膜時間を前半と後半の2段階に分け、前半にCu過剰
(Cu/(In+Ga)>1)にするとともに、Na2
Seを蒸発させる。これに対し、後半は、前半よりもC
u不足にし、しかも、Na2Seは蒸発させない。Se
の蒸発量は、前半後半を通じて一定にする。本実施の形
態では、Se/(Cu+In+Ga)が2〜3になるよ
うにした。
When the CIGS film 12 is formed, a temporal change in the amount of evaporation of each evaporation source is controlled as shown in FIG. 4 to FIG. Thereby, in the present embodiment, CIGS
The wide composition range of the film 12 enables the production of a solar cell with high conversion efficiency. That is, as shown in FIG.
When the CIGS film 12 is formed, the film formation time for obtaining a required film thickness is divided into two stages of a first half and a second half, and in the first half, the excess amount of Cu (Cu / (In + Ga)> 1) and the Na 2
Se is evaporated. On the other hand, the second half is more C
u is not sufficient, and Na 2 Se is not evaporated. Se
Is constant throughout the first half. In the present embodiment, Se / (Cu + In + Ga) is set to 2-3.

【0019】具体的には、CIGS膜12、すなわちC
u(In1ーxGax)ySez膜12の目的とする組成xyz
を定めておき、この組成のCu(In1ーxGax)ySez
12を蒸着法によって得るために必要なCu蒸発量、I
n蒸発量、Ga蒸発量、Se蒸発量を、各元素の基板1
0への付着率に応じて計算または実験により予め求めて
おく。
Specifically, the CIGS film 12, ie, C
u (an In 1 over x Ga x) y Se z film 12 composition xyz of interest of
The advance determined, Cu evaporation amount required of the composition Cu (an In 1 over x Ga x) y Se z film 12 in order to obtain by evaporation, I
The amount of n evaporation, the amount of Ga evaporation, and the amount of Se evaporation were measured for the substrate 1 of each element.
It is determined in advance by calculation or experiment according to the adhesion rate to zero.

【0020】そして、実際に、Cu(In1ーxGax)y
z膜12を成膜する際には、例えば、図6の制御方法
を用いる場合には、成膜時間の前半に、上述の予め求め
たCu蒸発量よりもCuを多く蒸発させ、後半には、上
述の予め求めたCu蒸発量よりもCuを少なく蒸発させ
るようにCu蒸発量を制御し、基板10へ結果的に堆積
されるCu(In1ーxGax)ySez膜12が予め定めた組
成になるようにするのである。
Then, actually, Cu (In 1−x Ga x ) y S
When the ez film 12 is formed, for example, when the control method shown in FIG. 6 is used, in the first half of the film formation time, Cu is evaporated more than the previously determined Cu evaporation amount, and in the second half, controls the Cu evaporation amount to less evaporation of the Cu than previously obtained Cu evaporation described above, Cu (an in 1 over x Ga x) y Se z film 12 which is consequently deposited into the substrate 10 is The composition is determined in advance.

【0021】また、図4の制御方法の場合には、CIG
S膜12を目的とする組成にするために必要な量のCu
元素をすべて成膜前半に蒸発させ、後半にはCuの蒸発
を停止させる。
In the case of the control method shown in FIG.
The amount of Cu required to make the S film 12 have the desired composition
All the elements are evaporated in the first half of the film formation, and the evaporation of Cu is stopped in the second half.

【0022】また、図5の制御方法の場合には、Cuの
蒸発量を成膜中を通じて一定とし、成膜の前半にInと
Gaの蒸発量を少なく、後半に多くするように制御する
ことにより、成膜の前半をCu過剰にする。
In the case of the control method shown in FIG. 5, control is performed so that the evaporation amount of Cu is constant throughout the film formation, and the evaporation amounts of In and Ga are reduced in the first half of the film formation and increased in the second half. As a result, the first half of the film formation is excessive in Cu.

【0023】なお、図4〜図6の制御方法では、Se、
In、Ga、Cu、Na2Seの蒸発量の制御を正確に
行うために、各蒸着源からの蒸発量が一定となった時点
で蒸着装置のシャッターを開状態にしている。
In the control methods shown in FIGS. 4 to 6, Se,
In order to accurately control the evaporation amount of In, Ga, Cu, and Na 2 Se, the shutter of the evaporation apparatus is opened when the evaporation amount from each evaporation source becomes constant.

【0024】なお、図7の制御方法のように、シャッタ
ーが開状態になってからCuおよびNa2Seの蒸発を
開始させる方法を用いることもできる。
It is also possible to use a method of starting evaporation of Cu and Na 2 Se after the shutter is opened, as in the control method of FIG.

【0025】また、図4〜図7の各制御方法において、
CIGS膜12の成膜中の基板10の温度は、550℃
にしている。また、SeがCIGS膜12の表面から再
蒸発するのを防ぐために、Cu、In、Gaの蒸発を停
止させてから、基板温度が350℃以下になるまで、S
eを続けて蒸発させている。
In each of the control methods shown in FIGS.
The temperature of the substrate 10 during the formation of the CIGS film 12 is 550 ° C.
I have to. Further, in order to prevent Se from re-evaporating from the surface of the CIGS film 12, the evaporation of Cu, In, and Ga is stopped, and then the evaporation of Cu, In, and Ga is continued until the substrate temperature becomes 350 ° C or lower.
e is continuously evaporated.

【0026】このように、CIGS膜12を成膜した
後、この上にCdS膜13を良好に形成するために、C
IGS膜12の表面に存在するアルカリ金属元素等を洗
い流す洗浄を行う。洗浄方法は、本実施の形態では、C
IGS膜12付き基板10を純水に数分間浸すことを数
回繰り返し行う方法を用いた。そして、純水から取り出
した基板10をそのままCdS膜成長用の溶液中に移
し、溶液成長法によりCdS膜13を形成する。これに
より、洗浄したCIGS膜12の表面が大気中のチリな
どに汚染されることなく、清浄な状態でCdS膜13と
CIGS膜12との間のヘテロ接合を形成できる。な
お、CdS成長用の溶液としては、本実施の形態では、
CdI2とチオウレアとアンモニアとが溶解した水溶液
を用いた。また、CIGS膜12の表面を洗浄するため
に純水に浸す際には、超音波洗浄を用いることもでき
る。
After the CIGS film 12 is formed as described above, the CdS film 13 is formed on the
Washing is performed to wash out the alkali metal element and the like existing on the surface of the IGS film 12. In the present embodiment, the cleaning method is C
A method of repeatedly immersing the substrate 10 with the IGS film 12 in pure water for several minutes was used. Then, the substrate 10 taken out of the pure water is directly transferred into a solution for growing a CdS film, and a CdS film 13 is formed by a solution growing method. Thus, the hetero junction between the CdS film 13 and the CIGS film 12 can be formed in a clean state without the surface of the cleaned CIGS film 12 being contaminated by dust and the like in the air. In this embodiment, the solution for growing CdS is as follows.
An aqueous solution in which CdI 2 , thiourea and ammonia were dissolved was used. When the surface of the CIGS film 12 is immersed in pure water for cleaning, ultrasonic cleaning may be used.

【0027】このように形成されたCdS膜13の上
に、高周波マグネトロンスパッタ法により、透明導電膜
14としてAlを添加したZnO膜を成膜する。
On the CdS film 13 thus formed, a ZnO film to which Al is added is formed as a transparent conductive film 14 by a high-frequency magnetron sputtering method.

【0028】以上により、本実施の形態のサブストレー
ト型太陽電池が製造される。
As described above, the substrate type solar cell of the present embodiment is manufactured.

【0029】また、上述のCu(In1ーxGax)ySez
12の特性を測定するために、y組成を種々に変化させ
た複数のCu(In1ーxGax)ySez膜12の試料を形成
した。試料の形成には、上述のCu(In1ーxGax)y
z膜12の成膜方法のうち図7の方法を用い、y組成
は、In蒸発量およびGa蒸発量の和と、Cu蒸発量と
比を変化させることにより変化させた。また、これらの
試料と同組成のCu(In1ーxGax)ySez膜12を使用
した図1の構成の太陽電池試料を作製した。なお、x組
成およびz組成は各試料を通じて一定となるようにし
た。
Further, in order to measure the characteristics of the above-mentioned Cu (In 1 -x Ga x ) y Se z film 12, a plurality of Cu (In 1 -x Ga x ) y Se with variously changed y compositions are used. A sample of the z film 12 was formed. For the formation of the sample, the above-mentioned Cu (In 1−x Ga x ) y S
used among 7 of the process of the method for forming the e z film 12, y composition, the sum of the In evaporation and Ga evaporation, it was varied by changing the Cu evaporation and ratios. Further, to produce these Cu (an In 1 over x Ga x) of the sample having the same composition y Se z solar cell sample of the structure 1 using the film 12. The x composition and the z composition were set to be constant throughout each sample.

【0030】また、比較例として、Naを添加せず、y
組成を種々に変化させた複数のCu(In1ーxGax)y
z膜の試料を形成した。比較例の試料は、上述のCu
(In1ーxGax)ySez膜12の成膜方法において、Na
2Seのみを蒸発させず、他の元素Se、In、Ga、
Cuの蒸発量を本実施の形態の試料と同様に制御するこ
とにより成膜した。また、これら比較例のCIGS膜試
料と同組成のCIGS膜を用いて、図1の構成の太陽電
池の試料を作製した。
As a comparative example, no Na was added and y
Cu (In 1−x Ga x ) y S with various compositions
A sample of the ez film was formed. The sample of the comparative example is the Cu
(An In 1 over x Ga x) y Se in the film forming method of the z film 12, Na
Without evaporating only 2 Se, other elements Se, In, Ga,
The film was formed by controlling the amount of evaporation of Cu in the same manner as the sample of the present embodiment. A sample of the solar cell having the configuration shown in FIG. 1 was manufactured using a CIGS film having the same composition as the CIGS film samples of these comparative examples.

【0031】本実施の形態の製造方法で成膜したCIG
S膜12試料および比較例のCIGS膜試料をオージェ
電子分光(AES)により、膜厚方向に分析した。その
結果、本実施の形態の膜も比較例の膜も、Cu、In、
Ga、Seはいずれも膜厚方向について一定の濃度で検
出された。これにより、成膜時の前半にCu過剰に、後
半にCu不足になるように成膜しているのに関わらず、
Cu元素が膜厚方向に拡散することにより、膜厚方向に
ついて一様な組成のCIGS膜になっていることがわか
った。また、本実施の形態のCIGS膜12試料では、
膜のごく表面でNa元素が検出された。これにより、N
a元素が、拡散により、膜の表面まで移動していること
がわかった。CIGS膜12中には、AESの検出限界
以下のNaが、結晶粒中に取り込まれていると考えられ
るが、どの程度の濃度であるかは現在のところ不明であ
る。また、太陽電池試料のCIGS膜12では、膜の表
面においてもNa元素は検出されなかった。これは、太
陽電池を製造する際には、CdS膜13を成膜する前
に、CIGS膜12の表面を洗浄するため、Naが洗い
流されたためであると考えられる。
CIG formed by the manufacturing method of the present embodiment
12 samples of the S film and the CIGS film sample of the comparative example were analyzed in the thickness direction by Auger electron spectroscopy (AES). As a result, both the film of the present embodiment and the film of the comparative example were Cu, In,
Both Ga and Se were detected at a constant concentration in the film thickness direction. Thereby, regardless of whether the film is formed such that the first half of the film is formed with an excessive amount of Cu and the second half is formed with a shortage of Cu,
It was found that the diffusion of the Cu element in the film thickness direction resulted in a CIGS film having a uniform composition in the film thickness direction. In the CIGS film 12 sample of the present embodiment,
Na element was detected on the very surface of the film. This gives N
It was found that the element a was moved to the surface of the film by diffusion. It is considered that Na below the detection limit of AES is incorporated into the crystal grains in the CIGS film 12, but it is unknown at present how much the concentration is. In the CIGS film 12 of the solar cell sample, no Na element was detected even on the surface of the film. This is considered to be because Na was washed away in order to wash the surface of the CIGS film 12 before forming the CdS film 13 when manufacturing the solar cell.

【0032】また、本実施の形態のCIGS膜12およ
び比較例のCIGS膜中の結晶粒の大きさおよび結晶粒
の配向性を観察したところ、本実施の形態のCIGS膜
12の結晶粒の方が、Naを添加しない比較例のCIG
S膜の結晶粒よりも大きく、配向性も優れていた。ま
た、膜の表面粗さを測定したところ、本実施の形態のC
IGS膜12の方が、比較例のCIGS膜よりも平坦で
あった。これは、Na添加による効果と考えられる。
When the size and orientation of crystal grains in the CIGS film 12 of the present embodiment and the CIGS film of the comparative example were observed, the crystal grains of the CIGS film 12 of the present embodiment were observed. Is the CIG of the comparative example without adding Na.
The grains were larger than the crystal grains of the S film, and the orientation was excellent. Also, when the surface roughness of the film was measured,
The IGS film 12 was flatter than the CIGS film of the comparative example. This is considered to be the effect of adding Na.

【0033】さらに、本実施の形態の製造方法で成膜し
たCIGS膜12、および、比較例のNaを添加しない
CIGS膜のキャリア濃度を測定した。その結果を図8
に示す。
Further, the carrier concentrations of the CIGS film 12 formed by the manufacturing method of the present embodiment and the CIGS film of the comparative example to which Na was not added were measured. The result is shown in FIG.
Shown in

【0034】図8からわかるように、比較例のNa添加
がないCIGS膜は、Cu/(Ga+In)=1.0す
なわち組成y=1.0を境に、III族元素(Ga+I
n)が過剰になる側で急速にキャリア濃度が低下し、C
u/(Ga+In)=0.7すなわちy=1.4付近
で、キャリア濃度が1016cm-3を下回るようになる。
これに対し、本実施の形態の製造方法によって成膜した
CIGS膜12は、Cu/(Ga+In)≦0.7すな
わちy組成≧1.4でもキャリア濃度が1016〜1017
cm-3程度を保っており、比較例とは全く異なる結果と
なっている。
As can be seen from FIG. 8, the CIGS film of the comparative example without addition of Na has a group III element (Ga + I) with Cu / (Ga + In) = 1.0, that is, with a composition y = 1.0.
The carrier concentration rapidly decreases on the side where n) becomes excessive, and C
In the vicinity of u / (Ga + In) = 0.7, that is, y = 1.4, the carrier concentration becomes lower than 10 16 cm −3 .
In contrast, the CIGS film 12 formed by the manufacturing method of the present embodiment has a carrier concentration of 10 16 to 10 17 even if Cu / (Ga + In) ≦ 0.7, that is, y composition ≧ 1.4.
cm -3 , which is a completely different result from the comparative example.

【0035】また、本実施の形態の太陽電池試料と、比
較例のNa添加のないCIGS膜を用いた太陽電池試料
の開放電圧Voc、短絡電流Isc、曲線因子FFを測定し
た。本実施の形態の太陽電池の開放電圧Voc、短絡電流
sc、曲線因子FFの測定結果をそれぞれ図3(a),
(b),(c)に示す。
Further, the open-circuit voltage V oc , the short-circuit current Isc , and the fill factor FF of the solar cell sample of the present embodiment and the solar cell sample using the CIGS film without addition of Na of the comparative example were measured. Open circuit voltage V oc of the solar cell of the present embodiment, the short-circuit current I sc, respectively the measurement results of fill factor FF Figure 3 (a),
(B) and (c) show.

【0036】また、変換効率ηを η=(最適動作点での出力)/(太陽電池への入力エネルギー) =(Voc×Jsc×FF)/(太陽電池への入力エネルギー) により求めた。その結果を、図9に示す。Further, the conversion efficiency η was obtained by η = (output at the optimum operating point) / (input energy to the solar cell) = (V oc × J sc × FF) / (input energy to the solar cell). . The result is shown in FIG.

【0037】図3(a)、(b)、(c)からわかるよ
うに、本実施の形態の太陽電池は、測定を行った全範囲
のCu/(Ga+In)の領域で、開放電圧Voc、短絡
電流Isc、曲線因子FFがそれぞれ高いレベルを示す。
これにより、変換効率ηは、図9からわかるように、測
定を行った全範囲、0.5≦Cu/(Ga+In)≦
1.0すなわち1≦y≦2の非常に広い組成範囲におい
て高い変換効率が得られることがわかった。これは、本
実施の形態のCIGS膜12が広い組成範囲で、高いキ
ャリア濃度が得られるためである。
As can be seen from FIGS. 3 (a), 3 (b) and 3 (c), the solar cell of this embodiment has an open-circuit voltage V oc over the entire range of Cu / (Ga + In) where the measurement was performed. , Short-circuit current Isc , and fill factor FF indicate high levels, respectively.
As a result, as can be seen from FIG. 9, the conversion efficiency η is in the entire range where the measurement was performed, and 0.5 ≦ Cu / (Ga + In) ≦
1.0, that is, high conversion efficiency was obtained in a very wide composition range of 1 ≦ y ≦ 2. This is because the CIGS film 12 of the present embodiment can obtain a high carrier concentration in a wide composition range.

【0038】これに対し、比較例のNa添加のないCI
GS膜を用いた太陽電池では、Cu/(Ga+In)=
0.85〜0.95の非常に狭い組成範囲でしか高い変
換効率を得られない。
On the other hand, in the comparative example, CI without addition of Na was used.
In a solar cell using a GS film, Cu / (Ga + In) =
High conversion efficiency can be obtained only in a very narrow composition range of 0.85 to 0.95.

【0039】このように、本実施の形態の製造方法で作
製した太陽電池は、Cu(In1ーxGax)ySez膜12の
非常に広いy組成範囲で高い変換効率を得ることができ
る。したがって、製造時のCIGS膜12の組成変動
を、少なくとも従来の約5倍の非常に広い範囲で許容す
ることができるため、大面積の太陽電池を容易に製造す
ることが可能である。また、組成の精密制御が不要であ
るため、量産にも適している。
[0039] Thus, a solar cell was fabricated by the manufacturing method of this embodiment, it is possible to obtain a high conversion efficiency in a very wide y composition range of Cu (an In 1 over x Ga x) y Se z film 12 it can. Therefore, the composition variation of the CIGS film 12 during manufacture can be tolerated in a very wide range of at least about five times that in the related art, so that a large-area solar cell can be easily manufactured. Further, since precise control of the composition is not required, it is suitable for mass production.

【0040】なお、Cu(In1ーxGax)ySez膜12の
成膜時の前半にCu過剰とするとともに、Na元素を添
加する本実施の形態の製造方法の太陽電池が、広い組成
範囲で、高い変換効率を示す理由については、現在のと
ころ明確ではないが、CIGS膜12にNaを添加する
タイミングに関係していると考えられる。
[0040] Incidentally, while the Cu excess in the first half of the time of forming the Cu (an In 1 over x Ga x) y Se z film 12, the solar cell manufacturing method of the embodiment of adding Na element, wide Although the reason for the high conversion efficiency in the composition range is not clear at present, it is considered to be related to the timing of adding Na to the CIGS film 12.

【0041】そこで、CIGS膜にNaを添加するタイ
ミングと、変換効率との関係を調べるために、さらに以
下のような比較例の試料を作成し、変換効率を測定し
た。
Therefore, in order to investigate the relationship between the timing of adding Na to the CIGS film and the conversion efficiency, the following comparative samples were prepared and the conversion efficiency was measured.

【0042】すなわち、第2の比較例として、CIGS
膜を成膜する際に、Cu、In、Ga、Seの蒸発量の
制御を本実施の形態と同じにしながら、Na2Seを成
膜中の全ての時間中に蒸発させる方法を用いて、太陽電
池試料を作成した。
That is, as a second comparative example, CIGS
When forming the film, while controlling the amount of evaporation of Cu, In, Ga, Se in the same manner as in the present embodiment, using a method of evaporating Na 2 Se during all the time during the film formation, A solar cell sample was prepared.

【0043】また、さらに第3の比較例として、CIG
S膜を成膜する際に、Cu、In、Ga、Seの蒸発量
の制御を本実施の形態と同じにしながら、Na2Seを
成膜の前半には蒸発させず、後半のみ蒸発させる方法
で、太陽電池試料を作成した。
Further, as a third comparative example, CIG
In forming the S film, a method of evaporating Na 2 Se only in the second half without evaporating in the first half of the film formation while controlling the evaporation amounts of Cu, In, Ga, and Se in the same manner as in the present embodiment. Thus, a solar cell sample was prepared.

【0044】これらの第2および第3の比較例の太陽電
池の変換効率を測定したところ、図9の第1の比較例の
太陽電池と同じく、高い変化効率が得られる範囲は、y
組成Cu/(Ga+In)が0.85〜0.95の非常
に狭い領域のみであることがわかった。
When the conversion efficiencies of the solar cells of the second and third comparative examples were measured, as in the case of the solar cell of the first comparative example in FIG.
It was found that the composition Cu / (Ga + In) was only in a very narrow region of 0.85 to 0.95.

【0045】このことから、Naを添加するタイミング
は、成膜の前半のCu蒸着と同時に行うことが望ましい
ことが確認された。
From this, it has been confirmed that it is desirable to add Na at the same time as Cu vapor deposition in the first half of film formation.

【0046】このように、本実施の形態では、CIGS
膜12を成膜する際に、成膜の前半において、Cu蒸着
とともに、Naを添加し、成膜の後半は、Cuは、蒸着
させないか、または、Cu不足な条件にするとともに、
Naの添加を行わないようにすることにより、変換効率
の優れた太陽電池を得ることができる。
As described above, in the present embodiment, CIGS
When the film 12 is formed, Na is added together with Cu vapor deposition in the first half of the film formation, and Cu is not vapor-deposited or Cu-deficient in the latter half of the film formation.
By not adding Na, a solar cell having excellent conversion efficiency can be obtained.

【0047】なお、上述の実施の形態では、CIGS膜
12にNa元素を添加したが、Naの代わりにKやLi
のような他のIa族元素を添加する製造方法によって
も、同様にCIGS膜12の広い組成範囲で高効率の太
陽電池をえることができることが実験により確認できて
いる。また、現在のところ、NaよりもKが、Kよりも
Liが、より広い組成範囲で高効率の太陽電池を得るた
めに適していることが実験により明らかになっている。
In the above embodiment, the Na element is added to the CIGS film 12, but instead of Na, K or Li is used.
It has been confirmed by experiments that a solar cell with high efficiency can be obtained in a wide range of the composition of the CIGS film 12 by the manufacturing method of adding another group Ia element as described above. Further, at present, experiments have shown that K is more suitable than Na and Li is more suitable than K to obtain a highly efficient solar cell in a wider composition range.

【0048】また、Naの蒸着源としては、本実施の形
態では、Na2Seを用いたが、Li、Na、K等のI
a族金属元素、または、CuとIa族元素との合金、ま
たは、Na2O、Na2S、Na2Te等のIa族元素−
VIb族元素化合物、または、NaCl、NaBr等の
Ia族元素−VIIb族元素化合物を蒸着源として用いる
ことができる。これらIa族元素−VIb族元素化合物
を用いた場合、VIb族元素は、Cu(In1ーxGax)y
z膜12にもともと含まれているVIb族元素と同じ族
であるため、結晶中に不純物として含まれても、膜の悪
影響を与えない。Ia族元素−VIIb族元素化合物を用
いた場合、VIIb族元素は、500℃以上の高温の基板
温度により蒸発し、Cu(In1ーxGax)ySez膜12に
は取り込まれない。
In this embodiment, Na 2 Se is used as the Na vapor deposition source.
Group a metal element or alloy of Cu and Group Ia element, or Group Ia element such as Na 2 O, Na 2 S, Na 2 Te—
A Group VIb element compound or a Group Ia element-Group VIIb element compound such as NaCl or NaBr can be used as an evaporation source. When using these Ia group element -VIb group element compound, VIb group elements, Cu (In 1 over x Ga x) y S
Since the e z film 12 is the same group as group VIb element contained originally, be included as an impurity in the crystal, it does not adversely affect the membrane. When using a Ia group element -VIIb group element compound, VIIb group element is evaporated by high temperature of the substrate temperature above 500 ℃, Cu (In 1 over x Ga x) is not taken into y Se z film 12.

【0049】同様に、LiやK等のIa族元素を添加す
る際の蒸着源として、Li−VIb族元素化合物や、K
−VIb族元素化合物や、Li−VIIb族元素化合物
や、K−VIIb族元素化合物を用いることができる。
Similarly, as a deposition source when adding a Group Ia element such as Li or K, a Li-VIb group element compound or K
A -VIb group element compound, a Li-VIIb group element compound, or a K-VIIb group element compound can be used.

【0050】また、図4〜図7の制御方法では、CIG
S膜12の成膜時間を半分に分けたが、必ずしも前半と
後半にわける必要はなく、成膜がCu過剰な第1段階と
Cu不足な第2段階とに分かれればよい。よって、各段
階の時間の配分を自由に設定することができる。
Further, in the control methods shown in FIGS.
Although the film formation time of the S film 12 is divided in half, it is not always necessary to divide the time into the first half and the second half, and the film may be divided into a first stage in which Cu is excessive and a second stage in which Cu is insufficient. Therefore, the time distribution at each stage can be set freely.

【0051】また、Na元素の蒸発を終了させるタイミ
ングを、図4〜図7のようにCuを過剰から不足に切り
換えるタイミングと完全に一致させる必要はない。Na
元素の蒸発時間を、Cu過剰な時間よりも短め、また
は、長めにすることができる。
Further, it is not necessary to completely match the timing for terminating the evaporation of the Na element with the timing for switching Cu from excess to insufficient as shown in FIGS. Na
The element evaporation time can be shorter or longer than the Cu excess time.

【0052】さらに、本実施の形態では、光吸収層の組
成をCu(In1ーxGax)ySez膜12にしているが、こ
れに限らず、CuInySez膜、CuGaySez膜、C
uInyz膜、CuIny(SmSe1ーmz膜、Cu(I
1ーxGax)y(SmSe1ーmz膜にすることができる。
ただし、0<y、0<z、0≦m≦1である。これらの
組成の膜を用いる場合にも、成膜の前半にCu過剰にす
るとともに、Na等のIa族元素を添加し、後半にCu
不足とすることにより、広い組成範囲で高い変換効率の
太陽電池が得られる。
[0052] Further, in this embodiment, although the composition of the light absorbing layer is a Cu (an In 1 over x Ga x) y Se z film 12 is not limited thereto, CuIn y Se z film, CuGa y Se z membrane, C
UIN y S z film, CuIn y (S m Se 1 over m) z film, Cu (I
n 1−x Ga x ) y (S m Se 1−m ) z film.
However, 0 <y, 0 <z, and 0 ≦ m ≦ 1. When films having these compositions are used, Cu is excessively added in the first half of film formation, and a Group Ia element such as Na is added, and Cu is added in the second half.
By making it insufficient, a solar cell with high conversion efficiency in a wide composition range can be obtained.

【0053】また、本実施の形態では、透明導電膜14
として、Alを添加したZnO膜を用いているが、n+
型の透明導電膜であれば他の組成の膜でも良い。例え
ば、BやGaやIn等の元素を添加したZnO膜、In
23にSnO2を10%加えたいわゆるITO膜、およ
び、F等の元素を添加したSnO2膜等を用いることが
できる。
In the present embodiment, the transparent conductive film 14
Is a ZnO film to which Al is added, but n +
Any other type of transparent conductive film may be used. For example, a ZnO film to which an element such as B, Ga, or In is added;
A so-called ITO film obtained by adding 10% of SnO 2 to 2 O 3 , a SnO 2 film obtained by adding an element such as F, and the like can be used.

【0054】さらに、本実施の形態では、薄膜太陽電池
の形態として、図1のサブストレート型の太陽電池を用
いたが、太陽電池の形態としては、この形態に限定され
るものではない。例えば、図2に示したように、青板ガ
ラス基板20上に、透明導電膜21、CdS膜22、C
IGS膜23、Au膜24を順に積層し、基板20側か
ら光を照射するスーパーストレート型の太陽電池にする
こともできる。この場合にもCIGS膜23の成膜方法
として、CIGS膜12の成膜方法を用いることによ
り、広い組成範囲で高い変換効率をえることができる。
Further, in this embodiment, the substrate type solar cell shown in FIG. 1 is used as the thin film solar cell, but the form of the solar cell is not limited to this form. For example, as shown in FIG. 2, a transparent conductive film 21, a CdS film 22,
The IGS film 23 and the Au film 24 may be sequentially stacked to form a super-straight solar cell in which light is emitted from the substrate 20 side. Also in this case, by using the method of forming the CIGS film 12 as the method of forming the CIGS film 23, high conversion efficiency can be obtained in a wide composition range.

【0055】また、図1の太陽電池の構成において、青
板ガラス基板10に含まれるNa元素がCIGS膜12
まで拡散するのを防ぐために、青板ガラス基板10とM
o膜11との間に、Na等のアルカリ金属のブロック層
として、SiO2膜等を配置することができる。
In the structure of the solar cell shown in FIG. 1, the Na element contained in the
Blue glass substrate 10 and M
An SiO 2 film or the like can be arranged between the o-film 11 and a block layer of an alkali metal such as Na.

【0056】さらに、本実施の形態では、多源真空蒸着
法により、CIGS膜12を成膜したが、多源真空蒸着
法以外の方法を用いることができる。たとえば、基板上
にCu膜とIn−Ga膜とSe膜とを順に積層してお
き、加熱拡散させてCIGS膜にする固相セレン化法
や、基板上にCu膜とIn−Ga膜とを順に積層してお
き、相互に拡散させるとともにSe蒸気やH2Seガス
によりセレン化する気相セレン化法や、スパッタ法等を
もちいることができる。セレン化法の場合には、Cu膜
にNaを添加しておくことにより、本実施の形態と同様
に広い組成範囲で高効率が得られると考えられる。ま
た、スパッタ法の場合には、本実施の形態と同じよう
に、成膜の前半にCu過剰にするとともにNaを添加す
ることにより、本実施の形態と同じく、広い組成範囲で
高効率が得られると考えられる。
Further, in this embodiment, the CIGS film 12 is formed by the multi-source vacuum evaporation method, but a method other than the multi-source vacuum evaporation method can be used. For example, a Cu film, an In-Ga film, and a Se film are sequentially stacked on a substrate, and then heated and diffused to form a CIGS film by a solid phase selenization method, or a Cu film and an In-Ga film are formed on the substrate. It is also possible to use a vapor-phase selenization method in which the layers are sequentially stacked and diffused with each other and selenized with Se vapor or H 2 Se gas, a sputtering method, or the like. In the case of the selenization method, it is considered that by adding Na to the Cu film, high efficiency can be obtained in a wide composition range as in the present embodiment. In the case of the sputtering method, similarly to the present embodiment, by adding Cu and adding Na in the first half of the film formation, high efficiency can be obtained in a wide composition range as in the present embodiment. It is thought that it is possible.

【0057】[0057]

【発明の効果】上述してきたように、本発明によれば、
CIS系材料薄膜の組成変動を広い範囲で許容でき、し
かも、高いエネルギー変換効率を得ることが可能な太陽
電池を製造する方法を提供することが可能である。
As described above, according to the present invention,
It is possible to provide a method for manufacturing a solar cell that can tolerate composition fluctuation of a CIS-based material thin film in a wide range and can obtain high energy conversion efficiency.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施の形態の製造方法により作製さ
れるサブストレート型太陽電池の構成を示す断面図。
FIG. 1 is a cross-sectional view illustrating a configuration of a substrate type solar cell manufactured by a manufacturing method according to an embodiment of the present invention.

【図2】本発明の一実施の形態の製造方法により作製さ
れるスーパーストレート型太陽電池の構成を示す断面
図。
FIG. 2 is a cross-sectional view illustrating a configuration of a superstrate type solar cell manufactured by the manufacturing method according to one embodiment of the present invention.

【図3】蒸着源からの蒸発量の時間変化を図7のように
制御して成膜されたCIGS膜12を用いた図1の構成
の太陽電池の、(a)曲線因子、(b)短絡電流、
(c)開放電圧と、CIGS膜の組成との関係をそれぞ
れ示すグラフ。
3 shows a (a) fill factor and (b) of a solar cell having the configuration of FIG. 1 using a CIGS film 12 formed by controlling the time change of the amount of evaporation from an evaporation source as shown in FIG. Short-circuit current,
(C) Graph showing the relationship between the open circuit voltage and the composition of the CIGS film, respectively.

【図4】本発明の一実施の形態の製造方法によって図1
のCIGS膜12を成膜する際の各蒸着源の蒸発量の時
間的変化を示すグラフ。
FIG. 4 is a diagram illustrating a manufacturing method according to an embodiment of the present invention;
5 is a graph showing a temporal change in the evaporation amount of each evaporation source when the CIGS film 12 is formed.

【図5】本発明の一実施の形態の製造方法によって図1
のCIGS膜12を成膜する際の各蒸着源の蒸発量の時
間的変化を示すグラフ。
FIG. 5 is a diagram illustrating a manufacturing method according to an embodiment of the present invention;
5 is a graph showing a temporal change in the evaporation amount of each evaporation source when the CIGS film 12 is formed.

【図6】本発明の一実施の形態の製造方法によって図1
のCIGS膜12を成膜する際の各蒸着源の蒸発量の時
間的変化を示すグラフ。
FIG. 6 is a diagram illustrating a manufacturing method according to an embodiment of the present invention;
5 is a graph showing a temporal change in the evaporation amount of each evaporation source when the CIGS film 12 is formed.

【図7】本発明の一実施の形態の製造方法によって図1
のCIGS膜12を成膜する際の各蒸着源の蒸発量の時
間的変化を示すグラフ。
FIG. 7 is a view showing a manufacturing method according to an embodiment of the present invention;
5 is a graph showing a temporal change in the evaporation amount of each evaporation source when the CIGS film 12 is formed.

【図8】図3の方法で成膜されたCIGS膜12のキャ
リアの濃度と、組成との関係をしめすグラフ。
FIG. 8 is a graph showing the relationship between the carrier concentration and the composition of the CIGS film 12 formed by the method of FIG.

【図9】図3の方法で成膜されたCIGS膜12を用い
た図1の太陽電池の変換効率と、CIGS膜12の組成
との関係を示すグラフ。
9 is a graph showing the relationship between the conversion efficiency of the solar cell of FIG. 1 using the CIGS film 12 formed by the method of FIG. 3 and the composition of the CIGS film 12.

【符号の説明】[Explanation of symbols]

10、20・・・青板ガラス基板、11・・・Mo膜、
12、23・・・Cu(In1ーxGax)ySez膜(CIG
S膜)、13、22・・・CdS膜、14、21・・・
透明導電膜、24・・・Au膜。
10, 20 ... Blue glass substrate, 11 ... Mo film,
12,23 ··· Cu (In 1 over x Ga x) y Se z film (CIG
S film), 13, 22,... CdS film, 14, 21,.
Transparent conductive film, 24 ... Au film.

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成8年10月17日[Submission date] October 17, 1996

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】図3[Correction target item name] Figure 3

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図3】蒸着源からの蒸発量の時間変化を図7のように
制御して成膜されたCIGS膜12を用いた図1の構成
の太陽電池の曲線因子、短絡電流、開放電圧の各々と、
CIGS膜の組成との関係を示すグラフ。
FIG. 3 shows the time change of the evaporation amount from the evaporation source as shown in FIG.
Configuration of FIG. 1 using CIGS film 12 formed by control
Each of the solar cell's fill factor, short-circuit current, and open-circuit voltage,
4 is a graph showing a relationship with the composition of a CIGS film.

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】光吸収層として、Ib族元素と、III族元
素と、VIb族元素とを含む化合物半導体薄膜を用いる
太陽電池の製造方法であって、 前記化合物半導体薄膜を成膜するために、基板上にIb
族元素と、III族元素と、VIb族元素とを供給する工程
を有し、 前記工程は、 Ib族元素供給量のIII族元素供給量に対する比率を、
目的とする組成の前記化合物半導体薄膜に含まれるIb
族元素のIII族元素に対する比率よりも高くするととも
に、Ia族元素を前記基板上に供給する第1ステップ
と、 Ib族元素供給量のIII族元素供給量に対する比率を、
前記第1ステップよりも小さくする第2ステップとを有
することを特徴とする太陽電池の製造方法。
1. A method for manufacturing a solar cell using a compound semiconductor thin film containing a group Ib element, a group III element, and a group VIb element as a light absorbing layer, the method comprising: , Ib on the substrate
A step of supplying a group III element, a group III element, and a group VIb element, wherein the step comprises: supplying a group Ib element supply amount to a group III element supply amount;
Ib contained in the compound semiconductor thin film having a desired composition
A first step of supplying the group Ia element onto the substrate while increasing the ratio of the group III element to the group III element, and the step of supplying the group Ib element supply amount to the group III element supply amount,
A second step of making the solar cell smaller than the first step.
【請求項2】請求項1において、前記第2ステップにお
けるIb族元素供給量を0にすることを特徴とする太陽
電池の製造方法。
2. The method for manufacturing a solar cell according to claim 1, wherein the supply amount of the group Ib element in the second step is set to zero.
【請求項3】請求項1において、前記第1ステップにお
けるIII族元素供給量を0にすることを特徴とする太陽
電池の製造方法。
3. The method according to claim 1, wherein the supply amount of the group III element in the first step is set to zero.
【請求項4】請求項1において、前記第1ステップおよ
び第2ステップを通じて、VIb族元素を前記基板上に
供給することを特徴とする太陽電池の製造方法。
4. The method for manufacturing a solar cell according to claim 1, wherein a VIb group element is supplied onto the substrate through the first step and the second step.
【請求項5】請求項1において、前記Ib族元素とし
て、Cuを供給し、前記III族元素として、Inおよび
Gaのうちの少なくとも一方を供給し、前記VIb族元
素として、SおよびSeのうちの少なくとも一方を供給
することを特徴とする太陽電池の製造方法。
5. The semiconductor device according to claim 1, wherein Cu is supplied as said group Ib element, at least one of In and Ga is supplied as said group III element, and S and Se are provided as said group VIb element. A method for manufacturing a solar cell, comprising supplying at least one of the following.
【請求項6】請求項1において、前記Ia族元素とし
て、Na、Li、KおよびRbのうちの少なくとも一つ
を供給することを特徴とする太陽電池の製造方法。
6. The method for manufacturing a solar cell according to claim 1, wherein at least one of Na, Li, K and Rb is supplied as said Group Ia element.
【請求項7】請求項1において、前記第1ステップで前
記Ia族元素を供給するために、Ia族元素、Ia族元
素を含む化合物、および、Ia族元素を含む合金の少な
くとも一つを供給することを特徴とする太陽電池の製造
方法。
7. The method according to claim 1, wherein at least one of a group Ia element, a compound containing a group Ia element, and an alloy containing a group Ia element is supplied to supply the group Ia element in the first step. A method for manufacturing a solar cell.
【請求項8】請求項7において、前記第1ステップで前
記Ia族元素を供給するために、Ia族元素とVIb族
元素との化合物、Ia族元素とVIIb族元素との化合
物、および、Ia族元素とCuとの合金のうちの少なく
とも一つを供給することを特徴とする太陽電池の製造方
法。
8. The compound according to claim 7, wherein the compound of a group Ia element and a group VIb element, a compound of a group Ia element and a group VIIb element, and Ia are supplied to supply the group Ia element in the first step. A method for manufacturing a solar cell, comprising supplying at least one of an alloy of a group III element and Cu.
【請求項9】請求項8において、前記Ia族元素とVI
b族元素との化合物のVIb族元素が、O、S、Se、
および、Teのいずれかであり、前記Ia族元素とVII
b族元素との化合物のVIIb族元素がF、Cl、およ
び、Brのいずれかであることを特徴とする太陽電池の
製造方法。
9. The method according to claim 8, wherein said group Ia element and VI
The group VIb element of the compound with the group b element is O, S, Se,
Or Te, and the group Ia element and VII
A method for manufacturing a solar cell, wherein the Group VIIb element of the compound with a Group b element is any of F, Cl, and Br.
【請求項10】請求項1において、前記工程において、
Ib族元素と、III族元素と、VIb族元素と、Ia族元
素とを基板に供給する方法が、気相成長法であることを
特徴とする太陽電池の製造方法。
10. The method according to claim 1, wherein:
A method for manufacturing a solar cell, wherein a method of supplying a group Ib element, a group III element, a group VIb element, and a group Ia element to a substrate is a vapor phase growth method.
【請求項11】請求項1において、前記化合物半導体薄
膜を成膜するための工程の後、成膜された前記化合物半
導体薄膜の表面を洗浄する工程をさらに有することを特
徴とする太陽電池の製造方法。
11. The method of manufacturing a solar cell according to claim 1, further comprising a step of cleaning the surface of the formed compound semiconductor thin film after the step of forming the compound semiconductor thin film. Method.
【請求項12】請求項11において、前記洗浄工程の
後、前記化合物半導体薄膜の上に、溶液成長法により、
CdS膜を形成する工程をさらに有することを特徴とす
る太陽電池の製造方法。
12. The method according to claim 11, wherein after the cleaning step, a solution growth method is performed on the compound semiconductor thin film.
A method for manufacturing a solar cell, further comprising a step of forming a CdS film.
JP8228411A 1996-08-29 1996-08-29 Manufacturing method of thin film solar cell Expired - Lifetime JP2922465B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8228411A JP2922465B2 (en) 1996-08-29 1996-08-29 Manufacturing method of thin film solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8228411A JP2922465B2 (en) 1996-08-29 1996-08-29 Manufacturing method of thin film solar cell

Publications (2)

Publication Number Publication Date
JPH1074966A true JPH1074966A (en) 1998-03-17
JP2922465B2 JP2922465B2 (en) 1999-07-26

Family

ID=16876056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8228411A Expired - Lifetime JP2922465B2 (en) 1996-08-29 1996-08-29 Manufacturing method of thin film solar cell

Country Status (1)

Country Link
JP (1) JP2922465B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100355822B1 (en) * 1998-03-24 2002-10-19 마쯔시다덴기산교 가부시키가이샤 Semiconductor thin film, method of manufacturing the same, and solar cell using the same
WO2008120306A1 (en) * 2007-03-28 2008-10-09 Showa Shell Sekiyu K.K. Method for manufacturing cis based thin film solar cell device
WO2009041659A1 (en) 2007-09-28 2009-04-02 Fujifilm Corporation Solar cell
WO2009041657A1 (en) 2007-09-28 2009-04-02 Fujifilm Corporation Substrate for solar cell and solar cell
WO2009041660A1 (en) 2007-09-28 2009-04-02 Fujifilm Corporation Substrate for solar cell and solar cell
JP2009135316A (en) * 2007-11-30 2009-06-18 Toyota Central R&D Labs Inc Photoelectric element and manufacturing method thereof
WO2009110403A1 (en) * 2008-03-07 2009-09-11 国立大学法人東北大学 Photoelectric conversion element structure and solar battery
WO2009142316A1 (en) * 2008-05-20 2009-11-26 昭和シェル石油株式会社 Manufacturing method of cis thin-film solar cell
JP2010045305A (en) * 2008-08-18 2010-02-25 Toyota Central R&D Labs Inc Sulfide compound semiconductor
WO2012137497A1 (en) * 2011-04-05 2012-10-11 富士フイルム株式会社 Substrate for photoelectric conversion element having molybdenum electrode, photoelectric conversion element, and solar cell
WO2013031453A1 (en) * 2011-08-29 2013-03-07 京セラ株式会社 Photoelectric conversion apparatus
US8415557B2 (en) 2009-03-09 2013-04-09 Fujifilm Corporation Photoelectric conversion device and solar cell using the photoelectric conversion device
JP2014518592A (en) * 2011-04-19 2014-07-31 フリソム アクツィエンゲゼルシャフト Thin film photovoltaic device and manufacturing method
JP2018181936A (en) * 2017-04-05 2018-11-15 ソーラーフロンティア株式会社 Photoelectric conversion element

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100355822B1 (en) * 1998-03-24 2002-10-19 마쯔시다덴기산교 가부시키가이샤 Semiconductor thin film, method of manufacturing the same, and solar cell using the same
US7977139B2 (en) 2007-03-28 2011-07-12 Showa Shell Sekiyu K.K. Method for manufacturing CIS based thin film solar cell device
WO2008120306A1 (en) * 2007-03-28 2008-10-09 Showa Shell Sekiyu K.K. Method for manufacturing cis based thin film solar cell device
JP5180188B2 (en) * 2007-03-28 2013-04-10 昭和シェル石油株式会社 CIS-based thin film solar cell device manufacturing method
WO2009041659A1 (en) 2007-09-28 2009-04-02 Fujifilm Corporation Solar cell
WO2009041657A1 (en) 2007-09-28 2009-04-02 Fujifilm Corporation Substrate for solar cell and solar cell
WO2009041660A1 (en) 2007-09-28 2009-04-02 Fujifilm Corporation Substrate for solar cell and solar cell
JP2009135316A (en) * 2007-11-30 2009-06-18 Toyota Central R&D Labs Inc Photoelectric element and manufacturing method thereof
WO2009110403A1 (en) * 2008-03-07 2009-09-11 国立大学法人東北大学 Photoelectric conversion element structure and solar battery
JP2009283560A (en) * 2008-05-20 2009-12-03 Showa Shell Sekiyu Kk Production process of cis-based thin film solar cell
JP4540724B2 (en) * 2008-05-20 2010-09-08 昭和シェル石油株式会社 CIS type thin film solar cell manufacturing method
WO2009142316A1 (en) * 2008-05-20 2009-11-26 昭和シェル石油株式会社 Manufacturing method of cis thin-film solar cell
JP2010045305A (en) * 2008-08-18 2010-02-25 Toyota Central R&D Labs Inc Sulfide compound semiconductor
US8415557B2 (en) 2009-03-09 2013-04-09 Fujifilm Corporation Photoelectric conversion device and solar cell using the photoelectric conversion device
WO2012137497A1 (en) * 2011-04-05 2012-10-11 富士フイルム株式会社 Substrate for photoelectric conversion element having molybdenum electrode, photoelectric conversion element, and solar cell
JP2014518592A (en) * 2011-04-19 2014-07-31 フリソム アクツィエンゲゼルシャフト Thin film photovoltaic device and manufacturing method
WO2013031453A1 (en) * 2011-08-29 2013-03-07 京セラ株式会社 Photoelectric conversion apparatus
JPWO2013031453A1 (en) * 2011-08-29 2015-03-23 京セラ株式会社 Photoelectric conversion device
JP2018181936A (en) * 2017-04-05 2018-11-15 ソーラーフロンティア株式会社 Photoelectric conversion element

Also Published As

Publication number Publication date
JP2922465B2 (en) 1999-07-26

Similar Documents

Publication Publication Date Title
US6534704B2 (en) Solar cell
US5626688A (en) Solar cell with chalcopyrite absorber layer
US4523051A (en) Thin films of mixed metal compounds
JP3249408B2 (en) Method and apparatus for manufacturing thin film light absorbing layer of thin film solar cell
KR101522128B1 (en) Method for producing the pentanary compound semiconductor cztsse, and thin-film solar cell
JP2922466B2 (en) Thin film solar cell
US20060219288A1 (en) Process and photovoltaic device using an akali-containing layer
JPH0982992A (en) Thin film solar cell and manufacture thereof
WO1990015445A1 (en) Improved group i-iii-vi2 semiconductor films for solar cell application
JP2922465B2 (en) Manufacturing method of thin film solar cell
JPH11274534A (en) I-iii-vi compound semiconductor and thin film solar cell using the same
JP3337255B2 (en) Chalcopyrite structure semiconductor thin film, method for manufacturing the same, method for manufacturing thin-film solar cell, and method for manufacturing light emitting device
JP4055064B2 (en) Method for manufacturing thin film solar cell
KR102594725B1 (en) Post-processing method of absorber layer
JPH08102546A (en) Manufacture of semiconductor thin film
JP3468328B2 (en) Manufacturing method of semiconductor thin film
JPH0955378A (en) Precursor for forming semiconductor thin film and manufacture of semiconductor thin film
KR100347106B1 (en) The manufacturing method of CuInSe2 thin film using vacuum evaporation of binary selenides
JP3408618B2 (en) Solar cell manufacturing method
JPH10150212A (en) Precursor for semiconductor thin film formation use and manufacture of semiconductor thin film
JP2732352B2 (en) Method for preparing thin film of chalcopyrite type compound
JP2003008039A (en) Method for manufacturing compound solar battery
JPH0563224A (en) Manufactureof thin-film solar battery
JP2002064062A (en) Film formation method of compound semiconductor
JP3520683B2 (en) Compound semiconductor thin film, method for manufacturing the same, and solar cell

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080430

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090430

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100430

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100430

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140430

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20170430

Year of fee payment: 18

EXPY Cancellation because of completion of term