JP2003313317A - pi-CONJUGATED POLYMER SELF-SUPPORTING FILM, METHOD OF MANUFACTURING THE FILM, AND SOLAR CELL AND LAMINATE USING THE FILM - Google Patents
pi-CONJUGATED POLYMER SELF-SUPPORTING FILM, METHOD OF MANUFACTURING THE FILM, AND SOLAR CELL AND LAMINATE USING THE FILMInfo
- Publication number
- JP2003313317A JP2003313317A JP2002122091A JP2002122091A JP2003313317A JP 2003313317 A JP2003313317 A JP 2003313317A JP 2002122091 A JP2002122091 A JP 2002122091A JP 2002122091 A JP2002122091 A JP 2002122091A JP 2003313317 A JP2003313317 A JP 2003313317A
- Authority
- JP
- Japan
- Prior art keywords
- film
- conjugated polymer
- substrate
- self
- supporting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Laminated Bodies (AREA)
- Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、空気中で安定な不
溶性のπ共役系高分子自立膜及びその製造方法に関し、
更には、そのπ共役系高分子自立膜を用いた太陽電池及
び積層体に関する。TECHNICAL FIELD The present invention relates to an insoluble π-conjugated polymer free-standing film that is stable in air and a method for producing the same.
Furthermore, the present invention relates to a solar cell and a laminated body using the π-conjugated polymer self-supporting film.
【0002】[0002]
【従来の技術】π共役系高分子は、導電性高分子とし
て、種々の電子材料、光機能材料、磁気機能材料等の素
材としての潜在的物性を有しており、各種の応用に向け
て精力的にその研究が行なわれている。2. Description of the Related Art A π-conjugated polymer has potential properties as a conductive polymer such as various electronic materials, optical functional materials, magnetic functional materials, etc. The research is being carried out vigorously.
【0003】π共役系高分子を実用に供する場合には、
これを膜状に成形(成膜)して用いることが多い。成膜
の一般的な方法としては、(i)π共役系高分子の原料
モノマーと電解質とを含む溶液を用いて電解重合法によ
り電極上に成膜する方法や、(ii)可溶性のπ共役系高
分子を重合により製造した後、その溶液を用いて基板上
にスピンコート法、キャスト法等の塗布法により成膜す
る方法が挙げられる。また、一方では、(iii)不溶性
のπ共役系高分子の原料モノマー,重合触媒,及び重合
速度を調節する添加物等を含む溶液を基板上に塗布し、
反応させてπ共役系高分子膜を作成する方法も開発され
ている(SYNTHETIC METALS,第66巻,第14号,263〜273
頁,1994年。特開平2-47369号公報)。When the π-conjugated polymer is put to practical use,
This is often used after being formed (formed) into a film. As a general method of film formation, (i) a method of forming a film on an electrode by an electrolytic polymerization method using a solution containing a raw material monomer of a π-conjugated polymer and an electrolyte, and (ii) soluble π-conjugated Examples include a method in which a system polymer is produced by polymerization, and then a solution is used to form a film on a substrate by a coating method such as a spin coating method or a casting method. On the other hand, on the other hand, (iii) a solution containing a raw material monomer of an insoluble π-conjugated polymer, a polymerization catalyst, an additive for controlling the polymerization rate, etc. is applied on a substrate,
A method of reacting to form a π-conjugated polymer film has also been developed (SYNTHETIC METALS, Volume 66, No. 14, 263 to 273).
Page, 1994. JP-A-2-47369).
【0004】[0004]
【発明が解決しようとする課題】ところで、これらの膜
形成法で得られるπ共役系高分子膜は、通常は支持基板
と共に使用されるが、支持基板から切り離された膜単
体、即ち自立膜の状態で使用できれば、更に実用の範囲
が広くなるものと期待される。可溶性のπ共役系高分子
については、この様な自立膜を形成する方法として、上
記(i)又は(ii)の方法で各種基板上に膜を形成した
後に、基板から剥離して形成する方法が知られている。By the way, the π-conjugated polymer film obtained by these film forming methods is usually used together with a supporting substrate, but it is a single film separated from the supporting substrate, that is, a self-supporting film. If it can be used in the state, it is expected to have a wider range of practical use. As a method for forming such a free-standing film, a soluble π-conjugated polymer is formed by forming a film on various substrates by the method (i) or (ii) and then peeling the film from the substrate. It has been known.
【0005】しかしながら、不溶性のπ共役系高分子の
場合、この様な自立膜を形成する方法は知られていな
い。上記(iii)の方法によって得られる不溶性のπ共
役系高分子膜は、基板上で洗浄及び乾燥を繰り返し行な
っても膜が基板から剥離することがなく、且つ、膜の形
状は非常に良好に保たれており(SYNTHETIC METALS,第
66巻,第14号,263〜273頁,1994年)、基板と不溶性π
共役系高分子膜との接着性が強く、自立膜は得られてい
ない。また、上記(i)の方法によって不溶性のπ共役
系高分子膜を得た場合にも、電極との接着性が強く、電
解重合膜の電気伝導度を測定するために粘着テープを用
いて電極から剥離する方法が取られており(POLYMER,
第35巻,第7号,1347〜1351頁,1994年。)、やはり自
立膜は得られていない。However, in the case of an insoluble π-conjugated polymer, a method for forming such a self-supporting film is not known. The insoluble π-conjugated polymer film obtained by the method (iii) above does not peel off from the substrate even after repeated washing and drying on the substrate, and the film shape is very good. Retained (SYNTHETIC METALS, No. 1
66, No. 14, pp. 263-273, 1994), Substrate and insoluble π
The adhesiveness with the conjugated polymer film is strong, and a free-standing film has not been obtained. Further, even when an insoluble π-conjugated polymer film is obtained by the method (i), the adhesiveness to the electrode is strong, and an electrode tape is used to measure the electric conductivity of the electropolymerized film. The method of exfoliating from (POLYMER,
Volume 35, No. 7, pp. 1347-1351, 1994. ), Of course, no free-standing membrane has been obtained.
【0006】なお、π共役系高分子の一種であるポリア
セチレンの場合には、重合と同時に自立膜を形成するこ
とができるが、空気に曝されるとポリアセチレンの組成
変化が起き、ポリアセチレン骨格のπ共役が切れて電気
が流れ難い状態となるため、実用には適していない。従
って、空気中で安定な不溶性のπ共役系高分子自立膜が
求められていた。In the case of polyacetylene, which is a kind of π-conjugated polymer, a free-standing film can be formed at the same time as polymerization, but when exposed to air, the composition of polyacetylene changes, and the π of the polyacetylene skeleton occurs. This is not suitable for practical use, because the conjugation is broken and it becomes difficult for electricity to flow. Therefore, there has been a demand for an insoluble π-conjugated polymer free-standing film that is stable in air.
【0007】本発明は、上述の課題に鑑みてなされたも
のである。すなわち、本発明の目的は、今まで得られて
いなかった空気中で安定な不溶性のπ共役系高分子自立
膜を提供すること、及び、この自立膜を簡便に製造する
方法を提供することに存し、更には、この自立膜を用い
た太陽電池及び積層体を提供することに存する。The present invention has been made in view of the above problems. That is, an object of the present invention is to provide an insoluble π-conjugated polymer free-standing film that is stable in air, which has not been obtained up to now, and to provide a method for easily producing this free-standing film. Furthermore, it exists in providing a solar cell and laminated body using this self-supporting film.
【0008】[0008]
【課題を解決するための手段】本発明者らは、上記の課
題を解決すべく鋭意検討した結果、表面をオゾンで処理
した基板上に原料モノマーを含む溶液を塗布し、これを
重合反応させて得られる不溶性のπ共役系高分子膜が、
空気中で安定であるとともに、基板と接している側の面
を荒らすことなく自立膜として容易に基板から剥離させ
ることができ、且つ、得られた自立膜の表面が平坦性に
優れていることから、太陽電池や各種用途の積層体の部
材として有用であることを見出して、本発明を完成する
に至った。Means for Solving the Problems As a result of intensive studies to solve the above problems, the inventors of the present invention applied a solution containing a raw material monomer onto a substrate whose surface was treated with ozone, and caused this to undergo a polymerization reaction. The insoluble π-conjugated polymer film obtained by
It is stable in air and can be easily peeled from the substrate as a self-supporting film without roughening the surface in contact with the substrate, and the surface of the obtained self-supporting film has excellent flatness. Therefore, they have found that they are useful as a member of a solar cell or a laminate for various applications, and completed the present invention.
【0009】即ち、本発明の第1の要旨は、空気中で安
定であり、且つ不溶性であることを特徴とする、π共役
系高分子自立膜に存する。That is, the first gist of the present invention resides in a π-conjugated polymer self-supporting film which is characterized by being stable in air and insoluble.
【0010】また、本発明の第2の要旨は、π共役系高
分子の原料となるモノマーを含む溶液を、オゾン処理を
行なった基板上に塗布して重合反応させ、形成された膜
を基板から剥離させることを特徴とする、前記π共役系
高分子自立膜の製造方法に存する。A second aspect of the present invention is to apply a solution containing a monomer, which is a raw material for a π-conjugated polymer, onto an ozone-treated substrate to cause a polymerization reaction to form a film on the substrate. The method for producing a π-conjugated polymer free-standing film is characterized in that it is peeled from the film.
【0011】更に、本発明の第3の要旨は、前記π共役
系高分子自立膜をホール集電電極として用いることを特
徴とする太陽電池に存する。Further, a third aspect of the present invention resides in a solar cell characterized in that the π-conjugated polymer free-standing film is used as a hole collector electrode.
【0012】加えて、本発明の第4の要旨は、前記π共
役系高分子自立膜を基板に積層して形成されることを特
徴とする積層体に存する。[0012] In addition, a fourth aspect of the present invention resides in a laminated body characterized by being formed by laminating the π-conjugated polymer self-supporting film on a substrate.
【0013】[0013]
【発明の実施の形態】以下、本発明を詳細に説明する。
本発明に係るπ共役系高分子自立膜を形成するπ共役系
高分子としては、空気中で安定であるとともに、有機溶
媒等の溶媒に不溶性であって、且つ、その高分子主鎖骨
格がπ共役系を形成するものであれば、その種類や構造
に特に制限はなく、例えば、側鎖に何らかの置換基が導
入されていても良い。BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below.
The π-conjugated polymer forming the π-conjugated polymer free-standing film according to the present invention is stable in air, is insoluble in a solvent such as an organic solvent, and has a polymer main chain skeleton. There are no particular restrictions on the type or structure of the π-conjugated system, and for example, some substituent may be introduced into the side chain.
【0014】ここで、自立膜が「空気中で安定」とは、
室温下空気中で1日以上放置した場合でも、そのπ共役
系を形成する主鎖骨格及び側鎖や置換基における実質的
な組成変化が生じないことをいう。また、自立膜が「不
溶性」とは、クロロホルム、テトラヒドロフラン、メタ
ノール、エタノール及び四塩化炭素の何れに対しても、
25℃での溶解度が1重量%以下であることをいう。Here, the self-supporting film "stable in air" means
It means that even when left in the air at room temperature for 1 day or more, substantial compositional change does not occur in the main chain skeleton, the side chain and the substituent forming the π-conjugated system. Further, when the self-supporting film is "insoluble", it means that any of chloroform, tetrahydrofuran, methanol, ethanol and carbon tetrachloride,
It means that the solubility at 25 ° C. is 1% by weight or less.
【0015】空気中で安定な不溶性のπ共役系高分子と
して、具体的には、ポリピロール及びその誘導体、ポリ
チオフェン及びその誘導体などが挙げられる。中でも、
未ドープの状態において下記式(1)に示される構造を
有するポリ(3,4−エチレンジオキシチオフェン)
は、重合後は高濃度ドープ状態となっており高電気伝導
度を示し、且つ室温下空気中で高濃度ドープ状態として
安定性に優れているため特に好ましい。Specific examples of the insoluble π-conjugated polymer which is stable in air include polypyrrole and its derivatives, polythiophene and its derivatives. Above all,
Poly (3,4-ethylenedioxythiophene) having a structure represented by the following formula (1) in an undoped state
Is particularly preferable because it has a high concentration doped state after polymerization and shows a high electric conductivity, and is excellent in stability as a high concentration doped state in air at room temperature.
【化1】 ...式(1)[Chemical 1] . . . Formula (1)
【0016】次に、本発明のπ共役系高分子自立膜を製
造する方法に関して、以下説明する。まず、オゾン処理
を行った基板上に、π共役系高分子の原料となるモノマ
ー(以下、原料モノマーと呼ぶ。),重合触媒,及び重
合速度を低減する化合物(以下、重合速度調整剤と呼
ぶ)等を含む混合溶液を、スピンコート法、キャスト
法、ディップ法等の塗布法で展開した後、重合反応させ
る。重合反応終了後、形成されたπ共役系高分子膜を基
板と共に洗浄液中に浸漬して洗浄する。この洗浄操作を
繰り返すことにより、形成されたπ共役系高分子膜を基
板から剥離して、自立膜の状態とすることができる。Next, the method for producing the π-conjugated polymer free-standing film of the present invention will be described below. First, a monomer that is a raw material of a π-conjugated polymer (hereinafter, referred to as a raw material monomer), a polymerization catalyst, and a compound that reduces a polymerization rate (hereinafter, referred to as a polymerization rate adjusting agent) are formed on an ozone-treated substrate. ) And the like are developed by a coating method such as a spin coating method, a casting method and a dipping method, and then a polymerization reaction is carried out. After the polymerization reaction is completed, the formed π-conjugated polymer film is immersed in a cleaning liquid together with the substrate for cleaning. By repeating this washing operation, the formed π-conjugated polymer film can be peeled off from the substrate to form a free-standing film.
【0017】前記原料モノマー等を含む混合液を展開す
るための基板としては、オゾン処理により劣化、変形等
がおこらないものであれば特に限定されないが、ガラス
基板が好ましい。基板表面のオゾン処理は、空気中に設
置した基板に対して低圧水銀ランプから得られる紫外線
を照射することにより行なうが、その紫外線強度として
は、2〜15mW/cm2が好ましく、8〜12mW/
cm2が更に好ましい。また、処理時間としては、5〜
30分が好ましく、15〜25分が更に好ましい。The substrate on which the mixed liquid containing the raw material monomers and the like is spread is not particularly limited as long as it is not deteriorated or deformed by ozone treatment, but a glass substrate is preferable. The ozone treatment of the substrate surface is performed by irradiating a substrate placed in the air with ultraviolet rays obtained from a low-pressure mercury lamp, and the ultraviolet intensity thereof is preferably 2 to 15 mW / cm 2 , and 8 to 12 mW / cm 2.
cm 2 is more preferable. The processing time is 5 to
30 minutes are preferable, and 15 to 25 minutes are more preferable.
【0018】原料モノマーとしては、前述した空気中で
安定な不溶性のπ共役系高分子を形成するものであれば
特に制限されないが、具体的には、ピロール及びその誘
導体、チオフェン及びその誘導体などが挙げられる。The raw material monomer is not particularly limited as long as it forms an insoluble π-conjugated polymer that is stable in the air as described above, and specifically, pyrrole and its derivative, thiophene and its derivative, and the like. Can be mentioned.
【0019】重合触媒としては、前記原料モノマーを重
合させるものであれば特に制限はないが、原料モノマー
がピロール及びその誘導体である場合には、塩化鉄(II
I)(iron(III) chloride)及びその水和物が挙げられ、
また、原料モノマーがチオフェン及びその誘導体である
場合には、塩化鉄(III)、トリス−p−トルエンスルホ
ン酸鉄(III)(iron (III) tris-p-toluenesulfonat
e)、p−ドデシルベンゼンスルホン酸鉄(III)(iron
(III) p-dodecylbenzenesulfonate)、メタンスルホン
酸鉄(III)(iron (III) methanesulfonate)、p−エチ
ルベンゼンスルホン酸鉄(III)(iron (III) p-ethylben
zenesulfonate)、ナフタレンスルホン酸鉄(III)(iron
(III) naphthalenesulfonate)及びその水和物等が挙
げられる。The polymerization catalyst is not particularly limited as long as it can polymerize the above raw material monomers, but when the raw material monomers are pyrrole and its derivatives, iron (II) chloride
I) (iron (III) chloride) and hydrates thereof,
When the raw material monomer is thiophene or its derivative, iron (III) chloride, iron (III) tris-p-toluenesulfonat
e), iron (III) p-dodecylbenzenesulfonate (iron
(III) p-dodecylbenzenesulfonate), iron (III) methanesulfonate (iron (III) methanesulfonate), iron (III) p-ethylbenzenesulfonate (iron (III) p-ethylben
zenesulfonate), iron (III) naphthalene sulfonate (iron
(III) naphthalenesulfonate) and hydrates thereof.
【0020】重合速度調整剤としては、前記重合触媒に
おける三価鉄イオンに対する弱い錯化剤であり、膜が形
成できるように重合速度を低減するものであれば特に制
限はないが、重合触媒が塩化鉄(III)及びその水和物で
ある場合には、5−スルホサリチル酸(5-sulphosalicy
lic acid)の様な芳香族オキシスルホン酸などが挙げら
れ、また、重合触媒がトリス−p−トルエンスルホン酸
鉄(III)、p−ドデシルベンゼンスルホン酸鉄(III)、メ
タンスルホン酸鉄(III)、p−エチルベンゼンスルホン
酸鉄(III)、ナフタレンスルホン酸鉄(III)及びその水和
物である場合には、イミダゾールなどが挙げられる。The polymerization rate adjusting agent is not particularly limited as long as it is a weak complexing agent for the trivalent iron ion in the above-mentioned polymerization catalyst and can reduce the polymerization rate so that a film can be formed. In the case of iron (III) chloride and its hydrate, 5-sulfosalicylic acid (5-sulphosalicy
Aromatic oxysulfonic acid such as lic acid), and the polymerization catalyst is tris-p-toluenesulfonic acid iron (III), p-dodecylbenzenesulfonic acid iron (III), methanesulfonic acid iron (III). ), Iron (III) p-ethylbenzenesulfonate, iron (III) naphthalenesulfonate, and hydrates thereof in the case of hydrates thereof.
【0021】前記混合液の溶媒としては、前記原料モノ
マー、前記重合触媒、前記重合速度調整剤等を全て溶解
するとともに、前記基板を溶解しないものであれば特に
制限はないが、例えば、前記原料モノマー、前記重合触
媒、前記重合速度調整剤がそれぞれピロール、塩化鉄(I
II)、5−スルホサリチル酸の組み合わせである場合に
は、溶媒としては水が挙げられ、また、それぞれ3,4
−エチレンジオキシチオフェン、トリス−p−トルエン
スルホン酸鉄(III)、イミダゾールの組み合わせである
場合には、溶媒としてはノルマルブタノールが例示でき
る。The solvent of the mixed solution is not particularly limited as long as it dissolves all the raw material monomers, the polymerization catalyst, the polymerization rate adjusting agent and the like and does not dissolve the substrate. The monomer, the polymerization catalyst, and the polymerization rate regulator are pyrrole and iron chloride (I
In the case of a combination of II) and 5-sulfosalicylic acid, the solvent includes water, and the solvent is 3, 4 respectively.
In the case of a combination of ethylenedioxythiophene, iron (III) tris-p-toluenesulfonate and imidazole, the solvent may be normal butanol.
【0022】前記混合液中における前記原料モノマー、
前記重合触媒、及び前記重合速度調整剤の量比は、それ
ぞれの成分の種類、望まれる重合度、望まれる重合速度
等により変化するが、好適な量比をモル比で示すと、前
記原料モノマー:前記重合触媒の値は1:0.5〜1:
2の範囲、前記重合触媒:前記重合速度調整剤の値は
1:0.1〜1:3の範囲である。The raw material monomers in the mixed liquid,
The amount ratio of the polymerization catalyst and the polymerization rate modifier varies depending on the type of each component, the desired degree of polymerization, the desired polymerization rate, etc. : The value of the polymerization catalyst is 1: 0.5 to 1:
2, the value of the polymerization catalyst: the polymerization rate regulator is in the range of 1: 0.1 to 1: 3.
【0023】前記混合溶液の濃度は、用いる前記原料モ
ノマー、前記重合触媒、及び前記重合速度調整剤のそれ
ぞれの種類、その量比、塗布法に対する条件及び望まれ
る重合後の膜厚により変化するが、好適な前記原料モノ
マー、前記重合触媒、前記重合速度調整剤の混合物とし
ての重量濃度は、1〜50%の範囲である。The concentration of the mixed solution varies depending on the kinds of the raw material monomer, the polymerization catalyst, and the polymerization rate adjusting agent used, their ratios, conditions for the coating method, and the desired film thickness after polymerization. The weight concentration of the preferable mixture of the raw material monomer, the polymerization catalyst, and the polymerization rate adjusting agent is in the range of 1 to 50%.
【0024】前記混合溶液を塗布法により塗布した後、
重合反応を行なう。重合反応の条件は、用いる前記原料
モノマー、前記重合触媒、及び前記重合速度調整剤のそ
れぞれの種類、その量比、濃度、塗布した段階での液膜
の厚み、望まれる重合速度により異なるが、好適な重合
条件としては、空気中加熱の場合の加熱温度が25〜1
20oCの範囲、加熱時間が5分〜24時間の範囲であ
る。After applying the mixed solution by a coating method,
Carry out a polymerization reaction. The conditions of the polymerization reaction, the raw material monomer to be used, the polymerization catalyst, and each type of the polymerization rate adjusting agent, the amount ratio, concentration, the thickness of the liquid film at the stage of coating, depending on the desired polymerization rate, Suitable polymerization conditions include a heating temperature of 25 to 1 in the case of heating in air.
The range is 20 ° C., and the heating time is 5 minutes to 24 hours.
【0025】重合反応後、前述した操作で自立膜が得ら
れる。その膜厚は、前記混合溶液の濃度、粘度及び塗布
条件により変えることが可能であるが、通常は20〜2
00nmの範囲の膜厚のものが得られる。得られた自立
膜の空気中室温での電気伝導度は、用いる前記原料モノ
マー、前記重合触媒、前記重合速度を低減する化合物の
種類、その量比、濃度及び重合条件で異なるが、通常1
0-2S/cm以上を示す。また、四探針法により測定し
たシート抵抗は、両面共に通常5Ω/□以上100Ω/
□以下となる。また、得られた自立膜の基板に接触して
いた面及びその逆の面の表面抵抗値は何れもほとんど変
化せず、基板と接触していた面を荒らすことなく自立膜
を得ることができる。After the polymerization reaction, a self-supporting film is obtained by the above-mentioned operation. The film thickness can be changed depending on the concentration of the mixed solution, the viscosity and the coating conditions, but is usually 20 to 2
A film having a film thickness in the range of 00 nm is obtained. The electric conductivity of the obtained self-supporting film at room temperature in air varies depending on the raw material monomer used, the polymerization catalyst, the kind of the compound that reduces the polymerization rate, the amount ratio, the concentration and the polymerization conditions, but it is usually 1
It shows 0 -2 S / cm or more. In addition, the sheet resistance measured by the four-point probe method is usually 5 Ω / □ or more and 100 Ω / on both sides.
□ Below. Further, the surface resistance values of the surface of the obtained self-supporting film that was in contact with the substrate and the surface opposite thereto were hardly changed, and the self-supporting film could be obtained without roughening the surface that was in contact with the substrate. .
【0026】本発明のπ共役系高分子自立膜は、様々な
用途に使用することが可能であるが、特に、太陽電池の
ホール集電電極としての用途や、各種基板との組み合わ
せで積層体を構成する部材としての用途に、特に好適に
用いることが可能である。The π-conjugated polymer self-supporting film of the present invention can be used in various applications, but in particular, it is used as a hole collecting electrode of a solar cell or in combination with various substrates to form a laminate. It can be used particularly suitably for the use as a member constituting the.
【0027】図1は、本発明のπ共役系高分子自立膜を
ホール集電電極として用いた太陽電池の断面構造の一例
を模式的に示す図である。図1に示す太陽電池は、電気
絶縁性の透明基板2上に導電性透明材料からなる電子集
電電極3が形成され、その上に、増感色素が担持され且
つ電解液を含む半導体層4が形成された2枚の光増感電
極5を、本発明のπ共役系高分子自立膜1を挟む様にそ
の両側に配置した構成となっており、いわゆる三端子構
造のタンデム型太陽電池となっている。この図1の太陽
電池においては、本発明のπ共役系高分子自立膜1が、
二枚の光増感電極5の双方に対する対向電極(ホール集
電電極)の役割を兼ねることになる。基板からの剥離が
困難な従来のπ共役系高分子膜(非自立膜)では、成膜
時の基板が何れか片側に残存してしまい、図1の様にそ
の両側に光増感電極5を配することができないため、こ
の様な三端子構造のタンデム型太陽電池を構成すること
はできない。従って、この様な三端子構造のタンデム型
太陽電池においては、本発明のπ共役系高分子自立膜が
特に有効であることが示される。なお、本発明のπ共役
系高分子自立膜をホール集電電極として用いた太陽電池
の構成は、図1に示したものに限られる訳ではなく、そ
の要旨を越えない限りにおいて種々の形態を取ることが
可能である。FIG. 1 is a diagram schematically showing an example of a sectional structure of a solar cell using the π-conjugated polymer free-standing film of the present invention as a hole collector electrode. In the solar cell shown in FIG. 1, an electron collecting electrode 3 made of a conductive transparent material is formed on an electrically insulating transparent substrate 2, and a semiconductor layer 4 containing a sensitizing dye and containing an electrolytic solution is formed thereon. The two photosensitized electrodes 5 on which are formed are arranged on both sides of the π-conjugated polymer self-supporting film 1 of the present invention so as to sandwich it, and a tandem solar cell having a so-called three-terminal structure is formed. Has become. In the solar cell of FIG. 1, the π-conjugated polymer self-supporting film 1 of the present invention is
It also serves as a counter electrode (hole collecting electrode) for both of the two photosensitizing electrodes 5. In the case of the conventional π-conjugated polymer film (non-self-supporting film) which is difficult to peel from the substrate, the substrate at the time of film formation remains on either side, and as shown in FIG. Therefore, a tandem solar cell having such a three-terminal structure cannot be constructed. Therefore, it is shown that the π-conjugated polymer free-standing film of the present invention is particularly effective in such a three-terminal tandem solar cell. The structure of the solar cell using the π-conjugated polymer self-supporting film of the present invention as the hole current collecting electrode is not limited to that shown in FIG. 1, and various forms may be adopted as long as the gist thereof is not exceeded. It is possible to take.
【0028】図2は、本発明のπ共役系高分子自立膜と
基板とからなる積層体の断面構造の一例を模式的に示す
図である。この態様においては、本発明のπ共役系高分
子自立膜6が、ポリマー基板7上に接着されて積層体を
構成している。この態様の積層体は、例えば、前述した
様に、まずオゾン処理を施したガラス基板上に、不溶性
π共役系高分子の原料モノマーを含む溶液を塗布し、重
合反応させた後、形成されたπ共役系高分子膜(本発明
のπ共役系高分子自立膜)を洗浄してガラス基板から剥
離し易い状態としておき、これを接着剤が塗布されたポ
リマー基板に転写することにより作成できる。基板から
の剥離が困難な従来のπ共役系高分子膜(非自立膜)の
場合、成膜時の重合反応温度よりも耐熱温度の高い基板
を用いる必要があるために、積層体を構成する基板の選
択の幅は制限されてしまうが、本発明のπ共役系高分子
膜を用いれば、成膜時の重合反応温度よりも耐熱温度の
低い基板(即ち、本発明のπ共役系高分子膜をその上に
直接形成できない基板)との組み合わせで積層体を形成
することが可能となる。また、前述した様に、本発明の
π共役系高分子自立膜は、成膜用の基板と接触していた
面を荒らすことなく成膜用の基板から剥離でき、その表
面は平坦性に優れているので、これを他の基板上に転写
して得られる積層体においては、本発明のπ共役系高分
子自立膜と基板とが優れた接触性を示す。従って、本発
明によれば、基板の種類を選ぶことなく、空気中で安定
な不溶性π共役系高分子膜との積層体を作ることができ
る。FIG. 2 is a diagram schematically showing an example of the cross-sectional structure of a laminate comprising the π-conjugated polymer self-supporting film of the present invention and a substrate. In this embodiment, the π-conjugated polymer self-supporting film 6 of the present invention is adhered onto the polymer substrate 7 to form a laminate. As described above, the laminate of this embodiment is formed, for example, by first applying a solution containing a raw material monomer of an insoluble π-conjugated polymer onto an ozone-treated glass substrate to cause a polymerization reaction. It can be prepared by washing the π-conjugated polymer film (the π-conjugated polymer self-supporting film of the present invention) so that it can be easily separated from the glass substrate, and transferring this to a polymer substrate coated with an adhesive. In the case of a conventional π-conjugated polymer film (non-self-supporting film) that is difficult to peel from the substrate, it is necessary to use a substrate having a higher heat resistance temperature than the polymerization reaction temperature at the time of film formation, so a laminate is formed Although the selection range of the substrate is limited, when the π-conjugated polymer film of the present invention is used, the substrate has a lower heat resistance temperature than the polymerization reaction temperature during film formation (that is, the π-conjugated polymer film of the present invention). It becomes possible to form a laminate in combination with a substrate on which a film cannot be directly formed). Further, as described above, the π-conjugated polymer free-standing film of the present invention can be peeled from the film-forming substrate without roughening the surface that was in contact with the film-forming substrate, and the surface is excellent in flatness. Therefore, in the laminate obtained by transferring this onto another substrate, the π-conjugated polymer self-supporting film of the present invention exhibits excellent contact with the substrate. Therefore, according to the present invention, a laminate with an insoluble π-conjugated polymer film that is stable in air can be produced without selecting the type of substrate.
【0029】本発明のπ共役系高分子自立膜との組み合
わせで積層体を構成する基板の素材の種類は特に制限さ
れないが、具体的には、ポリスチレン系樹脂、アクリル
系樹脂、芳香族ポリカーボネート樹脂、非晶質オレフィ
ン樹脂、ポリアミド樹脂、芳香族ポリエステル樹脂、ポ
リフェニレンエーテル樹脂及びポリアリーレンスルフィ
ド樹脂等の熱可塑性樹脂、フェノール樹脂、ユリア樹
脂、メラミン樹脂、不飽和ポリエステル、エポキシ樹
脂、ジアリルフタレート樹脂、ポリウレタン樹脂、ケイ
素樹脂、ポリイミド樹脂等の非熱可塑性樹脂、チタン酸
バリウム(BaTiO3、高容量性)薄膜、酸化アルミ
(Al2O3、高絶縁性)、ZnO(圧電性)、Ba2Y
Cu3O7(超伝導物質)等のセラミックなどが好適に使
用できる。The type of the material of the substrate which constitutes the laminate by combination with the π-conjugated polymer self-supporting film of the present invention is not particularly limited, but specifically, it is a polystyrene resin, an acrylic resin or an aromatic polycarbonate resin. , Thermoplastic resin such as amorphous olefin resin, polyamide resin, aromatic polyester resin, polyphenylene ether resin and polyarylene sulfide resin, phenol resin, urea resin, melamine resin, unsaturated polyester, epoxy resin, diallyl phthalate resin, polyurethane resin, silicone resin, non-thermoplastic resins such as polyimide resin, barium titanate (BaTiO 3, high capacitance) film, aluminum oxide (Al 2 O 3, highly insulating), ZnO (piezoelectric), Ba 2 Y
Ceramics such as Cu 3 O 7 (superconducting material) can be preferably used.
【0030】なお、本発明のπ共役系高分子自立膜を部
材として用いた積層体の態様は、図2に示したものに限
られる訳ではなく、その要旨を越えない限りにおいて種
々の形態を取ることが可能である。The embodiment of the laminated body using the π-conjugated polymer self-supporting film of the present invention as a member is not limited to the one shown in FIG. It is possible to take.
【0031】以上、本発明のπ共役系高分子自立膜を太
陽電池及び積層体に使用した場合の構成について説明し
たが、本発明のπ共役系高分子自立膜の応用例はこれら
に限定される訳ではなく、その要旨を越えない限りにお
いて、従来のπ共役系高分子膜が用いられてきた各種用
途を含む様々な用途への応用が可能である。The structure of the π-conjugated polymer self-supporting film of the present invention used in a solar cell and a laminate has been described above, but application examples of the π-conjugated polymer self-supporting film of the present invention are not limited thereto. However, as long as it does not exceed the gist, it can be applied to various uses including various uses in which a conventional π-conjugated polymer film has been used.
【0032】[0032]
【実施例】以下、本発明を実施例により更に詳細に説明
するが、本発明はその要旨を超えない限り以下の実施例
に制約されるものではなく、種々変形して実施すること
が可能である。EXAMPLES The present invention will be described in more detail with reference to examples below. However, the present invention is not limited to the following examples unless it exceeds the gist, and various modifications can be carried out. is there.
【0033】[実施例]導電性ガラス基板(インジウム
をドープした酸化スズガラス,倉元製作所製,抵抗4.
5Ω/□)を用い、紫外線−オゾン洗浄装置(テクノビ
ジョン社製,モデルUV−208)により基板表面の洗
浄を行った。洗浄は、低圧水銀ランプから発生し25
3.7nmと184.9nmにスペクトルピークを持つ
紫外線を用いて、強度9mW/cm2、洗浄時間18分
の条件で行なった。[Embodiment] Conductive glass substrate (tin oxide glass doped with indium, manufactured by Kuramoto, resistance 4.
The substrate surface was cleaned by an ultraviolet-ozone cleaning device (Model UV-208 manufactured by Technovision Co., Ltd.) using 5Ω / □. Cleaning occurs from a low pressure mercury lamp 25
It was performed under the conditions of an intensity of 9 mW / cm 2 and a cleaning time of 18 minutes using ultraviolet rays having spectral peaks at 3.7 nm and 184.9 nm.
【0034】3,4−エチレンジオキシチオフェン、ト
リス−p−トルエンスルホン酸鉄(III) 、及びイミダゾ
ールをモル比1:2:1.5の割合でn−ブタノールに
溶解させた。溶液中における3,4−エチレンジオキシ
チオフェンの濃度は0.24Mであった。3,4-Ethylenedioxythiophene, iron (III) tris-p-toluenesulfonate, and imidazole were dissolved in n-butanol at a molar ratio of 1: 2: 1.5. The concentration of 3,4-ethylenedioxythiophene in the solution was 0.24M.
【0035】洗浄したガラス基板上に、上記反応溶液を
スピンコート法により塗布した。スピンコートは、回転
数600rpm、回転時間1分間の条件で行なった。The above reaction solution was applied onto a washed glass substrate by spin coating. Spin coating was performed under the conditions of a rotation speed of 600 rpm and a rotation time of 1 minute.
【0036】溶液を塗布した基板を110℃に保持した
電気炉に入れ、5分間加熱させることで重合を行ない、
ポリ(3,4−エチレンジオキシチオフェン)(PED
OT)膜を作成した。得られたPEDOT膜の膜厚は約
50nmであった。The substrate coated with the solution was placed in an electric furnace maintained at 110 ° C. and heated for 5 minutes to carry out polymerization,
Poly (3,4-ethylenedioxythiophene) (PED
OT) film was prepared. The film thickness of the obtained PEDOT film was about 50 nm.
【0037】PEDOT膜を基板ごとメタノールの入っ
た容器に入れ、洗浄を行なうと同時に、PEDOT膜が
基板から剥がれ、PEDOTの自立膜が得られた。自立
膜の両面について四探針法によりシート抵抗を測定した
ところ、両面共に20Ω/□であった。以上の結果か
ら、実施例の共役系高分子膜は、成膜用基板から容易に
剥離して自立膜とすることができるとともに、その表面
は平滑性に優れていることが判る。The PEDOT film together with the substrate was placed in a container containing methanol and washed, and at the same time, the PEDOT film was peeled off from the substrate, and a free-standing PEDOT film was obtained. When the sheet resistance was measured by the four-point probe method on both sides of the self-supporting film, both sides were 20Ω / □. From the above results, it is understood that the conjugated polymer film of the example can be easily peeled from the film formation substrate to form a self-supporting film, and the surface thereof has excellent smoothness.
【0038】[0038]
【発明の効果】本発明によれば、表面をオゾンで処理し
た基板上に原料モノマーを含む溶液を塗布し、これを重
合反応させて得られる高分子膜を基板から剥離させるこ
とにより、基板と接している側の面を荒らすことなく自
立膜として剥離させることができ、今まで知られていな
かった空気中で安定な不溶性のπ共役系高分子自立膜を
容易に得ることが可能となる。得られた高分子自立膜は
その表面が平坦性に優れていることから、従来は基板か
ら好適に剥離し得ない故にその使用が困難であった用
途、例えば三端子構造のタンデム型太陽電池の対向電極
や、表面に各種用途の積層体の部材として有用である。According to the present invention, a solution containing a raw material monomer is applied onto a substrate whose surface is treated with ozone, and a polymer film obtained by a polymerization reaction of the solution is peeled from the substrate to form a substrate. The surface on the side in contact can be peeled off as a self-supporting film without roughening, and it is possible to easily obtain an insoluble π-conjugated polymer self-supporting film that is stable in air and has not been known so far. Since the obtained polymer self-supporting film has excellent flatness, its use was difficult because it could not be suitably peeled from the substrate in the past, for example, in a tandem solar cell with a three-terminal structure. It is useful as a counter electrode or a member of a laminate for various purposes on the surface.
【図1】本発明のπ共役系高分子自立膜を部材として用
いた太陽電池の断面構造の一例を模式的に示す図であ
る。FIG. 1 is a diagram schematically showing an example of a cross-sectional structure of a solar cell using the π-conjugated polymer self-supporting film of the present invention as a member.
【図2】本発明のπ共役系高分子自立膜を用いた積層体
の断面構造の一例を模式的に示す図である。FIG. 2 is a diagram schematically showing an example of a cross-sectional structure of a laminate using the π-conjugated polymer self-supporting film of the present invention.
1 π共役系高分子自立膜 2 電気絶縁性透明基板 3 電子集電電極 4 増感色素が担持され且つ電解液を含む半導体層 5 光増感電極 6 π共役系高分子自立膜 7 基板 1 π-conjugated polymer free-standing film 2 Electrically insulating transparent substrate 3 Electron collecting electrode 4 Semiconductor layer carrying sensitizing dye and containing electrolyte 5 Photosensitized electrode 6 π-conjugated polymer free-standing film 7 substrate
フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) // C08L 65:00 C08L 65:00 (72)発明者 齋藤 恭輝 大阪府箕面市小野原東5丁目8−34−105 Fターム(参考) 4F071 AA69 AF37 AH15 BB02 BC01 4F100 AA33 AG00 AK80A AK80K AT00B BA02 BA07 GB41 JB11A JG01A YY00A 4J032 BA04 BA07 BB01 Front page continuation (51) Int.Cl. 7 Identification code FI theme code (reference) // C08L 65:00 C08L 65:00 (72) Inventor Saito Kyoteru Onohara East 5-chome, Minoh City, Osaka Prefecture 8-34- 105 F term (reference) 4F071 AA69 AF37 AH15 BB02 BC01 4F100 AA33 AG00 AK80A AK80K AT00B BA02 BA07 GB41 JB11A JG01A YY00A 4J032 BA04 BA07 BB01
Claims (7)
ことを特徴とする、π共役系高分子自立膜。1. A π-conjugated polymer free-standing film, which is stable in air and insoluble.
ことを特徴とする、請求項1記載のπ共役系高分子自立
膜。2. The self-supporting π-conjugated polymer film according to claim 1, which has an electric conductivity of 10 −2 S / cm or more.
チレンジオキシチオフェン)であることを特徴とする、
請求項1又は請求項2に記載のπ共役系高分子自立膜。3. The π-conjugated polymer is poly (3,4-ethylenedioxythiophene),
The π-conjugated polymer free-standing film according to claim 1 or 2.
り、四探針法により測定したシート抵抗が両面共に5Ω
/□以上100Ω/□以下であることを特徴とする、請
求項1〜3の何れか一項に記載のπ共役系高分子自立
膜。4. The film resistance is 20 nm or more and 200 nm or less, and the sheet resistance measured by the four-point probe method is 5Ω on both sides.
/ □ or more and 100 Ω / □ or less, The π-conjugated polymer freestanding film according to any one of claims 1 to 3.
含む溶液を、オゾン処理を行なった基板上に塗布して重
合反応させ、形成された膜を基板から剥離させることを
特徴とする、請求項1〜4の何れか一項に記載のπ共役
系高分子自立膜の製造方法。5. A solution containing a monomer as a raw material of a π-conjugated polymer is applied onto a substrate that has been subjected to ozone treatment to cause a polymerization reaction, and the formed film is peeled off from the substrate. The method for producing a π-conjugated polymer free-standing film according to claim 1.
役系高分子自立膜をホール集電電極として用いることを
特徴とする太陽電池。6. A solar cell using the π-conjugated polymer self-supporting film according to claim 1 as a hole collector electrode.
役系高分子自立膜を基板に積層して形成されることを特
徴とする積層体。7. A laminated body, which is formed by laminating the π-conjugated polymer self-supporting film according to claim 1 on a substrate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002122091A JP2003313317A (en) | 2002-04-24 | 2002-04-24 | pi-CONJUGATED POLYMER SELF-SUPPORTING FILM, METHOD OF MANUFACTURING THE FILM, AND SOLAR CELL AND LAMINATE USING THE FILM |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002122091A JP2003313317A (en) | 2002-04-24 | 2002-04-24 | pi-CONJUGATED POLYMER SELF-SUPPORTING FILM, METHOD OF MANUFACTURING THE FILM, AND SOLAR CELL AND LAMINATE USING THE FILM |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2003313317A true JP2003313317A (en) | 2003-11-06 |
Family
ID=29537803
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002122091A Pending JP2003313317A (en) | 2002-04-24 | 2002-04-24 | pi-CONJUGATED POLYMER SELF-SUPPORTING FILM, METHOD OF MANUFACTURING THE FILM, AND SOLAR CELL AND LAMINATE USING THE FILM |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2003313317A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015037481A1 (en) * | 2013-09-11 | 2015-03-19 | テイカ株式会社 | Monomer liquid for production of conductive polymer and method for manufacturing electrolytic capacitor using same |
KR20150097456A (en) | 2012-12-14 | 2015-08-26 | 세키스이가가쿠 고교가부시키가이샤 | Electrode substrate and dye-sensitized solar cell |
KR20160052462A (en) | 2013-08-30 | 2016-05-12 | 세키스이가가쿠 고교가부시키가이샤 | Method for reactivating counter electrode active material for dye-sensitive solar cell, method for regenerating dye-sensitive solar cell in which said method is used, catalyst layer for dye-sensitive solar cell, counter electrode, electrolyte, and dye-sensitive solar cell |
-
2002
- 2002-04-24 JP JP2002122091A patent/JP2003313317A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20150097456A (en) | 2012-12-14 | 2015-08-26 | 세키스이가가쿠 고교가부시키가이샤 | Electrode substrate and dye-sensitized solar cell |
TWI596824B (en) * | 2012-12-14 | 2017-08-21 | 積水化學工業股份有限公司 | Electrode substrate and dye-sensitized solar cell |
KR20160052462A (en) | 2013-08-30 | 2016-05-12 | 세키스이가가쿠 고교가부시키가이샤 | Method for reactivating counter electrode active material for dye-sensitive solar cell, method for regenerating dye-sensitive solar cell in which said method is used, catalyst layer for dye-sensitive solar cell, counter electrode, electrolyte, and dye-sensitive solar cell |
WO2015037481A1 (en) * | 2013-09-11 | 2015-03-19 | テイカ株式会社 | Monomer liquid for production of conductive polymer and method for manufacturing electrolytic capacitor using same |
JP5725637B1 (en) * | 2013-09-11 | 2015-05-27 | テイカ株式会社 | Monomer liquid for producing conductive polymer and method for producing electrolytic capacitor using the same |
US10049822B2 (en) | 2013-09-11 | 2018-08-14 | Tayca Corporation | Monomer liquid for of conductive polymer production and a manufacturing method of an electrolyte capacitor using the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2318263C2 (en) | Thin-film capacitor built around conductive polymers | |
JP5090616B2 (en) | Transparent electrodes for electro-optic structures | |
CN101023138B (en) | Conductive composition and process for production thereof, antistatic coating material, antistatic membrane, antistatic film, optical filter, optical information recording media, and condenser and pro | |
KR101295763B1 (en) | Composite conductive polymer composition, method for producing same, solution containing the composition, and use of the composition | |
JP2004532292A (en) | Composition produced by solvent exchange method and use thereof | |
JPH04145192A (en) | Organic electroluminescence element | |
TW200413498A (en) | Electroluminescent metallo-supramolecules with terpyridine-based groups | |
JP5317758B2 (en) | Solution or dispersion of polythiophene or thiophene copolymer and method for producing the same | |
JP2023116520A (en) | Method for producing pedot film | |
JP2011501449A (en) | Optoelectronic device | |
KR20180083823A (en) | Perovskite based solar cell and method of manufacturing the same | |
TWI833810B (en) | Dye-sensitized photovoltaic cells | |
JP2003317814A (en) | Photovoltaic cell | |
JP2003313317A (en) | pi-CONJUGATED POLYMER SELF-SUPPORTING FILM, METHOD OF MANUFACTURING THE FILM, AND SOLAR CELL AND LAMINATE USING THE FILM | |
CN102169969A (en) | Anode modification method of organic electroluminescent device | |
CN103310905A (en) | Method for manufacturing nano-composite conductive thin film and nano-composite conductive thin film | |
JP4295727B2 (en) | Method for producing a substantially transparent conductive layer | |
US8217136B2 (en) | Process for preparing thieno[3,4-B] pyrazine copolymers,thieno[3,4-B]—pyrazine copolymers prepared by this process, and their use | |
JP2019068028A (en) | Photoelectric conversion element and method of manufacturing the same | |
CN114606554A (en) | Preparation method of MOF/MXene/PPy @ CelF porous nano material, product and application thereof | |
Yoo et al. | PVP/PEG polymer blend based electrolytes for quasi-solid-state dye-sensitized solar cells operating at low temperature | |
JP4314764B2 (en) | Method for producing dye-sensitized solar cell | |
JPH0410576A (en) | Organic solar cell | |
KR20120002353A (en) | Method for fabricating of organic semiconductor element using roll printing method | |
JP2011040288A (en) | Method of manufacturing semiconductor film, the semiconductor film, and dye-sensitized solar cell |