WO2014091809A1 - Electrode substrate and dye-sensitized solar cell - Google Patents

Electrode substrate and dye-sensitized solar cell Download PDF

Info

Publication number
WO2014091809A1
WO2014091809A1 PCT/JP2013/075997 JP2013075997W WO2014091809A1 WO 2014091809 A1 WO2014091809 A1 WO 2014091809A1 JP 2013075997 W JP2013075997 W JP 2013075997W WO 2014091809 A1 WO2014091809 A1 WO 2014091809A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
electrode substrate
carbon atoms
porous
catalyst layer
Prior art date
Application number
PCT/JP2013/075997
Other languages
French (fr)
Japanese (ja)
Inventor
大輔 時田
純一郎 安西
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to JP2014551917A priority Critical patent/JP5740063B2/en
Priority to CN201380043843.3A priority patent/CN104584162A/en
Priority to KR1020157003778A priority patent/KR102103740B1/en
Publication of WO2014091809A1 publication Critical patent/WO2014091809A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2022Light-sensitive devices characterized by he counter electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2031Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2059Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an electrode substrate that can be used as a counter electrode of a dye-sensitized solar cell and a dye-sensitized solar cell using the electrode substrate.
  • Non-Patent Document 1 A so-called Gretzel type system is known as a dye-sensitized solar cell (Non-Patent Document 1).
  • Non-Patent Document 1 When light is irradiated to the sensitizing dye adsorbed on the porous oxide semiconductor layer constituting the photoelectrode, electrons are generated. These electrons flow in the order of the dye, the porous oxide semiconductor layer, the transparent conductive film, and the external circuit, and are taken out as a current.
  • the dye that has released the electrons is reduced by the redox couple in the electrolyte, and the oxidized redox couple is regenerated into a reductant by the catalyst layer constituting the counter electrode.
  • a platinum electrode (platinum thin film) formed on a substrate is widely used as a catalyst layer constituting a counter electrode of a conventional dye-sensitized solar cell.
  • Known methods for forming a platinum electrode include a method in which a chloroplatinic acid solution is applied on a substrate and heat-treated, and a method such as vacuum deposition and sputtering.
  • platinum is an expensive noble metal
  • the use of a platinum electrode has a problem of increasing the production cost of the dye-sensitized solar cell.
  • there is a problem that the durability of platinum against I ⁇ ions (iodide ions) is not sufficient in the presence of moisture.
  • Non-patent Document 2 Patent Documents 1 and 2.
  • the power generation efficiency when using a catalyst layer having these conductive polymers is much lower than the power generation efficiency when using a catalyst layer made of a platinum electrode. This is because the electrical conductivity of the conductive polymer and the reduction ability as a catalyst (reduction ability to I 3 ⁇ ⁇ I ⁇ ) are lower than the electrical conductivity and reduction ability of platinum.
  • the reducing ability of the catalyst layer is determined by “catalytic activity” ⁇ “specific surface area of the catalyst layer”, but the conductive polymer has lower catalytic activity than platinum. For this reason, when the catalyst layer made of a conductive polymer has a specific surface area comparable to that of the platinum electrode, the reducing ability of the catalyst layer made of the conductive polymer is inferior to that of the platinum electrode. Therefore, a method for improving the specific surface area and conductivity of the catalyst layer by mixing a carbon material such as carbon nanotubes and carbon particles into the catalyst layer made of a conductive polymer and improving the reducing ability of the catalyst layer is also disclosed. (Patent Documents 3 to 4). For example, the structure of the conventional catalyst layer is represented as shown in the schematic diagram of FIG. The catalyst layer in FIG. 1 has a configuration in which a film of a conductive polymer 23 that embeds a carbon material 22 is formed on a conductive substrate 21.
  • the present invention has been made in view of the above circumstances, and an electrode substrate capable of realizing power generation efficiency equal to or higher than that of a platinum electrode used as a counter electrode of a conventional dye-sensitized solar cell, and a dye sensitizer.
  • An object is to provide a solar cell.
  • An electrode substrate having a conductive substrate, a porous film formed on the conductive substrate, and a catalyst layer coated on the porous film.
  • the number of the ream structure is larger than the number of the single holes.
  • the electrode substrate according to (3), wherein the porous membrane is a metal or The electrode substrate according to any one of (1) to (4), which is made of a metal compound.
  • R 1 and R 2 are each independently a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, an aryl group having 6 or 8 carbon atoms, a carboxyl group, It represents any of an ester group, an aldehyde group, a hydroxyl group, a halogen atom, a cyano group, an amino group, a nitro group, an azo group, a sulfo group, and a sulfonyl group.
  • R 1 and R 2 are the alkyl group or alkoxy group, the carbon atoms at the terminals of the alkyl group or alkoxy group may be bonded to form a ring.
  • the conductive polymer is a polymer of a pyrrole compound represented by the following general formula (2).
  • R 3 and R 4 each independently represents a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, an aryl group having 6 or 8 carbon atoms, a carboxyl group, An ester group, an aldehyde group, a hydroxyl group, a halogen atom, a cyano group, an amino group, a nitro group, an azo group, a sulfo group, or a sulfonyl group is represented.
  • R 3 and R 4 are the alkyl group or alkoxy group, carbon atoms at the terminals of the alkyl group or alkoxy group may be bonded to form a ring.
  • the electrode substrate according to (7), wherein the conductive polymer is a polymer of an aniline compound represented by the following general formula (3).
  • R 5 to R 8 are each independently a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, an aryl group having 6 or 8 carbon atoms, a carboxyl group, An ester group, an aldehyde group, a hydroxyl group, a halogen atom, a cyano group, an amino group, a nitro group, an azo group, a sulfo group, or a sulfonyl group is represented.
  • R 5 and R 6 , or R 7 and R 8 are the alkyl group or alkoxy group, carbon atoms at the terminals of the alkyl group or alkoxy group may be bonded to form a ring.
  • a dye-sensitized solar cell comprising a counter electrode constituted by the electrode substrate according to any one of (1) to (12), a photoelectrode adsorbing a dye, and an electrolytic solution.
  • the electrode substrate of the present invention has a wide specific surface area that functions as a catalyst because a porous polymer film having a wide specific surface area is coated with a catalyst layer such as a conductive polymer. Further, when the electrode substrate of the present invention has a structure in which a catalyst layer such as a conductive polymer is coated along a three-dimensional structure of a porous film having a wide specific surface area, the electrode substrate further functions as a catalyst. Has a large specific surface area. As a result, the reduction ability of the catalyst determined by “catalytic activity” ⁇ “specific surface area of the catalyst layer” can be improved, and the power generation efficiency of the dye-sensitized solar cell using the electrode substrate of the present invention can be improved. be able to.
  • the electrical contact portion between the conductive substrate and the porous membrane and the electrical contact portion between the porous membrane and the coating of the catalyst layer such as the conductive polymer are homogeneous and reliable. Therefore, it is excellent in conductivity. As a result, the power generation efficiency of the dye-sensitized solar cell using the electrode substrate of the present invention can be improved. Furthermore, in the electrode substrate of the present invention, since the three-dimensional structure of the porous film formed on the conductive substrate functions as a support member for the coating of the catalyst layer such as a conductive polymer, The structural strength is improved (as compared to a film of a functional polymer alone (a catalyst layer alone)).
  • the production yield in the case of producing a dye-sensitized solar cell using the electrode substrate of the present invention can be improved, and the use environment of the dye-sensitized solar cell is an environment in which an external force is applied to the counter electrode. In this case, the dye-sensitized solar cell can be given excellent durability.
  • the dye-sensitized solar cell of the present invention uses the electrode substrate of the present invention, the dye-sensitized solar cell is excellent in power generation efficiency and exhibits excellent durability even in a use environment in which an external force is applied to the counter electrode.
  • 10 is an SEM image obtained by observing the surface of the counter electrode of Example 9.
  • 10 is an SEM image obtained by observing the surface of the porous film before coating PEDOT on the surface of the counter electrode of Example 9.
  • 10 is an SEM image obtained by observing a cross section of a counter electrode of Example 9.
  • 4D is an enlarged image of the cross section of FIG. 4C.
  • 10 is an SEM image obtained by observing the surface of the counter electrode of Example 10.
  • 10 is an SEM image obtained by observing the surface of the porous film before coating PEDOT on the surface of the counter electrode of Example 10.
  • 10 is an SEM image obtained by observing the surface of the counter electrode of Example 7.
  • 6 is an SEM image obtained by observing the surface of a porous film before coating PEDOT on the surface of the counter electrode of Example 7.
  • 10 is an SEM image obtained by observing the surface of the counter electrode of Example 8.
  • 10 is an SEM image obtained by observing the surface of the porous film before coating PEDOT on the surface of the counter electrode of Example 8.
  • 10 is an SEM image obtained by observing the surface of the counter electrode of Comparative Example 6.
  • 10 is an SEM image obtained by observing the surface of the counter electrode of Comparative Example 7.
  • 14 is an SEM image obtained by observing the surface of a counter electrode of Comparative Example 11.
  • the electrode substrate of the first embodiment of the present invention includes a porous film 2 formed on a conductive substrate 1 as shown in FIG.
  • the porous membrane 2 has pores communicating with the outside in a three-dimensional manner, not only on the surface facing the outside, but also inside the membrane. It is preferable that the porous membrane 2 includes a continuous cell structure in which a plurality of single independent holes (single holes) are connected. In the porous membrane 2, it is preferable that the number (existence ratio) of the cell structure is larger than the number (existence ratio) of the single pores.
  • the porous membrane 2 having a continuous cell structure is preferable because the redox couple contained in the electrolytic solution can permeate sufficiently from the surface to the inside. Furthermore, in the porous membrane 2 having a continuous cell structure, an area where the surface of the porous membrane and the electrolyte solution contact (surface area where an electrochemical reaction occurs) increases, and as a result, the reduction reaction is more efficiently performed. There is an advantage to go.
  • the surface of the porous membrane 2 is coated with a catalyst layer 3 such as a conductive polymer.
  • the surface of the porous membrane 2 includes the surface of the internal porous structure communicating with the outside.
  • the catalyst layer 3 is coated along a three-dimensional porous membrane structure constituted by the above-mentioned streak structure of the porous membrane 2.
  • the catalyst layer 3 is coated along a three-dimensional porous membrane structure constituted by the above-mentioned streak structure of the porous membrane 2.
  • the porous film 2 and the coating layer of the conductive polymer 3 are in contact with each other in almost the entire region where the porous film 2 is not in contact with the conductive substrate 1, the porous film 2
  • the electrical contact portion between the conductive polymer 3 and the conductive polymer 3 (catalyst layer 3) is uniformly and reliably formed.
  • the conductivity of the electrode substrate of the first embodiment is excellent.
  • the conductive substrate 1 includes a conductive film 1a that imparts conductivity and a substrate 1b.
  • the kind in particular of the said conductive film is not restrict
  • the kind in particular of the said transparent conductive film is not restrict
  • the transparent conductive film used for a conventionally well-known dye-sensitized solar cell is applicable, For example, the thin film comprised with a metal oxide is mentioned.
  • the metal oxide examples include tin-doped indium oxide (ITO), fluorine-doped tin oxide (FTO), antimony-doped tin oxide (ATO), indium-doped zinc oxide (IZO), gallium-doped zinc oxide (GZO), and aluminum-doped zinc oxide. (AZO), zinc oxide, tin oxide and the like.
  • ITO tin-doped indium oxide
  • FTO fluorine-doped tin oxide
  • ATO antimony-doped tin oxide
  • IZO indium-doped zinc oxide
  • GZO gallium-doped zinc oxide
  • AZO aluminum-doped zinc oxide
  • zinc oxide tin oxide and the like.
  • ITO tin-doped indium oxide
  • FTO fluorine-doped tin oxide
  • ATO antimony-doped tin oxide
  • IZO indium-doped zinc oxide
  • GZO gallium-
  • the type of the substrate 1b is not particularly limited as long as the conductive film or the metal film can be formed on the surface.
  • a glass substrate, a metal substrate, a resin substrate, etc. are mentioned.
  • the conductive substrate 1 of the first embodiment is not necessarily provided with the conductive film because the substrate surface only needs to have conductivity.
  • Examples of the conductive substrate 1 include a metal substrate and a conductive resin substrate.
  • the conductive substrate 1 which comprises the electrode substrate of 1st embodiment contains the conductive film and conductive sheet which have flexibility. When a conductive film or a conductive sheet is used as the conductive substrate 1, the conductive substrate 1 can be read as a conductive base material.
  • the porous membrane 2 of the first embodiment is a membrane (layer) having a three-dimensional porous structure, and the structure is a single structure formed by using a structure in which fine particles 2a are joined or a phase separation structure. And a structure in which nano meshes are laminated.
  • the material constituting the fine particles 2a is not particularly limited as long as it has conductivity or semiconductor characteristics, but from the viewpoint of obtaining a porous film having high structural strength, titanium, platinum, gold, silver, copper, aluminum, cobalt, iron, magnesium Metals such as nickel, zinc, titanium oxide, tin oxide, zinc oxide, gallium oxide, indium oxide, aluminum oxide, chromium oxide, cobalt oxide, copper oxide, iron oxide, titanium carbide, vanadium carbide, tungsten carbide, titanium nitride Metal compounds such as vanadium nitride, and carbon materials such as carbon black, carbon nanotubes, carbon fibers, activated carbon, and graphite are preferable.
  • fine particles made of a metal compound containing a metal oxide or a carbon material.
  • a metal compound containing a metal oxide or a carbon material As the material constituting the fine particles, titanium oxide, tin oxide, zinc oxide, and carbon black are particularly preferable.
  • the shape of the fine particles 2a is not particularly limited, and examples thereof include spherical, needle-like, fiber-like, bowl-like and sea urchin-like fine particles.
  • the primary particle size of the spherical fine particles may vary in a suitable range depending on the method of forming the fine particles on the conductive substrate 1, but is usually preferably 1 nm to 500 ⁇ m, more preferably 1 nm to 250 ⁇ m, and more preferably 5 nm. Is more preferably from 100 to 100 ⁇ m, particularly preferably from 10 to 10 ⁇ m, most preferably from 10 to 1 ⁇ m.
  • a method for obtaining the primary particle diameter of the fine particles for example, a method of determining the peak value of the volume average diameter distribution obtained by measurement with a laser diffraction particle size distribution measuring device or the long diameters of a plurality of fine particles by SEM observation. The method of measuring and averaging is mentioned.
  • the primary particle diameter of the fine particles is preferably measured by the SEM observation.
  • the primary particle diameter of the acicular, fibrous, or bowl-shaped fine particles may vary in a suitable range depending on the method of forming the particles on the conductive substrate 1, but is usually 1 nm to 500 ⁇ m is preferable, 1 nm to 250 ⁇ m is more preferable, 5 nm to 100 ⁇ m is still more preferable, 10 nm to 10 ⁇ m is particularly preferable, and 10 nm to 5 ⁇ m is most preferable.
  • 1 nm to 500 ⁇ m is preferable, 1 nm to 250 ⁇ m is more preferable, 5 nm to 100 ⁇ m is further preferable, 10 nm to 10 ⁇ m is particularly preferable, and 10 nm to 1 ⁇ m is most preferable.
  • One type of fine particles constituting the porous membrane 2 may be used alone, or two or more types may be used in combination.
  • the thickness of the porous membrane 2 is not particularly limited, and is appropriately adjusted in consideration of the structural strength, for example, in the range of 0.1 ⁇ m to 100 ⁇ m. Although depending on the material of the fine particles, the thickness of the porous film 2 is preferably 0.1 ⁇ m to 10 ⁇ m from the viewpoint of enhancing the conductivity.
  • the porosity (porosity) of the porous membrane 2 is preferably as large as possible to increase the specific surface area. However, if the porosity is too large, the structural strength of the porous membrane 2 may be weakened. Considering this, the porosity of the porous membrane 2 is preferably 50 to 80%.
  • the porosity (porosity) can be measured by a known method such as a gas adsorption method or a mercury intrusion method.
  • the specific surface area of the porous membrane 2 coated with the catalyst layer 3 is preferably 0.1 m 2 / g or more, when measured by a gas adsorption method, and is 1 m 2 / g or more. Is more preferable, and it is still more preferable that it is 3 m ⁇ 2 > / g or more.
  • the upper limit value of the specific surface area is not particularly limited, but for example, 300 m 2 / g can be used as a guide for the upper limit value.
  • the method for forming the porous film 2 constituting the electrode substrate of the first embodiment on the conductive substrate 1 is not particularly limited as long as it is a method capable of forming a porous film having an appropriate porosity.
  • the film forming method can be applied.
  • the film can be formed by applying a paste containing fine particles 2a having conductivity or semiconductor characteristics and a known binder resin on the conductive substrate 1, and further baking.
  • examples of the fine particles 2a include conductive fine particles and metal oxide fine particles.
  • the fine particles 2a having conductivity or semiconductor characteristics are sprayed onto the conductive substrate 1 with a carrier gas, whereby the fine particles 2a having conductivity or semiconductor characteristics and the conductive substrate 1 are joined, and the conductivity or semiconductor characteristics are improved.
  • a porous film is obtained in which the fine particles 2a are joined.
  • Examples of a method for forming the porous film 2 by spraying the fine particles 2a having conductivity or semiconductor characteristics include an aerosol deposition method (AD method).
  • the material constituting the catalyst layer 3 coated along the three-dimensional structure of the porous membrane 2 is a conductive material capable of reducing a redox couple constituting a known electrolyte.
  • a conductive material capable of reducing a redox couple constituting a known electrolyte.
  • platinum conductive carbon material
  • titanium compounds such as titanium carbide TiC and titanium nitride TiN
  • vanadium compounds such as vanadium oxide V 2 O 3 and vanadium nitride VN
  • Etc adium compounds
  • the material constituting the catalyst layer 3 may be only one type or two or more types.
  • the method for forming the catalyst layer 3 with a metal having catalytic activity such as platinum is not particularly limited as long as it is a method capable of forming a platinum layer along the surface of the three-dimensional structure of the porous membrane 2.
  • Specific examples include an electrolytic plating method and an electroless plating method using the conductivity of the porous film 2 and the conductive substrate 1.
  • the lower limit of the thickness of the catalyst layer 3 coated on the porous membrane 2 can vary depending on the material of the catalyst layer 3, but is usually preferably 0.01 nm or more, more preferably 0.1 nm or more. More preferably, it is 1 nm or more. When the thickness is 0.01 nm or more, sufficient catalytic activity can be obtained.
  • the upper limit value of the thickness of the catalyst layer 3 is not particularly limited, but is preferably less than a thickness that completely fills the porous structure of the porous membrane 2, and more preferably 1000 nm or less. .
  • the thickness of the catalyst layer 3 exemplified here is formed on the surface (outer surface) of the porous membrane 2 facing the outside (that is, the surface recognized when the porous membrane 2 is viewed from above). The thickness of the catalyst layer 3 is said. As a method of examining the thickness of the catalyst layer 3 formed on the outer surface, a method of observing a cross section of the porous film 2 on which the catalyst layer 3 is formed with an electron microscope is
  • the catalyst layer is formed by coating the porous film 2 with the conductive polymer 3 (catalyst layer 3). By the coating, a layer of the conductive polymer 3 is formed on the surface of the porous membrane 2.
  • the kind in particular of said conductive polymer is not restrict
  • R 1 and R 2 are each independently a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, an aryl group having 6 or 8 carbon atoms, a carboxyl group, It represents any of an ester group, an aldehyde group, a hydroxyl group, a halogen atom, a cyano group, an amino group, a nitro group, an azo group, a sulfo group, and a sulfonyl group.
  • R 1 and R 2 are the alkyl group or alkoxy group, the carbon atoms at the terminals of the alkyl group or alkoxy group may be bonded to form a ring.
  • the alkyl group is preferably a linear or branched alkyl group, and more preferably a linear alkyl group.
  • the alkyl group preferably has 1 to 8 carbon atoms, more preferably 1 to 5, and still more preferably 1 to 3.
  • alkoxy group a methoxy group, an ethoxy group, a propoxy group, and a butoxy group are preferable, and a methoxy group or an ethoxy group is more preferable.
  • the aryl group include a phenyl group, a benzyl group, a tolyl group, and a naphthyl group.
  • the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • R 1 and R 2 are the alkyl group or alkoxy group
  • the carbon at the terminal of the alkyl group or alkoxy group is excluded except for one hydrogen atom bonded to the carbon atom at the terminal of the alkyl group or alkoxy group. Atoms may combine to form a ring.
  • thiophene compound represented by the general formula (1) include compounds represented by the following formulas (1-1) to (1-4).
  • examples of the conductive polymer include a conductive polymer obtained by polymerizing a pyrrole compound represented by the following general formula (2).
  • R 3 and R 4 each independently represents a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, an aryl group having 6 or 8 carbon atoms, a carboxyl group, It represents any of an ester group, an aldehyde group, a hydroxyl group, a halogen atom, a cyano group, an amino group, a nitro group, an azo group, a sulfo group, and a sulfonyl group.
  • R 3 and R 4 are the alkyl group or alkoxy group, carbon atoms at the terminals of the alkyl group or alkoxy group may be bonded to form a ring.
  • the alkyl group is preferably a linear or branched alkyl group, and more preferably a linear alkyl group.
  • the alkyl group preferably has 1 to 8 carbon atoms, more preferably 1 to 5, and still more preferably 1 to 3.
  • alkoxy group a methoxy group, an ethoxy group, a propoxy group, and a butoxy group are preferable, and a methoxy group or an ethoxy group is more preferable.
  • the aryl group include a phenyl group, a benzyl group, a tolyl group, and a naphthyl group.
  • the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • R 3 and R 4 are the alkyl group or alkoxy group
  • the carbon at the terminal of the alkyl group or alkoxy group is excluded except for one hydrogen atom bonded to the carbon atom at the terminal of the alkyl group or alkoxy group. Atoms may combine to form a ring.
  • pyrrole compound represented by the general formula (2) examples include compounds represented by the following formulas (2-1) to (2-4).
  • examples of the conductive polymer include a conductive polymer obtained by polymerizing an aniline compound represented by the following general formula (3).
  • R 5 to R 8 are each independently a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, an aryl group having 6 or 8 carbon atoms, a carboxyl group, It represents any of an ester group, an aldehyde group, a hydroxyl group, a halogen atom, a cyano group, an amino group, a nitro group, an azo group, a sulfo group, and a sulfonyl group.
  • R 5 and R 6 , or R 7 and R 8 are the alkyl group or alkoxy group, carbon atoms at the terminals of the alkyl group or alkoxy group may be bonded to form a ring.
  • the alkyl group is preferably a linear or branched alkyl group, and more preferably a linear alkyl group.
  • the alkyl group preferably has 1 to 8 carbon atoms, more preferably 1 to 5, and still more preferably 1 to 3.
  • alkoxy group a methoxy group, an ethoxy group, a propoxy group, and a butoxy group are preferable, and a methoxy group or an ethoxy group is more preferable.
  • the aryl group include a phenyl group, a benzyl group, a tolyl group, and a naphthyl group.
  • the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • R 5 to R 8 are the alkyl group or alkoxy group
  • the carbon atom at the terminal of the alkyl group or alkoxy group is removed except for one hydrogen atom bonded to the carbon atom at the terminal of the alkyl group or alkoxy group. Atoms may combine to form a ring.
  • aniline compound represented by the general formula (3) include compounds represented by the following formulas (3-1) to (3-4).
  • the method for coating the porous polymer 2 constituting the electrode substrate of the first embodiment with a conductive polymer is not particularly limited, and examples thereof include the following methods (a) to (d).
  • a porous film is immersed in a solution containing an unpolymerized monomer constituting a conductive polymer, and the monomer is subjected to electrolytic polymerization using the porous film as a working electrode, and conductive on the porous film. Coating is performed by synthesizing a functional polymer.
  • a solution containing a prepolymerized conductive polymer is applied to the porous film, and the solvent is volatilized to coat.
  • the method (a) or (b) is preferable, and the method (a) is more preferable.
  • the method (c) since the binder resin remains on the porous film, the electrical contact between the conductive polymer and the porous film may be weakened.
  • the method (d) there is a possibility that the conductive polymer is overpolymerized, and as a result, there is a risk of filling the pores inside the porous film.
  • the porous membrane and the conductive polymer are in direct contact with each other, so that sufficient electrical contact between them can be obtained.
  • the pores are formed.
  • the inner wall surface can be sufficiently coated with the conductive polymer. Therefore, the method (a) is more preferable.
  • Molar concentration of the conductive polymer coating the porous membrane 2, from the viewpoint of enhancing the reducibility of the catalyst is preferably 0.00001 ⁇ 1mol / cm 3, more preferably 0.0001 ⁇ 0.1mol / cm 3 0.001 to 0.01 mol / cm 3 is more preferable.
  • the electrode substrate of the first embodiment since the specific surface area of the region (catalyst layer) functioning as a catalyst is increased, and the conductivity and the structural strength are improved, the electrode substrate is opposed to the dye-sensitized solar cell. When used as an electrode, it greatly contributes to the improvement of power generation efficiency. Below, the dye-sensitized solar cell using the electrode of 1st embodiment is demonstrated.
  • the dye-sensitized solar cell according to the second embodiment of the present invention includes the electrode substrate of the first embodiment as a counter electrode (counter electrode substrate), and further, a photoelectrode (photoelectrode substrate) that adsorbs the dye, an electrolyte solution, It has.
  • a dye-sensitized solar cell is the dye-sensitized solar cell 10 shown in FIG.
  • the dye-sensitized solar cell 10 includes a photoelectrode 11 composed of a transparent conductive film 7 and a porous oxide semiconductor layer 8 laminated on a transparent substrate 6, a counter electrode 12, and an electrolytic solution 5.
  • the electrolytic solution 5 is sealed between the photoelectrode 11 and the counter electrode 12 by the sealing material 4.
  • the photoelectrode 11 includes a glass substrate that is the transparent substrate 6, a transparent conductive film 7, and a porous oxide semiconductor layer 8.
  • a known sensitizing dye is adsorbed on the surface of the porous oxide semiconductor layer 8 with which the electrolytic solution 5 is in contact (including the surface inside the porous film (porous body)).
  • the substrate (base material) constituting the photoelectrode 11 is not limited to glass and is not particularly limited as long as it is a substrate having visible light permeability.
  • a transparent resin substrate, a film or a sheet can be used.
  • glass having visible light permeability is preferable, and soda lime glass, quartz glass, borosilicate glass, Vycor glass, non-alkali glass, blue plate glass, white plate glass and the like can be mentioned.
  • the resin (plastic) a resin having visible light permeability is preferable, and examples thereof include polyacryl, polycarbonate, polyester, polyimide, polystyrene, polyvinyl chloride, and polyamide.
  • polyesters particularly polyethylene terephthalate (PET) and polyethylene naphthalate (PEN) are produced and used in large quantities as transparent heat-resistant films.
  • the substrate is preferably a plastic transparent substrate, and more preferably a PET or PEN film.
  • oxide semiconductor composing the porous oxide semiconductor layer 8 a conventionally known material can be applied as long as it can adsorb a sensitizing dye.
  • examples thereof include titanium oxide, zinc oxide, and strontium titanate.
  • the porous oxide semiconductor layer 8 is composed of oxide semiconductor fine particles
  • the porous layer is formed by firing a known paste containing the fine particles on the substrate. It may be a porous layer.
  • a porous layer formed in such a state that the fine particles and the substrate and the fine particles are bonded to each other by spraying the fine particles onto the substrate with a carrier gas may be applied.
  • an aerosol deposition method As a method for forming a porous layer by spraying fine particles, an aerosol deposition method (AD method) can be exemplified.
  • the primary particle diameter of the fine particles may vary in a suitable range depending on the method of forming the fine particles on the substrate, but is usually preferably 1 nm to 500 ⁇ m, more preferably 1 nm to 250 ⁇ m, and more preferably 5 nm to 100 ⁇ m. Further preferred is 10 nm to 10 ⁇ m.
  • a method for obtaining the primary particle diameter of the fine particles for example, a method of determining the peak value of the volume average diameter distribution obtained by measurement with a laser diffraction particle size distribution measuring device or the long diameters of a plurality of fine particles by SEM observation. The method of measuring and averaging is mentioned.
  • the primary particle diameter of the fine particles is preferably measured by the SEM observation.
  • electrolytic solution 5 As the electrolytic solution 5, an electrolytic solution used in a conventionally known dye-sensitized solar cell can be applied. In the electrolytic solution 5, a redox couple (electrolyte) is dissolved. As the redox couple, a conventionally known redox couple can be applied.
  • the electrolyte solution 5 may contain other additives such as fillers and thickeners without departing from the spirit of the present invention.
  • Examples of the redox pair include a combination of iodine molecule and iodide, or a combination of bromine molecule and bromine compound.
  • Suitable examples of the iodide include metal iodides such as sodium iodide (NaI) and potassium iodide (KI), or iodine salts such as tetraalkylammonium iodide, pyridinium iodide, and imidazolium iodide. Listed as iodide.
  • bromine compound examples include metal bromides such as sodium bromide (NaBr) and potassium bromide (KBr), and bromine salts such as tetraalkylammonium bromide, pyridinium bromide, and imidazolium bromide as suitable bromine compounds. It is done.
  • metal bromides such as sodium bromide (NaBr) and potassium bromide (KBr)
  • bromine salts such as tetraalkylammonium bromide, pyridinium bromide, and imidazolium bromide as suitable bromine compounds. It is done.
  • the concentration of the redox couple in the electrolytic solution 5 is not particularly limited, but is preferably 0.1 to 10 mol / L, more preferably 0.2 to 2 mol / L. Further, when iodine is added to the solvent of the electrolytic solution 5, a preferable iodine concentration is 0.01 to 1 mol / L.
  • an electrolyte layer (solid electrolyte layer) may be applied.
  • the electrolyte layer has the same function as the electrolytic solution 5 and is in a gel or solid state.
  • an electrolyte layer obtained by gelling or solidifying the electrolyte solution 5 by adding a gelling agent or a thickener to the electrolyte solution 5 and removing the solvent as necessary can be applied.
  • a gel-like or solid electrolyte layer is used, there is no possibility that the electrolyte solution leaks from the dye-sensitized solar cell 10.
  • the electrolytic solution 5 or the electrolyte layer may contain a conventionally known conductive polymer.
  • the sealing material is preferably a member that can hold the electrolytic solution inside the battery cell.
  • synthetic resins such as a conventionally well-known thermoplastic resin and a thermosetting resin, are applicable, for example.
  • the counter electrode 12 in the dye-sensitized solar cell of the second embodiment is the electrode substrate of the first embodiment.
  • the dye-sensitized solar cell of the second embodiment can be produced by a conventional method except that the electrode substrate (counter electrode 12) of the first embodiment is used.
  • the coating layer of the conductive polymer (catalyst layer) of the electrode substrate of the first embodiment which is the counter electrode 12 is supported by the porous film, it has high structural strength. For this reason, also when a jig etc. contact the said coating layer at the time of manufacture, the possibility that the said coating layer will be reduced is reduced. Therefore, the production yield of the dye-sensitized solar cell of the second embodiment can be improved by using the electrode substrate of the first embodiment as a counter electrode.
  • Example 1 (Formation of porous oxide semiconductor layer) A porous oxide semiconductor layer (thickness 8 ⁇ m) was formed using a paste composed of 19% by mass of titanium oxide particles (particle diameter ⁇ 19 nm), 9% by mass of ethyl cellulose, and 72% by mass of terpineol.
  • a transparent conductive substrate a glass substrate having a surface resistance of 10 ohms ( ⁇ ) provided with an FTO film was used, and the paste was applied on the FTO film in an area of 4 mm ⁇ 4 mm by screen printing, and then at 500 ° C. in an air atmosphere. was baked for 30 minutes to form a porous oxide semiconductor layer (transparent layer) on the transparent conductive film.
  • a porous film was formed using a paste composed of 19% by mass of titanium oxide particles (particle diameter ⁇ 19 nm), 9% by mass of ethyl cellulose, and 72% by mass of terpineol.
  • a transparent conductive substrate a glass substrate having a surface resistance of 10 ohms ( ⁇ ) provided with an FTO film was used, and the paste was applied on the FTO film in an area of 4 mm ⁇ 4 mm by screen printing, and then at 500 ° C. in an air atmosphere.
  • the conductive polymer was coated on the porous film by an electrolytic polymerization method.
  • a platinum wire as the counter electrode, and an Ag / Ag + electrode as the reference electrode
  • electropolymerization of the conductive polymer was performed.
  • 10 ⁇ 2 M EDOT 4,4-ethylenedioxythiophene: a compound represented by the above formula (1-1)
  • 10 ⁇ 1 M LiTFSI lithium bistrifluoromethanesulfonylimide
  • the above working electrode, counter electrode, and reference electrode are immersed in the acetonitrile solution, and a voltage of 40 V is applied at 1.2 V using a potentiostat (manufactured by IVIUM).
  • Molecules PEDOT: TFSI
  • the catalyst layer 3 the conductive polymer layer along the three-dimensional structure of the porous membrane as schematically shown in FIG. 2 could be formed.
  • the counter electrode and the photoelectrode prepared by the above method are overlapped and clipped via a resin gasket (separator) having a thickness of 30 ⁇ m, and a dye-sensitized solar cell ( Cell).
  • a resin gasket separator
  • a dye-sensitized solar cell Cell
  • electrolytic solution iodine 0.03M, 1,3-dimethyl-2-propylimidazolium iodide 0.6M, lithium iodide 0.10M, and tert-butylpyridine 0.5M were dissolved in acetonitrile as a solvent. The obtained electrolytic solution was used.
  • photoelectric conversion efficiency ⁇ , short circuit current Isc, open circuit voltage Voc, and fill factor FF were evaluated by a solar simulator (AM1.5). The results are shown in Table 1.
  • Example 2 A dye-sensitized solar cell was produced in the same manner as in Example 1 except that the fine particles constituting the counter electrode were changed to zinc oxide particles (particle diameter ⁇ 23 nm), and the power generation performance was evaluated. The results are shown in Table 1.
  • Example 3 A dye-sensitized solar cell was prepared in the same manner as in Example 1 except that the fine particles constituting the counter electrode were changed to carbon black (particle diameter ⁇ 23 nm), and the power generation performance was evaluated. The results are shown in Table 1.
  • Example 1 A dye-sensitized solar cell was produced in the same manner as in Example 1 except that a platinum electrode substrate in which a platinum thin film was formed on a glass substrate by a sputtering method was used as the counter electrode, and power generation performance was evaluated. The results are shown in Table 1.
  • Example 2 A glass substrate on which the same FTO film as that in Example 1 was disposed was used as a working electrode, and electropolymerization was performed in the same manner as in Example 1 to form a conductive polymer on the FTO film to produce a counter electrode. Except for the counter electrode, a dye-sensitized solar cell was produced in the same manner as in Example 1, and the power generation performance was evaluated. The results are shown in Table 1.
  • Example 3 A dye-sensitized solar cell was prepared in the same manner as in Example 1 except that the conductive polymer was not coated on the porous film constituting the counter electrode, and the power generation performance was evaluated. The results are shown in Table 1.
  • Example 4 A dye-sensitized solar cell was produced in the same manner as in Example 2 except that the conductive polymer was not coated on the porous film constituting the counter electrode, and the power generation performance was evaluated. The results are shown in Table 1.
  • Example 5 A dye-sensitized solar cell was prepared in the same manner as in Example 3 except that the porous polymer constituting the counter electrode was not coated with the conductive polymer, and the power generation performance was evaluated. The results are shown in Table 1.
  • Example 4 In the production of the photoelectrode, on the porous oxide semiconductor layer (transparent layer) (film thickness 8 ⁇ m) formed in the same manner as in Example 1, a reflective layer (film thickness 4 ⁇ m) made of titanium oxide particles having a particle diameter of 400 nm. Then, a cell (a dye-sensitized solar cell) was produced in the same manner as in Example 1 except that the dye was adsorbed on the transparent layer and the reflective layer.
  • the reflective layer is formed by printing a paste composed of 19% by mass of titanium oxide (particle diameter ⁇ 400 nm), 9% by mass of ethyl cellulose, and 72% by mass of terpineol on the transparent layer, It was formed by firing at 500 ° C.
  • the transparent layer and the reflective layer differ in the particle size of the titanium oxide contained.
  • the transparent layer can be read as the first layer, and the reflective layer can be read as the second layer.
  • dye was performed like Example 1 after laminating
  • Example 5 A cell was produced in the same manner as in Example 4 except that the titanium oxide particles having a particle size of 19 nm were changed to titanium oxide particles having a particle size of 30 nm in the production of the counter electrode.
  • Example 6 A cell was prepared in the same manner as in Example 4 except that in the production of the counter electrode, the titanium oxide particles having a particle size of 19 nm were changed to titanium oxide particles having a particle size of 200 nm.
  • Example 7 A cell was produced in the same manner as in Example 4 except that the titanium oxide particles having a particle size of 19 nm were changed to ATO (antimony-doped tin oxide) particles having a particle size of 10 to 30 nm in the production of the counter electrode.
  • ATO antimony-doped tin oxide
  • Example 8 A cell was prepared in the same manner as in Example 4 except that the titanium oxide particles having a particle diameter of 19 nm were changed to ATO needle particles having a long axis particle diameter of 200 to 2000 nm and a short axis particle diameter of 10 to 20 nm in the preparation of the counter electrode. did.
  • Example 9 A cell was produced in the same manner as in Example 4 except that the titanium oxide particles having a particle size of 19 nm were changed to titanium oxide particles coated with ATO having a particle size of 200 to 500 nm in the production of the counter electrode.
  • Example 10 A cell was produced in the same manner as in Example 4 except that the titanium oxide particles having a particle size of 19 nm were changed to carbon black particles having a particle size of 23 nm in the production of the counter electrode.
  • Example 11 A cell was prepared in the same manner as in Example 4 except that the porous film formed of titanium oxide particles having a particle diameter of 19 nm was changed to a nickel mesh having an opening of 8 ⁇ m, a wire diameter of 8 ⁇ m, and a thickness of 3 ⁇ m. did.
  • Example 12 In preparation of the counter electrode, Example 10 was carried out except that PEDOT obtained by polymerizing EDOT of the formula (1-1) was changed to polypyrrole obtained by polymerizing pyrrole of the formula (2-2) as a coating material for the catalyst layer. A cell was prepared in the same manner as described above.
  • Example 13 In the production of the counter electrode, Example 10 was carried out except that PEDOT obtained by polymerizing EDOT of the formula (1-1) was changed to polyaniline polymerized by aniline of the formula (3-1) as a coating material for the catalyst layer. A cell was prepared in the same manner as described above.
  • Example 14 In the production of the counter electrode, instead of forming the PEDOT catalyst layer by the electrolytic polymerization method, the porous membrane was immersed in 10 mM 2-propanol solution of chloroplatinic acid and then baked at 450 ° C. A cell was produced in the same manner as in Example 4 except that a catalyst layer made of platinum was formed on the surface.
  • Example 15 A cell was produced in the same manner as in Example 14 except that the titanium oxide particles having a particle size of 19 nm were changed to ATO (antimony-doped tin oxide) particles having a particle size of 10 to 30 nm in the production of the counter electrode.
  • ATO antimony-doped tin oxide
  • Example 16 A cell was produced in the same manner as in Example 14 except that in the production of the counter electrode, the titanium oxide particles having a particle diameter of 19 nm were changed to carbon black particles having a particle diameter of 23 nm.
  • Comparative Example 8 Comparative Example 7 except that PEDOT obtained by polymerizing EDOT of the formula (1-1) was changed to polypyrrole obtained by polymerizing pyrrole of the formula (2-2) as a coating material for the catalyst layer in the production of the counter electrode. A cell was prepared in the same manner as described above.
  • Comparative Example 9 Comparative Example 7 except that PEDOT obtained by polymerizing EDOT of the formula (1-1) was changed to polyaniline polymerized by aniline of the formula (3-1) as a coating material for the catalyst layer in the production of the counter electrode. A cell was prepared in the same manner as described above.
  • Comparative Example 11 A cell was prepared in the same manner as in Comparative Example 10, except that in the production of the counter electrode, titanium oxide particles (particle size 200 to 500 nm) coated with ATO were used instead of the carbon black particles.
  • Example 14 In the production of the counter electrode, a cell was produced in the same manner as in Example 10 except that the porous polymer was not coated with the conductive polymer. Each cell produced in Examples 4 to 16 and Comparative Examples 6 to 14 was evaluated in the same manner as Example 1. The results are shown in Table 2.
  • the electrode substrate of the example in which the catalyst layer is coated on the porous membrane can obtain excellent power generation efficiency regardless of the type of the catalyst layer and the type of the porous membrane.
  • the electrode substrate having a larger specific surface area improves the power generation efficiency.
  • the conductive polymer is coated on the surface of the conductive glass, but the power generation efficiency is inferior to that of Example 4 because the coated surface does not have a porous structure.
  • FIG. 4A shows an SEM image obtained by observing the surface of the counter electrode of Example 9. Moreover, the SEM image which observed the surface of the porous membrane before coating the surface of the counter electrode of Example 9 with PEDOT is shown in FIG. 4B. 4A and 4B, it can be seen that PEDOT is coated along the three-dimensional porous structure on the surface of the porous membrane of FIG. 4A.
  • FIG. 4C shows an SEM image obtained by observing the cross section of the counter electrode of Example 9. An enlarged image of this cross section is shown in FIG. 4D.
  • FIG. 4C and FIG. 4D it turns out that the continuous cell structure which a single hole connects in a porous membrane exists.
  • the range indicated by the black broken line represents the surface (boundary) of titanium oxide coated with ATO
  • the range indicated by the white broken line represents the surface (boundary) of the catalyst layer made of PEDOT.
  • the distance between the black broken line and the white broken line represents the thickness of the catalyst layer.
  • FIG. 5A shows an SEM image obtained by observing the surface of the counter electrode of Example 10.
  • FIG. 5B shows the SEM image which observed the surface of the porous membrane before coating the surface of the counter electrode of Example 10 with PEDOT.
  • FIG. 5A and 5B it can be seen that PEDOT is coated along the three-dimensional porous structure on the surface of the porous film of FIG. 5A.
  • FIG. 6A shows an SEM image obtained by observing the surface of the counter electrode of Example 7.
  • FIG. 6B shows the SEM image which observed the surface of the porous membrane before coating the surface of the counter electrode of Example 7 with PEDOT.
  • FIG. 6A and 6B it can be seen that PEDOT is coated along the three-dimensional porous structure on the surface of the porous film of FIG. 6A.
  • FIG. 7A shows an SEM image obtained by observing the surface of the counter electrode of Example 8. Moreover, the SEM image which observed the surface of the porous membrane before coating the surface of the counter electrode of Example 8 with PEDOT is shown in FIG. 7B. 7A and 7B, it can be seen that PEDOT is coated along the three-dimensional porous structure on the surface of the porous film of FIG. 7A.
  • FIG. 8 shows an SEM image of the surface of the counter electrode of Comparative Example 6 observed. It can be seen that a platinum film is formed flat. Moreover, the SEM image which observed the surface of the counter electrode of the comparative example 7 is shown in FIG. It can be seen that the film containing PEDOT is formed flat. Moreover, the SEM image which observed the surface of the counter electrode of the comparative example 11 is shown in FIG. Although roughness is observed on the surface of the film containing PEDOT, it can be seen that the film is formed substantially flat. It can be seen that no film structure having a three-dimensional depth is formed in the counter electrode of any of these comparative examples.
  • Example 17 A cell was produced in the same manner as in Example 9. In the counter electrode of this cell, the film thickness of the porous film made of titanium oxide particles coated with ATO was 2.2 ⁇ m. The film thickness was measured by the method of measuring the film thickness difference with a stylus type surface shape measuring instrument.
  • Example 18 In the production of the counter electrode, a cell was produced in the same manner as in Example 17 (Example 9) except that the thickness of the porous film to be formed was changed to 5.6 ⁇ m by increasing the number of screen printings.
  • Example 19 In the production of the counter electrode, a cell was produced in the same manner as in Example 17 (Example 9) except that the thickness of the porous film to be formed was changed to 10.1 ⁇ m by increasing the number of screen printings.
  • Comparative Example 15 A cell was produced in the same manner as in Comparative Example 6.
  • the film thickness of the platinum thin film (platinum electrode) formed by the sputtering method was 20 nm. The film thickness was estimated by observing a cross-sectional image of the platinum electrode with an SEM.
  • Comparative Example 16 A cell was produced in the same manner as in Comparative Example 15 (Comparative Example 6) except that the thickness of the platinum thin film was changed to 50 nm.
  • Comparative Example 17 A cell was produced in the same manner as in Comparative Example 15 (Comparative Example 6) except that the thickness of the platinum thin film was changed to 100 nm.
  • Comparative Example 18 A cell was produced in the same manner as in Comparative Example 7. In the counter electrode of this cell, the film thickness of PEDOT formed by electrolytic polymerization was 20 nm. The film thickness was estimated by observing a cross-sectional image of the PEDOT electrode with an SEM.
  • Comparative Example 19 In the production of the counter electrode, a cell was produced in the same manner as in Comparative Example 18 (Comparative Example 7), except that the film thickness of PEDOT to be formed was changed to 40 nm by increasing the polymerization time of the electrolytic polymerization method. .
  • Comparative Example 20 In the production of the counter electrode, a cell was produced in the same manner as in Comparative Example 18 (Comparative Example 7) except that the film thickness of PEDOT to be formed was changed to 100 nm by increasing the polymerization time of the electrolytic polymerization method. .
  • Comparative Example 21 In the production of the counter electrode, a cell was produced in the same manner as in Comparative Example 18 (Comparative Example 7) except that the film thickness of the PEDOT film to be formed was changed to 200 nm by increasing the polymerization time of the electrolytic polymerization method. . Each cell produced in Examples 17 to 19 and Comparative Examples 15 to 21 was evaluated in the same manner as Example 1. The results are shown in Table 3.
  • the reason why the power generation efficiency does not change is that the catalytic reaction area does not increase even if the thickness of the counter electrode of the comparative example is increased.
  • the film thickness of about 200 nm the film
  • the electrode substrate of the present invention and the dye-sensitized solar cell using the electrode substrate are widely applicable in the field of solar cells.
  • SYMBOLS 1 Conductive substrate, 1a ... Conductive film, 1b ... Substrate, 2 ... Porous film, 2a ... Fine particle which has electroconductivity or semiconductor characteristic, 3 ... Conductive polymer (catalyst layer), 4 ... Sealing material, DESCRIPTION OF SYMBOLS 5 ... Electrolyte solution, 6 ... Transparent substrate, 7 ... Transparent electrically conductive film, 8 ... Porous oxide semiconductor layer, 10 ... Dye-sensitized solar cell, 11 ... Photoelectrode (photoelectrode substrate), 12 ... Counter electrode (counter electrode) Substrate), 21 ... conductive substrate, 21a ... transparent conductive film, 21b ... glass substrate, 22 ... carbon material, 23 ... conductive polymer

Abstract

An electrode substrate is provided with a conductive substrate, a porous film that is formed on the conductive substrate, and a catalyst layer that is applied to the porous film.

Description

電極基板及び色素増感太陽電池Electrode substrate and dye-sensitized solar cell
 本発明は、色素増感太陽電池の対向電極として利用可能な電極基板及びその電極基板を用いた色素増感太陽電池に関する。
本願は、2012年12月14日に、日本に出願された特願2012-273719号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to an electrode substrate that can be used as a counter electrode of a dye-sensitized solar cell and a dye-sensitized solar cell using the electrode substrate.
This application claims priority based on Japanese Patent Application No. 2012-273719 for which it applied to Japan on December 14, 2012, and uses the content here.
色素増感太陽電池として、いわゆるグレッツェル型のシステムが知られている(非特許文献1)。光電極を構成する多孔質酸化物半導体層に吸着した増感色素に光が照射されると電子が発生する。この電子が、色素、多孔質酸化物半導体層、透明導電膜、外部回路へと順に流れて、電流として取り出される。一方、電子を放出した色素は電解質中の酸化還元対によって還元されるとともに、酸化された酸化還元対は対向電極を構成する触媒層によって還元体に再生される。 A so-called Gretzel type system is known as a dye-sensitized solar cell (Non-Patent Document 1). When light is irradiated to the sensitizing dye adsorbed on the porous oxide semiconductor layer constituting the photoelectrode, electrons are generated. These electrons flow in the order of the dye, the porous oxide semiconductor layer, the transparent conductive film, and the external circuit, and are taken out as a current. On the other hand, the dye that has released the electrons is reduced by the redox couple in the electrolyte, and the oxidized redox couple is regenerated into a reductant by the catalyst layer constituting the counter electrode.
従来の色素増感太陽電池の対向電極を構成する触媒層として、基板上に形成された白金電極(白金薄膜)が広く用いられている。白金電極の形成方法としては、基板上に塩化白金酸溶液を塗布して加熱処理する方法や、真空蒸着、スパッタリングなどの方法が知られている。しかしながら、白金は高価な貴金属であるため、白金電極の使用は色素増感太陽電池の製造コストを押し上げる問題がある。更に、水分存在下においてIイオン(ヨウ化物イオン)に対する白金の耐久性が十分ではないという問題がある。 A platinum electrode (platinum thin film) formed on a substrate is widely used as a catalyst layer constituting a counter electrode of a conventional dye-sensitized solar cell. Known methods for forming a platinum electrode include a method in which a chloroplatinic acid solution is applied on a substrate and heat-treated, and a method such as vacuum deposition and sputtering. However, since platinum is an expensive noble metal, the use of a platinum electrode has a problem of increasing the production cost of the dye-sensitized solar cell. Furthermore, there is a problem that the durability of platinum against I ions (iodide ions) is not sufficient in the presence of moisture.
この問題を解決するために白金電極に代わる新しい触媒層の材料が検討されており、例えば、ポリチオフェン、ポリアニリン、ポリピロールなどの導電性高分子を触媒層として用いた対向電極を色素増感太陽電池に応用した例が開示されている(非特許文献2、特許文献1~2)。 In order to solve this problem, a new catalyst layer material that can replace the platinum electrode has been studied. For example, a counter electrode using a conductive polymer such as polythiophene, polyaniline, or polypyrrole as a catalyst layer is used as a dye-sensitized solar cell. An applied example is disclosed (Non-patent Document 2, Patent Documents 1 and 2).
しかしながら、これらの導電性高分子を有する触媒層を用いた場合の発電効率は、白金電極からなる触媒層を用いた場合の発電効率よりも格段に低い。この原因は、導電性高分子の電気伝導性及び触媒としての還元能力(I →Iへの還元能力)が、白金の電気伝導性及び還元能力よりも低いためである。 However, the power generation efficiency when using a catalyst layer having these conductive polymers is much lower than the power generation efficiency when using a catalyst layer made of a platinum electrode. This is because the electrical conductivity of the conductive polymer and the reduction ability as a catalyst (reduction ability to I 3 → I ) are lower than the electrical conductivity and reduction ability of platinum.
触媒層の還元能力は、『触媒活性』×『触媒層の比表面積』によって決定されるが、導電性高分子は触媒活性が白金と比べて低い。このため、導電性高分子からなる触媒層が白金電極と同程度の比表面積を持つ場合には、白金電極に比べて導電性高分子からなる触媒層の還元能力は劣る。そこで、導電性高分子からなる触媒層にカーボンナノチューブやカーボン粒子などの炭素材料を混合することにより、触媒層の比表面積や導電性を向上させ、触媒層の還元能力を向上させる方法も開示されている(特許文献3~4)。例えば、従来の触媒層の構成は、図1の模式図のように表される。図1の触媒層は、導電性基板21の上に、炭素材料22を包埋する導電性高分子23の膜が形成された構成を有する。 The reducing ability of the catalyst layer is determined by “catalytic activity” × “specific surface area of the catalyst layer”, but the conductive polymer has lower catalytic activity than platinum. For this reason, when the catalyst layer made of a conductive polymer has a specific surface area comparable to that of the platinum electrode, the reducing ability of the catalyst layer made of the conductive polymer is inferior to that of the platinum electrode. Therefore, a method for improving the specific surface area and conductivity of the catalyst layer by mixing a carbon material such as carbon nanotubes and carbon particles into the catalyst layer made of a conductive polymer and improving the reducing ability of the catalyst layer is also disclosed. (Patent Documents 3 to 4). For example, the structure of the conventional catalyst layer is represented as shown in the schematic diagram of FIG. The catalyst layer in FIG. 1 has a configuration in which a film of a conductive polymer 23 that embeds a carbon material 22 is formed on a conductive substrate 21.
特開2003-313317号公報JP 2003-313317 A 特開2003-317814号公報JP 2003-317814 A 特開2006-147411号公報JP 2006-147411 A 特開2011-14411号公報JP 2011-14411 A
しかしながら、特許文献3~4の方法で製造した触媒層を用いた場合においても、触媒層の比表面積が十分でないため、触媒層の還元能力が白金電極と同等以上に達するには至っていない。また、特許文献3~4の触媒層では、導電性高分子と前記カーボン材料とが乱雑な状態で混合されているため、触媒層の構造(多孔度)制御性が低く、その為、ロット毎の触媒層の還元能力のばらつきや、膜強度のばらつきが懸念される。また前記触媒層では、カーボン材料同士が、直接接触せずに導電性高分子を介して結着されており、さらにカーボン材料と導電性基板とが直接接触していない領域が多数存在するため、抵抗は増加し、電気伝導性に関しても白金電極に及ばない。このため、導電性高分子を有する触媒層を用いた電極基板の性能向上及び前記電極基板を対向電極として用いた色素増感太陽電池の発電効率の向上が求められている。 However, even when the catalyst layer manufactured by the methods of Patent Documents 3 to 4 is used, the specific surface area of the catalyst layer is not sufficient, so that the reducing ability of the catalyst layer does not reach or exceed that of the platinum electrode. Further, in the catalyst layers of Patent Documents 3 to 4, since the conductive polymer and the carbon material are mixed in a messy state, the structure (porosity) controllability of the catalyst layer is low. There are concerns about variations in reducing ability of the catalyst layer and variations in film strength. Further, in the catalyst layer, the carbon materials are bound through the conductive polymer without being in direct contact, and there are many regions where the carbon material and the conductive substrate are not in direct contact. Resistance increases and does not reach the platinum electrode in terms of electrical conductivity. For this reason, improvement in the performance of an electrode substrate using a catalyst layer having a conductive polymer and improvement in power generation efficiency of a dye-sensitized solar cell using the electrode substrate as a counter electrode are required.
本発明は、上記事情に鑑みてなされたものであり、従来の色素増感太陽電池の対向電極として使用されている白金電極と同等以上の発電効率を実現することが可能な電極基板及び色素増感太陽電池の提供を課題とする。 The present invention has been made in view of the above circumstances, and an electrode substrate capable of realizing power generation efficiency equal to or higher than that of a platinum electrode used as a counter electrode of a conventional dye-sensitized solar cell, and a dye sensitizer. An object is to provide a solar cell.
(1) 導電性基板と、前記導電性基板上に製膜された多孔質膜と、前記多孔質膜にコーティングされた触媒層と、を有する電極基板。
(2) 前記多孔質膜の三次元構造に沿って前記触媒層がコーティングされている、前記(1)に記載の電極基板。
(3) 前記触媒層がコーティングされた多孔質膜に複数の単一孔が連結された連胞構造が含まれる、前記(1)又は(2)に記載の電極基板。
(4) 前記触媒層がコーティングされた多孔質膜において、前記連胞構造の個数が前記単一孔の個数より大きい、前記(3)に記載の電極基板
(5) 前記多孔質膜が金属又は金属化合物によって構成されている前記(1)~(4)の何れか一項に記載の電極基板。
(6) 前記多孔質膜が炭素材料によって構成されている前記(1)~(4)の何れか一項に記載の電極基板。
(7) 前記触媒層が導電性高分子によって構成されている、前記(1)~(6)の何れか一項に記載の電極基板。
(8) 前記導電性高分子が、下記一般式(1)で表されるチオフェン化合物の重合体である、前記(7)に記載の電極基板。
(1) An electrode substrate having a conductive substrate, a porous film formed on the conductive substrate, and a catalyst layer coated on the porous film.
(2) The electrode substrate according to (1), wherein the catalyst layer is coated along a three-dimensional structure of the porous membrane.
(3) The electrode substrate according to (1) or (2) above, wherein a solid cell structure in which a plurality of single holes are connected to the porous film coated with the catalyst layer is included.
(4) In the porous membrane coated with the catalyst layer, the number of the ream structure is larger than the number of the single holes. (5) The electrode substrate according to (3), wherein the porous membrane is a metal or The electrode substrate according to any one of (1) to (4), which is made of a metal compound.
(6) The electrode substrate according to any one of (1) to (4), wherein the porous film is made of a carbon material.
(7) The electrode substrate according to any one of (1) to (6), wherein the catalyst layer is made of a conductive polymer.
(8) The electrode substrate according to (7), wherein the conductive polymer is a polymer of a thiophene compound represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000004
[式中、R及びRは、それぞれ独立に水素原子、炭素原子数1~8のアルキル基、炭素原子数1~4のアルコキシ基、炭素原子数6又は8のアリール基、カルボキシル基、エステル基、アルデヒド基、水酸基、ハロゲン原子、シアノ基、アミノ基、ニトロ基、アゾ基、スルホ基、スルホニル基のいずれかを表す。R及びRが前記アルキル基又はアルコキシ基である場合、前記アルキル基又はアルコキシ基の末端の炭素原子同士が結合して環を形成していてもよい。]
(9) 前記導電性高分子が、下記一般式(2)で表されるピロール化合物の重合体である、前記(7)に記載の電極基板。
Figure JPOXMLDOC01-appb-C000004
[Wherein R 1 and R 2 are each independently a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, an aryl group having 6 or 8 carbon atoms, a carboxyl group, It represents any of an ester group, an aldehyde group, a hydroxyl group, a halogen atom, a cyano group, an amino group, a nitro group, an azo group, a sulfo group, and a sulfonyl group. When R 1 and R 2 are the alkyl group or alkoxy group, the carbon atoms at the terminals of the alkyl group or alkoxy group may be bonded to form a ring. ]
(9) The electrode substrate according to (7), wherein the conductive polymer is a polymer of a pyrrole compound represented by the following general formula (2).
Figure JPOXMLDOC01-appb-C000005
[式中、R及びRは、それぞれ独立に水素原子、炭素原子数1~8のアルキル基、炭素原子数1~4のアルコキシ基、炭素原子数6又は8のアリール基、カルボキシル基、エステル基、アルデヒド基、水酸基、ハロゲン原子、シアノ基、アミノ基、ニトロ基、アゾ基、スルホ基又はスルホニル基を表す。R及びRが前記アルキル基又はアルコキシ基である場合、前記アルキル基又はアルコキシ基の末端の炭素原子同士が結合して環を形成していてもよい。]
(10) 前記導電性高分子が、下記一般式(3)で表されるアニリン化合物の重合体である、前記(7)に記載の電極基板。
Figure JPOXMLDOC01-appb-C000005
[Wherein R 3 and R 4 each independently represents a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, an aryl group having 6 or 8 carbon atoms, a carboxyl group, An ester group, an aldehyde group, a hydroxyl group, a halogen atom, a cyano group, an amino group, a nitro group, an azo group, a sulfo group, or a sulfonyl group is represented. When R 3 and R 4 are the alkyl group or alkoxy group, carbon atoms at the terminals of the alkyl group or alkoxy group may be bonded to form a ring. ]
(10) The electrode substrate according to (7), wherein the conductive polymer is a polymer of an aniline compound represented by the following general formula (3).
Figure JPOXMLDOC01-appb-C000006
[式中、R~Rは、それぞれ独立に水素原子、炭素原子数1~8のアルキル基、炭素原子数1~4のアルコキシ基、炭素原子数6又は8のアリール基、カルボキシル基、エステル基、アルデヒド基、水酸基、ハロゲン原子、シアノ基、アミノ基、ニトロ基、アゾ基、スルホ基又はスルホニル基を表す。R及びR、或いは、R及びRが前記アルキル基又はアルコキシ基である場合、前記アルキル基又はアルコキシ基の末端の炭素原子同士が結合して環を形成していてもよい。]
Figure JPOXMLDOC01-appb-C000006
[Wherein R 5 to R 8 are each independently a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, an aryl group having 6 or 8 carbon atoms, a carboxyl group, An ester group, an aldehyde group, a hydroxyl group, a halogen atom, a cyano group, an amino group, a nitro group, an azo group, a sulfo group, or a sulfonyl group is represented. When R 5 and R 6 , or R 7 and R 8 are the alkyl group or alkoxy group, carbon atoms at the terminals of the alkyl group or alkoxy group may be bonded to form a ring. ]
(11) 前記導電性基板の表面と前記多孔質膜とが接している、前記(1)~(10)の何れか一項に記載の電極基板。
(12) 前記導電性高分子が、前記多孔質膜を作用極として用いた電解重合法によって前記多孔質膜にコーティングされた、前記(7)~(11)の何れか一項に記載の電極基板。
(13) 前記(1)~(12)の何れか一項に記載の電極基板によって構成された対向電極と、色素を吸着した光電極と、電解液とを備えた、色素増感太陽電池。
(11) The electrode substrate according to any one of (1) to (10), wherein a surface of the conductive substrate is in contact with the porous film.
(12) The electrode according to any one of (7) to (11), wherein the conductive polymer is coated on the porous film by an electrolytic polymerization method using the porous film as a working electrode. substrate.
(13) A dye-sensitized solar cell comprising a counter electrode constituted by the electrode substrate according to any one of (1) to (12), a photoelectrode adsorbing a dye, and an electrolytic solution.
本発明の電極基板は、広い比表面積を有する多孔質膜に導電性高分子等の触媒層がコーティングされているため、触媒として機能する広い比表面積を有する。また、本発明の電極基板が、広い比表面積を有する多孔質膜の三次元構造に沿って導電性高分子等の触媒層がコーティングされている構造を有する場合には、触媒として機能するより一層広い比表面積を有する。この結果、『触媒活性』×『触媒層の比表面積』によって決定される触媒の還元能力を向上させることができるとともに、本発明の電極基板を用いた色素増感太陽電池の発電効率を向上させることができる。
 また、本発明の電極基板は、導電性基板と多孔質膜との電気的接触部分および、多孔質膜と導電性高分子等の触媒層のコーティングとの電気的接触部分がそれぞれ均質に且つ確実に形成されているため、導電性に優れる。この結果、本発明の電極基板を用いた色素増感太陽電池の発電効率を向上させることができる。
 更に、本発明の電極基板は、導電性基板上に製膜された多孔質膜の三次元構造が、導電性高分子等の触媒層のコーティングの支持部材として機能するため、従来よりも(導電性高分子単独(触媒層単独)の膜よりも)構造的強度が向上している。この結果、本発明の電極基板を用いて色素増感太陽電池を製造する場合の製造歩留まりを向上させることができるとともに、前記色素増感太陽電池の使用環境が対向電極に外力が加わるような環境である場合にも、前記色素増感太陽電池に優れた耐久性を与えることができる。
The electrode substrate of the present invention has a wide specific surface area that functions as a catalyst because a porous polymer film having a wide specific surface area is coated with a catalyst layer such as a conductive polymer. Further, when the electrode substrate of the present invention has a structure in which a catalyst layer such as a conductive polymer is coated along a three-dimensional structure of a porous film having a wide specific surface area, the electrode substrate further functions as a catalyst. Has a large specific surface area. As a result, the reduction ability of the catalyst determined by “catalytic activity” × “specific surface area of the catalyst layer” can be improved, and the power generation efficiency of the dye-sensitized solar cell using the electrode substrate of the present invention can be improved. be able to.
In the electrode substrate of the present invention, the electrical contact portion between the conductive substrate and the porous membrane and the electrical contact portion between the porous membrane and the coating of the catalyst layer such as the conductive polymer are homogeneous and reliable. Therefore, it is excellent in conductivity. As a result, the power generation efficiency of the dye-sensitized solar cell using the electrode substrate of the present invention can be improved.
Furthermore, in the electrode substrate of the present invention, since the three-dimensional structure of the porous film formed on the conductive substrate functions as a support member for the coating of the catalyst layer such as a conductive polymer, The structural strength is improved (as compared to a film of a functional polymer alone (a catalyst layer alone)). As a result, the production yield in the case of producing a dye-sensitized solar cell using the electrode substrate of the present invention can be improved, and the use environment of the dye-sensitized solar cell is an environment in which an external force is applied to the counter electrode. In this case, the dye-sensitized solar cell can be given excellent durability.
 本発明の色素増感太陽電池は、本発明の電極基板を用いているため、発電効率に優れるとともに、対向電極に外力が加わる使用環境においても優れた耐久性を発揮する。 Since the dye-sensitized solar cell of the present invention uses the electrode substrate of the present invention, the dye-sensitized solar cell is excellent in power generation efficiency and exhibits excellent durability even in a use environment in which an external force is applied to the counter electrode.
従来の対向電極の断面模式図である。It is a cross-sectional schematic diagram of a conventional counter electrode. 第一実施形態の電極基板(対向電極)の断面模式図である。It is a cross-sectional schematic diagram of the electrode substrate (counter electrode) of the first embodiment. 第二実施形態の色素増感太陽電池の断面模式図である。It is a cross-sectional schematic diagram of the dye-sensitized solar cell of 2nd embodiment. 実施例9の対向電極の表面を観察したSEM画像である。10 is an SEM image obtained by observing the surface of the counter electrode of Example 9. 実施例9の対向電極の表面にPEDOTをコーティングする前の多孔質膜の表面を観察したSEM画像である。10 is an SEM image obtained by observing the surface of the porous film before coating PEDOT on the surface of the counter electrode of Example 9. 実施例9の対向電極の断面を観察したSEM画像である。10 is an SEM image obtained by observing a cross section of a counter electrode of Example 9. 図4Cの断面の拡大画像である。4D is an enlarged image of the cross section of FIG. 4C. 実施例10の対向電極の表面を観察したSEM画像である。10 is an SEM image obtained by observing the surface of the counter electrode of Example 10. 実施例10の対向電極の表面にPEDOTをコーティングする前の多孔質膜の表面を観察したSEM画像である。10 is an SEM image obtained by observing the surface of the porous film before coating PEDOT on the surface of the counter electrode of Example 10. 実施例7の対向電極の表面を観察したSEM画像である。10 is an SEM image obtained by observing the surface of the counter electrode of Example 7. 実施例7の対向電極の表面にPEDOTをコーティングする前の多孔質膜の表面を観察したSEM画像である。6 is an SEM image obtained by observing the surface of a porous film before coating PEDOT on the surface of the counter electrode of Example 7. 実施例8の対向電極の表面を観察したSEM画像である。10 is an SEM image obtained by observing the surface of the counter electrode of Example 8. 実施例8の対向電極の表面にPEDOTをコーティングする前の多孔質膜の表面を観察したSEM画像である。10 is an SEM image obtained by observing the surface of the porous film before coating PEDOT on the surface of the counter electrode of Example 8. 比較例6の対向電極の表面を観察したSEM画像である。10 is an SEM image obtained by observing the surface of the counter electrode of Comparative Example 6. 比較例7の対向電極の表面を観察したSEM画像である。10 is an SEM image obtained by observing the surface of the counter electrode of Comparative Example 7. 比較例11の対向電極の表面を観察したSEM画像である。14 is an SEM image obtained by observing the surface of a counter electrode of Comparative Example 11.
 以下、好適な実施の形態に基づき、図面を参照して本発明を説明するが、本発明はかかる実施形態に限定されない。
《電極基板》
 本発明の第一実施形態の電極基板は、図2に示すように、導電性基板1上に製膜された多孔質膜2を備える。多孔質膜2は、外部に面した表面だけでなく、膜内部にも三次元的に、外部に連通した孔を有する。多孔質膜2は、単一の独立した孔(単一孔)が複数連結した連胞構造を含むことが好ましい。多孔質膜2においては、連胞構造の個数(存在割合)が、単一孔の個数(存在割合)より大きいことが好ましい。
連胞構造を有する多孔質膜2には、電解液に含まれる酸化還元対が表面から内部まで十分に浸透できるため好ましい。さらに、連胞構造を有する多孔質膜2においては、多孔質膜の表面と電解液とが接触する面積(電気化学反応が起こる表面積)が多くなり、この結果として、還元反応がより効率的に進む利点がある。
多孔質膜2の表面には導電性高分子等の触媒層3がコーティング(被覆)されている。ここで、多孔質膜2の表面には、外部と連通する内部の多孔質構造の表面も含まれる。また、多孔質膜2の前記連胞構造によって構成される三次元の多孔質膜構造に沿って、触媒層3がコーティングされていることが好ましい。このように三次元の多孔質構造の表面(内壁面)に触媒層3がコーティングされることによって、触媒層3の触媒活性に寄与する比表面積が従来よりも格段に大きくなる。
第一実施形態の電極基板においては、多孔質膜2は、三次元的に連通した構造をとっている為、多孔質膜内部の電気抵抗が低減され、電気伝導性に優れる。また、導電性基板1を構成する導電性膜1aに多孔質膜2の下面全体が直に接しているため、導電性基板1と多孔質膜2との電気的接触部分は均質に且つ確実に形成されている。また、多孔質膜2が導電性基板1と接していない領域の殆ど全体において、多孔質膜2と導電性高分子3(触媒層3)のコーティング層とが接しているため、多孔質膜2と導電性高分子3(触媒層3)との電気的接触部分が均質に且つ確実に形成されている。このように、電気的接触部分が均質に且つ確実に形成されているため、第一実施形態の電極基板の導電性は優れる。
Hereinafter, the present invention will be described with reference to the drawings based on preferred embodiments, but the present invention is not limited to such embodiments.
<Electrode substrate>
The electrode substrate of the first embodiment of the present invention includes a porous film 2 formed on a conductive substrate 1 as shown in FIG. The porous membrane 2 has pores communicating with the outside in a three-dimensional manner, not only on the surface facing the outside, but also inside the membrane. It is preferable that the porous membrane 2 includes a continuous cell structure in which a plurality of single independent holes (single holes) are connected. In the porous membrane 2, it is preferable that the number (existence ratio) of the cell structure is larger than the number (existence ratio) of the single pores.
The porous membrane 2 having a continuous cell structure is preferable because the redox couple contained in the electrolytic solution can permeate sufficiently from the surface to the inside. Furthermore, in the porous membrane 2 having a continuous cell structure, an area where the surface of the porous membrane and the electrolyte solution contact (surface area where an electrochemical reaction occurs) increases, and as a result, the reduction reaction is more efficiently performed. There is an advantage to go.
The surface of the porous membrane 2 is coated with a catalyst layer 3 such as a conductive polymer. Here, the surface of the porous membrane 2 includes the surface of the internal porous structure communicating with the outside. Moreover, it is preferable that the catalyst layer 3 is coated along a three-dimensional porous membrane structure constituted by the above-mentioned streak structure of the porous membrane 2. By coating the catalyst layer 3 on the surface (inner wall surface) of the three-dimensional porous structure in this way, the specific surface area contributing to the catalyst activity of the catalyst layer 3 becomes much larger than before.
In the electrode substrate of the first embodiment, since the porous film 2 has a three-dimensionally connected structure, the electric resistance inside the porous film is reduced and the electric conductivity is excellent. In addition, since the entire lower surface of the porous film 2 is in direct contact with the conductive film 1a constituting the conductive substrate 1, the electrical contact portion between the conductive substrate 1 and the porous film 2 is homogeneous and reliable. Is formed. Further, since the porous film 2 and the coating layer of the conductive polymer 3 (catalyst layer 3) are in contact with each other in almost the entire region where the porous film 2 is not in contact with the conductive substrate 1, the porous film 2 The electrical contact portion between the conductive polymer 3 and the conductive polymer 3 (catalyst layer 3) is uniformly and reliably formed. Thus, since the electrical contact portion is uniformly and reliably formed, the conductivity of the electrode substrate of the first embodiment is excellent.
 (導電性基板)
導電性基板1は、導電性を付与する導電性膜1a及び基板1bによって構成されている。
前記導電性膜の種類は特に制限されず、例えば透明導電膜や金属膜が適用可能である。
前記透明導電膜の種類は特に制限されず、従来公知の色素増感太陽電池に使用される透明導電膜が適用可能であり、例えば金属酸化物で構成される薄膜が挙げられる。
(Conductive substrate)
The conductive substrate 1 includes a conductive film 1a that imparts conductivity and a substrate 1b.
The kind in particular of the said conductive film is not restrict | limited, For example, a transparent conductive film and a metal film are applicable.
The kind in particular of the said transparent conductive film is not restrict | limited, The transparent conductive film used for a conventionally well-known dye-sensitized solar cell is applicable, For example, the thin film comprised with a metal oxide is mentioned.
前記金属酸化物としては、スズドープ酸化インジウム(ITO)、フッ素ドープ酸化スズ(FTO)、アンチモンドープ酸化スズ(ATO)、インジウムドープ酸化亜鉛(IZO)、ガリウムドープ酸化亜鉛(GZO)、アルミドープ酸化亜鉛(AZO)、酸化亜鉛、酸化スズ等が挙げられる。これらの中でも、比抵抗が小さく電気伝導率が高いITO、並びに、耐熱性および耐候性に優れたFTOが特に好ましい。
前記金属膜としては、金(Au)、白金(Pt)、銀(Ag)、銅(Cu)、クロム(Cr)、タングステン(W)、アルミニウム(Al)、マグネシウム(Mg)、チタン(Ti)、ニッケル(Ni)、マンガン(Mn)、亜鉛(Zn)、鉄(Fe)及び、その合金等が挙げられるが、電気伝導率、耐候性に優れたAu、Pt、Cr、Ti、Niが特に好ましい。
Examples of the metal oxide include tin-doped indium oxide (ITO), fluorine-doped tin oxide (FTO), antimony-doped tin oxide (ATO), indium-doped zinc oxide (IZO), gallium-doped zinc oxide (GZO), and aluminum-doped zinc oxide. (AZO), zinc oxide, tin oxide and the like. Among these, ITO with low specific resistance and high electrical conductivity and FTO excellent in heat resistance and weather resistance are particularly preferable.
Examples of the metal film include gold (Au), platinum (Pt), silver (Ag), copper (Cu), chromium (Cr), tungsten (W), aluminum (Al), magnesium (Mg), and titanium (Ti). , Nickel (Ni), manganese (Mn), zinc (Zn), iron (Fe), and alloys thereof, and the like, Au, Pt, Cr, Ti, Ni excellent in electrical conductivity and weather resistance are particularly preferable. preferable.
基板1bの種類は、前記導電性膜又は金属膜を表面に形成可能であれば特に制限されない。例えば、ガラス基板、金属基板、樹脂基板等が挙げられる。 The type of the substrate 1b is not particularly limited as long as the conductive film or the metal film can be formed on the surface. For example, a glass substrate, a metal substrate, a resin substrate, etc. are mentioned.
第一実施形態の導電性基板1は、その基板表面が導電性を有すればよいので、必ずしも前記導電性膜を備えている必要は無い。導電性基板1として、例えば、金属製の基板、導電性樹脂製の基板が挙げられる。また、第一実施形態の電極基板を構成する導電性基板1には、可撓性を有する導電性フィルムや導電性シートが含まれる。導電性フィルムや導電性シートを導電性基板1として用いる場合は、導電性基板1を導電性基材と読み換えることができる。 The conductive substrate 1 of the first embodiment is not necessarily provided with the conductive film because the substrate surface only needs to have conductivity. Examples of the conductive substrate 1 include a metal substrate and a conductive resin substrate. Moreover, the conductive substrate 1 which comprises the electrode substrate of 1st embodiment contains the conductive film and conductive sheet which have flexibility. When a conductive film or a conductive sheet is used as the conductive substrate 1, the conductive substrate 1 can be read as a conductive base material.
 (多孔質膜)
第一実施形態の多孔質膜2は、三次元の多孔質構造を有する膜(層)であり、その構造は微粒子2aが接合した構造や、相分離構造を利用して形成された単一構造や、ナノメッシュを積層させた構造等が挙げられる。
微粒子2aを構成する材料は導電性又は半導体特性を有する限り特に制限されないが、構造的強度が高い多孔質膜を得る観点から、チタンや白金、金、銀、銅、アルミ、コバルト、鉄、マグネシウム、ニッケル、亜鉛等の金属や、酸化チタンや酸化スズ、酸化亜鉛、酸化ガリウム、酸化インジウム、酸化アルミニウム、酸化クロム、酸化コバルト、酸化銅、酸化鉄、炭化チタン、炭化バナジウム、炭化タングステン、窒化チタン、窒化バナジウム等の金属化合物や、カーボンブラックやカーボンナノチューブ、カーボンファイバー、活性炭、グラファイト等の炭素材料などが好ましい。
その中でも低コスト及び大量生産の観点から、金属酸化物を含む金属化合物、又は炭素材料からなる微粒子を用いることが好ましい。前記微粒子を構成する材料としては、酸化チタン、酸化スズ、酸化亜鉛、カーボンブラックが特に好ましい。
(Porous membrane)
The porous membrane 2 of the first embodiment is a membrane (layer) having a three-dimensional porous structure, and the structure is a single structure formed by using a structure in which fine particles 2a are joined or a phase separation structure. And a structure in which nano meshes are laminated.
The material constituting the fine particles 2a is not particularly limited as long as it has conductivity or semiconductor characteristics, but from the viewpoint of obtaining a porous film having high structural strength, titanium, platinum, gold, silver, copper, aluminum, cobalt, iron, magnesium Metals such as nickel, zinc, titanium oxide, tin oxide, zinc oxide, gallium oxide, indium oxide, aluminum oxide, chromium oxide, cobalt oxide, copper oxide, iron oxide, titanium carbide, vanadium carbide, tungsten carbide, titanium nitride Metal compounds such as vanadium nitride, and carbon materials such as carbon black, carbon nanotubes, carbon fibers, activated carbon, and graphite are preferable.
Among these, from the viewpoint of low cost and mass production, it is preferable to use fine particles made of a metal compound containing a metal oxide or a carbon material. As the material constituting the fine particles, titanium oxide, tin oxide, zinc oxide, and carbon black are particularly preferable.
微粒子2aの形状は特に限定されず、球状、針状、繊維状、俵状、ウニ状の微粒子が挙げられる。
球状微粒子の一次粒子径は、前記微粒子を導電性基板1の上に製膜する方法によって好適な範囲が異なる場合があるが、通常は、1nm~500μmが好ましく、1nm~250μmがより好ましく、5nm~100μmが更に好ましく、10nm~10μmが特に好ましく、10nm~1μmが最も好ましい。なお、前記微粒子の一次粒子径を求める方法としては、例えばレーザー回折式粒度分布測定装置の測定により得られた体積平均径の分布のピーク値として決定する方法やSEM観察によって複数の微粒子の長径を測定して平均する方法が挙げられる。前記微粒子の一次粒子径は前記SEM観察によって測定することが好ましい。
The shape of the fine particles 2a is not particularly limited, and examples thereof include spherical, needle-like, fiber-like, bowl-like and sea urchin-like fine particles.
The primary particle size of the spherical fine particles may vary in a suitable range depending on the method of forming the fine particles on the conductive substrate 1, but is usually preferably 1 nm to 500 μm, more preferably 1 nm to 250 μm, and more preferably 5 nm. Is more preferably from 100 to 100 μm, particularly preferably from 10 to 10 μm, most preferably from 10 to 1 μm. In addition, as a method for obtaining the primary particle diameter of the fine particles, for example, a method of determining the peak value of the volume average diameter distribution obtained by measurement with a laser diffraction particle size distribution measuring device or the long diameters of a plurality of fine particles by SEM observation. The method of measuring and averaging is mentioned. The primary particle diameter of the fine particles is preferably measured by the SEM observation.
針状、繊維状、俵状微粒子の一次粒子径は、前記粒子を導電性基板1の上に製膜する方法によって好適な範囲が異なる場合があるが、通常は、長軸方向において、1nm~500μmが好ましく、1nm~250μmがより好ましく、5nm~100μmが更に好ましく、10nm~10μmが特に好ましく、10nm~5μmが最も好ましい。短軸方向においては1nm~500μmが好ましく、1nm~250μmがより好ましく、5nm~100μmが更に好ましく、10nm~10μmが特に好ましく、10nm~1μmが最も好ましい。 The primary particle diameter of the acicular, fibrous, or bowl-shaped fine particles may vary in a suitable range depending on the method of forming the particles on the conductive substrate 1, but is usually 1 nm to 500 μm is preferable, 1 nm to 250 μm is more preferable, 5 nm to 100 μm is still more preferable, 10 nm to 10 μm is particularly preferable, and 10 nm to 5 μm is most preferable. In the minor axis direction, 1 nm to 500 μm is preferable, 1 nm to 250 μm is more preferable, 5 nm to 100 μm is further preferable, 10 nm to 10 μm is particularly preferable, and 10 nm to 1 μm is most preferable.
多孔質膜2を構成する微粒子は、1種類が単独で使用されてもよいし、2種以上が併用されてもよい。 One type of fine particles constituting the porous membrane 2 may be used alone, or two or more types may be used in combination.
多孔質膜2の厚みは特に制限されず、例えば0.1μm~100μmの範囲で、構造的強度を考慮しつつ適宜調整される。微粒子の材料にもよるが、導電性を高める観点から、多孔質膜2の厚みは0.1μm~10μmが好ましい。 The thickness of the porous membrane 2 is not particularly limited, and is appropriately adjusted in consideration of the structural strength, for example, in the range of 0.1 μm to 100 μm. Although depending on the material of the fine particles, the thickness of the porous film 2 is preferably 0.1 μm to 10 μm from the viewpoint of enhancing the conductivity.
多孔質膜2の空孔率(空隙率)は、比表面積を高めるためには大きいほど好ましいが、空孔率が大き過ぎると多孔質膜2の構造的強度が弱まる可能性がある。これを考慮して、多孔質膜2の空孔率は50~80%が好ましい。前記空孔率(空隙率)は、例えばガス吸着法や水銀圧入法等の公知の方法によって測定可能である。 The porosity (porosity) of the porous membrane 2 is preferably as large as possible to increase the specific surface area. However, if the porosity is too large, the structural strength of the porous membrane 2 may be weakened. Considering this, the porosity of the porous membrane 2 is preferably 50 to 80%. The porosity (porosity) can be measured by a known method such as a gas adsorption method or a mercury intrusion method.
ここで、触媒層3がコーティングされた状態の多孔質膜2の比表面積は、ガス吸着法により測定した場合、0.1m/g以上であることが好ましく、1m/g以上であることがより好ましく、3m/g以上であることが更に好ましい。3m/g以上であることにより、コーティングされた触媒層3と電解質との接触効率が向上し、電解質を効率よく還元することができる。すなわち、触媒効率を一層向上させることができる。また、前記比表面積の上限値は特に制限されないが、例えば300m/gを上限値の目安とすることができる。 Here, the specific surface area of the porous membrane 2 coated with the catalyst layer 3 is preferably 0.1 m 2 / g or more, when measured by a gas adsorption method, and is 1 m 2 / g or more. Is more preferable, and it is still more preferable that it is 3 m < 2 > / g or more. By being 3 m 2 / g or more, the contact efficiency between the coated catalyst layer 3 and the electrolyte is improved, and the electrolyte can be efficiently reduced. That is, the catalyst efficiency can be further improved. The upper limit value of the specific surface area is not particularly limited, but for example, 300 m 2 / g can be used as a guide for the upper limit value.
 第一実施形態の電極基板を構成する多孔質膜2を導電性基板1に製膜する方法は、適当な空隙率を有する多孔質膜を製膜できる方法であれば特に制限されず、従来公知の製膜方法を適用できる。例えば導電性又は半導体特性を有する微粒子2a及び公知のバインダー樹脂を含むペーストを導電性基板1上に塗工し、更に焼成することにより製膜できる。ここで、微粒子2aとしては、例えば導電性微粒子又は金属酸化物微粒子が挙げられる。
 また、導電性又は半導体特性を有する微粒子2aを搬送ガスにより導電性基板1上に吹き付けることにより、導電性又は半導体特性を有する微粒子2aと導電性基板1とが接合し、導電性又は半導体特性を有する微粒子2a同士が接合された多孔質膜が得られる。導電性又は半導体特性を有する微粒子2aを吹き付けて多孔質膜2を形成する方法として、例えばエアロゾルデポジション法(AD法)が挙げられる。
The method for forming the porous film 2 constituting the electrode substrate of the first embodiment on the conductive substrate 1 is not particularly limited as long as it is a method capable of forming a porous film having an appropriate porosity. The film forming method can be applied. For example, the film can be formed by applying a paste containing fine particles 2a having conductivity or semiconductor characteristics and a known binder resin on the conductive substrate 1, and further baking. Here, examples of the fine particles 2a include conductive fine particles and metal oxide fine particles.
In addition, the fine particles 2a having conductivity or semiconductor characteristics are sprayed onto the conductive substrate 1 with a carrier gas, whereby the fine particles 2a having conductivity or semiconductor characteristics and the conductive substrate 1 are joined, and the conductivity or semiconductor characteristics are improved. A porous film is obtained in which the fine particles 2a are joined. Examples of a method for forming the porous film 2 by spraying the fine particles 2a having conductivity or semiconductor characteristics include an aerosol deposition method (AD method).
 (触媒層)
第一実施形態の電極基板において、多孔質膜2の三次元構造に沿ってコーティングされる触媒層3を構成する材料としては、公知の電解質を構成する酸化還元対を還元することが可能な導電性物質であれば特に制限されない。具体的には、例えば、後述する導電性高分子の他、白金;導電性炭素材料;炭化チタンTiC、窒化チタンTiN等のチタン化合物;酸化バナジウムV、窒化バナジウムVN等のバナジウム化合物;等が挙げられる。
触媒層3を構成する材料は、1種だけであってもよいし、2種以上であってもよい。
(Catalyst layer)
In the electrode substrate of the first embodiment, the material constituting the catalyst layer 3 coated along the three-dimensional structure of the porous membrane 2 is a conductive material capable of reducing a redox couple constituting a known electrolyte. There is no particular limitation as long as it is a substance. Specifically, for example, platinum; conductive carbon material; titanium compounds such as titanium carbide TiC and titanium nitride TiN; vanadium compounds such as vanadium oxide V 2 O 3 and vanadium nitride VN; Etc.
The material constituting the catalyst layer 3 may be only one type or two or more types.
白金等の触媒活性を有する金属によって触媒層3を形成する方法は、多孔質膜2の三次元構造の表面に沿って白金の層を形成可能な方法であれば特に制限されない。具体例として、多孔質膜2及び導電性基板1の導電性を利用した電解めっき法、無電解めっき法等が挙げられる。 The method for forming the catalyst layer 3 with a metal having catalytic activity such as platinum is not particularly limited as long as it is a method capable of forming a platinum layer along the surface of the three-dimensional structure of the porous membrane 2. Specific examples include an electrolytic plating method and an electroless plating method using the conductivity of the porous film 2 and the conductive substrate 1.
多孔質膜2にコーティングされた触媒層3の厚みの下限値は、触媒層3の材料によって変わり得るが、通常、0.01nm以上であることが好ましく、0.1nm以上であることがより好ましく、1nm以上であることが更に好ましい。0.01nm以上であることにより、触媒活性を充分に得ることができる。触媒層3の厚みの上限値は特に制限されないが、多孔質膜2の多孔質構造を完全に埋めてしまう程の厚み未満であることが好ましく、具体的には1000nm以下であることがより好ましい。
ここで例示した触媒層3の厚みは、多孔質膜2が外部に面する表面(外表面)(即ち、多孔質膜2を上方から見たときに認識される表面)の上に形成された触媒層3の厚みをいう。この外表面上に形成された触媒層3の厚みを調べる方法としては、触媒層3が形成された多孔質膜2の断面を電子顕微鏡で観察する方法が好ましい。
The lower limit of the thickness of the catalyst layer 3 coated on the porous membrane 2 can vary depending on the material of the catalyst layer 3, but is usually preferably 0.01 nm or more, more preferably 0.1 nm or more. More preferably, it is 1 nm or more. When the thickness is 0.01 nm or more, sufficient catalytic activity can be obtained. The upper limit value of the thickness of the catalyst layer 3 is not particularly limited, but is preferably less than a thickness that completely fills the porous structure of the porous membrane 2, and more preferably 1000 nm or less. .
The thickness of the catalyst layer 3 exemplified here is formed on the surface (outer surface) of the porous membrane 2 facing the outside (that is, the surface recognized when the porous membrane 2 is viewed from above). The thickness of the catalyst layer 3 is said. As a method of examining the thickness of the catalyst layer 3 formed on the outer surface, a method of observing a cross section of the porous film 2 on which the catalyst layer 3 is formed with an electron microscope is preferable.
以下では、触媒層3を構成する材料として導電性高分子を使用した場合を説明する。 Below, the case where a conductive polymer is used as a material which comprises the catalyst layer 3 is demonstrated.
 (導電性高分子)
 第一実施形態の電極基板において、多孔質膜2が導電性高分子3(触媒層3)でコーティングされることによって触媒層が構成される。前記コーティングにより、多孔質膜2の表面に導電性高分子3の層が形成される。
 前記導電性高分子の種類は特に制限されず、従来公知の導電性高分子が適用可能であり、例えば下記一般式(1)で表されるチオフェン化合物が重合した導電性高分子が挙げられる。
(Conductive polymer)
In the electrode substrate of the first embodiment, the catalyst layer is formed by coating the porous film 2 with the conductive polymer 3 (catalyst layer 3). By the coating, a layer of the conductive polymer 3 is formed on the surface of the porous membrane 2.
The kind in particular of said conductive polymer is not restrict | limited, A conventionally well-known conductive polymer is applicable, For example, the conductive polymer which the thiophene compound represented by following General formula (1) superposed | polymerized is mentioned.
Figure JPOXMLDOC01-appb-C000007
[式中、R及びRは、それぞれ独立に水素原子、炭素原子数1~8のアルキル基、炭素原子数1~4のアルコキシ基、炭素原子数6又は8のアリール基、カルボキシル基、エステル基、アルデヒド基、水酸基、ハロゲン原子、シアノ基、アミノ基、ニトロ基、アゾ基、スルホ基、スルホニル基のいずれかを表す。R及びRが前記アルキル基又はアルコキシ基である場合、前記アルキル基又はアルコキシ基の末端の炭素原子同士が結合して環を形成していてもよい。]
Figure JPOXMLDOC01-appb-C000007
[Wherein R 1 and R 2 are each independently a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, an aryl group having 6 or 8 carbon atoms, a carboxyl group, It represents any of an ester group, an aldehyde group, a hydroxyl group, a halogen atom, a cyano group, an amino group, a nitro group, an azo group, a sulfo group, and a sulfonyl group. When R 1 and R 2 are the alkyl group or alkoxy group, the carbon atoms at the terminals of the alkyl group or alkoxy group may be bonded to form a ring. ]
 前記アルキル基は直鎖状又は分岐鎖状アルキル基であることが好ましく、直鎖状アルキル基であることがより好ましい。
 前記アルキル基の炭素原子数は1~8が好ましく、1~5がより好ましく、1~3が更に好ましい。
The alkyl group is preferably a linear or branched alkyl group, and more preferably a linear alkyl group.
The alkyl group preferably has 1 to 8 carbon atoms, more preferably 1 to 5, and still more preferably 1 to 3.
 前記アルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基が好ましく、メトキシ基又はエトキシ基がより好ましい。
 前記アリール基としては、フェニル基、ベンジル基、トリル基、ナフチル基等が挙げられる。
 前記ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。
As said alkoxy group, a methoxy group, an ethoxy group, a propoxy group, and a butoxy group are preferable, and a methoxy group or an ethoxy group is more preferable.
Examples of the aryl group include a phenyl group, a benzyl group, a tolyl group, and a naphthyl group.
Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
 R及びRが前記アルキル基又はアルコキシ基である場合、前記アルキル基又はアルコキシ基の末端の炭素原子に結合している1つの水素原子を除いて、前記アルキル基又はアルコキシ基の末端の炭素原子同士が結合して環を形成してもよい。 When R 1 and R 2 are the alkyl group or alkoxy group, the carbon at the terminal of the alkyl group or alkoxy group is excluded except for one hydrogen atom bonded to the carbon atom at the terminal of the alkyl group or alkoxy group. Atoms may combine to form a ring.
 前記一般式(1)で表されるチオフェン化合物の具体例として、下記式(1-1)~(1-4)で表される化合物が挙げられる。 Specific examples of the thiophene compound represented by the general formula (1) include compounds represented by the following formulas (1-1) to (1-4).
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 また、前記導電性高分子として、例えば下記一般式(2)で表されるピロール化合物が重合した導電性高分子が挙げられる。 In addition, examples of the conductive polymer include a conductive polymer obtained by polymerizing a pyrrole compound represented by the following general formula (2).
Figure JPOXMLDOC01-appb-C000009
[式中、R及びRは、それぞれ独立に水素原子、炭素原子数1~8のアルキル基、炭素原子数1~4のアルコキシ基、炭素原子数6又は8のアリール基、カルボキシル基、エステル基、アルデヒド基、水酸基、ハロゲン原子、シアノ基、アミノ基、ニトロ基、アゾ基、スルホ基、スルホニル基のいずれかを表す。R及びRが前記アルキル基又はアルコキシ基である場合、前記アルキル基又はアルコキシ基の末端の炭素原子同士が結合して環を形成していてもよい。]
Figure JPOXMLDOC01-appb-C000009
[Wherein R 3 and R 4 each independently represents a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, an aryl group having 6 or 8 carbon atoms, a carboxyl group, It represents any of an ester group, an aldehyde group, a hydroxyl group, a halogen atom, a cyano group, an amino group, a nitro group, an azo group, a sulfo group, and a sulfonyl group. When R 3 and R 4 are the alkyl group or alkoxy group, carbon atoms at the terminals of the alkyl group or alkoxy group may be bonded to form a ring. ]
 前記アルキル基は直鎖状又は分岐鎖状アルキル基であることが好ましく、直鎖状アルキル基であることがより好ましい。
 前記アルキル基の炭素原子数は1~8が好ましく、1~5がより好ましく、1~3が更に好ましい。
The alkyl group is preferably a linear or branched alkyl group, and more preferably a linear alkyl group.
The alkyl group preferably has 1 to 8 carbon atoms, more preferably 1 to 5, and still more preferably 1 to 3.
 前記アルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基が好ましく、メトキシ基又はエトキシ基がより好ましい。
 前記アリール基としては、フェニル基、ベンジル基、トリル基、ナフチル基等が挙げられる。
 前記ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。
As said alkoxy group, a methoxy group, an ethoxy group, a propoxy group, and a butoxy group are preferable, and a methoxy group or an ethoxy group is more preferable.
Examples of the aryl group include a phenyl group, a benzyl group, a tolyl group, and a naphthyl group.
Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
 R及びRが前記アルキル基又はアルコキシ基である場合、前記アルキル基又はアルコキシ基の末端の炭素原子に結合している1つの水素原子を除いて、前記アルキル基又はアルコキシ基の末端の炭素原子同士が結合して環を形成してもよい。 When R 3 and R 4 are the alkyl group or alkoxy group, the carbon at the terminal of the alkyl group or alkoxy group is excluded except for one hydrogen atom bonded to the carbon atom at the terminal of the alkyl group or alkoxy group. Atoms may combine to form a ring.
 前記一般式(2)で表されるピロール化合物の具体例として、下記式(2-1)~(2-4)で表される化合物が挙げられる。 Specific examples of the pyrrole compound represented by the general formula (2) include compounds represented by the following formulas (2-1) to (2-4).
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 また、前記導電性高分子として、例えば下記一般式(3)で表されるアニリン化合物が重合した導電性高分子が挙げられる。 Further, examples of the conductive polymer include a conductive polymer obtained by polymerizing an aniline compound represented by the following general formula (3).
Figure JPOXMLDOC01-appb-C000011
[式中、R~Rは、それぞれ独立に水素原子、炭素原子数1~8のアルキル基、炭素原子数1~4のアルコキシ基、炭素原子数6又は8のアリール基、カルボキシル基、エステル基、アルデヒド基、水酸基、ハロゲン原子、シアノ基、アミノ基、ニトロ基、アゾ基、スルホ基、スルホニル基のいずれかを表す。R及びR、或いは、R及びRが前記アルキル基又はアルコキシ基である場合、前記アルキル基又はアルコキシ基の末端の炭素原子同士が結合して環を形成していてもよい。]
Figure JPOXMLDOC01-appb-C000011
[Wherein R 5 to R 8 are each independently a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, an aryl group having 6 or 8 carbon atoms, a carboxyl group, It represents any of an ester group, an aldehyde group, a hydroxyl group, a halogen atom, a cyano group, an amino group, a nitro group, an azo group, a sulfo group, and a sulfonyl group. When R 5 and R 6 , or R 7 and R 8 are the alkyl group or alkoxy group, carbon atoms at the terminals of the alkyl group or alkoxy group may be bonded to form a ring. ]
 前記アルキル基は直鎖状又は分岐鎖状アルキル基であることが好ましく、直鎖状アルキル基であることがより好ましい。
 前記アルキル基の炭素原子数は1~8が好ましく、1~5がより好ましく、1~3が更に好ましい。
The alkyl group is preferably a linear or branched alkyl group, and more preferably a linear alkyl group.
The alkyl group preferably has 1 to 8 carbon atoms, more preferably 1 to 5, and still more preferably 1 to 3.
 前記アルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基が好ましく、メトキシ基又はエトキシ基がより好ましい。
 前記アリール基としては、フェニル基、ベンジル基、トリル基、ナフチル基等が挙げられる。
 前記ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。
As said alkoxy group, a methoxy group, an ethoxy group, a propoxy group, and a butoxy group are preferable, and a methoxy group or an ethoxy group is more preferable.
Examples of the aryl group include a phenyl group, a benzyl group, a tolyl group, and a naphthyl group.
Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
 R~Rが前記アルキル基又はアルコキシ基である場合、前記アルキル基又はアルコキシ基の末端の炭素原子に結合している1つの水素原子を除いて、前記アルキル基又はアルコキシ基の末端の炭素原子同士が結合して環を形成してもよい。 When R 5 to R 8 are the alkyl group or alkoxy group, the carbon atom at the terminal of the alkyl group or alkoxy group is removed except for one hydrogen atom bonded to the carbon atom at the terminal of the alkyl group or alkoxy group. Atoms may combine to form a ring.
前記一般式(3)で表されるアニリン化合物の具体例として、下記式(3-1)~(3-4)で表される化合物が挙げられる。 Specific examples of the aniline compound represented by the general formula (3) include compounds represented by the following formulas (3-1) to (3-4).
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 第一実施形態の電極基板を構成する多孔質膜2に導電性高分子をコーティングする方法は特に制限されず、例えば下記(a)~(d)の方法が挙げられる。
(a)導電性高分子を構成する未重合のモノマーを含む溶液中に多孔質膜を浸漬し、前記多孔質膜を作用極として、前記モノマーの電解重合を行い、前記多孔質膜上で導電性高分子を合成することによりコーティングする。
(b)予め重合した導電性高分子を含む溶液を多孔質膜に塗布し、溶媒を揮発させることによりコーティングする。
(c)予め重合した導電性高分子と他の公知のバインダー樹脂を含む混合物を多孔質膜に塗布し、前記混合物を固化させることによりコーティングする。
(d)導電性高分子を構成する未重合のモノマーを含む溶液中に多孔質膜を浸漬し、前記溶液中に公知の酸化剤(例えば塩化鉄など)を添加することで、多孔質膜上で導電性高分子を合成することによりコーティングする。
The method for coating the porous polymer 2 constituting the electrode substrate of the first embodiment with a conductive polymer is not particularly limited, and examples thereof include the following methods (a) to (d).
(A) A porous film is immersed in a solution containing an unpolymerized monomer constituting a conductive polymer, and the monomer is subjected to electrolytic polymerization using the porous film as a working electrode, and conductive on the porous film. Coating is performed by synthesizing a functional polymer.
(B) A solution containing a prepolymerized conductive polymer is applied to the porous film, and the solvent is volatilized to coat.
(C) A mixture containing a prepolymerized conductive polymer and another known binder resin is applied to the porous film, and the mixture is solidified to be coated.
(D) The porous membrane is immersed in a solution containing unpolymerized monomers constituting the conductive polymer, and a known oxidizing agent (for example, iron chloride) is added to the solution to Coating is performed by synthesizing a conductive polymer.
 上記(a)~(c)の方法のうち、(a)又は(b)の方法が好ましく、(a)の方法がより好ましい。(c)の方法は、バインダー樹脂が多孔質膜上に残るため、導電性高分子と多孔質膜との電気的接触が弱められる恐れがある。(d)の方法は、導電性高分子が過重合される可能性があり、その結果多孔質膜の内部の空孔を埋めてしまう恐れがある。一方、(a)及び(b)の方法は、多孔質膜と導電性高分子が直に接するため、両者の電気的接触が充分に得られる。更に、(a)の方法によれば、多孔質膜の内部の空孔(多孔質構造)(即ち、多孔質膜の三次元構造の内部)においても重合反応が起きるため、空孔を構成する内壁面に対しても導電性高分子を充分にコーティングすることができる。故に、(a)の方法がより好ましい。 Of the above methods (a) to (c), the method (a) or (b) is preferable, and the method (a) is more preferable. In the method (c), since the binder resin remains on the porous film, the electrical contact between the conductive polymer and the porous film may be weakened. In the method (d), there is a possibility that the conductive polymer is overpolymerized, and as a result, there is a risk of filling the pores inside the porous film. On the other hand, in the methods (a) and (b), the porous membrane and the conductive polymer are in direct contact with each other, so that sufficient electrical contact between them can be obtained. Furthermore, according to the method (a), since the polymerization reaction occurs also in the pores (porous structure) inside the porous membrane (that is, inside the three-dimensional structure of the porous membrane), the pores are formed. The inner wall surface can be sufficiently coated with the conductive polymer. Therefore, the method (a) is more preferable.
 多孔質膜2をコーティングする導電性高分子のモル濃度は、触媒としての還元能力を高める観点から、0.00001~1mol/cmが好ましく、0.0001~0.1mol/cmがより好ましく、0.001~0.01mol/cmがさらに好ましい。 Molar concentration of the conductive polymer coating the porous membrane 2, from the viewpoint of enhancing the reducibility of the catalyst is preferably 0.00001 ~ 1mol / cm 3, more preferably 0.0001 ~ 0.1mol / cm 3 0.001 to 0.01 mol / cm 3 is more preferable.
 第一実施形態の電極基板においては、触媒として機能する領域(触媒層)の比表面積が増大し、導電性及び構造的強度が向上しているため、前記電極基板を色素増感太陽電池の対向電極として用いた場合、発電効率の向上に大きく寄与する。
 以下に、第一実施形態の電極を用いた色素増感太陽電池を説明する。
In the electrode substrate of the first embodiment, since the specific surface area of the region (catalyst layer) functioning as a catalyst is increased, and the conductivity and the structural strength are improved, the electrode substrate is opposed to the dye-sensitized solar cell. When used as an electrode, it greatly contributes to the improvement of power generation efficiency.
Below, the dye-sensitized solar cell using the electrode of 1st embodiment is demonstrated.
《色素増感太陽電池》
 本発明の第二実施形態の色素増感太陽電池は、第一実施形態の電極基板を対向電極(対向電極基板)として備え、更に色素を吸着した光電極(光電極基板)と、電解液とを備えている。このような色素増感太陽電池の例として、図3に示した色素増感太陽電池10が挙げられる。
《Dye-sensitized solar cell》
The dye-sensitized solar cell according to the second embodiment of the present invention includes the electrode substrate of the first embodiment as a counter electrode (counter electrode substrate), and further, a photoelectrode (photoelectrode substrate) that adsorbs the dye, an electrolyte solution, It has. An example of such a dye-sensitized solar cell is the dye-sensitized solar cell 10 shown in FIG.
 色素増感太陽電池10は、透明基板6上に積層された透明導電膜7及び多孔質酸化物半導体層8によって構成される光電極11と、対向電極12と、電解液5とを有する。電解液5は、光電極11と対向電極12の間に封止材4によって封止されている。 The dye-sensitized solar cell 10 includes a photoelectrode 11 composed of a transparent conductive film 7 and a porous oxide semiconductor layer 8 laminated on a transparent substrate 6, a counter electrode 12, and an electrolytic solution 5. The electrolytic solution 5 is sealed between the photoelectrode 11 and the counter electrode 12 by the sealing material 4.
 (光電極)
 光電極11は、透明基板6であるガラス基板、透明導電膜7及び多孔質酸化物半導体層8により構成されている。電解液5が接触する多孔質酸化物半導体層8の表面(多孔質膜(多孔質体)の内部の表面も含む)には、公知の増感色素が吸着している。
(Photoelectrode)
The photoelectrode 11 includes a glass substrate that is the transparent substrate 6, a transparent conductive film 7, and a porous oxide semiconductor layer 8. A known sensitizing dye is adsorbed on the surface of the porous oxide semiconductor layer 8 with which the electrolytic solution 5 is in contact (including the surface inside the porous film (porous body)).
 光電極11を構成する基板(基材)はガラス製に限らず、可視光の透過性を有する基板であれば特に制限されない。例えば、ガラス基板の他、透明な樹脂製の基板又はフィルム若しくはシートが挙げられる。 The substrate (base material) constituting the photoelectrode 11 is not limited to glass and is not particularly limited as long as it is a substrate having visible light permeability. For example, in addition to a glass substrate, a transparent resin substrate, a film or a sheet can be used.
 前記ガラスとしては、可視光の透過性を有するガラスが好ましく、ソーダライムガラス、石英ガラス、ホウケイ酸ガラス、バイコールガラス、無アルカリガラス、青板ガラス、白板ガラス等が挙げられる。 As the glass, glass having visible light permeability is preferable, and soda lime glass, quartz glass, borosilicate glass, Vycor glass, non-alkali glass, blue plate glass, white plate glass and the like can be mentioned.
 前記樹脂(プラスチック)としては、可視光の透過性を有する樹脂が好ましく、例えばポリアクリル、ポリカーボネート、ポリエステル、ポリイミド、ポリスチレン、ポリ塩化ビニル、ポリアミド等が挙げられる。これらのなかでは、ポリエステル、特にポリエチレンテレフタレート(PET)やポリエチレンナフタレート(PEN)が、透明耐熱フィルムとして大量に生産および使用されている。薄くて軽いフレキシブルな色素増感太陽電池を製造する観点からは、前記基材はプラスチック製の透明基材であることが好ましく、PET又はPENフィルムであることがより好ましい。 As the resin (plastic), a resin having visible light permeability is preferable, and examples thereof include polyacryl, polycarbonate, polyester, polyimide, polystyrene, polyvinyl chloride, and polyamide. Among these, polyesters, particularly polyethylene terephthalate (PET) and polyethylene naphthalate (PEN) are produced and used in large quantities as transparent heat-resistant films. From the viewpoint of producing a thin and light flexible dye-sensitized solar cell, the substrate is preferably a plastic transparent substrate, and more preferably a PET or PEN film.
 多孔質酸化物半導体層8を構成する酸化物半導体としては、従来公知の材料が適用可能であり、増感色素を吸着可能な材料であればよい。例えば酸化チタン、酸化亜鉛、チタン酸ストロンチウム等が挙げられる。 As the oxide semiconductor composing the porous oxide semiconductor layer 8, a conventionally known material can be applied as long as it can adsorb a sensitizing dye. Examples thereof include titanium oxide, zinc oxide, and strontium titanate.
 多孔質酸化物半導体層8(多孔質層)が酸化物半導体の微粒子によって構成される場合、前記多孔質層は、前記微粒子を含む公知のペーストが前記基板上で焼成されることにより形成された多孔質層であってもよい。また、前記微粒子を搬送ガスにより前記基板上に吹き付けることにより、前記微粒子と前記基板、かつ前記微粒子同士が接合された状態で形成された多孔質層を適用してもよい。微粒子を吹き付けて多孔質層を形成する方法として、エアロゾルデポジション法(AD法)が例示できる。 When the porous oxide semiconductor layer 8 (porous layer) is composed of oxide semiconductor fine particles, the porous layer is formed by firing a known paste containing the fine particles on the substrate. It may be a porous layer. In addition, a porous layer formed in such a state that the fine particles and the substrate and the fine particles are bonded to each other by spraying the fine particles onto the substrate with a carrier gas may be applied. As a method for forming a porous layer by spraying fine particles, an aerosol deposition method (AD method) can be exemplified.
 前記微粒子の一次粒子径は、前記微粒子を前記基板上に製膜する方法によって好適な範囲が異なる場合があるが、通常は、1nm~500μmが好ましく、1nm~250μmがより好ましく、5nm~100μmがさらに好ましく、10nm~10μmが特に好ましい。なお、前記微粒子の一次粒子径を求める方法としては、例えばレーザー回折式粒度分布測定装置の測定により得られた体積平均径の分布のピーク値として決定する方法やSEM観察によって複数の微粒子の長径を測定して平均する方法が挙げられる。前記微粒子の一次粒子径は前記SEM観察によって測定することが好ましい。 The primary particle diameter of the fine particles may vary in a suitable range depending on the method of forming the fine particles on the substrate, but is usually preferably 1 nm to 500 μm, more preferably 1 nm to 250 μm, and more preferably 5 nm to 100 μm. Further preferred is 10 nm to 10 μm. In addition, as a method for obtaining the primary particle diameter of the fine particles, for example, a method of determining the peak value of the volume average diameter distribution obtained by measurement with a laser diffraction particle size distribution measuring device or the long diameters of a plurality of fine particles by SEM observation. The method of measuring and averaging is mentioned. The primary particle diameter of the fine particles is preferably measured by the SEM observation.
[電解液]
 電解液5は、従来公知の色素増感太陽電池で使用されている電解液を適用できる。
 電解液5には、酸化還元対(電解質)が溶解されている。酸化還元対は従来公知の酸化還元対が適用できる。なお、電解液5には、本発明の趣旨を逸脱しない範囲で、フィラーや増粘剤などの他の添加剤を含んでいてもよい。
[Electrolyte]
As the electrolytic solution 5, an electrolytic solution used in a conventionally known dye-sensitized solar cell can be applied.
In the electrolytic solution 5, a redox couple (electrolyte) is dissolved. As the redox couple, a conventionally known redox couple can be applied. The electrolyte solution 5 may contain other additives such as fillers and thickeners without departing from the spirit of the present invention.
 前記酸化還元対としては、例えば、ヨウ素分子とヨウ化物の組み合わせ、又は臭素分子と臭素化合物の組み合わせが挙げられる。
 前記ヨウ化物としては、例えば、ヨウ化ナトリウム(NaI)、ヨウ化カリウム(KI)などの金属ヨウ化物、又はテトラアルキルアンモニウムヨーダイド、ピリジニウムヨーダイド、イミダゾリウムヨーダイドなどのヨウ素塩が、好適なヨウ化物として挙げられる。
 前記臭素化合物としては、例えば、臭化ナトリウム(NaBr)、臭化カリウム(KBr)などの金属臭化物、又はテトラアルキルアンモニウムブロマイド、ピリジニウムブロマイド、イミダゾリウムブロマイドなどの臭素塩が、好適な臭素化合物として挙げられる。
Examples of the redox pair include a combination of iodine molecule and iodide, or a combination of bromine molecule and bromine compound.
Suitable examples of the iodide include metal iodides such as sodium iodide (NaI) and potassium iodide (KI), or iodine salts such as tetraalkylammonium iodide, pyridinium iodide, and imidazolium iodide. Listed as iodide.
Examples of the bromine compound include metal bromides such as sodium bromide (NaBr) and potassium bromide (KBr), and bromine salts such as tetraalkylammonium bromide, pyridinium bromide, and imidazolium bromide as suitable bromine compounds. It is done.
 電解液5における前記酸化還元対の濃度は特に制限されないが、好ましくは0.1~10モル/Lであり、より好ましくは0.2~2モル/Lである。また、電解液5の溶媒中にヨウ素を添加する場合の好ましいヨウ素の濃度は0.01~1モル/Lである。 The concentration of the redox couple in the electrolytic solution 5 is not particularly limited, but is preferably 0.1 to 10 mol / L, more preferably 0.2 to 2 mol / L. Further, when iodine is added to the solvent of the electrolytic solution 5, a preferable iodine concentration is 0.01 to 1 mol / L.
 電解液5に代えて電解質層(固体電解質層)を適用してもよい。前記電解質層は、電解液5と同様の機能を有し、ゲル状又は固体状の何れかの状態である。前記電解質層としては、例えば電解液5にゲル化剤又は増粘剤を加え、必要に応じて溶媒を除去することにより、電解液5をゲル化又は固体化して得た電解質層が適用できる。ゲル状又は固体状の電解質層を用いた場合、色素増感太陽電池10から電解液が漏出する虞がない。 Instead of the electrolytic solution 5, an electrolyte layer (solid electrolyte layer) may be applied. The electrolyte layer has the same function as the electrolytic solution 5 and is in a gel or solid state. As the electrolyte layer, for example, an electrolyte layer obtained by gelling or solidifying the electrolyte solution 5 by adding a gelling agent or a thickener to the electrolyte solution 5 and removing the solvent as necessary can be applied. When a gel-like or solid electrolyte layer is used, there is no possibility that the electrolyte solution leaks from the dye-sensitized solar cell 10.
 電解液5又は前記電解質層には、従来公知の導電性高分子が含まれていてもよい。 The electrolytic solution 5 or the electrolyte layer may contain a conventionally known conductive polymer.
 前記封止材としては、電解液を電池セル内部に保持できる部材であることが好ましい。このような封止材としては、例えば、従来公知の熱可塑性樹脂、熱硬化性樹脂等の合成樹脂が適用可能である。 The sealing material is preferably a member that can hold the electrolytic solution inside the battery cell. As such a sealing material, synthetic resins, such as a conventionally well-known thermoplastic resin and a thermosetting resin, are applicable, for example.
 (対向電極)
 第二実施形態の色素増感太陽電池における対向電極12は、第一実施形態の電極基板である。
(Counter electrode)
The counter electrode 12 in the dye-sensitized solar cell of the second embodiment is the electrode substrate of the first embodiment.
 (色素増感太陽電池の製造方法)
 第二実施形態の色素増感太陽電池は、第一実施形態の電極基板(対向電極12)を用いること以外は、常法により製造することができる。
(Method for producing dye-sensitized solar cell)
The dye-sensitized solar cell of the second embodiment can be produced by a conventional method except that the electrode substrate (counter electrode 12) of the first embodiment is used.
 対向電極12である第一実施形態の電極基板の導電性高分子(触媒層)のコーティング層は、多孔質膜によって支持されているため、高い構造的強度を有する。このため、製造時に冶具等が前記コーティング層に接触した場合にも、前記コーティング層が損傷する恐れが低減されている。したがって、第一実施形態の電極基板を対向電極として使用することにより、第二実施形態の色素増感太陽電池の製造歩留まりを向上させることができる。 Since the coating layer of the conductive polymer (catalyst layer) of the electrode substrate of the first embodiment which is the counter electrode 12 is supported by the porous film, it has high structural strength. For this reason, also when a jig etc. contact the said coating layer at the time of manufacture, the possibility that the said coating layer will be reduced is reduced. Therefore, the production yield of the dye-sensitized solar cell of the second embodiment can be improved by using the electrode substrate of the first embodiment as a counter electrode.
 次に、実施例により本発明をさらに詳細に説明するが、本発明はこれらの例によって限定されるものではない。 Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
[実施例1]
 (多孔質酸化物半導体層の形成)
 酸化チタン粒子(粒径Φ19nm)19質量%、エチルセルロース9質量%、テルピネオール72質量%によって構成されるペーストを用いて、多孔質酸化物半導体層(厚み8μm)を形成した。透明導電基板として、FTO膜を配した表面抵抗10オーム(Ω)のガラス基板を用い、上記ペーストをスクリーン印刷法で4mm×4mmの面積で、FTO膜上に塗布した後、空気雰囲気下500℃で30分間焼成して、透明導電膜上に多孔質酸化物半導体層(透明層)を形成した。
[Example 1]
(Formation of porous oxide semiconductor layer)
A porous oxide semiconductor layer (thickness 8 μm) was formed using a paste composed of 19% by mass of titanium oxide particles (particle diameter Φ19 nm), 9% by mass of ethyl cellulose, and 72% by mass of terpineol. As a transparent conductive substrate, a glass substrate having a surface resistance of 10 ohms (Ω) provided with an FTO film was used, and the paste was applied on the FTO film in an area of 4 mm × 4 mm by screen printing, and then at 500 ° C. in an air atmosphere. Was baked for 30 minutes to form a porous oxide semiconductor layer (transparent layer) on the transparent conductive film.
 (色素吸着)
 アセトニトリルとtert-ブタノールの1:1の混和液に増感色素N719を0.3mMの濃度で溶解した色素溶液中に、前記多孔質酸化物半導体層を形成した基板を20時間浸漬させることによって、光電極の多孔質酸化物半導体層に増感色素を吸着させた。
(Dye adsorption)
By immersing the substrate on which the porous oxide semiconductor layer is formed in a dye solution in which a sensitizing dye N719 is dissolved in a 1: 1 mixture of acetonitrile and tert-butanol at a concentration of 0.3 mM for 20 hours, A sensitizing dye was adsorbed on the porous oxide semiconductor layer of the photoelectrode.
 (対向電極の作製)
 酸化チタン粒子(粒径Φ19nm)19質量%、エチルセルロース9質量%、テルピネオール72質量%によって構成されるペーストを用いて、多孔質膜を形成した。透明導電基板として、FTO膜を配した表面抵抗10オーム(Ω)のガラス基板を用い、上記ペーストをスクリーン印刷法で4mm×4mmの面積で、FTO膜上に塗布した後、空気雰囲気下500℃で30分間焼成して、透明導電膜上に酸化チタンの多孔質膜(厚み1.5μm)を形成した。このように形成された多孔質膜を構成する酸化チタン粒子とFTO膜とは直に接しているため、多孔質膜とFTO膜の間の導電性が優れる。
(Preparation of counter electrode)
A porous film was formed using a paste composed of 19% by mass of titanium oxide particles (particle diameter Φ19 nm), 9% by mass of ethyl cellulose, and 72% by mass of terpineol. As a transparent conductive substrate, a glass substrate having a surface resistance of 10 ohms (Ω) provided with an FTO film was used, and the paste was applied on the FTO film in an area of 4 mm × 4 mm by screen printing, and then at 500 ° C. in an air atmosphere. Was baked for 30 minutes to form a porous titanium oxide film (thickness: 1.5 μm) on the transparent conductive film. Since the titanium oxide particles constituting the porous film thus formed and the FTO film are in direct contact with each other, the conductivity between the porous film and the FTO film is excellent.
 次に、電解重合法によって導電性高分子を多孔質膜にコーティングした。作用極として前記多孔質膜及びFTO膜を用い、対極として白金線を用い、参照極としてAg/Ag電極を用いて、導電性高分子の電解重合を行った。電解重合には、10-2MのEDOT(3,4-エチレンジオキシチオフェン:前記式(1-1)で表される化合物)、10-1MのLiTFSI(リチウムビストリフルオロメタンスルホニルイミド)を含むアセトニトリル溶液中に、上記の作用極、対極、参照極を浸し、ポテンショスタット(IVIUM社製)を用いて、1.2Vで40秒電圧印加することで、多孔質膜表面上に導電性高分子(PEDOT:TFSI)を形成した。つまり、図2に模式的に示すような、多孔質膜の三次元構造に沿った触媒層3(前記導電性高分子の層)を形成することができた。 Next, the conductive polymer was coated on the porous film by an electrolytic polymerization method. Using the porous film and the FTO film as the working electrode, a platinum wire as the counter electrode, and an Ag / Ag + electrode as the reference electrode, electropolymerization of the conductive polymer was performed. For the electropolymerization, 10 −2 M EDOT (3,4-ethylenedioxythiophene: a compound represented by the above formula (1-1)), 10 −1 M LiTFSI (lithium bistrifluoromethanesulfonylimide) is used. The above working electrode, counter electrode, and reference electrode are immersed in the acetonitrile solution, and a voltage of 40 V is applied at 1.2 V using a potentiostat (manufactured by IVIUM). Molecules (PEDOT: TFSI) were formed. That is, the catalyst layer 3 (the conductive polymer layer) along the three-dimensional structure of the porous membrane as schematically shown in FIG. 2 could be formed.
(膜強度の評価)
 作製した対向電極をエタノールに浸し、超音波(発振周波数42kHz)で5分間刺激を与えた後、前記対向電極の導電性高分子でコーティングされた多孔質膜の表面を観察することにより、膜強度を評価した。評価は下記の二段階で行った。その結果を表1に併記する。
 良好(A):剥離や損傷がほとんど見られない。
 不良(B):剥離や損傷が見過ごせない程見られる。
(Evaluation of film strength)
The prepared counter electrode is immersed in ethanol, stimulated with ultrasonic waves (oscillation frequency 42 kHz) for 5 minutes, and then the surface of the porous film coated with the conductive polymer of the counter electrode is observed to obtain the film strength. Evaluated. Evaluation was performed in the following two stages. The results are also shown in Table 1.
Good (A): Peeling and damage are hardly seen.
Defect (B): It is seen so that peeling and damage cannot be overlooked.
(セルの組み立てと、発電性能評価)
 上記方法で作製した対向電極と光電極とを厚さ30μmの樹脂性ガスケット(セパレーター)を介して重ね合せてクリップ止めし、両電極間に、電解液を注入することにより色素増感太陽電池(セル)を組み立てた。電解液として、ヨウ素0.03M、1,3-ジメチル-2-プロピルイミダゾリウムヨージド 0.6M、ヨウ化リチウム 0.10M、tert-ブチルピリジン 0.5Mを、溶媒であるアセトニトリルに溶解して得られた電解液を用いた。
 作製したセルの発電性能として、光電変換効率η、短絡電流Isc、開放電圧Voc、曲線因子FFをソーラーシュミレーター(AM1.5)により評価した。その結果を表1に示す。
(Cell assembly and power generation performance evaluation)
The counter electrode and the photoelectrode prepared by the above method are overlapped and clipped via a resin gasket (separator) having a thickness of 30 μm, and a dye-sensitized solar cell ( Cell). As an electrolytic solution, iodine 0.03M, 1,3-dimethyl-2-propylimidazolium iodide 0.6M, lithium iodide 0.10M, and tert-butylpyridine 0.5M were dissolved in acetonitrile as a solvent. The obtained electrolytic solution was used.
As the power generation performance of the produced cell, photoelectric conversion efficiency η, short circuit current Isc, open circuit voltage Voc, and fill factor FF were evaluated by a solar simulator (AM1.5). The results are shown in Table 1.
[実施例2]
 対向電極を構成する微粒子を酸化亜鉛粒子(粒径Φ23nm)に変更した以外は、実施例1と同様に色素増感太陽電池を作製し、発電性能の評価を行った。その結果を表1に示す。
[Example 2]
A dye-sensitized solar cell was produced in the same manner as in Example 1 except that the fine particles constituting the counter electrode were changed to zinc oxide particles (particle diameter Φ23 nm), and the power generation performance was evaluated. The results are shown in Table 1.
[実施例3]
 対向電極を構成する微粒子をカーボンブラック(粒径Φ23nm)に変更した以外は、実施例1と同様に色素増感太陽電池を作製し、発電性能の評価を行った。その結果を表1に示す。
[Example 3]
A dye-sensitized solar cell was prepared in the same manner as in Example 1 except that the fine particles constituting the counter electrode were changed to carbon black (particle diameter Φ23 nm), and the power generation performance was evaluated. The results are shown in Table 1.
[比較例1] 
 対向電極として、ガラス基板にスパッタ法によって白金薄膜を形成した白金電極基板を使用した以外は、実施例1と同様に色素増感太陽電池を作製し、発電性能の評価を行った。その結果を表1に示す。
[Comparative Example 1]
A dye-sensitized solar cell was produced in the same manner as in Example 1 except that a platinum electrode substrate in which a platinum thin film was formed on a glass substrate by a sputtering method was used as the counter electrode, and power generation performance was evaluated. The results are shown in Table 1.
[比較例2] 
 実施例1と同じFTO膜を配したガラス基板を作用極として用い、実施例1と同様に電解重合を行って、FTO膜上に導電性高分子を形成し、対向電極を作製した。
 対向電極以外は、実施例1と同様に色素増感太陽電池を作製し、発電性能の評価を行った。その結果を表1に示す。
[Comparative Example 2]
A glass substrate on which the same FTO film as that in Example 1 was disposed was used as a working electrode, and electropolymerization was performed in the same manner as in Example 1 to form a conductive polymer on the FTO film to produce a counter electrode.
Except for the counter electrode, a dye-sensitized solar cell was produced in the same manner as in Example 1, and the power generation performance was evaluated. The results are shown in Table 1.
[比較例3] 
 対向電極を構成する多孔質膜に導電性高分子をコーティングしない以外は、実施例1と同様に色素増感太陽電池を作製し、発電性能の評価を行った。その結果を表1に示す。
[Comparative Example 3]
A dye-sensitized solar cell was prepared in the same manner as in Example 1 except that the conductive polymer was not coated on the porous film constituting the counter electrode, and the power generation performance was evaluated. The results are shown in Table 1.
[比較例4] 
 対向電極を構成する多孔質膜に導電性高分子をコーティングしない以外は、実施例2と同様に色素増感太陽電池を作製し、発電性能の評価を行った。その結果を表1に示す。
[Comparative Example 4]
A dye-sensitized solar cell was produced in the same manner as in Example 2 except that the conductive polymer was not coated on the porous film constituting the counter electrode, and the power generation performance was evaluated. The results are shown in Table 1.
[比較例5] 
 対向電極を構成する多孔質膜に導電性高分子をコーティングしない以外は、実施例3と同様に色素増感太陽電池を作製し、発電性能の評価を行った。その結果を表1に示す。
[Comparative Example 5]
A dye-sensitized solar cell was prepared in the same manner as in Example 3 except that the porous polymer constituting the counter electrode was not coated with the conductive polymer, and the power generation performance was evaluated. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
 表1の結果から、本発明にかかる実施例1~3の光電変換効率(発電効率)ηは、比較例1~5と同等か、もしくはそれ以上の性能を有していることが明らかである。 From the results of Table 1, it is clear that the photoelectric conversion efficiency (power generation efficiency) η of Examples 1 to 3 according to the present invention is equal to or higher than that of Comparative Examples 1 to 5. .
[実施例4]
 光電極の作製において、実施例1と同様に形成した、多孔質酸化物半導体層(透明層)(膜厚8μm)の上に、粒径400nmの酸化チタン粒子からなる反射層(膜厚4μm)を積層した後、前記透明層及び反射層に色素を吸着させた以外は、実施例1と同様にセル(色素増感太陽電池)を作製した。
前記反射層は、前記透明層を形成する場合と同様に、酸化チタン(粒径Φ400nm)19質量%、エチルセルロース9質量%、及びテルピネオール72質量%から成るペーストを前記透明層の上に印刷後、500℃で焼成することによって形成した。
ここで、前記透明層と前記反射層とは、含有する酸化チタンの粒径が異なる。前記透明層を第一層、前記反射層を第二層と読み換えることができる。
なお、色素の吸着は、前記第一層及び第二層を積層・焼成後に実施例1と同様にして行った。
[Example 4]
In the production of the photoelectrode, on the porous oxide semiconductor layer (transparent layer) (film thickness 8 μm) formed in the same manner as in Example 1, a reflective layer (film thickness 4 μm) made of titanium oxide particles having a particle diameter of 400 nm. Then, a cell (a dye-sensitized solar cell) was produced in the same manner as in Example 1 except that the dye was adsorbed on the transparent layer and the reflective layer.
As in the case of forming the transparent layer, the reflective layer is formed by printing a paste composed of 19% by mass of titanium oxide (particle diameter Φ400 nm), 9% by mass of ethyl cellulose, and 72% by mass of terpineol on the transparent layer, It was formed by firing at 500 ° C.
Here, the transparent layer and the reflective layer differ in the particle size of the titanium oxide contained. The transparent layer can be read as the first layer, and the reflective layer can be read as the second layer.
In addition, adsorption | suction of the pigment | dye was performed like Example 1 after laminating | stacking and baking the said 1st layer and 2nd layer.
[実施例5]
 対向電極の作製において、粒径19nmの酸化チタン粒子を、粒径30nmの酸化チタン粒子に変更した以外は、実施例4と同様にセルを作製した。
[Example 5]
A cell was produced in the same manner as in Example 4 except that the titanium oxide particles having a particle size of 19 nm were changed to titanium oxide particles having a particle size of 30 nm in the production of the counter electrode.
[実施例6]
 対向電極の作製において、粒径19nmの酸化チタン粒子を、粒径200nmの酸化チタン粒子に変更した以外は、実施例4と同様にセルを作製した。
[Example 6]
A cell was prepared in the same manner as in Example 4 except that in the production of the counter electrode, the titanium oxide particles having a particle size of 19 nm were changed to titanium oxide particles having a particle size of 200 nm.
[実施例7]
 対向電極の作製において、粒径19nmの酸化チタン粒子を、粒径10~30nmのATO(アンチモンドープ酸化スズ)粒子に変更した以外は、実施例4と同様にセルを作製した。
[Example 7]
A cell was produced in the same manner as in Example 4 except that the titanium oxide particles having a particle size of 19 nm were changed to ATO (antimony-doped tin oxide) particles having a particle size of 10 to 30 nm in the production of the counter electrode.
[実施例8]
 対向電極の作製において、粒径19nmの酸化チタン粒子を、長軸粒径200~2000nm、短軸粒子径10~20nmのATO針状粒子に変更した以外は、実施例4と同様にセルを作製した。
[Example 8]
A cell was prepared in the same manner as in Example 4 except that the titanium oxide particles having a particle diameter of 19 nm were changed to ATO needle particles having a long axis particle diameter of 200 to 2000 nm and a short axis particle diameter of 10 to 20 nm in the preparation of the counter electrode. did.
[実施例9]
 対向電極の作製において、粒径19nmの酸化チタン粒子を、粒径200~500nmのATOを被覆した酸化チタン粒子に変更した以外は、実施例4と同様にセルを作製した。
[Example 9]
A cell was produced in the same manner as in Example 4 except that the titanium oxide particles having a particle size of 19 nm were changed to titanium oxide particles coated with ATO having a particle size of 200 to 500 nm in the production of the counter electrode.
[実施例10]
 対向電極の作製において、粒径19nmの酸化チタン粒子を、粒径23nmのカーボンブラック粒子に変更した以外は、実施例4と同様にセルを作製した。
[Example 10]
A cell was produced in the same manner as in Example 4 except that the titanium oxide particles having a particle size of 19 nm were changed to carbon black particles having a particle size of 23 nm in the production of the counter electrode.
[実施例11]
 対向電極の作製において、粒径19nmの酸化チタン粒子で形成された多孔質膜を、目開き8μm、線径8μm、厚み3μmのニッケルメッシュに変更した以外は、実施例4と同様にセルを作製した。
[Example 11]
A cell was prepared in the same manner as in Example 4 except that the porous film formed of titanium oxide particles having a particle diameter of 19 nm was changed to a nickel mesh having an opening of 8 μm, a wire diameter of 8 μm, and a thickness of 3 μm. did.
[実施例12]
 対向電極の作製において、触媒層のコーティング材料として、前記式(1-1)のEDOTが重合したPEDOTを、前記式(2-2)のピロールが重合したポリピロールに変更した以外は、実施例10と同様にセルを作製した。
[Example 12]
In preparation of the counter electrode, Example 10 was carried out except that PEDOT obtained by polymerizing EDOT of the formula (1-1) was changed to polypyrrole obtained by polymerizing pyrrole of the formula (2-2) as a coating material for the catalyst layer. A cell was prepared in the same manner as described above.
[実施例13]
 対向電極の作製において、触媒層のコーティング材料として、前記式(1-1)のEDOTが重合したPEDOTを、前記式(3-1)のアニリンが重合したポリアニリンに変更した以外は、実施例10と同様にセルを作製した。
[Example 13]
In the production of the counter electrode, Example 10 was carried out except that PEDOT obtained by polymerizing EDOT of the formula (1-1) was changed to polyaniline polymerized by aniline of the formula (3-1) as a coating material for the catalyst layer. A cell was prepared in the same manner as described above.
[実施例14]
 対向電極の作製において、電解重合法によってPEDOTの触媒層を形成する代わりに、多孔質膜を10mMの塩化白金酸の2-プロパノール溶液に浸漬後、450℃で焼成することにより、多孔質膜の表面に白金からなる触媒層を形成した以外は、実施例4と同様にセルを作製した。
[Example 14]
In the production of the counter electrode, instead of forming the PEDOT catalyst layer by the electrolytic polymerization method, the porous membrane was immersed in 10 mM 2-propanol solution of chloroplatinic acid and then baked at 450 ° C. A cell was produced in the same manner as in Example 4 except that a catalyst layer made of platinum was formed on the surface.
[実施例15]
 対向電極の作製において、粒径19nmの酸化チタン粒子を、粒径10~30nmのATO(アンチモンドープ酸化スズ)粒子に変更した以外は、実施例14と同様にセルを作製した。
[Example 15]
A cell was produced in the same manner as in Example 14 except that the titanium oxide particles having a particle size of 19 nm were changed to ATO (antimony-doped tin oxide) particles having a particle size of 10 to 30 nm in the production of the counter electrode.
[実施例16]
 対向電極の作製において、粒径19nmの酸化チタン粒子を、粒径23nmのカーボンブラック粒子に変更した以外は、実施例14と同様にセルを作製した。
[Example 16]
A cell was produced in the same manner as in Example 14 except that in the production of the counter electrode, the titanium oxide particles having a particle diameter of 19 nm were changed to carbon black particles having a particle diameter of 23 nm.
[比較例6]
光電極の作製において、比較例1と同様に形成した、多孔質酸化物半導体層(透明層)(膜厚8μm)の上に、粒径400nmの酸化チタン粒子からなる反射層(膜厚4μm)を積層した後、前記透明層及び反射層に色素を吸着させた以外は、比較例1と同様にセルを作製した。前記反射層は実施例4と同じ方法で形成した。
[Comparative Example 6]
In the production of the photoelectrode, a reflective layer (film thickness 4 μm) made of titanium oxide particles having a particle diameter of 400 nm on a porous oxide semiconductor layer (transparent layer) (film thickness 8 μm) formed in the same manner as in Comparative Example 1. Then, a cell was prepared in the same manner as in Comparative Example 1 except that the pigment was adsorbed on the transparent layer and the reflective layer. The reflective layer was formed by the same method as in Example 4.
[比較例7]
光電極の作製において、比較例2と同様に形成した、多孔質酸化物半導体層(透明層)(膜厚8μm)の上に、粒径400nmの酸化チタン粒子からなる反射層(膜厚4μm)を積層した後、前記透明層及び反射層に色素を吸着させた以外は、比較例2と同様にセルを作製した。前記反射層は実施例4と同じ方法で形成した。
[Comparative Example 7]
In the production of the photoelectrode, a reflective layer (film thickness 4 μm) made of titanium oxide particles having a particle diameter of 400 nm on a porous oxide semiconductor layer (transparent layer) (film thickness 8 μm) formed in the same manner as in Comparative Example 2. Then, a cell was prepared in the same manner as in Comparative Example 2 except that the pigment was adsorbed on the transparent layer and the reflective layer. The reflective layer was formed by the same method as in Example 4.
[比較例8]
対向電極の作製において、触媒層のコーティング材料として、前記式(1-1)のEDOTが重合したPEDOTを、前記式(2-2)のピロールが重合したポリピロールに変更した以外は、比較例7と同様にセルを作製した。
[Comparative Example 8]
Comparative Example 7 except that PEDOT obtained by polymerizing EDOT of the formula (1-1) was changed to polypyrrole obtained by polymerizing pyrrole of the formula (2-2) as a coating material for the catalyst layer in the production of the counter electrode. A cell was prepared in the same manner as described above.
[比較例9]
対向電極の作製において、触媒層のコーティング材料として、前記式(1-1)のEDOTが重合したPEDOTを、前記式(3-1)のアニリンが重合したポリアニリンに変更した以外は、比較例7と同様にセルを作製した。
[Comparative Example 9]
Comparative Example 7 except that PEDOT obtained by polymerizing EDOT of the formula (1-1) was changed to polyaniline polymerized by aniline of the formula (3-1) as a coating material for the catalyst layer in the production of the counter electrode. A cell was prepared in the same manner as described above.
[比較例10]
 対向電極の作製において、電解重合法によってPEDOTの触媒層を形成する代わりに、PEDOT、カーボンブラック粒子(粒径23nm)及びエタノールを重量比2:1:16で混合した分散液を、FTO膜を表面に配したガラス基板に塗布し、120℃で60分乾燥させることにより、導電性ガラス基板の表面にPEDOT及びカーボンブラックからなる触媒層を形成した以外は、実施例4と同様にセルを作製した。
[Comparative Example 10]
In the production of the counter electrode, instead of forming a catalyst layer of PEDOT by electrolytic polymerization, a dispersion obtained by mixing PEDOT, carbon black particles (particle size 23 nm) and ethanol at a weight ratio of 2:16 is used as an FTO membrane. A cell was prepared in the same manner as in Example 4 except that a catalyst layer composed of PEDOT and carbon black was formed on the surface of the conductive glass substrate by applying it to a glass substrate disposed on the surface and drying at 120 ° C. for 60 minutes. did.
[比較例11] 
 対向電極の作製において、カーボンブラック粒子に代えて、ATO被覆した酸化チタン粒子(粒径200~500nm)を使用した以外は、比較例10と同様にセルを作製した。
[Comparative Example 11]
A cell was prepared in the same manner as in Comparative Example 10, except that in the production of the counter electrode, titanium oxide particles (particle size 200 to 500 nm) coated with ATO were used instead of the carbon black particles.
[比較例12]
 対向電極の作製において、多孔質膜に対して導電性高分子の被覆を行わなかった以外は、実施例4と同様にセルを作製した。
[Comparative Example 12]
In the production of the counter electrode, a cell was produced in the same manner as in Example 4 except that the porous polymer was not coated with the conductive polymer.
[比較例13]
 対向電極の作製において、多孔質膜に対して導電性高分子の被覆を行わなかった以外は、実施例7と同様にセルを作製した。
[Comparative Example 13]
In the production of the counter electrode, a cell was produced in the same manner as in Example 7 except that the porous polymer was not coated with the conductive polymer.
[比較例14]
 対向電極の作製において、多孔質膜に対して導電性高分子の被覆を行わなかった以外は、実施例10と同様にセルを作製した。
 以上の実施例4~16及び比較例6~14で作製した各セルについて、実施例1と同様に評価を行った。その結果を表2に示す。
[Comparative Example 14]
In the production of the counter electrode, a cell was produced in the same manner as in Example 10 except that the porous polymer was not coated with the conductive polymer.
Each cell produced in Examples 4 to 16 and Comparative Examples 6 to 14 was evaluated in the same manner as Example 1. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
以上の結果から、多孔質膜上に触媒層をコーティングした実施例の電極基板は、触媒層の種類、多孔質膜の種類に関わらず、優れた発電効率が得られることが分かる。
 実施例4~6において、比表面積が大きい電極基板の方が、発電効率が向上することが分かる。
 比較例10~11の電極基板は、導電性ガラスの表面に導電性高分子が塗布されているが、塗布面が多孔質構造ではないため、実施例4よりも発電効率が劣る。
From the above results, it can be seen that the electrode substrate of the example in which the catalyst layer is coated on the porous membrane can obtain excellent power generation efficiency regardless of the type of the catalyst layer and the type of the porous membrane.
In Examples 4 to 6, it can be seen that the electrode substrate having a larger specific surface area improves the power generation efficiency.
In the electrode substrates of Comparative Examples 10 to 11, the conductive polymer is coated on the surface of the conductive glass, but the power generation efficiency is inferior to that of Example 4 because the coated surface does not have a porous structure.
 実施例9の対向電極の表面を観察したSEM画像を図4Aに示す。また、実施例9の対向電極の表面にPEDOTをコーティングする前の多孔質膜の表面を観察したSEM画像を図4Bに示す。図4A及び図4Bを見比べると、図4Aの多孔質膜の表面において、三次元的な多孔質構造に沿ってPEDOTがコーティングされている様子が分かる。 FIG. 4A shows an SEM image obtained by observing the surface of the counter electrode of Example 9. Moreover, the SEM image which observed the surface of the porous membrane before coating the surface of the counter electrode of Example 9 with PEDOT is shown in FIG. 4B. 4A and 4B, it can be seen that PEDOT is coated along the three-dimensional porous structure on the surface of the porous membrane of FIG. 4A.
 実施例9の対向電極の断面を観察したSEM画像を図4Cに示す。また、この断面の拡大画像を図4Dに示す。図4C及び図4Dにおいて、多孔質膜内に、単一孔が連結してなる連胞構造が存在していることが分かる。また、図4Dの拡大画像において、黒破線で示した範囲はATOが被覆された酸化チタンの表面(境界)を表し、白破線で示した範囲がPEDOTからなる触媒層の表面(境界)を表す。黒破線と白破線の距離が、触媒層の厚みを表す。 FIG. 4C shows an SEM image obtained by observing the cross section of the counter electrode of Example 9. An enlarged image of this cross section is shown in FIG. 4D. In FIG. 4C and FIG. 4D, it turns out that the continuous cell structure which a single hole connects in a porous membrane exists. In the enlarged image of FIG. 4D, the range indicated by the black broken line represents the surface (boundary) of titanium oxide coated with ATO, and the range indicated by the white broken line represents the surface (boundary) of the catalyst layer made of PEDOT. . The distance between the black broken line and the white broken line represents the thickness of the catalyst layer.
 実施例10の対向電極の表面を観察したSEM画像を図5Aに示す。また、実施例10の対向電極の表面にPEDOTをコーティングする前の多孔質膜の表面を観察したSEM画像を図5Bに示す。図5A及び図5Bを見比べると、図5Aの多孔質膜の表面において、三次元的な多孔質構造に沿ってPEDOTがコーティングされている様子が分かる。 FIG. 5A shows an SEM image obtained by observing the surface of the counter electrode of Example 10. FIG. Moreover, the SEM image which observed the surface of the porous membrane before coating the surface of the counter electrode of Example 10 with PEDOT is shown in FIG. 5B. 5A and 5B, it can be seen that PEDOT is coated along the three-dimensional porous structure on the surface of the porous film of FIG. 5A.
 実施例7の対向電極の表面を観察したSEM画像を図6Aに示す。また、実施例7の対向電極の表面にPEDOTをコーティングする前の多孔質膜の表面を観察したSEM画像を図6Bに示す。図6A及び図6Bを見比べると、図6Aの多孔質膜の表面において、三次元的な多孔質構造に沿ってPEDOTがコーティングされている様子が分かる。 FIG. 6A shows an SEM image obtained by observing the surface of the counter electrode of Example 7. FIG. Moreover, the SEM image which observed the surface of the porous membrane before coating the surface of the counter electrode of Example 7 with PEDOT is shown in FIG. 6B. 6A and 6B, it can be seen that PEDOT is coated along the three-dimensional porous structure on the surface of the porous film of FIG. 6A.
 実施例8の対向電極の表面を観察したSEM画像を図7Aに示す。また、実施例8の対向電極の表面にPEDOTをコーティングする前の多孔質膜の表面を観察したSEM画像を図7Bに示す。図7A及び図7Bを見比べると、図7Aの多孔質膜の表面において、三次元的な多孔質構造に沿ってPEDOTがコーティングされている様子が分かる。 FIG. 7A shows an SEM image obtained by observing the surface of the counter electrode of Example 8. Moreover, the SEM image which observed the surface of the porous membrane before coating the surface of the counter electrode of Example 8 with PEDOT is shown in FIG. 7B. 7A and 7B, it can be seen that PEDOT is coated along the three-dimensional porous structure on the surface of the porous film of FIG. 7A.
 比較例6の対向電極の表面を観察したSEM画像を図8に示す。白金からなる膜が平坦に製膜されている様子が分かる。また、比較例7の対向電極の表面を観察したSEM画像を図9に示す。PEDOTを含む膜が平坦に製膜されている様子が分かる。また、比較例11の対向電極の表面を観察したSEM画像を図10に示す。PEDOTを含む膜の表面にラフネスが観察されるが、概ね平坦に製膜されている様子が分かる。これらの何れの比較例の対向電極においても、三次元的な奥行を有する膜構造は形成されていないことが分かる。 FIG. 8 shows an SEM image of the surface of the counter electrode of Comparative Example 6 observed. It can be seen that a platinum film is formed flat. Moreover, the SEM image which observed the surface of the counter electrode of the comparative example 7 is shown in FIG. It can be seen that the film containing PEDOT is formed flat. Moreover, the SEM image which observed the surface of the counter electrode of the comparative example 11 is shown in FIG. Although roughness is observed on the surface of the film containing PEDOT, it can be seen that the film is formed substantially flat. It can be seen that no film structure having a three-dimensional depth is formed in the counter electrode of any of these comparative examples.
[実施例17]
 実施例9と同様にセルを作製した。このセルの対向電極において、ATOを被覆した酸化チタン粒子からなる多孔質膜の膜厚は2.2μmであった。なお、膜厚は触針式表面形状測定器で膜厚段差を測定する方法の方法で測定した。
[Example 17]
A cell was produced in the same manner as in Example 9. In the counter electrode of this cell, the film thickness of the porous film made of titanium oxide particles coated with ATO was 2.2 μm. The film thickness was measured by the method of measuring the film thickness difference with a stylus type surface shape measuring instrument.
[実施例18]
 対向電極の作製において、スクリーン印刷する回数を増やすことによって、形成する多孔質膜の膜厚を5.6μmに変更した以外は、実施例17(実施例9)と同様にセルを作製した。
[Example 18]
In the production of the counter electrode, a cell was produced in the same manner as in Example 17 (Example 9) except that the thickness of the porous film to be formed was changed to 5.6 μm by increasing the number of screen printings.
[実施例19]
 対向電極の作製において、スクリーン印刷する回数を増やすことによって、形成する多孔質膜の膜厚を10.1μmに変更した以外は、実施例17(実施例9)と同様にセルを作製した。
[Example 19]
In the production of the counter electrode, a cell was produced in the same manner as in Example 17 (Example 9) except that the thickness of the porous film to be formed was changed to 10.1 μm by increasing the number of screen printings.
[比較例15]
 比較例6と同様にセルを作製した。このセルの対向電極において、スパッタ法で形成した白金薄膜(白金電極)の膜厚は20nmであった。なお、膜厚は白金電極の断面像をSEMで観察し、見積もった。
[Comparative Example 15]
A cell was produced in the same manner as in Comparative Example 6. In the counter electrode of this cell, the film thickness of the platinum thin film (platinum electrode) formed by the sputtering method was 20 nm. The film thickness was estimated by observing a cross-sectional image of the platinum electrode with an SEM.
[比較例16]
 白金薄膜の膜厚を50nmに変更した以外は、比較例15(比較例6)と同様にセルを作製した。
[Comparative Example 16]
A cell was produced in the same manner as in Comparative Example 15 (Comparative Example 6) except that the thickness of the platinum thin film was changed to 50 nm.
[比較例17]
 白金薄膜の膜厚を100nmに変更した以外は、比較例15(比較例6)と同様にセルを作製した。
[Comparative Example 17]
A cell was produced in the same manner as in Comparative Example 15 (Comparative Example 6) except that the thickness of the platinum thin film was changed to 100 nm.
[比較例18]
 比較例7と同様にセルを作製した。このセルの対向電極において、電解重合法で形成したPEDOTからなる膜の膜厚は20nmであった。なお、膜厚はPEDOT電極の断面像をSEMで観察し、見積もった。
[Comparative Example 18]
A cell was produced in the same manner as in Comparative Example 7. In the counter electrode of this cell, the film thickness of PEDOT formed by electrolytic polymerization was 20 nm. The film thickness was estimated by observing a cross-sectional image of the PEDOT electrode with an SEM.
[比較例19]
 対向電極の作製において、電解重合法の重合時間を長くすることによって、形成するPEDOTからなる膜の膜厚を40nmに変更した以外は、比較例18(比較例7)と同様にセルを作製した。
[Comparative Example 19]
In the production of the counter electrode, a cell was produced in the same manner as in Comparative Example 18 (Comparative Example 7), except that the film thickness of PEDOT to be formed was changed to 40 nm by increasing the polymerization time of the electrolytic polymerization method. .
[比較例20]
 対向電極の作製において、電解重合法の重合時間を長くすることによって、形成するPEDOTからなる膜の膜厚を100nmに変更した以外は、比較例18(比較例7)と同様にセルを作製した。
[Comparative Example 20]
In the production of the counter electrode, a cell was produced in the same manner as in Comparative Example 18 (Comparative Example 7) except that the film thickness of PEDOT to be formed was changed to 100 nm by increasing the polymerization time of the electrolytic polymerization method. .
[比較例21]
 対向電極の作製において、電解重合法の重合時間を長くすることによって、形成するPEDOTからなる膜の膜厚を200nmに変更した以外は、比較例18(比較例7)と同様にセルを作製した。
 以上の実施例17~19及び比較例15~21で作製した各セルについて、実施例1と同様の評価を行った。その結果を表3に示す。
[Comparative Example 21]
In the production of the counter electrode, a cell was produced in the same manner as in Comparative Example 18 (Comparative Example 7) except that the film thickness of the PEDOT film to be formed was changed to 200 nm by increasing the polymerization time of the electrolytic polymerization method. .
Each cell produced in Examples 17 to 19 and Comparative Examples 15 to 21 was evaluated in the same manner as Example 1. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
上記表の実施例17~19の結果から、対向電極の触媒層の厚み(膜厚)が増加するほど、セルの発電効率が向上することが分かる。この理由として、実施例の触媒層が、多孔質構造に沿って三次元的に連結した構造を有するため、膜厚の増加に伴って、触媒反応面積が増加していることが考えられる。
 一方、対向電極として白金薄膜を用いた比較例15~17のセルの場合、白金電極の膜厚を増加してもほとんど発電効率は変化していない。このことは、導電性ガラス基板の表面に直接形成したPEDOTからなる膜を対向電極とする比較例18~21のセルの場合も同様である。この発電効率が変化していない理由は、比較例の対向電極の膜厚を増加しても、触媒反応面積は増加しないからである。なお、PEDOTを200nm程度の膜厚にした比較例21のセルにおいては、膜の強度不足により膜が剥離した。
From the results of Examples 17 to 19 in the above table, it can be seen that the power generation efficiency of the cell improves as the thickness (film thickness) of the catalyst layer of the counter electrode increases. The reason is considered that the catalyst reaction area increases as the film thickness increases because the catalyst layer of the example has a three-dimensionally connected structure along the porous structure.
On the other hand, in the cells of Comparative Examples 15 to 17 using a platinum thin film as the counter electrode, the power generation efficiency hardly changes even when the film thickness of the platinum electrode is increased. The same applies to the cells of Comparative Examples 18 to 21 in which the film made of PEDOT directly formed on the surface of the conductive glass substrate is used as the counter electrode. The reason why the power generation efficiency does not change is that the catalytic reaction area does not increase even if the thickness of the counter electrode of the comparative example is increased. In addition, in the cell of the comparative example 21 which made PEDOT the film thickness of about 200 nm, the film | membrane peeled by the film | membrane intensity | strength lack.
 以上で説明した各実施形態における各構成及びそれらの組み合わせ等は一例であり、本発明の趣旨を逸脱しない範囲で、構成の付加、省略、置換、およびその他の変更が可能である。また、本発明は各実施形態によって限定されることはなく、請求項(クレーム)の範囲によってのみ限定される。 The configurations and combinations thereof in the embodiments described above are merely examples, and additions, omissions, substitutions, and other changes can be made without departing from the spirit of the present invention. Further, the present invention is not limited by each embodiment, and is limited only by the scope of the claims.
 本発明の電極基板及びその電極基板を用いた色素増感太陽電池は、太陽電池の分野に広く適用可能である。 The electrode substrate of the present invention and the dye-sensitized solar cell using the electrode substrate are widely applicable in the field of solar cells.
1…導電性基板、1a…導電性膜、1b…基板、2…多孔質膜、2a…導電性又は半導体特性を有する微粒子、3…導電性高分子(触媒層)、4…封止材、5…電解液、6…透明基板、7…透明導電膜、8…多孔質酸化物半導体層、10…色素増感太陽電池、11…光電極(光電極基板)、12…対向電極(対向電極基板)、21…導電性基板、21a…透明導電膜、21b…ガラス基板、22…炭素材料、23…導電性高分子 DESCRIPTION OF SYMBOLS 1 ... Conductive substrate, 1a ... Conductive film, 1b ... Substrate, 2 ... Porous film, 2a ... Fine particle which has electroconductivity or semiconductor characteristic, 3 ... Conductive polymer (catalyst layer), 4 ... Sealing material, DESCRIPTION OF SYMBOLS 5 ... Electrolyte solution, 6 ... Transparent substrate, 7 ... Transparent electrically conductive film, 8 ... Porous oxide semiconductor layer, 10 ... Dye-sensitized solar cell, 11 ... Photoelectrode (photoelectrode substrate), 12 ... Counter electrode (counter electrode) Substrate), 21 ... conductive substrate, 21a ... transparent conductive film, 21b ... glass substrate, 22 ... carbon material, 23 ... conductive polymer

Claims (13)

  1.  導電性基板と、前記導電性基板上に製膜された多孔質膜と、前記多孔質膜にコーティングされた触媒層と、を有する電極基板。 An electrode substrate having a conductive substrate, a porous film formed on the conductive substrate, and a catalyst layer coated on the porous film.
  2.  前記多孔質膜の三次元構造に沿って前記触媒層がコーティングされている、請求項1に記載の電極基板。 The electrode substrate according to claim 1, wherein the catalyst layer is coated along a three-dimensional structure of the porous membrane.
  3.  前記触媒層がコーティングされた多孔質膜に複数の単一孔が連結された連胞構造が含まれる、請求項1又は2に記載の電極基板。 The electrode substrate according to claim 1 or 2, wherein the electrode substrate includes a continuous structure in which a plurality of single holes are connected to a porous film coated with the catalyst layer.
  4.  前記触媒層がコーティングされた多孔質膜において、前記連胞構造の個数が前記単一孔の個数より大きい、請求項3に記載の電極基板。 4. The electrode substrate according to claim 3, wherein in the porous membrane coated with the catalyst layer, the number of the ream structure is larger than the number of the single holes.
  5. 前記多孔質膜が金属又は金属化合物によって構成されている請求項1~4の何れか一項に記載の電極基板。 The electrode substrate according to any one of claims 1 to 4, wherein the porous film is made of a metal or a metal compound.
  6. 前記多孔質膜が炭素材料によって構成されている請求項1~4の何れか一項に記載の電極基板。 The electrode substrate according to any one of claims 1 to 4, wherein the porous film is made of a carbon material.
  7.  前記触媒層が導電性高分子によって構成されている、請求項1~6の何れか一項に記載の電極基板。 The electrode substrate according to any one of claims 1 to 6, wherein the catalyst layer is composed of a conductive polymer.
  8.  前記導電性高分子が、下記一般式(1)で表されるチオフェン化合物の重合体である、請求項7に記載の電極基板。
    Figure JPOXMLDOC01-appb-C000001
    [式中、R及びRは、それぞれ独立に水素原子、炭素原子数1~8のアルキル基、炭素原子数1~4のアルコキシ基、炭素原子数6又は8のアリール基、カルボキシル基、エステル基、アルデヒド基、水酸基、ハロゲン原子、シアノ基、アミノ基、ニトロ基、アゾ基、スルホ基又はスルホニル基を表す。R及びRが前記アルキル基又はアルコキシ基である場合、前記アルキル基又はアルコキシ基の末端の炭素原子同士が結合して環を形成していてもよい。]
    The electrode substrate according to claim 7, wherein the conductive polymer is a polymer of a thiophene compound represented by the following general formula (1).
    Figure JPOXMLDOC01-appb-C000001
    [Wherein R 1 and R 2 are each independently a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, an aryl group having 6 or 8 carbon atoms, a carboxyl group, An ester group, an aldehyde group, a hydroxyl group, a halogen atom, a cyano group, an amino group, a nitro group, an azo group, a sulfo group, or a sulfonyl group is represented. When R 1 and R 2 are the alkyl group or alkoxy group, the carbon atoms at the terminals of the alkyl group or alkoxy group may be bonded to form a ring. ]
  9.  前記導電性高分子が、下記一般式(2)で表されるピロール化合物の重合体である、請求項7に記載の電極基板。
    Figure JPOXMLDOC01-appb-C000002
    [式中、R及びRは、それぞれ独立に水素原子、炭素原子数1~8のアルキル基、炭素原子数1~4のアルコキシ基、炭素原子数6又は8のアリール基、カルボキシル基、エステル基、アルデヒド基、水酸基、ハロゲン原子、シアノ基、アミノ基、ニトロ基、アゾ基、スルホ基又はスルホニル基を表す。R及びRが前記アルキル基又はアルコキシ基である場合、前記アルキル基又はアルコキシ基の末端の炭素原子同士が結合して環を形成していてもよい。]
    The electrode substrate according to claim 7, wherein the conductive polymer is a polymer of a pyrrole compound represented by the following general formula (2).
    Figure JPOXMLDOC01-appb-C000002
    [Wherein R 3 and R 4 each independently represents a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, an aryl group having 6 or 8 carbon atoms, a carboxyl group, An ester group, an aldehyde group, a hydroxyl group, a halogen atom, a cyano group, an amino group, a nitro group, an azo group, a sulfo group, or a sulfonyl group is represented. When R 3 and R 4 are the alkyl group or alkoxy group, carbon atoms at the terminals of the alkyl group or alkoxy group may be bonded to form a ring. ]
  10.  前記導電性高分子が、下記一般式(3)で表されるアニリン化合物の重合体である、請求項7に記載の電極基板。
    Figure JPOXMLDOC01-appb-C000003
    [式中、R~Rは、それぞれ独立に水素原子、炭素原子数1~8のアルキル基、炭素原子数1~4のアルコキシ基、炭素原子数6又は8のアリール基、カルボキシル基、エステル基、アルデヒド基、水酸基、ハロゲン原子、シアノ基、アミノ基、ニトロ基、アゾ基、スルホ基又はスルホニル基を表す。R及びR、或いは、R及びRが前記アルキル基又はアルコキシ基である場合、前記アルキル基又はアルコキシ基の末端の炭素原子同士が結合して環を形成していてもよい。]
    The electrode substrate according to claim 7, wherein the conductive polymer is a polymer of an aniline compound represented by the following general formula (3).
    Figure JPOXMLDOC01-appb-C000003
    [Wherein R 5 to R 8 are each independently a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, an aryl group having 6 or 8 carbon atoms, a carboxyl group, An ester group, an aldehyde group, a hydroxyl group, a halogen atom, a cyano group, an amino group, a nitro group, an azo group, a sulfo group, or a sulfonyl group is represented. When R 5 and R 6 , or R 7 and R 8 are the alkyl group or alkoxy group, carbon atoms at the terminals of the alkyl group or alkoxy group may be bonded to form a ring. ]
  11.  前記導電性基板の表面と前記多孔質膜とが接している、請求項1~10の何れか一項に記載の電極基板。 The electrode substrate according to any one of claims 1 to 10, wherein the surface of the conductive substrate is in contact with the porous film.
  12.  前記導電性高分子が、前記多孔質膜を作用極として用いた電解重合法によって前記多孔質膜にコーティングされた、請求項7~11の何れか一項に記載の電極基板。 The electrode substrate according to any one of claims 7 to 11, wherein the conductive polymer is coated on the porous film by an electrolytic polymerization method using the porous film as a working electrode.
  13.  請求項1~12の何れか一項に記載の電極基板によって構成された対向電極と、色素を吸着した光電極と、電解液とを備えた、色素増感太陽電池。
     
    A dye-sensitized solar cell comprising a counter electrode constituted by the electrode substrate according to any one of claims 1 to 12, a photoelectrode adsorbing a dye, and an electrolyte.
PCT/JP2013/075997 2012-12-14 2013-09-26 Electrode substrate and dye-sensitized solar cell WO2014091809A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014551917A JP5740063B2 (en) 2012-12-14 2013-09-26 Electrode substrate and dye-sensitized solar cell
CN201380043843.3A CN104584162A (en) 2012-12-14 2013-09-26 Electrode substrate and dye-sensitized solar cell
KR1020157003778A KR102103740B1 (en) 2012-12-14 2013-09-26 Electrode substrate and dye-sensitized solar cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-273719 2012-12-14
JP2012273719 2012-12-14

Publications (1)

Publication Number Publication Date
WO2014091809A1 true WO2014091809A1 (en) 2014-06-19

Family

ID=50934108

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/075997 WO2014091809A1 (en) 2012-12-14 2013-09-26 Electrode substrate and dye-sensitized solar cell

Country Status (5)

Country Link
JP (1) JP5740063B2 (en)
KR (1) KR102103740B1 (en)
CN (1) CN104584162A (en)
TW (1) TWI596824B (en)
WO (1) WO2014091809A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI694468B (en) * 2015-03-04 2020-05-21 日商積水化學工業股份有限公司 Conductive paste, electrical module and method for forming electrical module

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114744060B (en) * 2022-04-14 2023-08-29 浙江理工大学 Electric network corona monitor and preparation method thereof

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001102104A (en) * 1999-09-30 2001-04-13 Fuji Photo Film Co Ltd Photoelectric conversion device and photoelectric cell
JP2004288985A (en) * 2003-03-24 2004-10-14 Japan Science & Technology Agency Solar cell
JP2006523369A (en) * 2003-03-24 2006-10-12 コナルカ テクノロジーズ インコーポレイテッド Photoelectric cell using mesh electrode
JP2007059225A (en) * 2005-08-25 2007-03-08 Fujikura Ltd Electrode for photoelectric conversion element and manufacturing method of the same
JP2007066788A (en) * 2005-09-01 2007-03-15 Fujikura Ltd Electrode and its manufacturing method, as well as, photoelectric conversion element
JP2007073414A (en) * 2005-09-08 2007-03-22 Fujikura Ltd Electrode and method of manufacturing it, as well as photoelectric conversion element
JP2007273240A (en) * 2006-03-31 2007-10-18 Shinshu Univ Dye-sensitized solar battery
JP2007294288A (en) * 2006-04-26 2007-11-08 Nippon Oil Corp Dye-sensitized solar cell
JP2010021102A (en) * 2008-07-14 2010-01-28 Sharp Corp Dye-sensitized solar cell, manufacturing method therefor, and dye-sensitized solar cell module
JP2010205581A (en) * 2009-03-04 2010-09-16 Hitachi Zosen Corp Manufacturing method of photoelectric conversion element using conductive mesh
JP2012104505A (en) * 2006-12-11 2012-05-31 Fujikura Ltd Photoelectric conversion element
JP2012212553A (en) * 2011-03-31 2012-11-01 Dainippon Printing Co Ltd Counter electrode substrate for dye-sensitized solar cell and manufacturing method of the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003317814A (en) 2002-04-24 2003-11-07 Shozo Yanagida Photovoltaic cell
JP2003313317A (en) 2002-04-24 2003-11-06 Shozo Yanagida pi-CONJUGATED POLYMER SELF-SUPPORTING FILM, METHOD OF MANUFACTURING THE FILM, AND SOLAR CELL AND LAMINATE USING THE FILM
KR100661116B1 (en) * 2004-11-22 2006-12-22 가부시키가이샤후지쿠라 Electrode, photoelectric conversion element, and dye-sensitized solar cell
JP4799852B2 (en) 2004-11-22 2011-10-26 株式会社フジクラ Electrode for photoelectric conversion element, photoelectric conversion element, and dye-sensitized solar cell
CN101821898A (en) * 2007-09-26 2010-09-01 第一工业制药株式会社 Process for producing electroconductive polymer electrode and dye-sensitized solar cell comprising the electroconductive polymer electrode
JP5377120B2 (en) 2009-07-02 2013-12-25 三菱レイヨン株式会社 Photoelectric conversion element and manufacturing method thereof

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001102104A (en) * 1999-09-30 2001-04-13 Fuji Photo Film Co Ltd Photoelectric conversion device and photoelectric cell
JP2004288985A (en) * 2003-03-24 2004-10-14 Japan Science & Technology Agency Solar cell
JP2006523369A (en) * 2003-03-24 2006-10-12 コナルカ テクノロジーズ インコーポレイテッド Photoelectric cell using mesh electrode
JP2007059225A (en) * 2005-08-25 2007-03-08 Fujikura Ltd Electrode for photoelectric conversion element and manufacturing method of the same
JP2007066788A (en) * 2005-09-01 2007-03-15 Fujikura Ltd Electrode and its manufacturing method, as well as, photoelectric conversion element
JP2007073414A (en) * 2005-09-08 2007-03-22 Fujikura Ltd Electrode and method of manufacturing it, as well as photoelectric conversion element
JP2007273240A (en) * 2006-03-31 2007-10-18 Shinshu Univ Dye-sensitized solar battery
JP2007294288A (en) * 2006-04-26 2007-11-08 Nippon Oil Corp Dye-sensitized solar cell
JP2012104505A (en) * 2006-12-11 2012-05-31 Fujikura Ltd Photoelectric conversion element
JP2010021102A (en) * 2008-07-14 2010-01-28 Sharp Corp Dye-sensitized solar cell, manufacturing method therefor, and dye-sensitized solar cell module
JP2010205581A (en) * 2009-03-04 2010-09-16 Hitachi Zosen Corp Manufacturing method of photoelectric conversion element using conductive mesh
JP2012212553A (en) * 2011-03-31 2012-11-01 Dainippon Printing Co Ltd Counter electrode substrate for dye-sensitized solar cell and manufacturing method of the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI694468B (en) * 2015-03-04 2020-05-21 日商積水化學工業股份有限公司 Conductive paste, electrical module and method for forming electrical module

Also Published As

Publication number Publication date
TWI596824B (en) 2017-08-21
KR102103740B1 (en) 2020-04-23
JP5740063B2 (en) 2015-06-24
CN104584162A (en) 2015-04-29
KR20150097456A (en) 2015-08-26
TW201424088A (en) 2014-06-16
JPWO2014091809A1 (en) 2017-01-05

Similar Documents

Publication Publication Date Title
TWI274424B (en) Electrode, photoelectric conversion element, and dye-sensitized solar cell
Liu et al. Intrinsic origin of superior catalytic properties of tungsten-based catalysts in dye-sensitized solar cells
JP5300735B2 (en) Dye-sensitized solar cell module
Bora et al. Polythiophene/graphene composite as a highly efficient platinum-free counter electrode in dye-sensitized solar cells
Nagarajan et al. A PEDOT-reinforced exfoliated graphite composite as a Pt-and TCO-free flexible counter electrode for polymer electrolyte dye-sensitized solar cells
Belekoukia et al. Electrochemically exfoliated graphene/PEDOT composite films as efficient Pt-free counter electrode for dye-sensitized solar cells
TW200915641A (en) Process for producing electroconductive polymer electrode and dye-sensitized solar cell comprising the electroconductive polymer electrode
TW201008006A (en) Manufacturing method for photoelectric transducer, photoelectric transducer manufactured thereby, manufacturing method for photoelectric transducer module, and photoelectric transducer module manufactured thereby
JP5225577B2 (en) Photoelectric conversion element and method for producing counter electrode for photoelectric conversion element
Niu et al. Axle-sleeve structured MWCNTs/polyaniline composite film as cost-effective counter-electrodes for high efficient dye-sensitized solar cells
Bora et al. A low cost carbon black/polyaniline nanotube composite as efficient electro-catalyst for triiodide reduction in dye sensitized solar cells
TW200814339A (en) Method for forming an electrode comprising an electrocatalyst layer thereon and electrochemical device comprising the same
JP2013020757A (en) Photoelectric conversion element, method for manufacturing the same, electronic device, counter electrode for photoelectric conversion element, and structure
JP4895361B2 (en) Electrolyte-catalyst composite electrode for dye-sensitized solar cell, method for producing the same, and dye-sensitized solar cell provided with the same
Di et al. Electrocatalytic films of PEDOT incorporating transition metal phosphides as efficient counter electrodes for dye sensitized solar cells
Liu et al. Low-cost and flexible poly (3, 4-ethylenedioxythiophene) based counter electrodes for efficient energy conversion in dye-sensitized solar cells
JP6586665B2 (en) Transparent conductive film, dye-sensitized solar cell photoelectrode and touch panel, and dye-sensitized solar cell
JP5740063B2 (en) Electrode substrate and dye-sensitized solar cell
JP4759984B2 (en) Electrode substrate for dye-sensitized solar cell, method for producing the same, and dye-sensitized solar cell
JP6201317B2 (en) Dye-sensitized photoelectric conversion element and dye-sensitized solar cell
Sakurai et al. Improved Photocurrent of a Poly (3, 4-ethylenedioxythiophene)-ClO4–/TiO2 Thin Film-modified Counter Electrode for Dye-sensitized Solar Cells
Al-bahrani et al. Layer-by-layer deposition of CNT− and CNT+ hybrid films for platinum free counters electrodes of dye-sensitized-solar-cells
JP4799852B2 (en) Electrode for photoelectric conversion element, photoelectric conversion element, and dye-sensitized solar cell
JP6748167B2 (en) Electrode for solar cell, dye-sensitized solar cell, and manufacturing method thereof
Liu et al. Depositing Pt nanoparticles by pulse electrodeposition for DSSCs counter electrode with high electrocatalytic activity

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13862986

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014551917

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20157003778

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13862986

Country of ref document: EP

Kind code of ref document: A1