JPH06204529A - Solar cell - Google Patents

Solar cell

Info

Publication number
JPH06204529A
JPH06204529A JP43A JP36150192A JPH06204529A JP H06204529 A JPH06204529 A JP H06204529A JP 43 A JP43 A JP 43A JP 36150192 A JP36150192 A JP 36150192A JP H06204529 A JPH06204529 A JP H06204529A
Authority
JP
Japan
Prior art keywords
solar cell
electrode
wire
cell
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP43A
Other languages
Japanese (ja)
Inventor
Kimitoshi Fukae
公俊 深江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP43A priority Critical patent/JPH06204529A/en
Publication of JPH06204529A publication Critical patent/JPH06204529A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

PURPOSE:To provide a solar cell which has a unit cell of a large area and can be formed with high reliability and a low cost. CONSTITUTION:Conductive fine wires 102 are buried in one surface side of a thermoplastic light permeable insulating board 101, and a transparent conductive layer 103 as a first electrode, a solar cell layer 104 and a conductive layer 105 as a second electrode are sequentially formed in this order on one side surface. In this case, the board 101 is a glass board, and is desirably softened at 400 to 600 deg.C. The wire 102 is desirably a metal wire having 10 to 200mum of its diameter. Accordingly, an electric resistance of the first electrode side can be reduced, and an increase in an area of the cell can be realized.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、特に大面積の単一セル
を有する太陽電池に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solar cell having a large area single cell.

【0002】[0002]

【従来の技術】従来、ガラス基板上に太陽電池を形成す
る場合、該基板上に第一電極として透明導電膜を形成
し、次いで、光電変換層を形成し、さらにその上に第二
電極としての金属膜を形成するようにしている。一方、
太陽電池は、実用的には大面積のものが必要とされる
が、上記構成のまま大面積化したのでは透明導電膜の電
気抵抗が大きすぎて、有効に電気を取り出すことができ
ない。
2. Description of the Related Art Conventionally, when a solar cell is formed on a glass substrate, a transparent conductive film is formed as a first electrode on the substrate, then a photoelectric conversion layer is formed, and then a second electrode is formed thereon. The metal film is formed. on the other hand,
The solar cell is required to have a large area for practical use, but if the area is enlarged as it is, the electric resistance of the transparent conductive film is too large to effectively extract electricity.

【0003】従って、図6に示すような公知のレーザス
クライビングなどの手法を用いて、セルを小区分化する
と共に直列接続化し、単一セルからの出力電流を減らし
モジュール全体の出力電圧を上げる構造としている。な
お、図6中、601は透光性絶縁基板、602は第一の
電極としての透明導電膜、603は光電変換層、604
は第二の電極としての導電層である。
Therefore, by using a known method such as laser scribing as shown in FIG. 6, cells are subdivided and connected in series to reduce the output current from a single cell and increase the output voltage of the entire module. There is. In FIG. 6, 601 is a transparent insulating substrate, 602 is a transparent conductive film as a first electrode, 603 is a photoelectric conversion layer, and 604.
Is a conductive layer as a second electrode.

【0004】さらに、特開昭60−50975号公報に
は、図7に示すごとく、ガラス基板701上にエッチン
グ法を用いて溝702を形成し、該溝702に銀ぺ―ス
ト703を埋め込むことによりグリッドを形成する手法
が提案されている。図7中、704は第一の電極として
の透明導電膜、705は光電変換層、706は第二の電
極としての導電層である。
Further, in JP-A-60-50975, as shown in FIG. 7, a groove 702 is formed on a glass substrate 701 by an etching method, and a silver paste 703 is embedded in the groove 702. Has proposed a method of forming a grid. In FIG. 7, 704 is a transparent conductive film as a first electrode, 705 is a photoelectric conversion layer, and 706 is a conductive layer as a second electrode.

【0005】[0005]

【発明が解決しようとする課題】太陽電池の大面積化を
図る従来のレーザスクライブ法では、ガラス基板上に成
膜した後レーザ光線を用いてセルを小区分に分割し、更
にそれらを直列接続しているので、1モジュール内での
直列接続の回数が増えることにより、非発電部分である
直列接続部分の面積が増大してしまうという問題点があ
った。また、後者のガラス基板エッチング法ではエッチ
ングのためのプロセスコストが高価となったり、銀ペー
ストの電気抵抗金属に比べて1桁程高くなったり、キュ
ア後の銀ペ−ストがポーラスとなってしまいその上に成
膜してもシャントを起こしたり、真空成膜中に銀ぺース
ト中の成分が発散し光電変換層の膜質が悪化したりす
る、等の問題点があった。
In the conventional laser scribing method for increasing the area of a solar cell, a cell is divided into small sections by using a laser beam after forming a film on a glass substrate, and the cells are connected in series. Therefore, there is a problem in that the area of the series-connected portion, which is a non-power generation portion, increases due to the increase in the number of times of series connection within one module. Further, in the latter glass substrate etching method, the process cost for etching becomes high, it becomes higher than the electric resistance metal of the silver paste by an order of magnitude, and the silver paste after curing becomes porous. There are problems such as shunting even if a film is formed on the film, and the components in the silver paste are diffused during vacuum film formation to deteriorate the film quality of the photoelectric conversion layer.

【0006】さらに、図6に示す従来型レーザスクライ
ブ法では、セル幅が10ミリメートルを越えると透明導
電膜中での電力損失が大きくなってしまうので、セル幅
をそれ以上大きくできなかった。
Further, in the conventional laser scribing method shown in FIG. 6, when the cell width exceeds 10 millimeters, the power loss in the transparent conductive film becomes large, so that the cell width cannot be further increased.

【0007】本発明は、上述した従来の課題を解決し、
大面積の単一セルを高信頼に低コストで作ることを可能
にしたものである。
The present invention solves the above-mentioned conventional problems,
It is possible to make a large area single cell with high reliability and at low cost.

【0008】[0008]

【課題を解決するための手段】上述した目的を達成する
ため本発明は、熱可塑性の透光性絶縁基板の一面側に導
電性細線を埋設し、該一面側に第一電極としての透明導
電層、太陽電池素子層、第二電極としての導電層をその
順序で形成したことを特徴とする。
In order to achieve the above-mentioned object, the present invention is to embed a conductive thin wire on one surface side of a thermoplastic translucent insulating substrate and to form a transparent conductive film as a first electrode on the one surface side. The layer, the solar cell element layer, and the conductive layer as the second electrode are formed in that order.

【0009】この場合、前記透光性絶縁基板は、ガラス
基板であり、400℃以上600℃以下の温度で軟化す
ることが望ましい。
In this case, the translucent insulating substrate is a glass substrate, and it is desirable that it is softened at a temperature of 400 ° C. or higher and 600 ° C. or lower.

【0010】また、前記導電性細線は、その直径が10
μm以上200μm以下の金属ワイヤーであることが望
ましい。
The diameter of the conductive thin wire is 10
It is desirable that the metal wire has a thickness of not less than μm and not more than 200 μm.

【0011】[0011]

【作用】図1において101は太陽電池の成膜基板であ
る熱可塑性の透光性絶縁基板、102は導電性細線、1
03は第一電極としての透明導電膜、104は光電変換
層、105は第二電極としての導電層である。なお、電
流を取り出すためのリード取り出しや、耐候性を確保す
るための背面の仕上げなどは通常の手法を用いて行な
う。
In FIG. 1, 101 is a thermoplastic translucent insulating substrate which is a film forming substrate of a solar cell, 102 is a conductive thin wire, and 1
Reference numeral 03 is a transparent conductive film as a first electrode, 104 is a photoelectric conversion layer, and 105 is a conductive layer as a second electrode. The leads are taken out to take out the electric current, and the back surface is finished to ensure the weather resistance.

【0012】図2は、図1の上方から見た図を示すもの
である。導電性細線202は等間隔に多数本を平行して
配置する。前記熱可塑性の透光性絶縁基板201として
は、通常のガラスを用いる。ガラスからの金属イオンの
拡散を抑えるため、ガラス表面に酸化珪素の皮膜を形成
しても良い。導電性細線には銅、アルミニウムなどの金
属ワイヤを用いることができる。
FIG. 2 shows a view from above in FIG. A large number of conductive thin wires 202 are arranged in parallel at equal intervals. As the thermoplastic translucent insulating substrate 201, ordinary glass is used. A film of silicon oxide may be formed on the glass surface in order to suppress the diffusion of metal ions from the glass. A metal wire such as copper or aluminum can be used as the conductive thin wire.

【0013】電流路中での電力損失と導電性細線自身の
陰によるシャドウロスの合計損失を最小にするためには
できるだけ細い金属線を狭い間隔で配置するのが良い
が、実用的には直径10〜200ミクロン程度の金属ワ
イヤ用いるのが良い。
In order to minimize the power loss in the current path and the total loss of shadow loss due to the shadow of the conductive thin wire itself, it is good to arrange the thinnest metal wires at a narrow interval, but in practice, the diameter is reduced. It is preferable to use a metal wire of about 10 to 200 μm.

【0014】光電変換層はアモルファスシリコン、結晶
シリコン、あるいは化合物半導体であっても良い。第二
電極としてはアルミニウムなどの蒸着が好適である。
The photoelectric conversion layer may be made of amorphous silicon, crystalline silicon, or compound semiconductor. Vapor deposition of aluminum or the like is suitable for the second electrode.

【0015】図3は、導電性細線302を透光性絶縁基
板301に埋め込む方法を説明するものである。図中、
306は定盤、307は加熱装置を示している。308
は透光性絶縁基板301の全面を均一に押すための加圧
板である。
FIG. 3 illustrates a method of embedding the conductive thin wire 302 in the translucent insulating substrate 301. In the figure,
Reference numeral 306 is a surface plate, and 307 is a heating device. 308
Is a pressure plate for uniformly pressing the entire surface of the translucent insulating substrate 301.

【0016】作製手順としては、まず、定盤306の上
に導電性細線302を載置し、その上に透光性絶縁基板
301を載せて加熱した。次いで、透光性絶縁基板30
1が軟化したら加圧板308で加圧し導電性細線302
をガラス中に押し込む。従って、導電性細線302の一
部が基板表面に顔を出した状態でワイヤーを埋め込むこ
とができるので、透明導電膜との電気的なコンタクトを
十分に取ることが可能となる。定盤306の材質として
はセラミック、鋼等が好適である。
As the manufacturing procedure, first, the conductive thin wire 302 was placed on the surface plate 306, and the translucent insulating substrate 301 was placed thereon and heated. Then, the translucent insulating substrate 30
When 1 is softened, pressure is applied by the pressure plate 308 to the conductive thin wire 302.
Push into the glass. Therefore, the wire can be embedded in a state where a part of the conductive thin wire 302 is exposed on the surface of the substrate, so that it is possible to make sufficient electrical contact with the transparent conductive film. Ceramic, steel and the like are suitable as the material of the surface plate 306.

【0017】[0017]

【実施例】(実施例1)本実施例では、図1における透
光性絶縁基板101として、厚さ3ミリ、10センチメ
―トル角のソーダガラスに真空蒸着法により700オン
グストロームの酸化珪素膜を形成したものを用意した。
定盤106は、20cm角のセラミック製のものを用
い、該定盤106上に導電性細線102として、直径2
5オングストローム、長さ13センチメートルの断面形
状が丸い銅ワイヤーを2ミリ間隔で平行に配置した。こ
の上に上記基板101を戴置し、更に加圧板108とし
ての重量5キログラムのセラミック板をその上に戴置し
た。
EXAMPLE 1 In this example, as the translucent insulating substrate 101 in FIG. 1, a 700 angstrom silicon oxide film was formed on a soda glass having a thickness of 3 mm and a thickness of 10 cm by a vacuum deposition method. The formed one was prepared.
As the surface plate 106, a ceramic plate of 20 cm square is used.
Copper wires having a round cross-sectional shape of 5 angstrom and a length of 13 cm were arranged in parallel at 2 mm intervals. The substrate 101 was placed thereon, and a ceramic plate having a weight of 5 kilograms was placed thereon as the pressing plate 108.

【0018】続いて、窒素ガス雰囲気中500℃で30
分間維持したところ銅ワイヤーが円柱状表面の一部をガ
ラス基板表面に表したままガラス基板中に埋め込まれ
た。これを成膜基板として、この上にITO膜を1ミク
ロン厚に、更にアモルファスシリコン光電変換層をn
層、i層、p層の順に2回形成し、セイムバンドギヤッ
プダブルタンデム構成の太陽電池を作製した。なお、第
二電極としてはアルミニウムを真空蒸着により1ミクロ
ンの厚みに形成した。
Then, at 30 ° C. in a nitrogen gas atmosphere at 500 ° C.
When kept for a minute, the copper wire was embedded in the glass substrate with a part of the cylindrical surface exposed on the surface of the glass substrate. Using this as a film-forming substrate, an ITO film having a thickness of 1 micron and an amorphous silicon photoelectric conversion layer are further formed on the film.
The layer, the i layer, and the p layer were formed twice in this order to fabricate a solar cell having a same band gap double tandem structure. As the second electrode, aluminum was formed by vacuum vapor deposition to have a thickness of 1 micron.

【0019】上記のように作製された太陽電池セルをA
Ml.5,100mW/cm2の標準光源で測定したと
ころ、約7 %の変換効率が得られた。また、電力損失
と銅ワイヤー自体の影によるシャドウロスを合計した損
失は約3.5%であった。
A solar battery cell manufactured as described above is
Ml. When measured with a standard light source of 5,100 mW / cm 2 , a conversion efficiency of about 7% was obtained. The total loss of power loss and shadow loss due to the shadow of the copper wire itself was about 3.5%.

【0020】(実施例2)本実施例は、モノリシック集
積型セルに応用したものである。図2に示すように、ま
ず、ガラス基板201上に複数本の金属ワイヤー202
をその長手方向において断続的に配置し、上記第1の実
施例と同様に該ワイヤー202をがガラス基板201の
表面に埋め込んだ。そして、該ガラス基板201上に上
記実施例1と同条件で透明導電膜を形成し、図5(a)
に示すように、公知のレーザスクライブ技術を用い、透
明導電膜503のP0の部分に1回目のレーザ光線を照
射する。なお、図5(a)において、501はガラス基
板であり、502はワイヤーである。
(Embodiment 2) This embodiment is applied to a monolithic integrated cell. As shown in FIG. 2, first, a plurality of metal wires 202 are formed on a glass substrate 201.
Were intermittently arranged in the longitudinal direction, and the wire 202 was embedded in the surface of the glass substrate 201 as in the first embodiment. Then, a transparent conductive film is formed on the glass substrate 201 under the same conditions as in Example 1 above, and as shown in FIG.
As shown in FIG. 7, a known laser scribing technique is used to irradiate the P 0 portion of the transparent conductive film 503 with the first laser beam.
Shoot. In FIG. 5A, 501 is a glass substrate and 502 is a wire.

【0021】次に、図5(b)に示すように、前記透明
導電膜503上にアモルファスシリコン光電変換層50
4を形成し、P1部分に2回目のレーザ光線を照射し
た。続いて、図5(c)に示すように、アルミニウム5
05を蒸着した段階で3回目のレーザ光線をP2部分に
照射した。
Next, as shown in FIG. 5B, the amorphous silicon photoelectric conversion layer 50 is formed on the transparent conductive film 503.
4 and irradiate the P 1 part with the second laser beam
It was Then, as shown in FIG.
At the stage of vapor deposition of 05, the P 2 portion was irradiated with the third laser beam.

【0022】本実施例によれば、第一電極部の導電性が
飛躍的に向上したために単位セルのセル幅を10cmに
広げることができ、レーザスクライブの回数を従来法に
比べ約90%減少できた。この結果、セル表面の非発電
部分の比率が約80%減少し、また、セル幅に自由度が
出るため、ある決められたモジュールサイズに対して自
由な電流値あるいは電圧値を取ることができるようにな
った。
According to this embodiment, the cell width of the unit cell can be increased to 10 cm because the conductivity of the first electrode portion is dramatically improved, and the number of laser scribing is reduced by about 90% as compared with the conventional method. did it. As a result, the ratio of the non-power generation portion on the cell surface is reduced by about 80%, and the cell width has a degree of freedom, so that a free current value or voltage value can be obtained for a certain module size. It became so.

【0023】(実施例3)本実施例は、上記実施例1及
び実施例2における銅ワイヤーに代えて網状の導電体を
用いた。上記実施例では銅ワイヤーを2ミリ間隔で平行
に配置しただけの構成であったが、本実施例ではかかる
平行配置状態にした後、これに直交するようにさらに
2.5ミリ間隔で同一材料の銅ワイヤーを配置して網状
に形成した。かかる構成にすると、シャドウロスは約1
%増加したが、セラミツク定盤上にワイヤーを並べる作
業性は飛躍的に向上した。また、網状の場合、一方の縦
糸ワイヤーが切断しても他方の横糸ワイヤーを介して隣
接ワイヤーに電流を運ぶことができるので便利である。
(Embodiment 3) In this embodiment, a mesh-shaped conductor is used instead of the copper wire in Embodiments 1 and 2. In the above-described embodiment, the copper wires are simply arranged in parallel at intervals of 2 mm, but in this embodiment, after the parallel arrangement state, the same material is further arranged at intervals of 2.5 mm so as to be orthogonal to this. Copper wire was placed to form a mesh. With this configuration, the shadow loss is about 1
%, But the workability of arranging the wires on the ceramic surface plate has improved dramatically. Further, in the case of a mesh, even if one warp wire is cut, current can be carried to the adjacent wire via the other weft wire, which is convenient.

【0024】[0024]

【発明の効果】以上のように、本発明によれば、ガラス
基板上の第一電極側の電気抵抗を下げる事が可能とな
り、従来より大面積の太陽電池セルを形成できるように
なった。この結果、太陽電池の構成及び製造工程が簡略
化し、製品の信頼性が向上し、低価格化が可能となっ
た。
As described above, according to the present invention, it is possible to reduce the electric resistance on the side of the first electrode on the glass substrate, and it is possible to form a solar cell having a larger area than the conventional one. As a result, the structure and manufacturing process of the solar cell are simplified, the reliability of the product is improved, and the cost can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る太陽電池の構成を示す模式断面図
である。
FIG. 1 is a schematic cross-sectional view showing the configuration of a solar cell according to the present invention.

【図2】図1の上面図である。FIG. 2 is a top view of FIG.

【図3】導電性細線の埋め込みを説明するための概略側
断面図である。
FIG. 3 is a schematic side sectional view for explaining embedding of a conductive thin wire.

【図4】実施例2に係る太陽電池の構成を示すものであ
り、(a)は上面図、(b)はX―X線に沿う断面図で
ある。
4A and 4B are diagrams showing a configuration of a solar cell according to Example 2, where FIG. 4A is a top view and FIG. 4B is a sectional view taken along line XX.

【図5】セル集積化の各工程(a)〜(c)の例を示す
図である。
FIG. 5 is a diagram showing an example of respective steps (a) to (c) of cell integration.

【図6】従来の太陽電池セルの構成例を示す断面図であ
る。
FIG. 6 is a cross-sectional view showing a configuration example of a conventional solar cell.

【図7】もう一つの従来の太陽電池セルの構成例を示す
断面図である。
FIG. 7 is a cross-sectional view showing a configuration example of another conventional solar battery cell.

【符号の説明】[Explanation of symbols]

101、201、301、401、501 透光性絶縁
基板、 102、202、302、402、502 導電性細
線、 103、503 透明導電膜、 104、504 光電変換層、 105、505 第二電極としての導電層。
101, 201, 301, 401, 501 translucent insulating substrate, 102, 202, 302, 402, 502 conductive thin wire, 103, 503 transparent conductive film, 104, 504 photoelectric conversion layer, 105, 505 as second electrode Conductive layer.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 熱可塑性の透光性絶縁基板の一面側に導
電性細線を埋設し、該一面側に第一電極としての透明導
電層、太陽電池素子層、第二電極としての導電層をその
順序で形成したことを特徴とする太陽電池。
1. A conductive thin wire is embedded on one surface side of a thermoplastic translucent insulating substrate, and a transparent conductive layer as a first electrode, a solar cell element layer, and a conductive layer as a second electrode are provided on the one surface side. A solar cell characterized by being formed in that order.
【請求項2】 前記透光性絶縁基板は、ガラス基板であ
り、400℃以上600℃以下の温度で軟化することを
特徴とする請求項1に記載の太陽電池。
2. The solar cell according to claim 1, wherein the translucent insulating substrate is a glass substrate and is softened at a temperature of 400 ° C. or higher and 600 ° C. or lower.
【請求項3】 前記導電性細線は、その直径が10μm
以上200μm以下の金属ワイヤーであることを特徴と
する請求項1又は請求項2に記載の太陽電池。
3. The conductive thin wire has a diameter of 10 μm.
The solar cell according to claim 1 or 2, wherein the solar cell is a metal wire having a size of 200 µm or more.
JP43A 1992-12-28 1992-12-28 Solar cell Pending JPH06204529A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP43A JPH06204529A (en) 1992-12-28 1992-12-28 Solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP43A JPH06204529A (en) 1992-12-28 1992-12-28 Solar cell

Publications (1)

Publication Number Publication Date
JPH06204529A true JPH06204529A (en) 1994-07-22

Family

ID=18473840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP43A Pending JPH06204529A (en) 1992-12-28 1992-12-28 Solar cell

Country Status (1)

Country Link
JP (1) JPH06204529A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5474621A (en) * 1994-09-19 1995-12-12 Energy Conversion Devices, Inc. Current collection system for photovoltaic cells
JPH0927626A (en) * 1995-07-11 1997-01-28 Canon Inc Method of providing wire, device and solar cell substrate
JPH104201A (en) * 1996-06-14 1998-01-06 Canon Inc Method and device for disposing linear member
JP2004146425A (en) * 2002-10-22 2004-05-20 Fujikura Ltd Electrode substrate, photoelectric converter, and dye-sensitized solar cell
WO2004086464A3 (en) * 2003-03-24 2004-10-28 Konarka Technologies Inc Photovoltaic cells utilizing mesh electrodes
JP2005109033A (en) * 2003-09-29 2005-04-21 Toshiba Corp Photosensitive solar cell and its manufacturing method
WO2011011348A3 (en) * 2009-07-24 2011-04-28 Ovshinsky Innovation, Llc Method of manufacturing a photovoltaic device
US8629346B2 (en) 2002-10-03 2014-01-14 Fujikura Ltd. Electrode substrate, photoelectric conversion element, conductive glass substrate and production method thereof, and pigment sensitizing solar cell
US9184317B2 (en) 2007-04-02 2015-11-10 Merck Patent Gmbh Electrode containing a polymer and an additive

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5474621A (en) * 1994-09-19 1995-12-12 Energy Conversion Devices, Inc. Current collection system for photovoltaic cells
WO1996009650A1 (en) * 1994-09-19 1996-03-28 Energy Conversion Devices, Inc. Current collection system for photovoltaic cells
JPH0927626A (en) * 1995-07-11 1997-01-28 Canon Inc Method of providing wire, device and solar cell substrate
JPH104201A (en) * 1996-06-14 1998-01-06 Canon Inc Method and device for disposing linear member
US7022910B2 (en) * 2002-03-29 2006-04-04 Konarka Technologies, Inc. Photovoltaic cells utilizing mesh electrodes
US8629346B2 (en) 2002-10-03 2014-01-14 Fujikura Ltd. Electrode substrate, photoelectric conversion element, conductive glass substrate and production method thereof, and pigment sensitizing solar cell
JP2004146425A (en) * 2002-10-22 2004-05-20 Fujikura Ltd Electrode substrate, photoelectric converter, and dye-sensitized solar cell
WO2004086464A3 (en) * 2003-03-24 2004-10-28 Konarka Technologies Inc Photovoltaic cells utilizing mesh electrodes
KR101024876B1 (en) * 2003-03-24 2011-03-31 코나르카 테크놀로지, 인코포레이티드 Photovoltaic cells utilizing mesh electrodes
JP2005109033A (en) * 2003-09-29 2005-04-21 Toshiba Corp Photosensitive solar cell and its manufacturing method
US9184317B2 (en) 2007-04-02 2015-11-10 Merck Patent Gmbh Electrode containing a polymer and an additive
WO2011011348A3 (en) * 2009-07-24 2011-04-28 Ovshinsky Innovation, Llc Method of manufacturing a photovoltaic device

Similar Documents

Publication Publication Date Title
US4849029A (en) Energy conversion structures
US4380112A (en) Front surface metallization and encapsulation of solar cells
US4348546A (en) Front surface metallization and encapsulation of solar cells
US4865999A (en) Solar cell fabrication method
US10573764B2 (en) Solar cell with reduced base diffusion area
US4517403A (en) Series connected solar cells and method of formation
WO2004064167A1 (en) Transparent thin-film solar cell module and its manufacturing method
JPH04276665A (en) Integrated solar battery
JP3801342B2 (en) Solar cell substrate, manufacturing method thereof, and semiconductor element
JP4441938B2 (en) Integrated thin film device and method of manufacturing the same
JPH06204529A (en) Solar cell
EP3916813A1 (en) Double-sided power generation solar cell and fabricating method therefor
US5431741A (en) Silicon solar cell
JP2009302274A (en) Photovoltaic element and method of manufacturing cis-based photovoltaic element
JP2001257371A (en) Method for manufacturing solar cell, solar cell and condensing type solar cell module
JPH0519990B2 (en)
CN109041583B (en) Solar cell element and solar cell module
JP2005353836A (en) Solar cell element and solar cell module using the same
JP4467337B2 (en) Solar cell module
KR20190079622A (en) Method for manufacturing high photoelectric conversion efficiency solar cell and high photoelectric conversion efficiency solar cell
JP2892929B2 (en) Manufacturing method of integrated photoelectric conversion element
JP3170914B2 (en) Thin film solar cell and method of manufacturing the same
KR100446593B1 (en) Silicon solar cell and its manufacturing method
JPH0982994A (en) Photovoltaic device and manufacture thereof
JPS5975679A (en) Photoelectromotive force generating device