JPH09259942A - Photochemically hydrogenated secondary air battery - Google Patents

Photochemically hydrogenated secondary air battery

Info

Publication number
JPH09259942A
JPH09259942A JP8087045A JP8704596A JPH09259942A JP H09259942 A JPH09259942 A JP H09259942A JP 8087045 A JP8087045 A JP 8087045A JP 8704596 A JP8704596 A JP 8704596A JP H09259942 A JPH09259942 A JP H09259942A
Authority
JP
Japan
Prior art keywords
hydrogen
oxygen
negative electrode
electrode
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8087045A
Other languages
Japanese (ja)
Other versions
JP3346449B2 (en
Inventor
Takaharu Akuto
敬治 阿久戸
Junichi Yamaki
準一 山木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP08704596A priority Critical patent/JP3346449B2/en
Publication of JPH09259942A publication Critical patent/JPH09259942A/en
Application granted granted Critical
Publication of JP3346449B2 publication Critical patent/JP3346449B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Hybrid Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a battery which can perform photocharge by high energy density, by constituting a positive electrode by a member having an oxygen catalyst and a generative electrode by a hydrogen absorbing material and an n-type semiconductor. SOLUTION: Hydrogen absorption of a hydrogen pole member 42a constituting a negative electrode 42, electron excitation action of a photopole member 42b and a potential gradient, formed by bringing the photopole member 42b into contact with an electrolyte 44, are utilized, generation of hydrogen absorption can be made by optical energy. Simultaneously, by action of an oxygen permeation suppressing film 43 provided in a position mutually separating a electrolyte contact surface between the hydrogen pole member 42a and the photopole member 42b, oxygen generated at charging time is diffused in a hydrogen pole member surface, to be prevented from returning to water by reaction with absorbed hydrogen of the negative electrode 42, an optical charge can be performed. By electrochemical reaction of oxygen by catalytic action of a positive electrode 41, a discharge with oxygen in the air serving as an active material can be attained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、空気電池や酸素−
水素燃料電池、ニッケル−水素電池、及び光化学電池に
係わり、空気中の酸素と電池内の水素化物(吸蔵水素)
との反応による放電、並びに光エネルギーによる再生
(すなわち、充電)が可能で、充電器や水素燃料の補給
を必要としない省エネルギー性に優れた光化学二次電池
に関する。
TECHNICAL FIELD The present invention relates to an air battery and an oxygen-type battery.
Involved in hydrogen fuel cells, nickel-hydrogen cells, and photochemical cells, oxygen in the air and hydrides (occluded hydrogen) in the cells
The present invention relates to a photochemical secondary battery which is capable of discharging by reaction with and regenerating (that is, charging) by light energy, and which is excellent in energy saving and does not require a charger or replenishment of hydrogen fuel.

【0002】[0002]

【従来の技術】太陽可視光等の光エネルギーで二次電池
を充電する試みは、以前からなされており、この種の電
池としては、アモルファスシリコン太陽電池とニッケル
−カドミウム蓄電池や鉛蓄電池等の二次電池を組合せた
太陽光蓄電池が知られている。図8は従来の光二次電池
の外観を示した図である。また、図9は図8に示した電
池の等価回路を示した図である。図8、及び図9におい
て、符号1が太陽電池、2が二次電池、3が電圧調整回
路、4が逆流防止ダイオード、5及び6がそれぞれ、正
極端子、負極端子、7が正極端子、負極端子につながれ
た外部負荷である。これらの従来型光二次電池は、太陽
電池1で発電した後、得られた電力を二次電池2に貯蔵
するという二段階型(間接型)の光二次電池であり、電
圧調整回路3や逆流防止ダイオード4が必要である等、
電池の構造が複雑で大きなものとなるといった欠点を有
している。また、上記従来型光二次電池を適正に機能さ
せるには、太陽電池1で発電した電力を、二次電池2を
充電するのに適した電圧に調整する必要があり、そのた
めのエネルギー損失も大きなものとなっている。そし
て、充電時のエネルギー変換ステップは、光→電気→電
気化学の3段階の形態のエネルギー変換を経るといった
問題も有している。更に、太陽電池1を製造するには、
pn接合設備等の比較的高度の製造設備が必要となる
等、製造上の困難性も有している。図10には、G.
P.ピーター(G.P.Peter)らの提案する従来の光化学二
次電池の構成図を示した。図中、符号17は電池容器、
17aは電池容器を密閉するための蓋、18はセパレー
タ、19はn型半導体よりなる光電極、20aは充電用
の電極、20bは放電用の電極である。図11は、米沢
らの提案する従来型光化学二次電池の簡単な構成とエネ
ルギー準位を示した図である。図11において、符号1
1は正極、12は負極、13はn型半導体よりなる光電
極、14はセパレータ、15は負荷、16は充放電切り
替えスイッチである。これらの光化学二次電池は、半導
体−電解質界面の電気化学特性を利用したものであり、
すなわち、半導体電極を電解質と接触させた時に生じる
エネルギーバンドの曲りを利用して、光エネルギーを電
気化学的に蓄積するものである。図10に示す光化学二
次電池の光変換部は、n型半導体よりなる光電極19を
電解質Sに浸積させるだけで構成されており、この点、
太陽電池等の必要な図8や図9に示した従来型光二次電
池に比べ優れている。しかし、これらの電池の反応は、
電解質の酸化還元反応に基づくものであり、放電に必要
な電池活物質はすべて電池内に保持しなければならず、
容量増大のためには、多量の電解質が必要となり、基本
的に大きなエネルギー密度が望めないという欠点が有っ
た。また、放電から充電に移る(あるいは、その逆)に
は、スイッチ等を使用して電極の接続を切り替えなけれ
ばならないといった欠点が有った。
2. Description of the Related Art An attempt to charge a secondary battery with light energy such as visible light from the sun has been made for a long time, and as such a battery, an amorphous silicon solar battery and a nickel-cadmium battery or a lead battery are used. A solar battery that combines a secondary battery is known. FIG. 8 is a diagram showing the appearance of a conventional photo secondary battery. FIG. 9 is a diagram showing an equivalent circuit of the battery shown in FIG. 8 and 9, reference numeral 1 is a solar cell, 2 is a secondary battery, 3 is a voltage adjusting circuit, 4 is a backflow prevention diode, 5 and 6 are positive and negative terminals, 7 is a positive and negative terminals, respectively. It is an external load connected to the terminal. These conventional photo-rechargeable batteries are two-stage type (indirect-type) photo-rechargeable batteries in which the obtained power is stored in the rechargeable battery 2 after being generated by the solar cell 1, and the voltage adjusting circuit 3 and the reverse current are used. The prevention diode 4 is necessary,
It has a drawback that the structure of the battery is complicated and large. In addition, in order for the above-mentioned conventional type photo-rechargeable battery to function properly, it is necessary to adjust the electric power generated by the solar cell 1 to a voltage suitable for charging the rechargeable battery 2, which causes a large energy loss. It has become a thing. In addition, the energy conversion step at the time of charging also has a problem of undergoing energy conversion in the form of three stages of light → electricity → electrochemistry. Furthermore, in order to manufacture the solar cell 1,
It also has manufacturing difficulties such as the need for relatively advanced manufacturing equipment such as pn junction equipment. In FIG.
P. The block diagram of a conventional photochemical secondary battery proposed by Peter et al. Is shown. In the figure, reference numeral 17 is a battery container,
Reference numeral 17a is a lid for sealing the battery container, 18 is a separator, 19 is a photoelectrode made of an n-type semiconductor, 20a is a charging electrode, and 20b is a discharging electrode. FIG. 11 is a diagram showing a simple configuration and energy levels of a conventional photochemical secondary battery proposed by Yonezawa et al. In FIG. 11, reference numeral 1
Reference numeral 1 is a positive electrode, 12 is a negative electrode, 13 is a photoelectrode made of an n-type semiconductor, 14 is a separator, 15 is a load, and 16 is a charge / discharge changeover switch. These photochemical secondary batteries utilize the electrochemical characteristics of the semiconductor-electrolyte interface,
That is, the light energy is electrochemically stored by utilizing the bending of the energy band generated when the semiconductor electrode is brought into contact with the electrolyte. The photoconversion part of the photochemical secondary battery shown in FIG. 10 is configured only by immersing the photoelectrode 19 made of an n-type semiconductor in the electrolyte S.
It is superior to the conventional photo-rechargeable batteries shown in FIGS. 8 and 9 such as solar cells which are required. However, the reaction of these batteries is
It is based on the redox reaction of the electrolyte, and all battery active materials necessary for discharging must be retained in the battery,
In order to increase the capacity, a large amount of electrolyte is required, and basically there is a drawback that a large energy density cannot be expected. In addition, there is a drawback that the connection of the electrodes has to be switched using a switch or the like in order to shift from discharging to charging (or vice versa).

【0003】一方、酸素と水素の電気化学反応を利用し
て電気エネルギーを取り出す電池には、従来型電池とし
て良く知られた酸素−水素燃料電池が有る。しかし、上
記燃料電池は、当然のことながら燃料である水素や水素
の原料ガスが供給されている間のみ動作・機能する電池
であり、これら燃料の供給が断たれれば、電気エネルギ
ーを取り出すことはできず、電池として機能しない。こ
のように、上記燃料電池は、本質的に燃料の供給が不可
欠であるといった問題があった。この問題については、
光エネルギーを利用して水素を生成する装置に関する従
来技術として、特開昭53−31576号公報の「光エ
ネルギー利用の水分解装置」が有る。しかし、本装置で
は、水素を生成するのみで、その反応により電気エネル
ギーを取り出すことはできない。図12は、これら両者
の機能を組合せた従来型の「光エネルギー利用の酸素−
水素燃料電池」(特開昭54−11450号公報)の構
成を示した図である。図中、符号21は電池電槽、22
は電解液、23はn型半導体、24は酸素極、25は水
素極、26は水素極をn型半導体と酸素極のいずれかに
接続するための切り替えスイッチ、27は受光窓、28
は付加抵抗、29は酸素排出口である。本酸素−水素燃
料電池では、光エネルギーによる水分解と生成水素と酸
素の電気化学反応による電気的出力を得ることが可能で
あり、この点、上記水分解装置や従来型燃料電池よりも
優れている。しかし、本従来電池では、光照射時(水分
解時)と暗時(電気出力取り出し時)で、切り替えスイ
ッチをn型半導体電極(接点イ)と酸素極(接点ロ)の
間で、一一切り替えなければならない。このようなスイ
ッチ切り替え操作無しには、水分解も、放電(電気出力
を得ること)も全くできないといった重大な欠点があっ
た。更に、ニッケル−水素電池においては、過充電発生
した酸素と水素極(負極)上の水素との水生成反応を利
用して安全を確保していること、並びに、湿式太陽電池
(光化学電池)の動作原理からも明らかなように、本従
来電池の構成では、光エネルギー利用による水分解反応
で、n型半導体電極表面に生成した酸素の多くが水素極
表面の水素と反応して、再び水に戻る反応の進行を阻止
することができないため、暗時の放電には、光生成した
水素の量に比べ、極めて僅かな残存水素しか利用できな
いといった根本原理に関わる重大な欠点があった。特
に、光の有効利用を目的として電池の単位体積当りの受
光面積を大きくするためには、電池を薄型化する必要が
あるが、この場合、n型半導体電極と水素極とは近接配
置されることとなるため、上記欠点は致命的であった。
On the other hand, as a battery for taking out electric energy by utilizing an electrochemical reaction of oxygen and hydrogen, there is an oxygen-hydrogen fuel cell well known as a conventional type battery. However, as a matter of course, the above fuel cell is a cell that operates and functions only while hydrogen, which is a fuel, or a raw material gas of hydrogen is supplied, and if the supply of these fuels is cut off, electrical energy can be taken out. Cannot be done and does not function as a battery. As described above, the fuel cell has a problem that the supply of fuel is essentially essential. For this issue,
As a conventional technique relating to a device for generating hydrogen by using light energy, there is a "water splitting device using light energy" in Japanese Patent Laid-Open No. 53-31576. However, in this device, only hydrogen is produced, and electrical energy cannot be taken out by the reaction. FIG. 12 shows a conventional type of “oxygen utilizing light energy-which combines these two functions.
FIG. 3 is a diagram showing a configuration of a “hydrogen fuel cell” (Japanese Patent Laid-Open No. 54-11450). In the figure, reference numeral 21 is a battery case, 22
Is an electrolytic solution, 23 is an n-type semiconductor, 24 is an oxygen electrode, 25 is a hydrogen electrode, 26 is a changeover switch for connecting the hydrogen electrode to either the n-type semiconductor or the oxygen electrode, 27 is a light receiving window, 28
Is an additional resistance, and 29 is an oxygen outlet. The oxygen-hydrogen fuel cell can obtain water output by light energy and electric output by electrochemical reaction of generated hydrogen and oxygen. In this respect, it is superior to the water splitting apparatus and the conventional fuel cell. There is. However, in the conventional battery, the changeover switch is switched between the n-type semiconductor electrode (contact point a) and the oxygen electrode (contact point b) during light irradiation (when water is decomposed) and during darkness (when electric output is taken out). I have to switch. There was a serious drawback that neither water decomposition nor discharge (obtaining electric output) was possible without such switch operation. Further, in a nickel-hydrogen battery, safety is ensured by utilizing a water-forming reaction between oxygen that is overcharged and hydrogen on a hydrogen electrode (negative electrode), and that of a wet solar cell (photochemical cell). As is clear from the operating principle, in the structure of the conventional battery, most of the oxygen generated on the surface of the n-type semiconductor electrode reacts with hydrogen on the surface of the hydrogen electrode in the water splitting reaction using light energy, and is converted into water again. Since it is not possible to prevent the progress of the returning reaction, the dark discharge had a serious drawback related to the fundamental principle that only a very small amount of residual hydrogen was available compared to the amount of photogenerated hydrogen. In particular, in order to increase the light receiving area per unit volume of the battery for the purpose of effective use of light, it is necessary to make the battery thin. In this case, the n-type semiconductor electrode and the hydrogen electrode are arranged close to each other. Therefore, the above drawbacks are fatal.

【0004】更に、図13は、本発明者らが既に出願し
ている「光燃料電池」(特願平3−115077号)の
断面構成図を示した図である。図中、符号31は電池ケ
ース、32、33は電池端子、34は第1の電極、34
aははっ水膜、35は第2の電極、36は第1の電解
質、37は第2の電解質、38は光触媒である。本光燃
料電池では、充電時(水分解時)と放電時とで、特に、
スイッチの切り替えも必要なく、この点で、上記「光エ
ネルギー利用の酸素−水素燃料電池」に比べ優れてい
る。しかし、本光燃料電池では、水の光分解により生成
した酸素と水素は、基本的に気体や電解質中への溶存物
質の形で電池内に保持されるため、大きな放電容量を得
るためには、必然的に電池の体積が大きくならざるを得
ないといった欠点が有った。
Further, FIG. 13 is a view showing a cross-sectional structural view of a "photofuel cell" (Japanese Patent Application No. 3-115077) which the present inventors have already applied for. In the figure, reference numeral 31 is a battery case, 32 and 33 are battery terminals, 34 is a first electrode, and 34 is a first electrode.
a is a water-repellent film, 35 is a second electrode, 36 is a first electrolyte, 37 is a second electrolyte, and 38 is a photocatalyst. In this photo fuel cell, during charging (when water is decomposed) and during discharging, in particular,
It is superior to the above-mentioned "oxygen-hydrogen fuel cell utilizing light energy" in that it does not require switching. However, in this photofuel cell, oxygen and hydrogen generated by photolysis of water are basically retained in the cell in the form of dissolved substances in gas or electrolyte, so that it is necessary to obtain a large discharge capacity. However, there was a drawback that the volume of the battery was inevitably increased.

【0005】[0005]

【発明が解決しようとする課題】本発明の目的は、光エ
ネルギーを負極構成材の物質変化として、直接、電池内
へ蓄積し、更に、そのエネルギーを必要な時に取り出し
得る光化学二次電池であって、空気中の酸素と負極内の
吸蔵水素(水素化物)との反応による放電と、光エネル
ギーによる充電(負極構成材の水素化)が可能で、充電
器を必要としない省エネルギー性に優れた高エネルギー
密度二次電池であると共に、燃料補給の不要な酸素−水
素燃料電池としての機能も有する光水素化空気二次電池
を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is a photochemical secondary battery in which light energy is directly stored in a battery as a substance change of a negative electrode constituent material and the energy can be taken out when necessary. It is possible to discharge by reaction of oxygen in the air with hydrogen stored in the negative electrode (hydride) and to charge by light energy (hydrogenation of negative electrode constituent materials), which is excellent in energy saving without the need for a charger. It is an object of the present invention to provide a photohydrogenated air secondary battery that is a high energy density secondary battery and also has a function as an oxygen-hydrogen fuel cell that does not require refueling.

【0006】[0006]

【課題を解決するための手段】本発明を概説すれば、本
発明は光水素化空気二次電池に関する発明であって、正
極と、負極と、酸素透過抑止膜と、これら正極と負極と
に接触する電解質と、上記負極と上記正極と上記電解質
とが収容される電池ケースとを有し、該電池ケースに
は、上記負極をなす負極部材に光を入射する受光部が設
けられ、上記正極が酸素触媒を有する部材で構成され、
上記負極が、互いに電気的に接続されてなる、水素吸蔵
性、あるいは水素化物を形成する特性を有する材料より
なる水素極部材と、n型半導体よりなる光極部材とで構
成され、上記酸素透過抑止膜が酸素低透過性部材よりな
り、且つ、上記酸素透過抑止膜により上記負極を構成す
る水素極部材と光極部材との電解質接触面を互いに隔離
し、上記光極部材から水素極部材への酸素の拡散移動を
抑制する構成とし、上記負極をなす水素極部材中の水素
の酸化反応と、上記正極を構成する酸素触媒上での酸素
の還元反応により放電し、且つ、上記負極の光極部材を
なすn型半導体上に照射された光エネルギーによって、
上記負極の水素極部材の水素化反応、あるいは水素吸蔵
反応を進行させることにより充電されることを特徴とす
る。
The present invention will be described in brief. The present invention relates to a photohydrogenated air secondary battery, which comprises a positive electrode, a negative electrode, an oxygen permeation inhibiting film, and these positive and negative electrodes. It has a contacting electrolyte, a battery case containing the negative electrode, the positive electrode, and the electrolyte, and the battery case is provided with a light-receiving section for making light incident on the negative electrode member forming the negative electrode. Is composed of a member having an oxygen catalyst,
The negative electrode is composed of a hydrogen electrode member made of a material having a hydrogen storage property or a property of forming a hydride, which is electrically connected to each other, and a photoelectrode member made of an n-type semiconductor. The deterring film is made of a low oxygen permeability member, and the oxygen permeation inhibiting film separates the electrolyte contact surfaces of the hydrogen electrode member and the photoelectrode member forming the negative electrode from each other, and the photoelectrode member to the hydrogen electrode member. The oxygen migration reaction of oxygen in the hydrogen electrode member forming the negative electrode and the reduction reaction of oxygen on the oxygen catalyst forming the positive electrode, and discharging the light of the negative electrode. By the light energy irradiated on the n-type semiconductor forming the polar member,
It is characterized by being charged by advancing a hydrogenation reaction or a hydrogen storage reaction of the hydrogen electrode member of the negative electrode.

【0007】本発明の光水素化空気二次電池は、以下の
特徴、及び従来電池との差異を有する。 (1)本発明の光水素化空気二次電池は、正極を酸素触
媒で構成し、その触媒作用により、空気中の酸素を還元
し、電気的出力を得ること(放電)を可能にした。 (2)負極は、水素極部材と光極部材で構成した。上記
水素極部材は、水素吸蔵性を有する、あるいは水素化物
を形成する材料で構成した。また、上記光極部材はn型
半導体で構成し、これを電解質に接触させることでエネ
ルギーバンドの曲り(電位勾配)を形成する構成とし
た。このような構成とすることによって、上記光極部材
が吸収した光をエネルギー源として、上記水素極部材の
水素化反応(水素吸蔵反応)を生起せしめ、光エネルギ
ーを水素化物(吸蔵水素)への物質変化として負極中へ
蓄積し、これにより、充電を可能にした。 (3)上記負極の水素極部材と光極部材を一体化、ある
いは電気的に接続する構成とした。これによって、3〜
5電極で構成される従来電池のように、各電極間の接続
を切り替える操作は必要無く、そのためのスイッチも不
要になった。また、本発明の負極構成では、上記光極部
材中に上記エネルギーバンドの曲り、すなわち、エネル
ギー障壁を形成することによって、放電電流は、負荷を
経由して、正極と負極の水素極部材との間に流れ、光極
部材へは流れ込まない構成とすることにより、上記スイ
ッチを不要にすることを可能にした。更に、上記負極構
成により、電池構造を簡易化することもでき、エネルギ
ー密度を向上させることができた。 (4)また、負極を構成する上記水素極部材と上記光極
部材との電解質接触面を互いに隔離する位置に酸素透過
抑止膜を設けた。従来電池では、充電時に発生した酸素
が水素極部材表面へ拡散移動し、負極の水素化物(吸蔵
水素)と反応して水に戻してしまい、水素化物としての
蓄積(充電)が困難であった。しかし、本発明電池にお
いては、上記酸素透過抑止膜の作用により、上記光極部
材から上記水素極部材への酸素の拡散移動を抑制し、光
エネルギーを負極中の水素化物(吸蔵水素)への物質変
化として蓄えることが可能になった。 (5)更に、本発明電池では、上記負極を構成する水素
極部材の水素解離平衡圧を1気圧以下の材料で構成する
ことにより、本発明電池のように開放系の電池(電池内
圧が大気圧となる電池)においても、従来電池と異な
り、水素が解離し、空気孔から外部へ流出することによ
る放電容量の低下を防止することができる。以上の特徴
を有する電池は、従来の電池には存在せず、本発明によ
って初めて可能となった。本発明技術により、空気中の
酸素と負極内に蓄積した水素化物(吸蔵水素)との反応
による放電と光エネルギーによる放電(負極構成材の水
素化)が可能で、充電器を必要としない省エネルギー性
に優れた、高性能な高エネルギー密度二次電池を提供す
ることが可能になった。
The photohydrogenated air secondary battery of the present invention has the following features and differences from conventional batteries. (1) In the photohydrogenated air secondary battery of the present invention, the positive electrode is composed of an oxygen catalyst, and the catalytic action reduces oxygen in the air to obtain an electrical output (discharge). (2) The negative electrode was composed of a hydrogen electrode member and a photoelectrode member. The hydrogen electrode member is made of a material having a hydrogen storage property or forming a hydride. The photoelectrode member is made of an n-type semiconductor, and is brought into contact with an electrolyte to form an energy band bend (potential gradient). With such a configuration, the light absorbed by the photoelectrode member is used as an energy source to cause a hydrogenation reaction (hydrogen storage reaction) of the hydrogen electrode member, and convert the light energy into a hydride (storage hydrogen). It accumulated as a material change in the negative electrode, which enabled charging. (3) The hydrogen electrode member and the photoelectrode member of the negative electrode are integrated or electrically connected. By this, 3 ~
Unlike the conventional battery having five electrodes, it is not necessary to switch the connection between the electrodes, and the switch for that is also unnecessary. Further, in the negative electrode configuration of the present invention, by bending the energy band in the photoelectrode member, that is, by forming an energy barrier, the discharge current is passed between the positive electrode and the negative electrode hydrogen electrode member through the load. The above switch can be dispensed with by adopting a configuration in which it flows in between and does not flow into the photoelectrode member. Further, with the above negative electrode configuration, the battery structure can be simplified and the energy density can be improved. (4) Further, an oxygen permeation inhibiting film is provided at a position separating the electrolyte contact surfaces of the hydrogen electrode member and the photoelectrode member that form the negative electrode from each other. In conventional batteries, oxygen generated during charging diffuses and moves to the surface of the hydrogen electrode member, reacts with the hydride (occluded hydrogen) of the negative electrode, and returns to water, making it difficult to accumulate (charge) as a hydride. . However, in the battery of the present invention, due to the action of the oxygen permeation inhibiting film, the diffusion transfer of oxygen from the photoelectrode member to the hydrogen electrode member is suppressed, and the light energy is transferred to the hydride (occluded hydrogen) in the negative electrode. It became possible to store it as a material change. (5) Further, in the battery of the present invention, the hydrogen dissociation equilibrium pressure of the hydrogen electrode member forming the negative electrode is made of a material having a pressure of 1 atm or less, so that the battery of the present invention has an open system (the battery internal pressure is large. Also in a battery (atmospheric pressure), unlike the conventional battery, it is possible to prevent a decrease in discharge capacity due to hydrogen dissociation and flowing out from the air holes. A battery having the above characteristics does not exist in conventional batteries, and is made possible for the first time by the present invention. By the technology of the present invention, discharge by reaction between oxygen in the air and hydride (occluded hydrogen) accumulated in the negative electrode and discharge by light energy (hydrogenation of negative electrode constituent material) are possible, and energy saving that does not require a charger It has become possible to provide a high-performance, high-energy-density secondary battery having excellent properties.

【0008】[0008]

【発明の実施の形態】以下、本発明を具体的に説明す
る。まず、本発明の実施の態様を列挙すると下記のとお
りである。 (1)負極を構成する水素極部材が、水素解離平衡圧が
1気圧以下の水素吸蔵性、あるいは水素化物を形成する
特性を有する材料で構成されることを特徴とする。 (2)負極を構成する光極部材と上記電池ケースの受光
部との間に電解質が介在せず、光極部材の受光面が直接
電解質と接触しないことを特徴とする。 (3)電池ケースの受光部が上記負極を構成する光極部
材で構成されたことを特徴とする。 (4)水素極部材と上記光極部材とが、互いに物理的に
接触し、一体の電極となって上記負極を構成することを
特徴とする。 (5)電池ケースが、上記正極部材の一部と外部の空気
が接触するための空気孔を、上記正極部材近傍に少なく
とも一つ以上具備してなることを特徴とする。 (6)電池ケースが、少なくとも正極部材近傍部分にお
いては、酸素透過性部材よりなることを特徴とする。 (7)正極部材が、酸素触媒と、上記電池ケースの空気
孔又は酸素透過性部材よりなる部分を通して上記電解質
が電池外部へ流出、透過するのを防止するはっ水剤とで
構成されることを特徴とする。 (8)正極部材と上記電池ケースとの間に、電池ケース
の空気孔又は酸素透過性部材よりなる部分を通して上記
電解質が電池外部へ流出、透過するのを防止するはっ水
膜又ははっ水板を設けたことを特徴とする。 (9)正極部材と電池ケースとの間に、酸素を正極部材
表面に一様に拡散するための拡散紙を設けたことを特徴
とする。 (10)はっ水膜又ははっ水板と電池ケースとの間に、
酸素を正極部材表面に一様に拡散するための拡散紙を設
けたことを特徴とする。 (11)負極の水素極部材が、既に水素を吸蔵した部
材、あるいは水素化物よりなることを特徴とする。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be specifically described below. First, the embodiments of the present invention are listed below. (1) The hydrogen electrode member forming the negative electrode is characterized by being made of a material having a hydrogen dissociation equilibrium pressure of 1 atm or less and having a hydrogen storage property or a property of forming a hydride. (2) An electrolyte is not interposed between the photoelectrode member that constitutes the negative electrode and the light receiving portion of the battery case, and the light receiving surface of the photoelectrode member is not in direct contact with the electrolyte. (3) The light receiving portion of the battery case is formed of a photoelectrode member that constitutes the negative electrode. (4) The hydrogen electrode member and the photoelectrode member are in physical contact with each other to form an integral electrode to form the negative electrode. (5) The battery case is provided with at least one air hole near the positive electrode member for allowing a part of the positive electrode member to come into contact with outside air. (6) The battery case is made of an oxygen permeable member at least in the vicinity of the positive electrode member. (7) The positive electrode member is composed of an oxygen catalyst and a water repellent agent that prevents the electrolyte from flowing out and permeating to the outside of the battery through the air holes of the battery case or the portion formed by the oxygen permeable member. Is characterized by. (8) A water-repellent film or water-repellent film that prevents the electrolyte from flowing out and permeating to the outside of the battery through the air hole or the oxygen permeable member of the battery case between the positive electrode member and the battery case. It is characterized by having a plate. (9) A diffusion paper for uniformly diffusing oxygen on the surface of the positive electrode member is provided between the positive electrode member and the battery case. (10) Between the water-repellent film or water-repellent plate and the battery case,
It is characterized in that a diffusion paper for uniformly diffusing oxygen on the surface of the positive electrode member is provided. (11) The hydrogen electrode member of the negative electrode is made of a member that has already occluded hydrogen or a hydride.

【0009】[0009]

【実施例】以下、本発明を実施例により更に具体的に説
明するが、本発明はこれら実施例に限定されない。
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples.

【0010】実施例1 図1及び図2は、本発明の第1の実施例を説明する図で
あって、図1は本発明電池の外観図、図2は図1のX−
X′線に沿う断面図である。図中、符号41は多孔性酸
素触媒よりなる正極、42aは水素吸蔵性や水素化物を
形成する特性を有する材料、又は既に水素を吸蔵した部
材や水素化物からなる水素極部材、42bはn型半導体
よりなる光極部材であり、上記水素極部材42aと共に
負極42を構成する。また、43は上記負極を構成する
水素極部材42aの電解質接触面と光極部材42bの電
解質接触面とを互いに隔離し、上記光極部材表面から上
記水素極部材表面への酸素の移動を抑制するための酸素
低透過性部材よりなる酸素透過抑止膜、44はこれら正
極及び負極と接触する電解質、45は正極と負極の接触
を防止するセパレータ、46及び47は、正極端子及び
負極端子、48はこれら電池構成部材を収容する電池ケ
ース(容器)、49ははっ水膜、50は電池ケース48
に設けられた空気孔、51は水素極部材42aと光極部
材42bとの接続導体である。上記電池ケース48は、
角箱状に形成されており、一方の面を兼ねる光透過材等
からなる受光部48aと、この受光部48aの反対側に
設けられた板状の底部48bとを有し、この底部48b
には多数の空気孔50が形成されている。また、空気孔
50は、一部、上記負極の光極部材42b近傍の電池ケ
ース部分にも設け、充電時に光極部材表面から発生した
酸素を外部へ放出する。電池ケース48には、底部48
b側に配設された正極41と、受光部48a側に配設さ
れた負極42との間、及び受光部48aと負極42との
間に充満された液状電解質44と、上記正極41と負極
42との間に設けられ、電解質44が透過可能なガラス
繊維等からなるセパレータ45、並びに、上記水素極部
材42aとn型半導体部材42bとの間に設けられた酸
素透過抑止膜43とが収納されている。なお、前記電池
ケース48を角箱状に形成したが、本発明はこれに限定
するものではなく、円柱状等の形状でも良い。はっ水膜
49は、正極41と空気孔50との間に配設され、通気
性を有すると共に、電解質44が外部へ流出するのを防
止する構成にされている。本実施例の光水素化空気二次
電池では、空気中の酸素の還元に基づく放電反応を円滑
に進行させるため、酸素と電解質及び正極(酸素触媒)
とで構成される気−液−固三相界面の場を効果的に形成
することが必要となる。したがって、上記三相界面場の
増大を目的として、正極を多孔性の酸素触媒で構成し
た。ただし、低率(低電流)放電で使用する電池を構成
する場合には、必ずしも多孔性である必要はなく、板状
の正極を用いてもよい。
Embodiment 1 FIGS. 1 and 2 are views for explaining a first embodiment of the present invention. FIG. 1 is an external view of the battery of the present invention, and FIG. 2 is an X- line in FIG.
It is sectional drawing which follows the X'line. In the figure, reference numeral 41 is a positive electrode made of a porous oxygen catalyst, 42a is a material having a hydrogen storage property or a property of forming a hydride, or a member having already stored hydrogen or a hydrogen electrode member made of a hydride, and 42b is an n-type. It is a photoelectrode member made of a semiconductor and constitutes the negative electrode 42 together with the hydrogen electrode member 42a. Reference numeral 43 isolates the electrolyte contact surface of the hydrogen electrode member 42a and the electrolyte contact surface of the photoelectrode member 42b, which form the negative electrode, from each other, and suppresses the movement of oxygen from the photoelectrode member surface to the hydrogen electrode member surface. An oxygen permeation inhibiting film composed of a low oxygen permeability member for preventing the contact, 44 an electrolyte contacting the positive electrode and the negative electrode, 45 a separator for preventing contact between the positive electrode and the negative electrode, 46 and 47, a positive electrode terminal and a negative electrode terminal, 48 Is a battery case (container) for housing these battery components, 49 is a water-repellent film, and 50 is a battery case 48.
And 51 are connecting conductors for connecting the hydrogen electrode member 42a and the photoelectrode member 42b. The battery case 48 is
The light receiving portion 48a is formed in a rectangular box shape and is made of a light transmitting material or the like that also serves as one surface, and a plate-like bottom portion 48b provided on the opposite side of the light receiving portion 48a.
A large number of air holes 50 are formed in this. The air holes 50 are also provided in part in the battery case portion near the photoelectrode member 42b of the negative electrode to release oxygen generated from the surface of the photoelectrode member during charging to the outside. The battery case 48 has a bottom 48
The liquid electrolyte 44 filled between the positive electrode 41 arranged on the b side and the negative electrode 42 arranged on the light receiving part 48a side, and between the light receiving part 48a and the negative electrode 42, and the positive electrode 41 and the negative electrode. A separator 45, which is provided between the hydrogen electrode member 42a and the n-type semiconductor member 42b, is provided between the hydrogen electrode member 42a and the n-type semiconductor member 42b. Has been done. Although the battery case 48 is formed in the shape of a rectangular box, the present invention is not limited to this and may have a cylindrical shape or the like. The water-repellent film 49 is disposed between the positive electrode 41 and the air hole 50, has air permeability, and is configured to prevent the electrolyte 44 from flowing out. In the photohydrogenated air secondary battery of this example, in order to smoothly proceed the discharge reaction based on the reduction of oxygen in the air, oxygen, the electrolyte, and the positive electrode (oxygen catalyst) were used.
It is necessary to effectively form a field at the gas-liquid-solid three-phase interface composed of and. Therefore, for the purpose of increasing the above three-phase interface field, the positive electrode was composed of a porous oxygen catalyst. However, when a battery used for low rate (low current) discharge is constructed, it need not necessarily be porous, and a plate-shaped positive electrode may be used.

【0011】上記実施例において、正極41は、酸素触
媒作用を有するカーボン(多孔炭素)や多孔ニッケル、
及びこれらにPtやPdを担持した多孔性酸素触媒(P
t−C、Pd−C、Pt−Ni、Pd−Ni)、更に、
Pt、Pd、Ir、Rh、Os、Ru、Pt−Co、P
t−Au、Pt−Sn、Pd−Au、Ru−Ta、Pt
−Pd−Au、Pt−酸化物、Au、Ag、Ag−C、
Ni−P、Ag−Ni−P、ラネーニッケル、Ni−M
n、Ni−酸化コバルト、Cu−Ag、Cu−Au、ラ
ネー銀等の貴金属及び合金、ホウ化ニッケル、ホウ化コ
バルト、炭化タングステン、水酸化チタン、リン化タン
グステン、リン化ニオブ、遷移金属の炭化物、スピネル
化合物、酸化銀、酸化タングステン、遷移金属のペロブ
スカイト型イオン結晶等の無機化合物、及びバクテリ
ア、非イオン活性剤、フタロシアニン、金属フタロシア
ニン、活性炭、キノン類等の有機化合物のいずれかで構
成されるのが好ましい。
In the above embodiment, the positive electrode 41 is made of carbon (porous carbon) or porous nickel having an oxygen catalytic action,
And a porous oxygen catalyst (P, P
t-C, Pd-C, Pt-Ni, Pd-Ni), and
Pt, Pd, Ir, Rh, Os, Ru, Pt-Co, P
t-Au, Pt-Sn, Pd-Au, Ru-Ta, Pt
-Pd-Au, Pt-oxide, Au, Ag, Ag-C,
Ni-P, Ag-Ni-P, Raney nickel, Ni-M
Noble metals and alloys such as n, Ni-cobalt oxide, Cu-Ag, Cu-Au, and Raney silver, nickel boride, cobalt boride, tungsten carbide, titanium hydroxide, tungsten phosphide, niobium phosphide, and transition metal carbides. , Spinel compounds, silver oxide, tungsten oxide, inorganic compounds such as perovskite ionic crystals of transition metals, and organic compounds such as bacteria, nonionic activators, phthalocyanines, metal phthalocyanines, activated carbon, and quinones. Is preferred.

【0012】また、負極42を構成する水素極部剤42
aは、La−Ni系合金、La−Nd−Ni系合金、L
a−Gd−Ni系合金、La−Y−Ni系合金、La−
Co−Ni系合金、La−Ce−Ni系合金、La−N
i−Ag系合金、La−Ni−Fe系合金、La−Ni
−Cr系合金、La−Ni−Pd系合金、La−Ni−
Cu系合金、La−Ni−Al系合金、La−Ni−M
n系合金、La−Ni−In系合金、La−Ni−Sn
系合金、La−Ni−Ga系合金、La−Ni−Si系
合金、La−Ni−Ge系合金、La−Ni−Al−C
o系合金、La−Ni−Al−Mn系合金、La−Ni
−Al−Cr系合金、La−Ni−Al−Cu系合金、
La−Ni−Al−Si系合金、La−Ni−Al−T
i系合金、La−Ni−Al−Zr系合金、La−Ni
−Mn−Zr系合金、La−Ni−Mn−Ti系合金、
La−Ni−Mn−V系合金、La−Ni−Cr−Mn
系合金、La−Ni−Cr−Zr系合金、La−Ni−
Fe−Zr系合金、La−Ni−Cu−Zr系合金、並
びに、上記合金中のLa元素をミッシュメタルで置き換
えた合金、また、Ti−Zr−Mn−Mo系合金やZr
−Fe−Mn系合金、Mg−Ni系合金等のTi、F
e、Mn、Al、Ce、Ca、Mg、Zr、Nb、V、
Co、Ni、Cr元素の2組以上の組合せからなる合金
等の水素吸蔵合金、更には、Ti、V、Zr、La、P
d、Pt等の水素化物を形成する(水素吸蔵性を有す
る)金属、又は上記合金や金属の水素化物(水素を吸蔵
した物質)で構成されることが好ましい。特に、本実施
例電池のような半開放系の電池においては、外気中の酸
素を放電反応に利用するための上記空気孔50を設けて
いるため、電池内圧を大気圧以上にすることは困難であ
る。したがって、充電により負極中に生成した水素化物
(吸蔵水素)の解離による放電容量の低下を防ぐには、
上記水素極部材は、少なくとも水素の解離平衡圧が1気
圧以下の材料で構成することが望ましい。
Further, the hydrogen electrode material 42 constituting the negative electrode 42
a is a La-Ni system alloy, a La-Nd-Ni system alloy, L
a-Gd-Ni-based alloy, La-Y-Ni-based alloy, La-
Co-Ni type alloy, La-Ce-Ni type alloy, La-N
i-Ag type alloy, La-Ni-Fe type alloy, La-Ni
-Cr alloy, La-Ni-Pd alloy, La-Ni-
Cu-based alloy, La-Ni-Al-based alloy, La-Ni-M
n-based alloy, La-Ni-In-based alloy, La-Ni-Sn
Type alloy, La-Ni-Ga type alloy, La-Ni-Si type alloy, La-Ni-Ge type alloy, La-Ni-Al-C
o-based alloy, La-Ni-Al-Mn-based alloy, La-Ni
-Al-Cr based alloy, La-Ni-Al-Cu based alloy,
La-Ni-Al-Si based alloy, La-Ni-Al-T
i-based alloy, La-Ni-Al-Zr-based alloy, La-Ni
-Mn-Zr-based alloy, La-Ni-Mn-Ti-based alloy,
La-Ni-Mn-V based alloy, La-Ni-Cr-Mn
Type alloy, La-Ni-Cr-Zr type alloy, La-Ni-
Fe-Zr-based alloys, La-Ni-Cu-Zr-based alloys, alloys in which the La element in the above alloys is replaced by misch metal, Ti-Zr-Mn-Mo-based alloys and Zr
Ti, F such as -Fe-Mn-based alloy and Mg-Ni-based alloy
e, Mn, Al, Ce, Ca, Mg, Zr, Nb, V,
Hydrogen storage alloys such as alloys composed of two or more combinations of Co, Ni and Cr elements, and further Ti, V, Zr, La and P
It is preferable to be composed of a metal (having a hydrogen storage property) that forms a hydride such as d or Pt, or a hydride of the above alloy or metal (a substance that stores hydrogen). In particular, in a semi-open battery such as the battery of this embodiment, it is difficult to make the internal pressure of the battery equal to or higher than the atmospheric pressure because the air holes 50 are provided for utilizing oxygen in the outside air for the discharge reaction. Is. Therefore, in order to prevent the reduction of the discharge capacity due to the dissociation of the hydride (occluded hydrogen) generated in the negative electrode by charging,
It is desirable that the hydrogen electrode member is made of a material having a dissociation equilibrium pressure of hydrogen of 1 atm or less.

【0013】光極部材42bは、上記電解質44との界
面における価電子帯の準位が酸素発生電位よりも貴な電
位にあり、且つ、伝導帯の準位が上記水素極部材42a
上で進行する水素化反応の電位よりも卑な電位にあるS
rTiO3 、TiO2 、CdS、SiC、GaP等のn
型半導体で構成されるのが好ましい。なお、本光極部材
は、化合物半導体のほか、単元素半導体や縮合多環芳香
属化合物、有機半導体でも良く、n型半導体で、且つ、
上記電解質44や水素極部材42aとの組合せにおい
て、上記準位(電位)を満足するものであれば良く、特
に材料の種類には限定されない。
In the photoelectrode member 42b, the valence band level at the interface with the electrolyte 44 is nobler than the oxygen generation potential, and the conduction band level is the hydrogen electrode member 42a.
S at a base potential lower than that of the hydrogenation reaction that proceeds above
n such as rTiO 3 , TiO 2 , CdS, SiC, GaP
It is preferably composed of a type semiconductor. In addition to the compound semiconductor, the present light pole member may be a single element semiconductor, a condensed polycyclic aromatic compound, an organic semiconductor, an n-type semiconductor, and
Any combination of the electrolyte 44 and the hydrogen electrode member 42a may be used as long as it satisfies the level (potential), and the kind of material is not particularly limited.

【0014】また、電解質44には、水酸化カリウム、
水酸化ナトリウム、塩化アンモニウム等の塩基や弱酸等
の水溶液電解質で構成される。また、充電性能は低下す
るが、硫酸、塩酸等の強酸や塩を使うこともできる。な
お、本実施例においては、液状電解質を用いているが、
電解質44は、液状に限定されることなく、ペースト状
等でも良い。
The electrolyte 44 contains potassium hydroxide,
It is composed of a base such as sodium hydroxide or ammonium chloride or an aqueous electrolyte such as a weak acid. Further, although the charging performance is lowered, a strong acid or salt such as sulfuric acid or hydrochloric acid can be used. In this example, the liquid electrolyte is used,
The electrolyte 44 is not limited to a liquid and may be a paste or the like.

【0015】酸素透過抑止膜43は、ガラス繊維やポリ
アミド系繊維不織布、ポリオレフィン系繊維不織布、ポ
リプロピレン、ポリエチレン、ナフィオン(Nafion)
膜、イオン交換膜、セルロース膜、合成樹脂等で構成さ
れるが、酸素の拡散移動を妨げ、且つ、電解質が透過可
能な膜であれば良く、上記材料に限定されるものではな
い。
The oxygen permeation inhibiting film 43 is made of glass fiber, polyamide fiber nonwoven fabric, polyolefin fiber nonwoven fabric, polypropylene, polyethylene or Nafion.
Although it is composed of a membrane, an ion exchange membrane, a cellulose membrane, a synthetic resin, or the like, it is not limited to the above materials as long as it is a membrane that prevents diffusion and movement of oxygen and allows an electrolyte to permeate.

【0016】また、セパレータ45は、ガラス繊維やポ
リアミド系繊維不織布、ポリオレフィン系繊維不織布、
セルロース、合成樹脂等で構成されるが、電解質に対す
る耐久性を有するものであれば特に限定されず、上記酸
素透過抑止膜43を用いても良い。
The separator 45 is made of glass fiber, polyamide fiber nonwoven fabric, polyolefin fiber nonwoven fabric,
Although it is composed of cellulose, synthetic resin, or the like, it is not particularly limited as long as it has durability against an electrolyte, and the oxygen permeation inhibiting film 43 may be used.

【0017】電池ケース(容器)48は、ABS樹脂や
フッ素樹脂等の電解質44に侵されない材質のものであ
れば特に限定されない。ただし、電池ケース48の受光
部48aは、ガラス、石英ガラス、アクリル、スチロー
ル等の少なくとも可視光の一部や紫外光の一部を透過す
る(無色あるいは有色の)透明板や透明フィルム等で構
成する。もちろん電池ケース48全体をこれらの部材で
構成してもよい。このように、受光部48aを少なくと
も可視光の一部や紫外光の一部が透過される構成とした
のは、光充電反応を進行させるために、照射光を光極部
材42b表面に到達させる際、この照射光が電池ケース
48によって吸収あるいは反射されて、光極部材表面へ
到達する光エネルギーが低下するのを防止するためであ
る。
The battery case (container) 48 is not particularly limited as long as it is made of a material such as ABS resin or fluororesin that is not attacked by the electrolyte 44. However, the light receiving portion 48a of the battery case 48 is composed of a transparent plate or a transparent film such as glass, quartz glass, acrylic, or styrene that transmits at least part of visible light or part of ultraviolet light (colorless or colored). To do. Of course, the entire battery case 48 may be composed of these members. As described above, the light receiving portion 48a is configured to transmit at least a part of visible light or a part of ultraviolet light, so that the irradiation light reaches the surface of the photoelectrode member 42b in order to promote the photocharge reaction. This is to prevent the irradiation light from being absorbed or reflected by the battery case 48 and lowering the light energy reaching the surface of the photoelectrode member.

【0018】一方、空気中の酸素の還元に基づく放電反
応を円滑に進行させるためには、該酸素が酸素触媒より
なる正極表面へ拡散移動しなければならない。このよう
な酸素の拡散移動を実現することを目的として、本実施
例の電池は、電池ケース48の正極41側底部48b
に、少なくとも1つ以上の小孔よりなる空気孔50を設
ける構成とした。この空気孔50は空気中からの酸素取
り込み口として働くものであり、小孔の代りに大径の空
気孔や開口部としてもよい。
On the other hand, in order for the discharge reaction based on the reduction of oxygen in the air to proceed smoothly, the oxygen must diffuse and move to the surface of the positive electrode comprising the oxygen catalyst. For the purpose of realizing such diffusion and transfer of oxygen, the battery of the present embodiment has a bottom portion 48b on the positive electrode 41 side of the battery case 48.
In this configuration, the air hole 50 including at least one small hole is provided. The air hole 50 functions as an oxygen intake port from the air, and instead of the small hole, a large diameter air hole or an opening may be used.

【0019】はっ水膜(はっ水板)49は、正極41と
電池ケース48の空気孔50との間に設けられている。
このはっ水膜49は、正極中の孔を通過した電解質44
が空気孔50を通して電池外部へ透過、流出するのを
(そのはっ水性により)防止する働きをすると共に、上
記気液固三相界面場の増大にも寄与している。はっ水膜
(はっ水板)49は、多孔性四フッ化エチレン等のフッ
素系樹脂やシリコン系樹脂等で構成するのが望ましい。
なお、上記はっ水膜49は、はっ水膜の代りにはっ水板
を使用して本発明電池を構成できることは言うまでもな
い。また、これらはっ水膜やはっ水板を設ける代りに、
上記正極中にはっ水剤を混入させ、酸素触媒とはっ水剤
とから正極を構成し、上記はっ水膜(はっ水板)の機能
を正極に持たせることによっても、本発明電池を構成す
ることができる。この場合には、上記三相界面場の増大
効果は更に大きくなる。なお、上記空気孔が小孔で構成
される場合、空気孔50から取り込んだ酸素を正極面全
体へ一様に拡散させるために、電池ケースの底部48b
とはっ水膜49又は、はっ水剤を含む正極41との間に
セルロース等からなる拡散紙50を設けても良い。
The water-repellent film (water-repellent plate) 49 is provided between the positive electrode 41 and the air hole 50 of the battery case 48.
This water-repellent film 49 is used for the electrolyte 44 that has passed through the holes in the positive electrode.
Has a function of preventing permeation and outflow to the outside of the battery through the air holes 50 (due to its water repellency), and also contributes to increase of the gas-liquid solid three-phase interface field. The water-repellent film (water-repellent plate) 49 is preferably made of a fluorine-based resin such as porous tetrafluoroethylene or a silicon-based resin.
It is needless to say that the water-repellent film 49 can use the water-repellent plate instead of the water-repellent film to form the battery of the present invention. Also, instead of installing a water-repellent film or water-repellent plate,
The present invention can also be achieved by mixing a water repellent agent in the positive electrode to form a positive electrode from an oxygen catalyst and a water repellent agent, and by giving the positive electrode the function of the water repellent film (water repellent plate). A battery can be constructed. In this case, the effect of increasing the three-phase interface field is further increased. When the air holes are formed of small holes, the bottom 48b of the battery case is formed in order to uniformly diffuse the oxygen taken in from the air holes 50 over the entire positive electrode surface.
A diffusion paper 50 made of cellulose or the like may be provided between the water-repellent film 49 or the positive electrode 41 containing the water-repellent agent.

【0020】実施例2 図3は、本発明の第2の実施例を説明する図であって、
電池ケース48の正極側底部48bと上記負極の光極部
材近傍部の一部を酸素透過性部材52で構成したもので
ある。本実施例の他の構成は第1の実施例と同様であ
る。上記電池ケースの底部48bを酸素透過性部材で構
成したのは、電池外部の酸素を酸素触媒よりなる正極4
1表面へ拡散移動させるためであり、また、光極部材近
傍部の一部を酸素透過性部材52で構成したのは、充電
時に発生した酸素を外部へ排出するためであり、第1の
実施例において電池ケースに空気孔50を形成したのと
同様の趣旨である。
Second Embodiment FIG. 3 is a diagram for explaining a second embodiment of the present invention.
The bottom 48b of the battery case 48 on the positive electrode side and a part of the negative electrode in the vicinity of the photoelectrode member are constituted by the oxygen permeable member 52. The other structure of this embodiment is similar to that of the first embodiment. The bottom portion 48b of the battery case is made of an oxygen permeable member because the oxygen outside the battery is formed by the positive electrode 4 made of an oxygen catalyst.
1 is to diffuse and move to the surface, and part of the vicinity of the photoelectrode member is formed of the oxygen permeable member 52 in order to discharge oxygen generated during charging to the outside. This has the same effect as forming the air holes 50 in the battery case in the example.

【0021】上記酸素透過性部材52は、エチルセルロ
ース、セルロース、アセテート、及びブチレート等の酸
素透過性部材により構成されるのが好ましいが、酸素透
過性を有する部材であれば良く、これらに限定されるも
のではない。
The oxygen permeable member 52 is preferably composed of an oxygen permeable member such as ethyl cellulose, cellulose, acetate and butyrate, but any member having an oxygen permeable property may be used and is not limited thereto. Not a thing.

【0022】もちろん、本発明電池は、電池ケース内に
存在する酸素と充電により生成する酸素のみを利用して
放電反応を進行させることも可能であり、必ずしも、電
池ケース底部の48bに空気孔を設けたり、これを酸素
透過性の部材で構成する必要はない。しかし、この場合
には、外部からの酸素取り込みが不可能となるため、電
池の放電容量、すなわちエネルギー密度が上記第1及び
第2の実施例に比べ低下する。
Of course, in the battery of the present invention, it is possible to proceed the discharge reaction by utilizing only the oxygen existing in the battery case and the oxygen generated by charging, and it is not always necessary to form an air hole at 48b at the bottom of the battery case. It is not necessary to provide or configure it with an oxygen permeable member. However, in this case, since it is impossible to take in oxygen from the outside, the discharge capacity of the battery, that is, the energy density is lower than that in the first and second embodiments.

【0023】実施例3 図4は、本発明の第3の実施例を説明する図であって、
上記負極の光極部材42bの受光面と上記電池ケースの
受光部48aとの間に電解質44が介在せず、光極部材
の受光面が直接電解質と接触しない構造とした。その他
の構成は第1の実施例と同様である。また、本発明の実
施例として、上記構造を有し、他の構成が第2の実施例
と同様の電池を構成できることは言うまでもないことで
ある。
Embodiment 3 FIG. 4 is a diagram for explaining the third embodiment of the present invention.
The electrolyte 44 is not interposed between the light receiving surface of the negative electrode light electrode member 42b and the light receiving portion 48a of the battery case, and the light receiving surface of the light electrode member does not come into direct contact with the electrolyte. Other configurations are the same as those of the first embodiment. It is needless to say that a battery having the above structure and having the other structure as the embodiment of the present invention can form a battery similar to that of the second embodiment.

【0024】実施例4 図5は、本発明の第4の実施例を説明する図であって、
電池ケースの受光部48aが上記負極の光極部材42b
で構成され、光極部材が電池ケースの一部を兼ねた構造
であり、他の構成は第1の実施例と同様である。また、
本発明の実施例として、上記構造を有し、他の構成が第
2の実施例と同様の電池を構成できることは言うまでも
ないことである。上記第3及び第4の実施例において
は、照射光が電解質を透過することなく光電極上に到達
する構造となっているため、第1の実施例や第2の実施
例に比べ、光充電効率を上昇させることができる。ま
た、電解質に光吸収性の部材を使用することも可能とな
る。
Fourth Embodiment FIG. 5 is a diagram for explaining a fourth embodiment of the present invention,
The light receiving portion 48a of the battery case is the negative electrode photoelectrode member 42b.
And the photoelectrode member also serves as a part of the battery case, and the other structure is the same as that of the first embodiment. Also,
It goes without saying that, as an embodiment of the present invention, it is possible to construct a battery having the above-mentioned structure and having the other structure similar to that of the second embodiment. In the third and fourth embodiments, the irradiation light reaches the photoelectrode without passing through the electrolyte, so that the light charging efficiency is higher than that in the first and second embodiments. Can be raised. It is also possible to use a light absorbing member as the electrolyte.

【0025】実施例5 図6は、本発明の第5の実施例を説明する図であって、
本実施例の電池では、上記負極42を構成する水素極部
材42aと光極部材42bとが、互いに物理的に接触
し、一体の電極(複合電極)となって負極42を構成す
る構造とした。これにより、上記実施例において必要で
あった、水素極部材42aと光極部材42bとの接続導
体51が不要となり、電池の信頼性が向上すると共に、
水素極部材42aと光極部材42bとの接続面積が大幅
に増大し、両部材間の抵抗損失が低減するため、光によ
る充電効率が上記第1〜第4の実施例に比べ、向上す
る。本発明の実施例の電池においても、上記構造を有
し、他の構成が第2の実施例と同様の電池を構成できる
ことは言うまでもないことである。
Embodiment 5 FIG. 6 is a diagram for explaining the fifth embodiment of the present invention.
In the battery of the present embodiment, the hydrogen electrode member 42a and the photoelectrode member 42b forming the negative electrode 42 are in physical contact with each other to form an integrated electrode (composite electrode) to form the negative electrode 42. . This eliminates the need for the connecting conductor 51 between the hydrogen electrode member 42a and the photoelectrode member 42b, which is required in the above embodiment, and improves the reliability of the battery.
Since the connection area between the hydrogen electrode member 42a and the photoelectrode member 42b is significantly increased and the resistance loss between both members is reduced, the charging efficiency by light is improved as compared with the first to fourth embodiments. It goes without saying that the batteries of the examples of the present invention also have the above-described structure, and can have the other structures in the same manner as the batteries of the second example.

【0026】以下に、本発明の上記実施例における光水
素化空気二次電池の充放電時の動作を簡単に説明する。
図7に本発明電池の充放電反応の概要と反応式の一例を
示した。すなわち、放電時には、水素化した負極の水素
極部材42a中の水素と電解質44中の水酸イオン(O
- )とが反応して、水素極部材である合金や金属から
水素が抜け、水が生成すると共に、負極端子47を通じ
て電子(e- )を負荷に供給する。一方、正極41上で
は、空気中から取り込んだ酸素と電解質44と酸素触媒
(正極)41により形成される三相界面において、酸素
と電解質中の水、及び負極から負荷を通して供給(放
出)されてきた電子とが反応して、水酸イオンを生成す
る。この放電反応においては、正極活物質である酸素は
空気中から取り込むため、その消費は問題とならない。
結局、本放電反応では、空気中の酸素と電池内水素化物
中の水素とから水を生成する反応によって電気出力を得
ることができる。
The operation of charging and discharging the photohydrogenated air secondary battery in the above embodiment of the present invention will be briefly described below.
FIG. 7 shows an outline of the charge / discharge reaction of the battery of the present invention and an example of the reaction formula. That is, at the time of discharge, hydrogen in the hydrogenated negative electrode member 42 a of the hydrogenated electrode and hydroxide ion (O 2 in the electrolyte 44).
H ) reacts with hydrogen to escape from the alloy or metal that is the hydrogen electrode member to generate water, and also supplies electrons (e ) to the load through the negative electrode terminal 47. On the other hand, on the positive electrode 41, at the three-phase interface formed by oxygen taken from the air, the electrolyte 44 and the oxygen catalyst (positive electrode) 41, oxygen and water in the electrolyte and the negative electrode are supplied (released) through a load. React with the generated electrons to generate hydroxide ions. In this discharge reaction, oxygen, which is the positive electrode active material, is taken in from the air, so that its consumption is not a problem.
After all, in the present discharge reaction, an electric output can be obtained by a reaction of producing water from oxygen in the air and hydrogen in the hydride in the battery.

【0027】次に、充放電時の動作を簡単に説明する。
n型半導体よりなる光極部材42bと電解質44との接
触界面において、上記光極部材中のエネルギーバンド
は、電解質側へ向って上方曲りとなる。今、この光電極
表面へ太陽や蛍光灯等の光エネルギーが照射されると、
伝導帯に電子を励起し、価電子帯にホール(h+ )を生
む。このホールは上記バンドの曲りに沿って電解質側へ
運ばれ、負極光極部材42bの表面で水酸イオンと反応
して酸素と水を生成する。一方、伝導帯に励起された電
子は、バンドの曲りに沿って、接続導体51を経て(第
5の実施例では直接)水素極部材42aへ移動し、やが
て、電解質と接触する負極表面に達する。そこで電解質
中の水と反応して、水酸イオンを生成すると共に、水素
極部材である合金や金属(M)を水素化して、水素化物
(水素吸蔵物)MHn を形成することにより、放電前の
状態へ戻る。以上の経過を経て、光充電反応が進行し、
再び放電可能になる。結局、本実施例電池の充放電反応
は、水素を負極の水素極部材42aと電解質44との間
で、ピストンのようにやり取り(出たり入ったり)して
いることになる。なお、放電の際に水素極部材中で発生
した上記電子は、水素極と電気的に接続された光極部材
へ移動することなく、専ら負荷(最終的には正極)へ供
給される。これは、上記光極部材中には上記エネルギー
バンドの曲がりが存在するために、電子が電解質界面方
向へ移動できない構成としたことを利用したものであ
る。また、本実施例の電池においては、光充電(照射)
時に光極部材表面42bで発生した酸素が水素極部材表
面42aへ拡散移動し、上記光充電反応により生成した
水素化物(MHn )と反応して水に戻ってしまい、水素
化物としての蓄積(充電)ができないといった現象は発
生しない。これは、上記水素極部材と光極部材との電解
質接触面を互いに隔離するように設け上記酸素透過抑止
膜43の作用によるものであり、これにより、本実施例
電池においては、上記光極部材から水素極部材への酸素
の拡散移動を抑制し、光エネルギーを負極中の水素化物
への物質変化として蓄えることが可能になった。更に、
本実施例では、上記負極を構成する水素極部材の水素解
離平衡圧を低くする構成としているため、本実施例のよ
うな開放系の電池においても、水素が解離し、空気孔5
0から外部へ流出することによる放電容量の低下を防止
することができる。
Next, the operation during charging / discharging will be briefly described.
At the contact interface between the photoelectrode member 42b made of an n-type semiconductor and the electrolyte 44, the energy band in the photoelectrode member bends upward toward the electrolyte. Now, when the light energy of the sun or a fluorescent lamp is applied to the surface of this photoelectrode,
It excites electrons in the conduction band and creates holes (h + ) in the valence band. The holes are carried to the electrolyte side along the bend of the band, and react with hydroxyl ions on the surface of the negative electrode photoelectrode member 42b to generate oxygen and water. On the other hand, the electrons excited in the conduction band move to the hydrogen electrode member 42a via the connection conductor 51 (directly in the fifth embodiment) along the bend of the band, and eventually reach the negative electrode surface in contact with the electrolyte. . Then, by reacting with water in the electrolyte to generate hydroxide ions, the alloy or metal (M) that is a hydrogen electrode member is hydrogenated to form a hydride (hydrogen storage material) MH n , thereby causing discharge. Return to the previous state. Through the above process, the photocharge reaction proceeds,
It can be discharged again. After all, in the charge / discharge reaction of the battery of this example, hydrogen is exchanged (moved in and out) between the hydrogen electrode member 42a of the negative electrode and the electrolyte 44 like a piston. The electrons generated in the hydrogen electrode member at the time of discharge are exclusively supplied to the load (finally the positive electrode) without moving to the photoelectrode member electrically connected to the hydrogen electrode. This utilizes the fact that electrons cannot move toward the electrolyte interface due to the bending of the energy band in the photoelectrode member. In addition, in the battery of this embodiment, light charging (irradiation)
Oxygen generated on the photoelectrode member surface 42b sometimes diffuses and moves to the hydrogen electrode member surface 42a, reacts with the hydride (MH n ) generated by the photocharge reaction and returns to water, and accumulates as hydride ( The phenomenon that it cannot be charged does not occur. This is due to the action of the oxygen permeation inhibiting film 43 which is provided so as to separate the electrolyte contact surfaces of the hydrogen electrode member and the photoelectrode member from each other. It became possible to suppress the diffusion transfer of oxygen to the hydrogen electrode member, and to store the light energy as a material change to the hydride in the negative electrode. Furthermore,
In this embodiment, since the hydrogen dissociation equilibrium pressure of the hydrogen electrode member constituting the negative electrode is set to be low, hydrogen is dissociated even in the open system battery as in this embodiment, and the air hole 5
It is possible to prevent the discharge capacity from decreasing due to the outflow from 0 to the outside.

【0028】実施例6 正極の酸素触媒にメッシュ状の白金(Pt)、負極の水
素極部材に形状15mm×15mmのLaNi3.76Al
1.24、同じく負極の光極部材にSrTiO3 、及び電解
質に水酸化カリウム(KOH)水溶液、酸素透過抑止膜
には、微孔性ガラス繊維とナフィオン膜、受光部には石
英ガラスを使用し、上記第1の実施例によるSrTiO
3 −MHn |KOH|O2 (Pt)系光水素化空気二次
電池を作製し、充放電試験を行った。なお、光照射用の
光源には、500WのXe(キセノン)ランプを使用し
た。その結果、電池電圧約1V、放電容量100mAh
以上を得ると共に、光照射により水素化充電反応が進行
し、繰り返し放電が可能であった。これらの結果は、上
記負極の水素極部材に用いたLaNi3.76Al1.24の平
衡電位の実測値が、−0.8V(Hg/HgO電極基
準)程度であり、LaNi5 等に比べ、かなり貴な電位
でも水素化反応が進行する特性を示すことから、本実施
例の電池が光水素化充電反応が容易に進行する構成であ
ること、また、上記合金の水素解離平衡圧が約1.5×
10-3気圧と極めて低圧であることから、水素の解離が
抑制されたこと、更には、上記に酸素透過抑止膜の作用
により、光照射により生成した酸素の拡散が抑えられ、
水素化物との再結合反応を防止することができたことな
ど、本発明の作用効果によるものである。以上説明した
ように、第1、第2、第3、第4、第5、及び第6の実
施例に示した構成をとることによって、従来の電池には
ない、空気中の酸素と負極中に蓄積された水素との反応
による放電と光エネルギーによる水素化充電が可能で、
充電器を必要としない省エネルギー性に優れた高エネル
ギー密度二次電池を提供することができる。
Example 6 Mesh oxygen-like platinum (Pt) was used for the positive electrode oxygen catalyst, and LaNi 3.76 Al having a shape of 15 mm × 15 mm was used for the negative electrode hydrogen electrode member.
1.24 Similarly, SrTiO 3 was used for the negative electrode photoelectrode member, potassium hydroxide (KOH) aqueous solution for the electrolyte, microporous glass fiber and Nafion film for the oxygen permeation inhibiting film, and quartz glass for the light receiving part. SrTiO 3 according to the first embodiment
A 3- MH n | KOH | O 2 (Pt) -based photohydrogenated air secondary battery was prepared and a charge / discharge test was conducted. A 500 W Xe (xenon) lamp was used as a light source for light irradiation. As a result, the battery voltage is about 1V and the discharge capacity is 100mAh.
In addition to the above, the hydrogenation charge reaction proceeded by light irradiation, and repeated discharge was possible. These results show that the measured equilibrium potential of LaNi 3.76 Al 1.24 used for the hydrogen electrode member of the above-mentioned negative electrode is about −0.8 V (Hg / HgO electrode standard), which is considerably noble as compared to LaNi 5 and the like. Since the hydrogenation reaction has a property of advancing even at a potential, the battery of this example has a configuration in which the photohydrogenation charging reaction easily proceeds, and the hydrogen dissociation equilibrium pressure of the alloy is about 1.5 ×.
Due to the extremely low pressure of 10 −3 atm, dissociation of hydrogen was suppressed, and further, due to the action of the oxygen permeation inhibiting film, diffusion of oxygen generated by light irradiation was suppressed,
This is due to the action and effect of the present invention such that the recombination reaction with the hydride could be prevented. As described above, by adopting the configurations shown in the first, second, third, fourth, fifth, and sixth embodiments, oxygen in air and negative electrode Discharge by reaction with hydrogen accumulated in and hydrogen charge by light energy are possible.
It is possible to provide a high energy density secondary battery excellent in energy saving that does not require a charger.

【0029】[0029]

【発明の効果】以上説明したように、本発明の光水素化
二次電池では、負極を構成する水素極部材の水素吸蔵
(水素化物形成)作用、並びに、光極部材の電子励起作
用と光極部材を電解質に接触させることによって形成し
た電位勾配(エネルギーバンドの曲り)を利用して、光
エネルギーにより水素化(水素吸蔵)反応の生起を可能
ならしめると同時に、上記水素極部材と上記光極部材と
の電解質接触面を互いに隔離する位置に設けた酸素透過
抑止膜の作用により、充電時に発生した酸素が水素極部
材表面へ拡散移動し、負極の水素化物(吸蔵水素)と反
応して水に戻ることを防止することにより、光充電を可
能ならしめている。また、正極の触媒作用による酸素の
電気化学反応により、空気中の酸素をエネルギー源(活
物質)とした放電を可能ならしめている。このように、
本発明によって、実質的に無限に存在する空気中の酸素
と電池内の水素化物(吸蔵水素)との反応による放電が
可能であり、且つ、同じく周囲に無限に存在する光エネ
ルギーによる充電が可能な高エネルギー密度の光化学二
次電池を実現できる。したがって、本発明は、実質的
に、燃料補給の不要な酸素−水素燃料電池として機能
し、省エネルギー性に優れ、且つ、高エネルギー密度で
光充電が可能な二次電池を提供できるという極めて大き
な効果がある。
As described above, in the photohydrogenated secondary battery of the present invention, the hydrogen storage (hydride formation) action of the hydrogen electrode member constituting the negative electrode, and the electron excitation action and the photoexcitation action of the photoelectrode member. By utilizing the potential gradient (bend of energy band) formed by contacting the electrode member with the electrolyte, it is possible to cause the hydrogenation (hydrogen storage) reaction by light energy, and at the same time, the hydrogen electrode member and the light Oxygen generated at the time of charging diffuses and moves to the surface of the hydrogen electrode member due to the action of the oxygen permeation inhibiting film provided at the position where the electrolyte contact surface with the electrode member is isolated from each other, and reacts with the hydride of the negative electrode (storage hydrogen). By preventing it from returning to the water, it enables light charging. In addition, the electrochemical reaction of oxygen by the catalytic action of the positive electrode enables discharge using oxygen in the air as an energy source (active material). in this way,
INDUSTRIAL APPLICABILITY According to the present invention, it is possible to discharge by the reaction of oxygen in the air, which exists substantially infinitely, with hydride (storage hydrogen) in the battery, and also to charge by the light energy, which exists infinitely in the surroundings. It is possible to realize a photochemical secondary battery with a high energy density. Therefore, the present invention substantially functions as an oxygen-hydrogen fuel cell that does not require refueling, has an excellent energy saving property, and can provide a secondary battery capable of being photocharged at a high energy density, which is a great effect. There is.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例による光水素化空気二次
電池の外観を示した図である。
FIG. 1 is a view showing an appearance of a photohydrogenated air secondary battery according to a first embodiment of the present invention.

【図2】図1のX−X′線に沿う断面図を示した図であ
る。
FIG. 2 is a diagram showing a cross-sectional view taken along line XX ′ of FIG.

【図3】本発明の第2の実施例を説明する図である。FIG. 3 is a diagram illustrating a second embodiment of the present invention.

【図4】本発明の第3の実施例を説明する図である。FIG. 4 is a diagram illustrating a third embodiment of the present invention.

【図5】本発明の第4の実施例を説明する図である。FIG. 5 is a diagram illustrating a fourth embodiment of the present invention.

【図6】本発明の第5の実施例を説明する図である。FIG. 6 is a diagram illustrating a fifth embodiment of the present invention.

【図7】本発明電池の充放電反応を説明する図であっ
て、反応の概要と反応式の一例を示した図である。
FIG. 7 is a diagram for explaining a charge / discharge reaction of the battery of the present invention, showing an outline of the reaction and an example of a reaction formula.

【図8】従来の光二次電池の外観を示した図である。FIG. 8 is a view showing an appearance of a conventional photo secondary battery.

【図9】図8の等価回路を示した図である。FIG. 9 is a diagram showing an equivalent circuit of FIG.

【図10】従来型光化学二次電池の構成を示す図であ
る。
FIG. 10 is a diagram showing a structure of a conventional photochemical secondary battery.

【図11】米沢らの提案する従来型光化学二次電池の簡
単な構成とエネルギー準位を示した図である。
FIG. 11 is a diagram showing a simple configuration and energy levels of a conventional photochemical secondary battery proposed by Yonezawa et al.

【図12】特開昭54−11450号公報に記載の「光
エネルギー利用の酸素−水素燃料電池」の構成を示した
図である。
FIG. 12 is a diagram showing a configuration of an “oxygen-hydrogen fuel cell utilizing light energy” described in JP-A No. 54-11450.

【図13】特願平3−115077号の図面に記載の
「光燃料電池」の断面構成図を示した図である。
FIG. 13 is a diagram showing a cross-sectional configuration diagram of a “photofuel cell” described in the drawing of Japanese Patent Application No. 3-115077.

【符号の説明】[Explanation of symbols]

1:太陽電池、2:二次電池、3:電圧調整回路、4:
逆流防止ダイオード、5:正極端子、6:負極端子、
7:正極端子、負極端子につながれた外部負荷、11:
正極、12:負極、13:n型半導体よりなる光電極、
14:セパレータ、15:負荷、16:充放電切り替え
スイッチ、17:電池容器、17a:電池容器を密閉す
るための蓋、18:セパレータ、19:n型半導体より
なる光電極、20a:充電用の電極、20b:放電用の
電極、21:電池電槽、22:電解液、23:n型半導
体、24:酸素極、25:水素極、26:水素極をn型
半導体と酸素極のいずれかに接続するための切り替えス
イッチ、27:受光窓、28:付加抵抗、29:酸素排
出口、31:電池ケース、32、33:電池端子、3
4:第1の電極、34a:はっ水膜、35:第2の電
極、36:第1の電解質、37:第2の電解質、38:
光触媒、41:多孔性酸素触媒よりなる正極、42:負
極、42a:水素極部材、42b:光極部材、43:上
記負極を構成する水素極部材42aの電解質接触面と光
極部材42bの電解質接触面とを互いに隔離し、上記光
極部材表面から上記水素極部材表面への酸素の移動を抑
制するための酸素低透過性部材よりなる酸素透過抑止
膜、44:これら正極及び負極と接触する電解質、4
5:正極と負極の接触を防止するセパレータ、46:正
極端子、47:負極端子、48:これら電池構成部材を
収容する電池ケース(容器)、49:はっ水膜、50:
電池ケース48に設けられた空気孔、51:42aと光
極部材42bとの接続導体、52:酸素透過性部材
1: Solar battery, 2: Secondary battery, 3: Voltage adjustment circuit, 4:
Backflow prevention diode, 5: positive electrode terminal, 6: negative electrode terminal,
7: external load connected to the positive electrode terminal and the negative electrode terminal, 11:
Positive electrode, 12: negative electrode, 13: photoelectrode made of n-type semiconductor,
14: separator, 15: load, 16: charge / discharge changeover switch, 17: battery container, 17a: lid for sealing the battery container, 18: separator, 19: photoelectrode made of n-type semiconductor, 20a: for charging Electrode, 20b: Electrode for discharge, 21: Battery case, 22: Electrolyte, 23: n-type semiconductor, 24: Oxygen electrode, 25: Hydrogen electrode, 26: Hydrogen electrode is either an n-type semiconductor or an oxygen electrode Switch for connecting to, 27: light receiving window, 28: additional resistance, 29: oxygen outlet, 31: battery case, 32, 33: battery terminal, 3
4: first electrode, 34a: water-repellent film, 35: second electrode, 36: first electrolyte, 37: second electrolyte, 38:
Photocatalyst, 41: Positive electrode made of porous oxygen catalyst, 42: Negative electrode, 42a: Hydrogen electrode member, 42b: Photoelectrode member, 43: Electrolyte contact surface of hydrogen electrode member 42a constituting the above-mentioned negative electrode and electrolyte of photoelectrode member 42b An oxygen permeation inhibiting film made of a low oxygen permeability member for isolating the contact surface from each other and suppressing the movement of oxygen from the surface of the photoelectrode member to the surface of the hydrogen electrode member, 44: contacting with the positive electrode and the negative electrode Electrolyte, 4
5: Separator for preventing contact between positive electrode and negative electrode, 46: positive electrode terminal, 47: negative electrode terminal, 48: battery case (container) containing these battery constituent members, 49: water-repellent film, 50:
Air holes provided in the battery case 48, connection conductors 51: 42a and the photoelectrode member 42b, 52: oxygen permeable member

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 正極と、負極と、酸素透過抑止膜と、こ
れら正極と負極とに接触する電解質と、上記負極と上記
正極と上記電解質とが収容される電池ケースとを有し、
該電池ケースには、上記負極をなす負極部材に光を入射
する受光部が設けられ、上記正極が酸素触媒を有する部
材で構成され、上記負極が、互いに電気的に接続されて
なる、水素吸蔵性、あるいは水素化物を形成する特性を
有する材料よりなる水素極部材と、n型半導体よりなる
光極部材とで構成され、上記酸素透過抑止膜が酸素低透
過性部材よりなり、且つ、上記酸素透過抑止膜により上
記負極を構成する水素極部材と光極部材との電解質接触
面を互いに隔離し、上記光極部材から水素極部材への酸
素の拡散移動を抑制する構成とし、上記負極をなす水素
極部材中の水素の酸化反応と、上記正極を構成する酸素
触媒上での酸素の還元反応により放電し、且つ、上記負
極の光極部材をなすn型半導体上に照射された光エネル
ギーによって、上記負極の水素極部材の水素化反応、あ
るいは水素吸蔵反応を進行させることにより充電される
ことを特徴とする光水素化空気二次電池。
1. A positive electrode, a negative electrode, an oxygen permeation inhibiting film, an electrolyte in contact with the positive electrode and the negative electrode, a battery case accommodating the negative electrode, the positive electrode and the electrolyte,
The battery case is provided with a light-receiving portion for injecting light into the negative electrode member forming the negative electrode, the positive electrode is formed of a member having an oxygen catalyst, and the negative electrodes are electrically connected to each other. And a hydrogen electrode member made of a material having a property of forming a hydride and a photoelectrode member made of an n-type semiconductor, wherein the oxygen permeation inhibiting film is made of a low oxygen permeability member, and the oxygen The permeation-inhibiting film separates the electrolyte contact surfaces of the hydrogen electrode member and the photoelectrode member forming the negative electrode from each other to suppress the diffusion and movement of oxygen from the photoelectrode member to the hydrogen electrode member, and forms the negative electrode. By the oxidation reaction of hydrogen in the hydrogen electrode member and the reduction reaction of oxygen on the oxygen catalyst constituting the positive electrode, discharge is caused, and by the light energy irradiated on the n-type semiconductor forming the negative electrode photoelectrode member, ,Up Light hydrogenation air secondary battery, characterized in that it is charged by advancing the hydrogenation reaction, or hydrogen absorbing reaction of the negative electrode of the hydrogen electrode member.
【請求項2】 上記負極を構成する水素極部材が、水素
解離平衡圧が1気圧以下の水素吸蔵性、あるいは水素化
物を形成する特性を有する材料で構成されることを特徴
とする請求項1記載の光水素化空気二次電池。
2. The hydrogen electrode member forming the negative electrode is made of a material having a hydrogen dissociation equilibrium pressure of 1 atm or less, a hydrogen storage property, or a property of forming a hydride. The photohydrogenated air secondary battery described.
【請求項3】 上記負極を構成する光極部材と上記電池
ケースの受光部との間に電解質が介在せず、光極部材の
受光面が直接電解質と接触しないことを特徴とする請求
項1又は2に記載の光水素化空気二次電池。
3. The electrolyte is not interposed between the photoelectrode member constituting the negative electrode and the light receiving portion of the battery case, and the light receiving surface of the photoelectrode member does not come into direct contact with the electrolyte. Alternatively, the photohydrogenated air secondary battery according to item 2.
【請求項4】 上記電池ケースの受光部が上記負極を構
成する光極部材で構成されたことを特徴とする請求項1
又は2に記載の光水素化空気二次電池。
4. The light receiving portion of the battery case is formed of a photoelectrode member that constitutes the negative electrode.
Alternatively, the photohydrogenated air secondary battery according to item 2.
【請求項5】 上記水素極部材と上記光極部材とが、互
いに物理的に接触し、一体の電極となって上記負極を構
成することを特徴とする請求項1又は2に記載の光水素
化空気二次電池。
5. The photohydrogen according to claim 1, wherein the hydrogen electrode member and the photoelectrode member are in physical contact with each other to form an integral electrode to constitute the negative electrode. Air secondary battery.
【請求項6】 上記電池ケースが、上記正極部材の一部
と外部の空気が接触するための空気孔を、上記正極部材
近傍に少なくとも一つ以上具備してなることを特徴とす
る請求項1〜5のいずれか1項に記載の光水素化空気二
次電池。
6. The battery case is provided with at least one air hole near the positive electrode member for allowing a part of the positive electrode member and external air to come into contact with each other. 6. The photohydrogenated air secondary battery according to any one of items 1 to 5.
【請求項7】 上記電池ケースが、少なくとも正極部材
近傍部分においては、酸素透過性部材よりなることを特
徴とする請求項1〜5のいずれか1項に記載の光水素化
空気二次電池。
7. The photohydrogenated air secondary battery according to claim 1, wherein the battery case is made of an oxygen permeable member at least in the vicinity of the positive electrode member.
【請求項8】 上記正極部材が、酸素触媒と、上記電池
ケースの空気孔又は酸素透過性部材よりなる部分を通し
て上記電解質が電池外部へ流出、透過するのを防止する
はっ水剤とで構成されることを特徴とする請求項1〜7
のいずれか1項に記載の光水素化空気二次電池。
8. The positive electrode member is composed of an oxygen catalyst and a water repellent which prevents the electrolyte from flowing out and permeating to the outside of the battery through an air hole of the battery case or a portion formed by an oxygen permeable member. 1 to 7 characterized in that
The photohydrogenated air secondary battery according to any one of 1.
【請求項9】 上記正極部材と上記電池ケースとの間
に、電池ケースの空気孔又は酸素透過性部材よりなる部
分を通して上記電解質が電池外部へ流出、透過するのを
防止するはっ水膜又ははっ水板を設けたことを特徴とす
る請求項1〜7のいずれか1項に記載の光水素化空気二
次電池。
9. A water-repellent film for preventing the electrolyte from flowing out and permeating to the outside of the battery through the air hole of the battery case or a portion formed of an oxygen permeable member between the positive electrode member and the battery case. The photohydrogenated air secondary battery according to claim 1, further comprising a water-repellent plate.
【請求項10】 上記正極部材と電池ケースとの間に、
酸素を正極部材表面に一様に拡散するための拡散紙を設
けたことを特徴とする請求項9に記載の光水素化空気二
次電池。
10. Between the positive electrode member and the battery case,
The photohydrogenation air secondary battery according to claim 9, further comprising a diffusion paper for uniformly diffusing oxygen on the surface of the positive electrode member.
【請求項11】 上記はっ水膜又ははっ水板と電池ケー
スとの間に、酸素を正極部材表面に一様に拡散するため
の拡散紙を設けたことを特徴とする請求項9に記載の光
水素化空気二次電池。
11. The diffusion paper for uniformly diffusing oxygen on the surface of the positive electrode member is provided between the water-repellent film or water-repellent plate and the battery case. The photohydrogenated air secondary battery described.
【請求項12】 上記負極の水素極部材が、既に水素を
吸蔵した部材、あるいは水素化物よりなることを特徴と
する請求項1〜11のいずれか1項に記載の光水素化空
気二次電池。
12. The photohydrogenated air secondary battery according to claim 1, wherein the hydrogen electrode member of the negative electrode is made of a member that has already occluded hydrogen or a hydride. .
JP08704596A 1996-03-18 1996-03-18 Photohydrogenated air secondary battery Expired - Fee Related JP3346449B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08704596A JP3346449B2 (en) 1996-03-18 1996-03-18 Photohydrogenated air secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08704596A JP3346449B2 (en) 1996-03-18 1996-03-18 Photohydrogenated air secondary battery

Publications (2)

Publication Number Publication Date
JPH09259942A true JPH09259942A (en) 1997-10-03
JP3346449B2 JP3346449B2 (en) 2002-11-18

Family

ID=13903977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08704596A Expired - Fee Related JP3346449B2 (en) 1996-03-18 1996-03-18 Photohydrogenated air secondary battery

Country Status (1)

Country Link
JP (1) JP3346449B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001345126A (en) * 2000-03-28 2001-12-14 Hitachi Maxell Ltd Photoelectric conversion device
WO2003047131A1 (en) * 2001-11-26 2003-06-05 National Institute Of Advanced Industrial Science And Technology Communication system by terminal with no power supply
JP2004288985A (en) * 2003-03-24 2004-10-14 Japan Science & Technology Agency Solar cell
WO2005015678A1 (en) * 2003-08-06 2005-02-17 Fujikura Ltd. Photoelectric converter and method for manufacturing same
JP2005251650A (en) * 2004-03-05 2005-09-15 Fujikura Ltd Photoelectric conversion element
JP2006172758A (en) * 2004-12-13 2006-06-29 Univ Of Tokyo Energy storage type dye-sensitized solar cell
WO2006095916A1 (en) * 2005-03-10 2006-09-14 Ibaraki University Photophysicochemical cell
WO2013146383A1 (en) * 2012-03-29 2013-10-03 本田技研工業株式会社 Metal-oxygen cell
CN112540108A (en) * 2019-09-23 2021-03-23 天津大学 Method for detecting oxygen permeation of gold foil

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001345126A (en) * 2000-03-28 2001-12-14 Hitachi Maxell Ltd Photoelectric conversion device
WO2003047131A1 (en) * 2001-11-26 2003-06-05 National Institute Of Advanced Industrial Science And Technology Communication system by terminal with no power supply
JP2004288985A (en) * 2003-03-24 2004-10-14 Japan Science & Technology Agency Solar cell
AU2004302117B2 (en) * 2003-08-06 2008-05-15 Fujikura Ltd. Photoelectric converter and method for manufacturing same
WO2005015678A1 (en) * 2003-08-06 2005-02-17 Fujikura Ltd. Photoelectric converter and method for manufacturing same
KR100847551B1 (en) * 2003-08-06 2008-07-21 가부시키가이샤후지쿠라 Photoelectric converter and method for manufacturing same
JP2005251650A (en) * 2004-03-05 2005-09-15 Fujikura Ltd Photoelectric conversion element
JP2006172758A (en) * 2004-12-13 2006-06-29 Univ Of Tokyo Energy storage type dye-sensitized solar cell
WO2006095916A1 (en) * 2005-03-10 2006-09-14 Ibaraki University Photophysicochemical cell
US8188362B2 (en) 2005-03-10 2012-05-29 Ibaraki University Photophysicochemical cell
JP5374704B2 (en) * 2005-03-10 2013-12-25 国立大学法人茨城大学 Photophysical chemical battery
WO2013146383A1 (en) * 2012-03-29 2013-10-03 本田技研工業株式会社 Metal-oxygen cell
JP5383954B1 (en) * 2012-03-29 2014-01-08 本田技研工業株式会社 Metal oxygen battery
CN104137325A (en) * 2012-03-29 2014-11-05 本田技研工业株式会社 Metal-oxygen cell
CN104137325B (en) * 2012-03-29 2016-08-31 本田技研工业株式会社 Metal-oxygen battery
US10008725B2 (en) 2012-03-29 2018-06-26 Honda Motor Co., Ltd. Metal-oxygen cell
CN112540108A (en) * 2019-09-23 2021-03-23 天津大学 Method for detecting oxygen permeation of gold foil
CN112540108B (en) * 2019-09-23 2022-12-13 天津大学 Method for detecting oxygen permeation of gold foil

Also Published As

Publication number Publication date
JP3346449B2 (en) 2002-11-18

Similar Documents

Publication Publication Date Title
Sapkota et al. Zinc–air fuel cell, a potential candidate for alternative energy
US7344801B2 (en) High-voltage dual electrolyte electrochemical power sources
US4127703A (en) Nickel-hydrogen secondary battery
EA011752B1 (en) Electrode, method of its production, metal-air fuel cell and metal hydride cell
WO2005094410A2 (en) Integrated hybrid electrochemical device
KR20030080244A (en) Novel fuel cell cathodes and their fuel cells
US20030198862A1 (en) Liquid gallium alkaline electrolyte fuel cell
JP3346449B2 (en) Photohydrogenated air secondary battery
US5346785A (en) Photochargeable air battery
US20200006830A1 (en) Photoelectrochemical secondary cell and battery
JPH07282860A (en) Manufacture of alkaline secondary battery and catalytic electrode body
JP2002373693A (en) Fuel cell
JP3846727B2 (en) Liquid fuel cell and power generator using the same
US20040248005A1 (en) Negative electrodes including highly active, high surface area hydrogen storage material for use in electrochemical cells
JP3304006B2 (en) Photochemical secondary battery
JP3746047B2 (en) Liquid fuel cell and power generator using the same
US20060078764A1 (en) Dissolved fuel alkaline fuel cell
JP3194448B2 (en) Light air secondary battery
Lin et al. Solar-driven (photo) electrochemical devices for green hydrogen production and storage: Working principles and design
JP3301454B2 (en) Photochemical secondary battery
JP2004178855A (en) Fuel cell
JP4044372B2 (en) Liquid fuel cell
JP3196151B2 (en) Light air secondary battery
JP2014116212A (en) Optical hydrogenation secondary battery
US7045240B2 (en) Power generating apparatus having a proton conductor unit that includes a fullerene derivative

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070906

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080906

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080906

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090906

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090906

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100906

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100906

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110906

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120906

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130906

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees