JP2008034110A - Electrode material of dye-sensitized solar cell - Google Patents

Electrode material of dye-sensitized solar cell Download PDF

Info

Publication number
JP2008034110A
JP2008034110A JP2006202738A JP2006202738A JP2008034110A JP 2008034110 A JP2008034110 A JP 2008034110A JP 2006202738 A JP2006202738 A JP 2006202738A JP 2006202738 A JP2006202738 A JP 2006202738A JP 2008034110 A JP2008034110 A JP 2008034110A
Authority
JP
Japan
Prior art keywords
less
dye
solar cell
sensitized solar
electrode material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006202738A
Other languages
Japanese (ja)
Inventor
Hiroshi Iwata
浩史 岩田
Katsumasa Anami
克全 阿波
Kazuhiko Takahashi
和彦 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP2006202738A priority Critical patent/JP2008034110A/en
Publication of JP2008034110A publication Critical patent/JP2008034110A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrode material of a dye-sensitized solar cell which is made of a metallic material of low cost. <P>SOLUTION: The electrode material of the dye-sensitized solar cell is composed of a ferrite system steel which has a composition in which in mass%, C:0.15% or less, Si:1.2% or less, Mn:1.2% or less, Cr:17-32%, Mo:0.8-3%, and N:0.025% and, as required, which includes one kind or more of Cu:1% or less, Nb:1% or less, and Ti:1% or less, and the rest is, in substance, Fe; or austenite system steel or austenite+ferrite two-phase steel which has a composition in which C:0.15% or less, Si:4% or less, Mn:2.5% or less, Ni:3-28%, Cr:17-32%, Mo:0.8-7%, N:0.30.3% or less, and, as required, which includes one kind or more of Cu:3.5% or less, Nb:1% or less, and Ti:1% or less, and the rest is, in substance, Fe. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、色素増感型太陽電池の電極を構成する金属材料であって、特にヨウ素を含む電解質溶液と直接接触して溶液中のイオンに電子を渡すための「対極」に適した電極材に関する。   The present invention is a metal material constituting an electrode of a dye-sensitized solar cell, and particularly an electrode material suitable for a “counter electrode” for directly contacting an electrolyte solution containing iodine and passing electrons to ions in the solution. About.

太陽電池は現在、シリコンを光電変換素子に用いたものが主流となっているが、これに替わるより経済的な次世代太陽電池として「色素増感型太陽電池」の実用化が研究されている。   Currently, solar cells using silicon as the photoelectric conversion element are the mainstream, but the practical application of “dye-sensitized solar cells” is being studied as a more economical next-generation solar cell to replace this. .

図1に、従来の色素増感型太陽電池の構成を模式的に示す。(a)は入射光側の電極に光電変換層を有するタイプ、(b)は入射光側の電極が「対極」になっているタイプである。   FIG. 1 schematically shows the structure of a conventional dye-sensitized solar cell. (A) is a type having a photoelectric conversion layer on an electrode on the incident light side, and (b) is a type in which the electrode on the incident light side is a “counter electrode”.

図1(a)のタイプでは、ガラス2の表面に形成された光電極3と、基板4の表面に形成された対極5が向かい合って太陽電池1を構成している。このタイプの光電極3は光を透過する必要があることから、通常、ITO(インジウム−錫酸化物)、FTO(フッ素ドープ酸化錫)、TO(酸化錫)等の透明導電膜で構成される。この光電極3の表面には光電変換層6が形成されている。光電変換層6は比表面積の大きいTiO2粒子7からなる多孔質層であり、TiO2粒子7の表面にはRu色素8がドープされている。光電変換層6と対極5の間にはヨウ化物イオンを含む電解質溶液9が満たされている。対極5はヨウ化物イオンを含む電解質溶液9に対して優れた耐食性を示す必要があることから、白金等の貴金属や、ITO、FTO、TOで構成されている。太陽電池1の外部には光電極3と対極5の間に負荷10が導線で結ばれ、回路を形成している。 In the type of FIG. 1A, the solar cell 1 is configured by the photoelectrode 3 formed on the surface of the glass 2 and the counter electrode 5 formed on the surface of the substrate 4 facing each other. Since this type of photoelectrode 3 needs to transmit light, it is usually composed of a transparent conductive film such as ITO (indium-tin oxide), FTO (fluorine-doped tin oxide), or TO (tin oxide). . A photoelectric conversion layer 6 is formed on the surface of the photoelectrode 3. The photoelectric conversion layer 6 are porous layer made of large TiO 2 particles 7 of the specific surface area, the surface of the TiO 2 particles 7 Ru dyes 8 is doped. An electrolyte solution 9 containing iodide ions is filled between the photoelectric conversion layer 6 and the counter electrode 5. Since the counter electrode 5 needs to exhibit excellent corrosion resistance with respect to the electrolyte solution 9 containing iodide ions, the counter electrode 5 is made of noble metal such as platinum, ITO, FTO, or TO. A load 10 is connected by a conducting wire between the photoelectrode 3 and the counter electrode 5 outside the solar cell 1 to form a circuit.

入射光20がRu色素8に到達すると、Ru色素8は光を吸収して励起され、その電子がTiO2粒子7へと注入される。励起状態になったRu色素8は電解質溶液9のヨウ化物イオンI-から電子を受け取り、基底状態に戻る。I-は酸化されてI3 -となり、対極5へ拡散し、対極5から電子を受け取ってI-に戻る。これにより、電子はRu色素8→TiO2粒子7→光電極3→負荷10→対極5→電解質溶液9→Ru色素8の経路で移動する。その結果、負荷10を作動させる電流が発生する。 When the incident light 20 reaches the Ru dye 8, the Ru dye 8 absorbs light and is excited, and its electrons are injected into the TiO 2 particles 7. The excited Ru dye 8 receives electrons from the iodide ion I − in the electrolyte solution 9 and returns to the ground state. I is oxidized to I 3 , diffuses to the counter electrode 5, receives electrons from the counter electrode 5, and returns to I . As a result, electrons move along the route of Ru dye 8 → TiO 2 particles 7 → photoelectrode 3 → load 10 → counter electrode 5 → electrolyte solution 9 → Ru dye 8. As a result, a current for operating the load 10 is generated.

図1(b)のタイプでは、対極5が光を透過するITO、FTO、TO等の透明導電膜で構成され、他方の電極である光電極3の表面に光電変換層6が形成されている。この場合の光電極3は必ずしも透明膜である必要はなく、貴金属板などが使用される場合もある。それ以外の構成は図1(a)のタイプと基本的に同じである。電流が発生する原理も上記と同様である。   In the type of FIG. 1B, the counter electrode 5 is made of a transparent conductive film such as ITO, FTO, or TO that transmits light, and the photoelectric conversion layer 6 is formed on the surface of the photoelectrode 3 that is the other electrode. . The photoelectrode 3 in this case is not necessarily a transparent film, and a noble metal plate or the like may be used. The other configuration is basically the same as the type shown in FIG. The principle of current generation is the same as described above.

特開2003−123858号公報JP 2003-123858 A 特開2004−311197号公報JP 2004-3111197 A 特開2005−235664号公報JP 2005-235664 A 荒川裕則、「高性能色素増感太陽電池の要素技術」、応用物理、2004年、第73巻、第12号、p.1519−1523Hironori Arakawa, “Elemental Technology of High-Performance Dye-Sensitized Solar Cell”, Applied Physics, 2004, Vol. 73, No. 12, p. 1519-1523

色素増感型太陽電池の普及を図るうえで、更なる性能向上とコスト低減をもたらす技術の構築が強く望まれている。その1つとして、電極での導電性をできるだけ安価な方法で向上させる要素技術の開発が重要事項として挙げられる。   In order to promote the spread of dye-sensitized solar cells, there is a strong demand for the construction of technology that can further improve performance and reduce costs. One of the important matters is the development of elemental technology that improves the electrical conductivity of the electrode by a method that is as inexpensive as possible.

図1(a)のタイプでは、「光電極」と「対極」の両方に透明電極を用いると導電性の低下が大きくなるので、これを緩和するためには、光を透過する必要のない「対極」を電気抵抗の小さい金属材料で構成することが有利となる。ただし、電解質溶液としてヨウ化物イオンを含むものが使用されるため、ヨウ化物イオンに対する耐食性を十分に備えた金属材料を採用する必要がある。   In the type shown in FIG. 1 (a), if a transparent electrode is used for both the “photoelectrode” and the “counter electrode”, the decrease in conductivity increases. Therefore, in order to alleviate this, it is not necessary to transmit light. It is advantageous that the “counter electrode” is made of a metal material having a low electric resistance. However, since an electrolyte solution containing iodide ions is used, it is necessary to employ a metal material having sufficient corrosion resistance against iodide ions.

本来耐食性に優れた金属材料としてステンレス鋼がある。しかし、ヨウ化物イオンを含む電解質溶液中での耐食性に関しては十分把握されておらず、少なくともSUS430やSUS304といった汎用ステンレス鋼種では当該電解質溶液で激しい腐食を起こすことがわかっている。このため、色素増感型太陽電池の対極材料としてステンレス鋼を安易に採用するわけにはいかない。特許文献3には対極用金属材料として、金、銀、銅、白金、ニッケル、チタン、タンタル、タングステン、アルミニウム、ステンレスといった様々な耐食材料が列挙されているが(段落0015)、これらのうち実施例で使用されているのは白金板のみである。実際、対極材料としてステンレス鋼を使用して成功した色素増感型太陽電池は未だ例を見ない。   Stainless steel is a metal material that is inherently excellent in corrosion resistance. However, the corrosion resistance in an electrolyte solution containing iodide ions is not sufficiently grasped, and it is known that at least general-purpose stainless steel types such as SUS430 and SUS304 cause severe corrosion in the electrolyte solution. For this reason, stainless steel cannot be easily adopted as the counter electrode material of the dye-sensitized solar cell. Patent Document 3 lists various corrosion resistant materials such as gold, silver, copper, platinum, nickel, titanium, tantalum, tungsten, aluminum, and stainless steel as the counter electrode metal material (paragraph 0015). Only platinum plates are used in the examples. In fact, a dye-sensitized solar cell that has succeeded in using stainless steel as a counter electrode material has not been seen yet.

このように、対極用の金属材料としては白金等の貴金属が採用されているのが現状であり、対極での導電性を改善するためには高価な貴金属材料を使用することによるコストの増大を伴っている。   In this way, noble metals such as platinum are currently used as the metal material for the counter electrode, and in order to improve the conductivity at the counter electrode, the cost is increased by using an expensive noble metal material. Accompanying.

他方、図1(b)のタイプでは、「光電極」を金属材料で構成することが導電性向上に有効である。「光電極」の表面を覆っている光電変換層は多孔質物質であることから、この場合も光電極材料としてはヨウ化物イオンを含む電解質溶液に対して高耐食性を示す材料を採用することが重要である。   On the other hand, in the type shown in FIG. 1B, it is effective for improving the conductivity to form the “photoelectrode” with a metal material. Since the photoelectric conversion layer covering the surface of the “photoelectrode” is a porous substance, a material exhibiting high corrosion resistance against an electrolyte solution containing iodide ions may be employed as the photoelectrode material in this case as well. is important.

本発明はこのような現状に鑑み、色素増感型太陽電池の電極材料に適した高耐食性を有する安価な材料を提供することを目的とする。   In view of such a current situation, an object of the present invention is to provide an inexpensive material having high corrosion resistance suitable for an electrode material of a dye-sensitized solar cell.

上記目的を達成するために、本発明では、質量%で、C:0.15%以下、Si:1.2%以下、Mn:1.2%以下、Cr:17〜32%、Mo:0.8〜3%、N:0.025%以下、残部実質的にFeの組成を有し、フェライト相組織を呈する鋼からなる色素増感型太陽電池の電極材が提供される。上記組成において、必要に応じてさらにCu:1%以下を含有することができる。   In order to achieve the above object, in the present invention, by mass, C: 0.15% or less, Si: 1.2% or less, Mn: 1.2% or less, Cr: 17 to 32%, Mo: 0 Provided is an electrode material for a dye-sensitized solar cell made of steel having a composition of 0.8 to 3%, N: 0.025% or less, and the balance being substantially Fe and having a ferrite phase structure. In the above composition, if necessary, Cu: 1% or less can be further contained.

また、質量%で、C:0.15%以下、Si:4%以下、Mn:2.5%以下、Ni:3〜28%、Cr:17〜32%、Mo:0.8〜7%、N:0.3%以下、残部実質的にFeの組成を有し、オーステナイト相組織またはオーステナイト+フェライト2相組織を呈する鋼からなる色素増感型太陽電池の電極材が提供される。この場合、必要に応じてさらにCu:3.5%以下を含有することができる。   Further, in mass%, C: 0.15% or less, Si: 4% or less, Mn: 2.5% or less, Ni: 3 to 28%, Cr: 17 to 32%, Mo: 0.8 to 7% , N: 0.3% or less, and the balance is substantially Fe, and an electrode material for a dye-sensitized solar cell made of steel having an austenite phase structure or an austenite + ferrite two-phase structure is provided. In this case, if necessary, Cu: 3.5% or less can be further contained.

ここで、「残部実質的にFe」とは、本発明の効果を阻害しない限り、上記以外の元素の混入が許容されることを意味し、「残部がFeおよび不可避的不純物からなる」場合が含まれる。この電極材は、例えばヨウ素を含む電解質溶液に鋼の表面を曝して使用される。   Here, “the balance is substantially Fe” means that mixing of elements other than the above is allowed unless the effect of the present invention is inhibited, and there are cases where “the balance consists of Fe and inevitable impurities”. included. This electrode material is used, for example, by exposing the steel surface to an electrolyte solution containing iodine.

本発明の色素増感型太陽電池の電極材はFe系金属材料によって構成されるので、ITO、FTO、TO等の透明導電膜と比べ導電性が高く、また白金等の貴金属材料と比べ非常に安価である。このFe系金属材料は色素増感型太陽電池の電解質溶液に対して優れた耐食性を示すステンレス鋼組成に調整されており、従来、このような安価な材料が色素増感型太陽電池の電極材に適用可能な特性を有することは知られていなかった。したがって本発明は、色素増感型太陽電池のコスト低減に寄与しうる。   Since the electrode material of the dye-sensitized solar cell of the present invention is composed of an Fe-based metal material, it has a higher conductivity than a transparent conductive film such as ITO, FTO, or TO, and is much higher than a noble metal material such as platinum. Inexpensive. This Fe-based metal material has been adjusted to a stainless steel composition exhibiting excellent corrosion resistance against the electrolyte solution of the dye-sensitized solar cell. Conventionally, such an inexpensive material is an electrode material for the dye-sensitized solar cell. It was not known to have applicable properties. Therefore, the present invention can contribute to the cost reduction of the dye-sensitized solar cell.

現在実用化の検討が進められている色素増感型太陽電池には、有機溶媒中にヨウ化物イオンを含む電解質溶液が使用されている。したがって、電極はヨウ化物イオンに対し、長期間安定して優れた耐食性を呈する素材で作る必要がある。図1(a)のタイプの対極5や図1(b)のタイプの光電極3は、光を透過する必要がないことから、ITO、FTO、TO等の透明な酸化物系材料ではなく、電気抵抗の小さい金属材料で構成することが望ましい。しかし、実用化段階の色素増感型太陽電池では、そのような電極においても、過去のデータ等により信頼性が把握されているITO、FTO等の酸化物系材料を使用したものが主流である。金属材料については、白金等の貴金属材料以外にはほとんど目が向けられていない。   In dye-sensitized solar cells that are currently being studied for practical use, an electrolyte solution containing iodide ions in an organic solvent is used. Therefore, the electrode needs to be made of a material that exhibits stable and excellent corrosion resistance for a long time against iodide ions. Since the counter electrode 5 of FIG. 1A type and the photoelectrode 3 of FIG. 1B type do not need to transmit light, they are not transparent oxide-based materials such as ITO, FTO, TO, It is desirable to use a metal material with low electrical resistance. However, in dye-sensitized solar cells at the stage of practical use, even such electrodes use oxide-based materials such as ITO and FTO whose reliability is known from past data and the like. . As for metal materials, little attention is paid to other than noble metal materials such as platinum.

発明者らは種々検討の結果、ステンレス鋼としての組成を有するFe系金属材料において、一定量以上のCrとMoを含有させることによって、有機溶媒を用いたヨウ素含有電解質溶液中での溶解がほとんど進行しない優れた耐食性が付与できることを発見した。その性質を利用すると、ステンレス鋼材料で色素増感型太陽電池の電極材を構築することが可能になる。すなわち、特定の組成を有するステンレス鋼材料において新たな用途が見出された。   As a result of various studies, the inventors have found that in Fe-based metallic materials having a composition as stainless steel, dissolution in an iodine-containing electrolyte solution using an organic solvent is almost achieved by containing a certain amount or more of Cr and Mo. It was discovered that excellent corrosion resistance that does not progress can be imparted. By utilizing this property, it becomes possible to construct an electrode material for a dye-sensitized solar cell using a stainless steel material. That is, a new application has been found in a stainless steel material having a specific composition.

一般にステンレス鋼は塩化物イオンCl-を含む水溶液に対する耐食性において弱点を有するとされ、その耐食性を改善するにはCrの増量やMoの添加が有効であるとされる。例えば温水器に適したフェライト系のSUS444ではCr:17質量%以上、Mo:1.75質量%以上の含有量が確保されており、高耐食性オーステナイト系汎用鋼種であるSUS316でもCr:16質量%以上、Mo:2質量%以上の含有量が確保されている。しかし、ヨウ化物イオンに対するステンレス鋼の耐食性については意外に報告が少ない。その理由として、ヨウ化物イオンに曝されるような環境は自然界や日常においてほとんど存在しないことが挙げられる。特に、溶媒が水ではなく、有機物質である場合のヨウ化物イオン含有電解質溶液に関し、ステンレス鋼の組成と耐食性の関係はほとんど把握されていない。汎用鋼種であるSUS304で激しい腐食が生じることはわかっており、当該電解質溶液に直接曝されるような用途へのステンレス鋼材料の適用は敬遠されてきた。このことが、詳細な検討を試みる動機付けをそぐ要因となっていた。 Generally stainless steel chloride ion Cl - is to have a weak point in corrosion resistance to an aqueous solution containing, to improve its corrosion resistance the addition of increasing or Mo and Cr is to be effective. For example, in ferrite type SUS444 suitable for water heaters, Cr: 17% by mass or more and Mo: 1.75% by mass or more are ensured. Even in SUS316, which is a high corrosion resistance austenitic general-purpose steel grade, Cr: 16% by mass. As mentioned above, Mo: Content of 2 mass% or more is ensured. However, there are surprisingly few reports on the corrosion resistance of stainless steel against iodide ions. The reason for this is that there is almost no environment exposed to iodide ions in nature or in daily life. In particular, regarding the iodide ion-containing electrolyte solution when the solvent is not water but an organic substance, the relationship between the composition of stainless steel and the corrosion resistance is hardly grasped. It has been found that severe corrosion occurs in SUS304, which is a general-purpose steel grade, and the application of stainless steel materials to applications that are directly exposed to the electrolyte solution has been avoided. This was a factor that motivated me to make a detailed examination.

発明者らは詳細な検討の結果、Fe系金属材料においてCr含有量を17質量%以上とし、かつMo含有量を0.8質量%以上としたとき、色素増感型太陽電池に適用されるヨウ素含有電解質溶液中での溶解がほとんど生じない優れた耐食性が発現することを見出した。上記のように、用途が日常の温水環境である場合でも、それに十分耐え得る耐食性を付与するには、例えば1.75質量%以上という比較的多量のMoを添加する措置が必要である。これに比べると、有機溶媒中にヨウ化物イオンが存在する色素増感型太陽電池の電解質溶液に対する耐食性は、より少ないMo添加量範囲から顕著に改善されることが明らかになった。しかも、この傾向はオーステナイト系やフェライト系といった鋼種の影響をあまり受けず、その他の添加元素の影響も少ない。この点は、塩化物イオンに対するステンレス鋼の耐食性傾向とは大きく異なる。したがって、CrやMo等によってもたらされる耐食性向上のメカニズムについても、塩化物イオンに対する場合と同一視することはできないと考えられる。   As a result of detailed studies, the inventors have applied the present invention to a dye-sensitized solar cell when the Cr content in the Fe-based metal material is 17% by mass or more and the Mo content is 0.8% by mass or more. It was found that excellent corrosion resistance that hardly dissolves in the iodine-containing electrolyte solution is expressed. As described above, even when the application is an everyday hot water environment, in order to provide corrosion resistance that can sufficiently withstand it, it is necessary to add a relatively large amount of Mo, for example, 1.75% by mass or more. Compared to this, it has been clarified that the corrosion resistance of the dye-sensitized solar cell in which iodide ions are present in the organic solvent to the electrolyte solution is remarkably improved from a smaller Mo addition range. Moreover, this tendency is not significantly affected by steel types such as austenitic and ferritic, and is less affected by other additive elements. This point is very different from the corrosion resistance tendency of stainless steel against chloride ions. Therefore, it is considered that the mechanism for improving corrosion resistance caused by Cr, Mo and the like cannot be equated with the case of chloride ions.

本発明では、フェライト系鋼種と、オーステナイト系およびオーステナイト+フェライト2相系鋼種において、それぞれ以下の組成範囲の鋼を対象とする。合金元素の含有量に関する「%」は特に断らない限り「質量%」を意味する。   In the present invention, ferritic steel types and austenitic and austenite + ferrite two-phase steel types are intended for steels having the following composition ranges, respectively. Unless otherwise specified, “%” with respect to the alloy element content means “mass%”.

〔フェライト系〕
「C:0.15%以下、Si:1.2%以下、Mn:1.2%以下、Cr:17〜32%、Mo:0.8〜3%、N:0.025%以下、残部実質的にFe」の組成が採用できる。
このうち、C、Si、Mn、Nはステンレス鋼の大量生産現場における溶製工程で混入が避けられない元素であり、上記の範囲で含有が許容される。ただし、製造性等の諸性質を考慮しすると、例えばC:0.01%以下、Si:0.5%以下あるいは0.3%以下、Mn:0.5%以下あるいは0.3%以下、N:0.020%以下にコントロールすることが有効である。
[Ferrite type]
“C: 0.15% or less, Si: 1.2% or less, Mn: 1.2% or less, Cr: 17 to 32%, Mo: 0.8 to 3%, N: 0.025% or less, balance A composition of “Fe” can be employed.
Among these, C, Si, Mn, and N are elements that are unavoidable in the melting process at the mass production site of stainless steel, and are allowed to be contained within the above range. However, considering various properties such as manufacturability, for example, C: 0.01% or less, Si: 0.5% or less or 0.3% or less, Mn: 0.5% or less or 0.3% or less, N: It is effective to control to 0.020% or less.

Cr含有量が17%未満またはMo含有量が0.8%未満だと、色素増感型太陽電池に適用されるヨウ素含有電解質溶液中において、当該材料の溶解がほとんど生じないような優れた耐食性を安定して得ることが難しくなる。より信頼性を向上させるには、Crは18%以上、Moは1%以上含有させることが好ましい。ただし、CrやMoの含有量が過剰に多くなると製造性を害する等の弊害が顕著になる。このため、Cr含有量は32%以下とすることが望ましく、30%以下が一層好ましい。またMo含有量は3%以下とすることが望ましく、2%以下が一層好ましい。   Excellent corrosion resistance such that when the Cr content is less than 17% or the Mo content is less than 0.8%, the material hardly dissolves in the iodine-containing electrolyte solution applied to the dye-sensitized solar cell. It becomes difficult to obtain a stable. In order to further improve the reliability, it is preferable to contain 18% or more of Cr and 1% or more of Mo. However, when the content of Cr or Mo is excessively increased, the adverse effects such as the manufacturability are remarkable. For this reason, the Cr content is desirably 32% or less, and more preferably 30% or less. The Mo content is preferably 3% or less, and more preferably 2% or less.

その他の任意選択元素として、Cu:1%以下、例えば0.01〜1%を含む組成を採用することができる。この場合、Cu含有量をさらに厳しく、例えば0.1%以下の範囲でコントロールしてもよい。   As another optional element, a composition containing Cu: 1% or less, for example, 0.01 to 1% can be adopted. In this case, the Cu content may be more severely controlled, for example, within a range of 0.1% or less.

これら以外の残部は実質的にFeで構成すればよいが、一般にステンレス鋼への混入が許容される元素として以下のようなものを挙げることができる。許容範囲も併せて示す。
P:0.04%以下、S:0.03%以下好ましくは0.005%以下、Ni:0.6%以下好ましくは0.25質量%以下、Nb:1%以下好ましくは0.5%以下、Ti:1%以下好ましくは0.3%以下、Al:0.2%以下、O:0.005%以下、B:0.01%以下、V:0.3%以下、Zr:0.3%以下、Ca、Mg、CoおよびREM(希土類元素):合計0.1%以下
The remainder other than these may be substantially composed of Fe, but the following elements can be generally listed as elements that are allowed to be mixed into stainless steel. The allowable range is also shown.
P: 0.04% or less, S: 0.03% or less, preferably 0.005% or less, Ni: 0.6% or less, preferably 0.25% by mass or less, Nb: 1% or less, preferably 0.5% Ti: 1% or less, preferably 0.3% or less, Al: 0.2% or less, O: 0.005% or less, B: 0.01% or less, V: 0.3% or less, Zr: 0 .3% or less, Ca, Mg, Co, and REM (rare earth elements): 0.1% or less in total

〔オーステナイト系、オーステナイト+フェライト2相系〕
「C:0.15%以下、Si:4%以下、Mn:2.5%以下、Ni:3〜28%、Cr:17〜32%、Mo:0.8〜7%、N:0.3%以下、残部実質的にFe」の組成が採用できる。
このうち、C、Si、Mn、Nはステンレス鋼の大量生産現場における溶製工程で混入が避けられない元素であり、上記の範囲で含有が許容される。ただし、製造性等の諸性質を考慮しすると、例えばC:0.08%以下あるいは0.03%以下、Si:1%以下あるいは0.6%以下、Mn:2%以下、N:0.03%以下あるいは0.01%以下にコントロールすることが有効である。
オーステナイト系の場合は、Niを7%以上、好ましくは10%以上含有させる。
[Austenitic, austenitic + ferrite two-phase]
“C: 0.15% or less, Si: 4% or less, Mn: 2.5% or less, Ni: 3 to 28%, Cr: 17 to 32%, Mo: 0.8 to 7%, N: 0.00. A composition of 3% or less and the balance substantially Fe "can be employed.
Among these, C, Si, Mn, and N are elements that are unavoidable in the melting process at the mass production site of stainless steel, and are allowed to be contained within the above range. However, considering various properties such as manufacturability, for example, C: 0.08% or less or 0.03% or less, Si: 1% or less or 0.6% or less, Mn: 2% or less, N: 0.00 It is effective to control to 03% or less or 0.01% or less.
In the case of an austenitic system, Ni is contained in an amount of 7% or more, preferably 10% or more.

Cr含有量が17%未満またはMo含有量が0.8%未満だと、フェライト系の場合と同様、色素増感型太陽電池に適用されるヨウ素含有電解質溶液中において、当該材料の溶解がほとんど生じないような優れた耐食性を安定して得ることが難しくなる。より信頼性を向上させるには、Moを2%以上含有させることが好ましい。ただし、CrやMoの含有量が過剰に多くなると製造性を害する等の弊害が顕著になる。このため、Cr含有量は32%以下とすることが望ましく、30%以下が一層好ましい。またMo含有量は7%以下とすることが望ましく、4%以下が一層好ましい。   When the Cr content is less than 17% or the Mo content is less than 0.8%, the material is hardly dissolved in the iodine-containing electrolyte solution applied to the dye-sensitized solar cell as in the case of the ferrite type. It becomes difficult to stably obtain excellent corrosion resistance that does not occur. In order to further improve the reliability, it is preferable to contain 2% or more of Mo. However, when the content of Cr or Mo is excessively increased, the adverse effects such as the manufacturability are remarkable. For this reason, the Cr content is desirably 32% or less, and more preferably 30% or less. The Mo content is preferably 7% or less, and more preferably 4% or less.

その他の任意選択元素として、Cu:3.5%以下、例えば0.01〜3.5%を含む組成を採用することができる。この場合、Cu含有量をさらに厳しく、例えば0.1%以下の範囲でコントロールしてもよい。
この場合、Cu含有量をさらに厳しく、例えば1%以下、あるいは0.5%以下の範囲でコントロールしてもよい。
As another optional element, a composition containing Cu: 3.5% or less, for example, 0.01 to 3.5% can be adopted. In this case, the Cu content may be more severely controlled, for example, within a range of 0.1% or less.
In this case, the Cu content may be more severely controlled, for example, within a range of 1% or less, or 0.5% or less.

これら以外の残部は実質的にFeで構成すればよいが、一般にステンレス鋼への混入が許容される元素として以下のようなものを挙げることができる。許容範囲も併せて示す。
P:0.045%以下、S:0.03%以下好ましくは0.005%以下、Nb:1%以下好ましくは0.5%以下、Ti:1%以下好ましくは0.3%以下、Al:0.1%以下好ましくは0.01%以下、O:0.01%以下好ましくは0.005%以下、B:0.01%以下、V:0.3%以下、Zr:0.3%以下、Ca、Mg、CoおよびREM(希土類元素):合計0.1%以下
The remainder other than these may be substantially composed of Fe, but the following elements can be generally listed as elements that are allowed to be mixed into stainless steel. The allowable range is also shown.
P: 0.045% or less, S: 0.03% or less, preferably 0.005% or less, Nb: 1% or less, preferably 0.5% or less, Ti: 1% or less, preferably 0.3% or less, Al : 0.1% or less, preferably 0.01% or less, O: 0.01% or less, preferably 0.005% or less, B: 0.01% or less, V: 0.3% or less, Zr: 0.3 % Or less, Ca, Mg, Co and REM (rare earth elements): 0.1% or less in total

以上のように組成調整されたFe系金属材料は、一般的なステンレス鋼板製造工程によって必要な板厚の鋼板とすればよい。これを電極材として、当該鋼の表面を電解質溶液に曝して使用する「対極」や、当該鋼の表面に光電変換層を形成することにより「光電極」を構成し、色素増感型太陽電池を構築することができる。   The Fe-based metal material whose composition is adjusted as described above may be a steel plate having a necessary thickness by a general stainless steel plate manufacturing process. Using this as an electrode material, a “counter electrode” used by exposing the surface of the steel to an electrolyte solution, or a “photoelectrode” by forming a photoelectric conversion layer on the surface of the steel, a dye-sensitized solar cell Can be built.

図2に、本発明の電極材を使用した色素増感型太陽電池の構成例を模式的に示す。図2(a)は、図1(a)に示されるタイプの従来の色素増感型太陽電池において、基板4と対極5を、本発明の電極材からなる対極30に変えたものである。図2(b)は、図1(b)に示されるタイプの従来の色素増感型太陽電池において、基板4と光電極3を、本発明の電極材からなる光電極40に変えたものである。   In FIG. 2, the structural example of the dye-sensitized solar cell using the electrode material of this invention is shown typically. FIG. 2A shows a conventional dye-sensitized solar cell of the type shown in FIG. 1A in which the substrate 4 and the counter electrode 5 are changed to a counter electrode 30 made of the electrode material of the present invention. FIG. 2B shows a conventional dye-sensitized solar cell of the type shown in FIG. 1B in which the substrate 4 and the photoelectrode 3 are replaced with a photoelectrode 40 made of the electrode material of the present invention. is there.

表1に示す組成の各種Fe系金属材料をステンレス鋼溶製現場で溶製し、一般的なステンレス鋼板製造工程により板厚0.28〜0.81mmの冷延焼鈍鋼板(2D仕上げ材)を製造し、これを供試材とした。表1中、組織の欄は、「α」がフェライト系、「γ」がオーステナイト系を意味する。Cu、Nb、Ti、Alにおけるハイフン「−」は、製鋼現場における通常の分析手法にて測定限界以下であることを意味する。Bにおける「−−」表示は、分析していないことを意味する。ただし、これらは製鋼条件から0.01%を超えるBの含有は考えられない。
供試材の組織観察を行うことにより、フェライト系のものはマトリクスがフェライト相であり、オーステナイト系のものはマトリクスがオーステナイト相であることを確認している。
Various Fe-based metallic materials having the compositions shown in Table 1 are melted at the stainless steel melting site, and cold rolled annealed steel sheets (2D finish materials) having a thickness of 0.28 to 0.81 mm are produced by a general stainless steel sheet manufacturing process. This was manufactured and used as a test material. In Table 1, in the structure column, “α” means ferrite and “γ” means austenite. The hyphen “-” in Cu, Nb, Ti, and Al means that it is below the measurement limit in a normal analysis method at a steelmaking site. The “-” display in B means that no analysis is performed. However, the content of B exceeding 0.01% is not considered from the steelmaking conditions.
By observing the structure of the specimen, it has been confirmed that the ferrite type matrix has a ferrite phase, and the austenitic type matrix has an austenitic phase.

Figure 2008034110
Figure 2008034110

各供試材から35×35mmの試験片を切り出し、表面(端面を含む)を#600乾式エメリー研磨で仕上げることにより、耐食性試験片とした。
色素増感型太陽電池の電解質溶液を模擬した試験液として、アセトニトリル溶媒中にヨウ素I2:0.05mol/L、およびヨウ化リチウムLiI:0.5mol/Lを溶解させたものを用意した。
A 35 × 35 mm test piece was cut out from each test material, and the surface (including the end face) was finished by # 600 dry emery polishing to obtain a corrosion resistance test piece.
As a test solution simulating an electrolyte solution of a dye-sensitized solar cell, a solution prepared by dissolving iodine I 2 : 0.05 mol / L and lithium iodide LiI: 0.5 mol / L in an acetonitrile solvent was prepared.

テフロン(登録商標)製の容器に前記試験液10mLを入れ、この液中に前記耐食性試験片を浸漬した。容器には蓋をして溶媒の揮発を抑えた。この容器を80℃の恒温槽中に保持し、浸漬開始から500h経過後に試験片を取り出した。各鋼種ともサンプル数n=3で実施した。   10 mL of the test solution was placed in a Teflon (registered trademark) container, and the corrosion resistance test piece was immersed in the solution. The container was covered to suppress the volatilization of the solvent. This container was hold | maintained in the 80 degreeC thermostat, and the test piece was taken out after 500-hour progress from the immersion start. For each steel type, the number of samples was n = 3.

500h浸漬後の各試験片について、重量変化(初期の試験片重量−浸漬後の試験片重量)を測定した。n=3の重量変化値のうち最も低い値(すなわち重量減少の最も大きいもの)をその鋼種の重量変化の成績として採用した。また、表面を目視観察し、外観を調べた。この場合も、n=3のうち最も腐食の程度が激しかった試験片の外観をその鋼種の成績として採用した。500h浸漬後の外観において全面腐食または端面の腐食が認められた鋼種を除き、観察後の試験片を再び上記の浸漬試験に供した。その際、試験液は新たなものを使用した。初期状態からのトータル浸漬時間が1000hの時点で試験片を取り出し、上記と同様に重量変化および外観を調べた。   About each test piece after 500-hour immersion, the weight change (initial test piece weight-test piece weight after immersion) was measured. The lowest value (that is, the largest weight loss value) among the weight change values of n = 3 was adopted as the result of the weight change of the steel type. Moreover, the surface was visually observed and the external appearance was investigated. Also in this case, the appearance of the test piece having the most severe degree of corrosion among n = 3 was adopted as the grade of the steel type. Except for the steel type in which the overall corrosion or end face corrosion was recognized in the appearance after immersion for 500 hours, the specimen after observation was again subjected to the above immersion test. At that time, a new test solution was used. The test piece was taken out when the total immersion time from the initial state was 1000 h, and the weight change and appearance were examined in the same manner as described above.

浸漬試験後の重量変化の値は、マイナス側に大きい値ほど腐食による溶解量が多いことを意味する。1000h浸漬試験後のトータル重量変化が−0.05g/m2よりプラス側のものは、事実上、腐食による溶解がほとんど進行しないものと評価され、これを合格と判定した。
外観については、溶解した部分が認められず、かつ点錆も認められないものを「異常なし」と表示し、1000h浸漬試験後に「異常なし」と評価されたものを合格と判定した。
結果を表2に示す。
The value of the weight change after the immersion test means that the larger the value on the negative side, the more the amount of dissolution due to corrosion. When the total weight change after the 1000 h immersion test was on the plus side of −0.05 g / m 2 , it was evaluated that the dissolution due to corrosion hardly proceeded, and this was determined to be acceptable.
As for the appearance, those having no dissolved part and no rusting were indicated as “no abnormality”, and those evaluated as “no abnormality” after the 1000 h immersion test were determined to be acceptable.
The results are shown in Table 2.

Figure 2008034110
Figure 2008034110

表1、表2から判るように、Cr:17%以上、かつMo:0.8%以上を含有する本発明例のものは、ヨウ化物イオン含有電解質溶液中で腐食による溶解がほとんど認められず、点錆の発生も観察されない優れた耐食性を示した。したがって、これらは色素増感型太陽電池の電極材に要求される耐久性を十分具備すると考えられる。   As can be seen from Tables 1 and 2, in the examples of the present invention containing Cr: 17% or more and Mo: 0.8% or more, dissolution due to corrosion was hardly observed in the iodide ion-containing electrolyte solution. In addition, excellent corrosion resistance with no occurrence of spot rust was observed. Therefore, these are considered to have sufficient durability required for the electrode material of the dye-sensitized solar cell.

実施例1で用意した供試材から100×100mmの試験片を切り出し、表面を#600乾式エメリー研磨で仕上げた。また、参考のためにネサガラス(TO(酸化錫)の透明導電膜をガラス基板上に蒸着したもの)を用意した。
これらの表面(ネサガラスは導電膜表面)について、低抵抗率計(三菱化学(株)製、ロレスターGP)を用いて4探針法により表面抵抗率を測定した。サンプル数n=3で行い、平均値を採用した。
結果を表3に示す。
A test piece of 100 × 100 mm was cut out from the specimen prepared in Example 1, and the surface was finished by # 600 dry emery polishing. For reference, Nesa glass (a transparent conductive film of TO (tin oxide) deposited on a glass substrate) was prepared.
About these surfaces (nesa glass is a conductive film surface), the surface resistivity was measured by a 4-probe method using a low resistivity meter (manufactured by Mitsubishi Chemical Corporation, Lorester GP). The number of samples was n = 3, and an average value was adopted.
The results are shown in Table 3.

Figure 2008034110
Figure 2008034110

表3から判るように、ステンレス鋼組成を有する金属材料は、酸化物系導電膜に比べ、表面の電気抵抗が非常に小さい。したがって、本発明の電極材を使用することにより、色素増感型太陽電池の電極での導電性を顕著に向上させることが可能になると考えられる。   As can be seen from Table 3, the metal material having a stainless steel composition has a very low surface electrical resistance as compared with the oxide-based conductive film. Therefore, it is considered that the conductivity at the electrode of the dye-sensitized solar cell can be remarkably improved by using the electrode material of the present invention.

従来の色素増感型太陽電池の構成を模式的に示した図。The figure which showed typically the structure of the conventional dye-sensitized solar cell. 本発明の電極材を用いた色素増感型太陽電池の構成例を模式的に示した図。The figure which showed typically the structural example of the dye-sensitized solar cell using the electrode material of this invention.

符号の説明Explanation of symbols

1 太陽電池
2 ガラス
3 光電極
4 基板
5 対極
6 光電変換層
7 TiO2粒子
8 Ru色素
9 電解質溶液
10 負荷
20 入射光
30 本発明の電極材からなる対極
40 本発明の電極材からなる光電極
Photoelectrode consisting of 1 solar cell 2 glass 3 photoelectrode 4 substrate 5 counter 6 photoelectric conversion layer 7 TiO 2 particles 8 Ru dye 9 electrolytic solution 10 load 20 made of the electrode material of the incident light 30 present invention the electrode material of the counter electrode 40 present invention

Claims (5)

質量%で、C:0.15%以下、Si:1.2%以下、Mn:1.2%以下、Cr:17〜32%、Mo:0.8〜3%、N:0.025%以下、残部実質的にFeの組成を有し、フェライト相組織を呈する鋼からなる色素増感型太陽電池の電極材。   In mass%, C: 0.15% or less, Si: 1.2% or less, Mn: 1.2% or less, Cr: 17 to 32%, Mo: 0.8 to 3%, N: 0.025% Hereinafter, the electrode material of the dye-sensitized solar cell made of steel having the balance substantially Fe composition and exhibiting a ferrite phase structure. さらに、Cu:1%以下を含む請求項1に記載の電極材。   Furthermore, the electrode material of Claim 1 containing Cu: 1% or less. 質量%で、C:0.15%以下、Si:4%以下、Mn:2.5%以下、Ni:3〜28%、Cr:17〜32%、Mo:0.8〜7%、N:0.3%以下、残部実質的にFeの組成を有し、オーステナイト相組織またはオーステナイト+フェライト2相組織を呈する鋼からなる色素増感型太陽電池の電極材。   In mass%, C: 0.15% or less, Si: 4% or less, Mn: 2.5% or less, Ni: 3-28%, Cr: 17-32%, Mo: 0.8-7%, N An electrode material for a dye-sensitized solar cell made of steel having an austenite phase structure or an austenite + ferrite two-phase structure having a Fe composition of 0.3% or less and the balance being substantially Fe. さらに、Cu:3.5%以下を含む請求項3に記載の電極材。   Furthermore, Cu: The electrode material of Claim 3 containing 3.5% or less. ヨウ素を含む電解質溶液に前記鋼の表面を曝して使用される請求項1〜4のいずれかに記載の電極材。   The electrode material according to claim 1, wherein the electrode material is used by exposing the surface of the steel to an electrolyte solution containing iodine.
JP2006202738A 2006-07-26 2006-07-26 Electrode material of dye-sensitized solar cell Pending JP2008034110A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006202738A JP2008034110A (en) 2006-07-26 2006-07-26 Electrode material of dye-sensitized solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006202738A JP2008034110A (en) 2006-07-26 2006-07-26 Electrode material of dye-sensitized solar cell

Publications (1)

Publication Number Publication Date
JP2008034110A true JP2008034110A (en) 2008-02-14

Family

ID=39123327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006202738A Pending JP2008034110A (en) 2006-07-26 2006-07-26 Electrode material of dye-sensitized solar cell

Country Status (1)

Country Link
JP (1) JP2008034110A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009026532A (en) * 2007-07-18 2009-02-05 Nisshin Steel Co Ltd Electrode material of dye-sensitized solar cell
WO2010041732A1 (en) * 2008-10-10 2010-04-15 日新製鋼株式会社 Dye-sensitized solar cells
WO2011021299A1 (en) 2009-08-20 2011-02-24 日新製鋼株式会社 Dye-sensitized solar cell and method for manufacturing the same
JP2011044318A (en) * 2009-08-20 2011-03-03 Nisshin Steel Co Ltd Dye-sensitized solar cell and method of manufacturing the same
JP2011108463A (en) * 2009-11-16 2011-06-02 Nisshin Steel Co Ltd Photoelectrode of dye-sensitized solar cell, its manufacturing method, and battery
JP2011108464A (en) * 2009-11-16 2011-06-02 Nisshin Steel Co Ltd Counter electrode of dye-sensitized solar cell, its manufacturing method, and battery
EP2458605A1 (en) 2008-11-26 2012-05-30 Sony Corporation Functional device and method for producing the same
JP2015001008A (en) * 2013-06-14 2015-01-05 新日鐵住金ステンレス株式会社 Austenitic stainless steel for fuel reformer excellent in adhesion of oxide film and production method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001102104A (en) * 1999-09-30 2001-04-13 Fuji Photo Film Co Ltd Photoelectric conversion device and photoelectric cell

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001102104A (en) * 1999-09-30 2001-04-13 Fuji Photo Film Co Ltd Photoelectric conversion device and photoelectric cell

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009026532A (en) * 2007-07-18 2009-02-05 Nisshin Steel Co Ltd Electrode material of dye-sensitized solar cell
WO2010041732A1 (en) * 2008-10-10 2010-04-15 日新製鋼株式会社 Dye-sensitized solar cells
JP2010114072A (en) * 2008-10-10 2010-05-20 Nisshin Steel Co Ltd Dye-sensitized solar cell
KR101623766B1 (en) * 2008-10-10 2016-05-24 닛신 세이코 가부시키가이샤 Dye-sensitized solar cells
AU2009303186B2 (en) * 2008-10-10 2014-01-23 Nisshin Steel Co., Ltd. Dye-sensitized solar cells
EP2337144A4 (en) * 2008-10-10 2012-06-27 Nisshin Steel Co Ltd Dye-sensitized solar cells
EP2337144A1 (en) * 2008-10-10 2011-06-22 Nisshin Steel Co., Ltd. Dye-sensitized solar cells
CN102177611A (en) * 2008-10-10 2011-09-07 日新制钢株式会社 Dye-sensitized solar cells
EP2458605A1 (en) 2008-11-26 2012-05-30 Sony Corporation Functional device and method for producing the same
JP2011044318A (en) * 2009-08-20 2011-03-03 Nisshin Steel Co Ltd Dye-sensitized solar cell and method of manufacturing the same
US20120132275A1 (en) * 2009-08-20 2012-05-31 Nisshin Steel Co. Ltd Dye-sensitized solar cell and method for manufacturing the same
CN102576920A (en) * 2009-08-20 2012-07-11 日新制钢株式会社 Dye-sensitized solar cell and method for manufacturing the same
WO2011021299A1 (en) 2009-08-20 2011-02-24 日新製鋼株式会社 Dye-sensitized solar cell and method for manufacturing the same
JP2011108464A (en) * 2009-11-16 2011-06-02 Nisshin Steel Co Ltd Counter electrode of dye-sensitized solar cell, its manufacturing method, and battery
JP2011108463A (en) * 2009-11-16 2011-06-02 Nisshin Steel Co Ltd Photoelectrode of dye-sensitized solar cell, its manufacturing method, and battery
JP2015001008A (en) * 2013-06-14 2015-01-05 新日鐵住金ステンレス株式会社 Austenitic stainless steel for fuel reformer excellent in adhesion of oxide film and production method thereof

Similar Documents

Publication Publication Date Title
JP2008034110A (en) Electrode material of dye-sensitized solar cell
JP5171139B2 (en) Electrode materials for dye-sensitized solar cells
EP2337144B1 (en) Dye-sensitized solar cells
Wang et al. Electrolytic generation of ozone on antimony-and nickel-doped tin oxide electrode
Szymanski et al. High lineage diversity and host sharing of malarial parasites in a local avian assemblage
El-Sherif et al. Effect of Zn and Pb as alloying elements on the electrochemical behavior of brass in NaCl solutions
Qin et al. XPS study on the surface films of a newly designed Ni-free Ti-based bulk metallic glass
EP2469641B1 (en) Dye-sensitized solar cell and method for manufacturing the same
JP2009200008A (en) Electrode material, its manufacturing method, and electrode of dye-sensitized solar cell
Miettunen et al. Do counter electrodes on metal substrates work with cobalt complex based electrolyte in dye sensitized solar cells?
Jiang et al. Improved anodic stripping voltammetric detection of arsenic (III) using nanoporous gold microelectrode
Tian et al. Inhibition of hydrogen evolution reaction on polypyrrole-modified electrode in acid media
Park et al. Electrochemical behaviors and thermodynamic properties of Ce on liquid Bi, Sn, and Zn electrodes in molten LiCl-KCl salt
Elaissaoui et al. Electrochemical degradation of dye on lead dioxide electrodeposited on stainless steel: effect of cyclic voltammetry parameters
JP5566082B2 (en) Counter electrode of dye-sensitized solar cell, method for producing the same, and battery
Zhuang et al. Electrochemistry of manganese in the hydrophilic N-butyl-N-methylpyrrolidinium dicyanamide room-temperature ionic liquid
Dashti et al. The influence of anode composition on energy consumption and current efficiency in zinc electrowinning
Lee et al. Initiation of localized corrosion of ferritic stainless steels by using the liquid-phase ion gun technique
JP5430658B2 (en) Electrode of dye-sensitized solar cell
Liu et al. A Comparative Study of Lead Alloy Electrode and CF/β-PbO2 Electrode for Zinc Electrowinning
Qin et al. Influence of alloying elements Ni and Nb on thermal stability and corrosion resistance of Cu-based bulk metallic glasses
Tyszczuk-Rotko et al. Antimony film electrode prepared with the use of a reversibly deposited mediator (Cd): fabrication, characterization and application
JP6104011B2 (en) Stainless steel plate with low contact resistance
Zhang et al. Influence of polarisation time and Mn2+ on the electrochemical behaviour of different lead silver anodes
Liu et al. Characterization of a Ti/SnO2-Sb/Fe-PVP-PbO2 Electrode Deposited from Methanesulfonate Bath and Application in Electrocatalytic Degradation of MO

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120717

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121120