JPH053753B2 - - Google Patents

Info

Publication number
JPH053753B2
JPH053753B2 JP61045586A JP4558686A JPH053753B2 JP H053753 B2 JPH053753 B2 JP H053753B2 JP 61045586 A JP61045586 A JP 61045586A JP 4558686 A JP4558686 A JP 4558686A JP H053753 B2 JPH053753 B2 JP H053753B2
Authority
JP
Japan
Prior art keywords
cdte
solid solution
znte
layer
solution layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61045586A
Other languages
Japanese (ja)
Other versions
JPS62203384A (en
Inventor
Naoki Suyama
Hiroyuki Kitamura
Hitoshi Matsumoto
Takeshi Hibino
Mikio Murozono
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61045586A priority Critical patent/JPS62203384A/en
Publication of JPS62203384A publication Critical patent/JPS62203384A/en
Publication of JPH053753B2 publication Critical patent/JPH053753B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/073Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising only AIIBVI compound semiconductors, e.g. CdS/CdTe solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/543Solar cells from Group II-VI materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、特に低照度において高性能で寿命特
性の良好な、ダブル接合をもつ−族太陽電池
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a - group solar cell with a double junction, which has high performance and good life characteristics, especially at low illuminance.

従来の技術 従来、−族太陽電池としては、主に
Cu2-X/CdS接合の光起電力効果を利用したもの
が詳しく調べられてきているが、銅の化合物の不
安定性が原因と考えられる劣化が問題であつた。
また銅の化合物を用いない太陽電池として、
CdS/CdTe接合の光起電力効果を利用したもの
があるが、太陽光変換効率は5〜6%以下であ
る。これはCdS/CdTe接合における結晶格子の
ミスフイツトによつて、接合界面で光励起キヤリ
アの再結合が多く、光電流が小さくなることによ
る。これは、光励起キヤリアの発生量の少ない低
照度における出力特性を大巾に低下させる。
CdTeのホモ接合による太陽電池も試作されてい
るが、表面層の抵抗が高いため現在のところ効率
が低い。一方n+−CdS/p.CdTe接合の間にn・
CdTeを挿入したダブル接合を形成することによ
り上記問題点の解決をはかつたものもあるが、
(例えば、特公昭53−4397)製造方法が真空蒸着
法であり、大面積の太陽電池を連続製造できない
等の欠点を有していた。
Conventional technology Conventionally, − group solar cells mainly use
The photovoltaic effect of Cu 2-X /CdS junctions has been investigated in detail, but deterioration, which is thought to be caused by the instability of the copper compound, has been a problem.
In addition, as a solar cell that does not use copper compounds,
There are some that utilize the photovoltaic effect of CdS/CdTe junctions, but the solar conversion efficiency is less than 5-6%. This is because the crystal lattice misfit in the CdS/CdTe junction causes more recombination of photoexcited carriers at the junction interface, resulting in a smaller photocurrent. This greatly reduces the output characteristics at low illuminance, where the amount of optically excited carriers generated is small.
Solar cells using CdTe homojunctions have also been prototyped, but their efficiency is currently low due to the high resistance of the surface layer. On the other hand, between n + −CdS/p.CdTe junction
Some attempts have been made to solve the above problems by forming a double junction with CdTe inserted, but
(For example, Japanese Patent Publication No. 53-4397) The manufacturing method used was a vacuum evaporation method, which had drawbacks such as the inability to continuously manufacture large-area solar cells.

発明が解決しようとする問題点 本発明は上記問題点に鑑み、CdS/CdTe接合
における光励起キヤリアの表面結合、および格子
ミスフイツトによる結合界面での再結合を減少さ
せると共に、大面積で安価な光起電力装置を提供
するものである。
Problems to be Solved by the Invention In view of the above problems, the present invention reduces surface binding of photoexcited carriers in CdS/CdTe junctions and recombination at the bonding interface due to lattice misfit, and provides a large-area, inexpensive photovoltaic carrier. The present invention provides a power device.

問題点を解決するための手段 上記問題点を解決するために本発明の光起電力
装置は、n−CdS/p−CdTe接合の間にZnTe−
CdTe固溶層を形成し、結合界面での再結合を減
少させると同時に、製造方法にスクリーン印刷及
び焼結工程を用いることを特徴としたものであ
る。
Means for Solving the Problems In order to solve the above problems, the photovoltaic device of the present invention has ZnTe-
It is characterized by forming a CdTe solid solution layer to reduce recombination at the bonding interface, and at the same time using screen printing and sintering processes in the manufacturing method.

作 用 本発明は、結合界面での再結合電流の減少によ
り、光起電力効果における開放電圧、短絡電流、
変換効率の飛躍的な改善を可能にするものであ
る。これは、CdS/CdTe界面に正孔の移動度の
高いZnTeの形成と、CdSとCdTeとの格子定数の
違いによる結晶歪をZnTe−CdTe固溶体の形成
によつて減少させているためである。ZnTe−
CdTe固溶層中のZn濃度が、CdS界面からCdTe
界面にむかつて濃度傾配をもつ時、上記効果がさ
らに大きくなる。再結合電流の減少は、発生電流
の少ない低照度で使用する場合、性能を大巾に向
上させ、屋内で使用する電卓等の電源として非常
に重要である。また製造方法から、安価で大面積
の光起電力装置の作製が可能になる。
Effect The present invention reduces the open circuit voltage, short circuit current, and
This makes it possible to dramatically improve conversion efficiency. This is because ZnTe with high hole mobility is formed at the CdS/CdTe interface, and crystal strain due to the difference in lattice constant between CdS and CdTe is reduced by the formation of a ZnTe-CdTe solid solution. ZnTe−
The Zn concentration in the CdTe solid solution layer changes from the CdS interface to the CdTe
When there is a concentration gradient towards the interface, the above effect becomes even greater. Reduction of recombination current greatly improves performance when used under low illuminance where little current is generated, and is very important as a power source for calculators and the like used indoors. The manufacturing method also allows for the production of inexpensive, large-area photovoltaic devices.

実施例 以下本発明の一実施例について図面を用いて説
明する。
Embodiment An embodiment of the present invention will be described below with reference to the drawings.

CdSとZnSの混合粉末に融剤として、ZnS量に
よつてCdCl2を10〜30重量%加え、粘結剤として
プロピレングリコールを加え泥状にしたものを図
に示すように、バリウム硼珪酸ガラスからなる基
板1上にスクリーン印刷した後、N2雰囲気中に
おいて650℃〜700℃で90分間焼成することによ
り、CdSとZnSの固溶体Cd(Zn)S焼結膜2を形
成した。このn形Cd(Zn)S焼結膜2上にCd粉
末、Te粉末そしてCdTe粉末からなる泥状物をス
クリーン印刷し、ベルト焼成法にて、580℃のN2
雰囲気中で約60分間焼結した。この工程により、
Cd(Zn)S焼結膜2上に、厚さ約1μmのZnTe−
CdTe固溶層3及びモザイク状のCdTe焼結膜4
が形成された。固溶層中のZn濃度は、Cd(Zn)
S膜2の界面濃度を最大とし、濃度傾配をもつて
存在しモザイク状CdTe焼結膜中では、検出でき
なかつた。CdTe焼結膜4上に適量のアクセプタ
ー不純物を添加したカーボン膜5によつてCdTe
膜側からのオーミツク電極を取つたCd(Zn)S焼
結膜2表面にもオーミツク電極6を付けることに
よつて素子を完成した。
Barium borosilicate glass is made by adding 10 to 30% by weight of CdCl 2 as a flux, depending on the amount of ZnS, to a mixed powder of CdS and ZnS, and propylene glycol as a binder to form a slurry, as shown in the figure. A Cd(Zn)S sintered film 2 , which is a solid solution of CdS and ZnS, was formed by screen printing on a substrate 1 consisting of CdS and ZnS and then firing it at 650°C to 700°C for 90 minutes in an N2 atmosphere. A slurry consisting of Cd powder, Te powder, and CdTe powder was screen printed on this n-type Cd(Zn)S sintered film 2, and N 2 at 580°C was applied using a belt firing method.
It was sintered in an atmosphere for about 60 minutes. Through this process,
On the Cd(Zn)S sintered film 2, a ZnTe-
CdTe solid solution layer 3 and mosaic-shaped CdTe sintered film 4
was formed. The Zn concentration in the solid solution layer is Cd(Zn)
The interface concentration of S film 2 was the maximum, and it existed with a concentration gradient and could not be detected in the mosaic-shaped CdTe sintered film. The CdTe sintered film 4 is coated with a carbon film 5 containing an appropriate amount of acceptor impurities.
The device was completed by attaching an ohmic electrode 6 to the surface of the Cd(Zn)S sintered film 2 from which the ohmic electrode was attached from the film side.

発明の効果 以上の説明から明らかなように、本発明は、
CdS/CdTe界面にZnTe−CdTe固溶体を形成す
ることを特徴とし、接合界面での再結合電流を大
巾に減少できた。また製造方法にスクリーン印
刷、焼結工程を用いることによつて、CdTe焼結
膜形成と同時にZnTe−CdTe固溶層を容易に形
成できる。さらには、スクリーン印刷方式にて膜
形成ができ、大面積化が容易である。
Effects of the Invention As is clear from the above explanation, the present invention has the following effects:
The feature is that a ZnTe-CdTe solid solution is formed at the CdS/CdTe interface, and the recombination current at the bonding interface can be greatly reduced. Furthermore, by using screen printing and sintering steps in the manufacturing method, a ZnTe-CdTe solid solution layer can be easily formed at the same time as the CdTe sintered film is formed. Furthermore, the film can be formed using a screen printing method, making it easy to increase the area.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明における光起電装置の概念的な構造
を示す断面図である。 1……ガラス基板、2……Cd(Zn)S焼結膜、
3……ZnTe−CdTe固溶層、4……CdTe焼結
膜、5……カーボン膜、6……オーミツク電極。
The figure is a sectional view showing the conceptual structure of a photovoltaic device according to the present invention. 1...Glass substrate, 2...Cd(Zn)S sintered film,
3...ZnTe-CdTe solid solution layer, 4...CdTe sintered film, 5...carbon film, 6...ohmic electrode.

Claims (1)

【特許請求の範囲】 1 p型導電性を示すCdTe層と接してZnTe−
CdTe固溶層があり、さらにZnTe−CdTe固溶層
に接してn型導電性を示すCd(Zn)S半導体層を
有することを特徴とする屋内光用光起電力装置。 2 ZnTe−CdTe固溶層中のZnの濃度がZnTe−
CdTe固溶層とCd(Zn)S半導体層との界面で最
大であることを特徴とする特許請求の範囲第1項
記載の屋内光用光起電力装置。 3 n型導電性を示すCd(Zn)S半導体層を形成
する工程と、 前記Cd(Zn)S半導体層上にCd、Teおよび
CdTeを含む泥状物を印刷する工程と、 前記印刷した泥状物を焼成してn型Cd(Zn)S
層上にZnTe−CdTe固溶層およびp型CdTe層を
形成する工程とを有することを特徴とする屋内光
用光起電力装置の製造方法。
[Claims] 1. ZnTe-
1. A photovoltaic device for indoor lighting, comprising a CdTe solid solution layer and a Cd(Zn)S semiconductor layer exhibiting n-type conductivity in contact with the ZnTe-CdTe solid solution layer. 2 The concentration of Zn in the ZnTe−CdTe solid solution layer is
2. The indoor photovoltaic device according to claim 1, wherein the maximum voltage is at the interface between the CdTe solid solution layer and the Cd(Zn)S semiconductor layer. 3. A step of forming a Cd(Zn)S semiconductor layer exhibiting n-type conductivity, and forming Cd, Te, and
A process of printing a slurry containing CdTe, and firing the printed slurry to produce n-type Cd(Zn)S.
1. A method for producing an indoor photovoltaic device, comprising the steps of forming a ZnTe-CdTe solid solution layer and a p-type CdTe layer on the layer.
JP61045586A 1986-03-03 1986-03-03 Photovoltaic device and manufacture thereof Granted JPS62203384A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61045586A JPS62203384A (en) 1986-03-03 1986-03-03 Photovoltaic device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61045586A JPS62203384A (en) 1986-03-03 1986-03-03 Photovoltaic device and manufacture thereof

Publications (2)

Publication Number Publication Date
JPS62203384A JPS62203384A (en) 1987-09-08
JPH053753B2 true JPH053753B2 (en) 1993-01-18

Family

ID=12723449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61045586A Granted JPS62203384A (en) 1986-03-03 1986-03-03 Photovoltaic device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS62203384A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2452370A4 (en) * 2009-07-10 2013-01-02 First Solar Inc Photovoltaic devices including zinc

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5038483A (en) * 1973-08-07 1975-04-09
JPS61136276A (en) * 1984-12-06 1986-06-24 シーメンス ソーラー インダストリーズ,エル.ピー. Thin film solar cell having thin cadmium sulfide and transparent window layer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5038483A (en) * 1973-08-07 1975-04-09
JPS61136276A (en) * 1984-12-06 1986-06-24 シーメンス ソーラー インダストリーズ,エル.ピー. Thin film solar cell having thin cadmium sulfide and transparent window layer

Also Published As

Publication number Publication date
JPS62203384A (en) 1987-09-08

Similar Documents

Publication Publication Date Title
Ikegami CdS/CdTe solar cells by the screen-printing-sintering technique: Fabrication, photovoltaic properties and applications
Chu et al. Recent progress in thin‐film cadmium telluride solar cells
JPH08500209A (en) Photovoltaic cell with thin film CdS layer
EP4163983A1 (en) High-efficiency cadmium telluride thin-film solar cell and preparation method therefor
US4477688A (en) Photovoltaic cells employing zinc phosphide
EP0955680A4 (en) p-TYPE SEMICONDUCTOR, METHOD FOR MANUFACTURING THE SAME, SEMICONDUCTOR DEVICE, PHOTOVOLTAIC ELEMENT, AND METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE
GB1558746A (en) Semiconductor liquid junction photocell
JPH07122762A (en) Thin film photovoltaic device
Saitoh et al. Polycrystalline indium phosphide solar cells fabricated on molybdenum substrates
JPH053753B2 (en)
JP2005310821A (en) Photoelectric conversion element
JPH01168073A (en) Manufacture of photovoltaic device
JP3652055B2 (en) Method for manufacturing photoelectric conversion device
JP3414814B2 (en) Solar cell and manufacturing method thereof
JPS636882A (en) Photocell of tandem structure
JP3077574B2 (en) Photoelectric conversion element
Fulop Thin-film cadmium telluride solar cells
JP3133449B2 (en) Solar cell
JP3232581B2 (en) Solar cell
KR880001346B1 (en) Polycrystal film sotar cell production process
JP2523734B2 (en) Manufacturing method of photovoltaic device
JPS6237552B2 (en)
JPH01168071A (en) Manufacture of photovoltaic device
JP2002009307A (en) Method for manufacturing solar battery
Deb et al. Status of nonsilicon photovoltaic solar cell research

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees