JPS61187377A - Dividing method for processing of amorphous solar battery - Google Patents

Dividing method for processing of amorphous solar battery

Info

Publication number
JPS61187377A
JPS61187377A JP60026426A JP2642685A JPS61187377A JP S61187377 A JPS61187377 A JP S61187377A JP 60026426 A JP60026426 A JP 60026426A JP 2642685 A JP2642685 A JP 2642685A JP S61187377 A JPS61187377 A JP S61187377A
Authority
JP
Japan
Prior art keywords
layer
solar cell
amorphous
dividing
electrode layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60026426A
Other languages
Japanese (ja)
Other versions
JPH0149019B2 (en
Inventor
Kenji Nakatani
健司 中谷
Tetsuo Sato
哲生 佐藤
Hiroshi Okaniwa
宏 岡庭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP60026426A priority Critical patent/JPS61187377A/en
Priority to US06/828,197 priority patent/US4697041A/en
Priority to FR868602039A priority patent/FR2577716B1/en
Priority to DE19863604894 priority patent/DE3604894A1/en
Publication of JPS61187377A publication Critical patent/JPS61187377A/en
Publication of JPH0149019B2 publication Critical patent/JPH0149019B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • H01L31/046PV modules composed of a plurality of thin film solar cells deposited on the same substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/362Laser etching
    • B23K26/364Laser etching for making a groove or trench, e.g. for scribing a break initiation groove
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03921Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate including only elements of Group IV of the Periodic System
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

PURPOSE:To prevent a dividing surface from shortcircuiting by forming a pattern made of an electrically insulating polymer resin layer on a boundary between a metal electrode layer and an amorphous Si semiconductor layer or a boundary between the amorphous Si semiconductor layer and a transparent electrode. CONSTITUTION:A polymer film is used as a substrate 1, and a metal electrode layer 2 made of an aluminum layer 2a and a stainless steel layer 2b is provided thereon. An amorphous semiconductor layer 3 by a glow discharge decomposing method is accumulated on the layer 2. Then, an epoxy resin is screen printed in a pattern shape on the layer 3 to form a polymer resin layer 5, and a transparent electrode layer 4 is then accumulated. An obtained cell is scanned by a YAG laser on the layer 5 to form a groove 6, and divided. The layer 5 is interposed to prevent the layer 4, the layers 3, 2 crystallized by a laser light from shortcircuiting to prevent the battery characteristic after dividing from decreasing.

Description

【発明の詳細な説明】 [利用分野] 本発明はレーザー光を用いて非晶質太陽電池を所定の形
状のセルに分割する非晶質太陽電池の分割加工方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application] The present invention relates to a method for dividing an amorphous solar cell into cells having a predetermined shape using laser light.

[従来技術] 非晶質シリコン半導体膜はシランガス等のグロー放電分
解法によって、低い基板温度で広い面積に均一に堆積で
き、基板もガラス、高分子フィルム、セラミック板、金
属フォイル等の各種基板が選択出来る為、太陽電池用半
導体膜として広く研究されている。非晶質シリコン太陽
電池の基本構造としては上記各種基板上に設けられた金
属電極層/非晶質シリコン半導体層/透明電極層の8I
層構造が知られている。
[Prior art] Amorphous silicon semiconductor films can be deposited uniformly over a wide area at low substrate temperatures by glow discharge decomposition using silane gas, etc. Various substrates such as glass, polymer films, ceramic plates, and metal foils can be used. Since it can be selected, it is widely studied as a semiconductor film for solar cells. The basic structure of an amorphous silicon solar cell is an 8I metal electrode layer/amorphous silicon semiconductor layer/transparent electrode layer provided on the various substrates mentioned above.
The layered structure is known.

非晶質シリコン層堆積の特徴を生かして、上記基本構造
太陽電池を大面積に設ける事には容易であるが、このま
までは面積によらず最大出力電圧は0.6〜5V程度で
あり電力用途に必要な100V以上の出力電圧を得る事
は出来ない。このような実用的な電圧を得る為には■所
定の小面積の太陽電池セルを小面積基板上に設けその後
このセルを所定個直列接続する方法、■大面積基板上に
設けた大面積の太陽電池を、エツチング等により基板を
そこなう事なく所定の小面積のセルに分割し、その後該
セルを所定個直列接続する方法、■大面積基板上にマス
ク等を用いて分割した状態で所定の小面積の太陽電池セ
ルを堆積し、その後該セルを所定個直列接続する方法が
知られている。これらの方法の中で■の方法は非晶質シ
リコン層堆積の特徴を生かした大口生産方式に適さず、
又、直列接続する工程、モジュール化する工程が複雑に
なる。■の方法についてはレジスト塗布とエツチングの
組合わせによって可能であるが、レジスト塗布、露光、
洗浄、エツチング等の多数の工程が必要であり安価に大
量に太陽電池を製造するのには適さない。■の方法につ
いては、一般に金属マスクを基板上に密着させて太陽電
池構成層を順次堆積する事が行なわれるが、大面積化の
場合、基板とマスクの熱膨張率の違いによって各層堆積
時に基板とマスクの密着性が悪くなり各層での堆積成分
の回り込みの生じる事が多く、良好な分割パターンが得
られない。又、該マスク堆積法による分割の場合、マス
クの位置合わせがむつかしくその誤差を0.511II
+程度以下に小さくする事はむつかしい。
Taking advantage of the characteristics of amorphous silicon layer deposition, it is easy to install a solar cell with the above basic structure over a large area, but as it is, the maximum output voltage is around 0.6 to 5 V regardless of the area, making it difficult for power applications. It is not possible to obtain an output voltage of more than 100V, which is required for this purpose. In order to obtain such a practical voltage, there are two methods: 1. A method in which a predetermined number of small-area solar cells are placed on a small-area substrate, and then a predetermined number of these cells are connected in series; A method of dividing a solar cell into cells with a predetermined small area by etching or the like without damaging the substrate, and then connecting a predetermined number of the cells in series. A method is known in which solar cells of a small area are deposited and then a predetermined number of the cells are connected in series. Among these methods, method (■) is not suitable for large-scale production that takes advantage of the characteristics of amorphous silicon layer deposition;
Moreover, the process of connecting in series and the process of modularizing become complicated. Method (2) is possible by a combination of resist coating and etching, but resist coating, exposure,
It requires many steps such as cleaning and etching, and is not suitable for producing large quantities of solar cells at low cost. With method (2), the solar cell constituent layers are generally deposited one after another by placing a metal mask in close contact with the substrate, but in the case of a large area, due to the difference in thermal expansion coefficient between the substrate and the mask, each layer is deposited on the substrate. If this happens, the adhesion of the mask will deteriorate, and the deposited components will often wrap around in each layer, making it impossible to obtain a good divided pattern. In addition, in the case of division by the mask deposition method, it is difficult to align the mask, and the error is 0.511 II.
It is difficult to reduce the size to less than +.

[発明の目的] 本発明は上述の従来法の欠点を解決せんとじてなされた
もので、大面積基板上に設けた大面積の非晶質太陽電池
を基板をそこなう事なく簡単な工程で高速に任意の形状
に分割加工できる非晶質太陽電池の分割加工方法を提供
することを目的とする。
[Objective of the Invention] The present invention has been made to solve the above-mentioned drawbacks of the conventional method, and is capable of manufacturing a large-area amorphous solar cell on a large-area substrate using a simple process and at high speed without damaging the substrate. An object of the present invention is to provide a method for dividing an amorphous solar cell that can be divided into arbitrary shapes.

[発明の構成及び作用] すなわち、本発明は、非晶質シリコン半導体層を光起電
層とした、金属電極層、非晶質シリコン半導体層、透明
電極層の積層構造を基板上に形成した非晶質太陽電池の
面上にレーザー光を照射し、その照射点を所定のパター
ンに沿って移動させて非晶質太陽電池を所定のパターン
に分割加工するに際し、あらかじめ前記パターンの金民
電極層と非晶質シリコン半導体層の界面あるいは非晶質
シリコン半導体層と透明電極層の界面に絶縁性高分子樹
脂層を形成しておくことを特徴とする非晶質太l!j!
電池の分割加工方法である。
[Structure and operation of the invention] That is, the present invention provides a laminated structure of a metal electrode layer, an amorphous silicon semiconductor layer, and a transparent electrode layer, in which an amorphous silicon semiconductor layer is used as a photovoltaic layer, on a substrate. When dividing the amorphous solar cell into predetermined patterns by irradiating laser light onto the surface of the amorphous solar cell and moving the irradiation point along a predetermined pattern, the metal electrode of the pattern is preliminarily cut. The amorphous thick! j!
This is a method for dividing batteries.

上述の本発明は以下のようにしてなされたものである。The above-mentioned present invention was made as follows.

レーザー光を使用する分割加工法は光学系を調整する事
によってその分割部分の幅は数十μ〜数百μの間で自由
に変更する事が出来、又、コンピューター制御方式の採
用によって予め所定のパターンをプログラムしておくこ
とによって正確に再現性よく任意形状の分割が可能であ
る。更に、光学系内のミラー移動あるいは光学ファイバ
ーグラスを用いれば連続的に走行する広幅基板フィルム
上の太陽電池も分割加工可能で、全体として生産性の良
い分割加工プロセスが実現できる。
In the division processing method using laser light, by adjusting the optical system, the width of the division part can be changed freely between several tens of microns to several hundred microns, and by using a computer control method, it is possible to change the width of the division part to a predetermined width by adjusting the optical system. By programming the pattern, it is possible to divide into arbitrary shapes accurately and with good reproducibility. Furthermore, by moving mirrors within the optical system or using optical fiberglass, it is possible to divide solar cells on a continuously running wide substrate film, making it possible to realize a dividing process with high overall productivity.

そこで、レーザー光を照射し、分割加工したところ、レ
ーザー光を単に所定のパターンに沿って走査させバター
ニングするだけでは光照射部分周辺への熱的ダメージが
生じ、特に非晶質シリコン層は結晶化が生じる事がラマ
ンスペクトル測定によって判明した。シリコン層が結晶
化すると、その部分の暗導電率が上昇するとともにpi
n接合特性を失い整流作用を示さなくなる。その為、太
陽電池で生じた起電力が結晶化領域で失われパターン化
した後の太陽電池特性が低下する事がわかった。
Therefore, when we irradiated laser light and processed it into parts, we found that simply scanning the laser light along a predetermined pattern and patterning would cause thermal damage to the area around the light irradiated area, especially for amorphous silicon layers. It was revealed by Raman spectroscopy that this phenomenon occurs. When the silicon layer crystallizes, the dark conductivity of that part increases and the pi
It loses its n-junction characteristics and no longer exhibits rectifying action. Therefore, it was found that the electromotive force generated in the solar cell was lost in the crystallized region, resulting in a decrease in the solar cell characteristics after patterning.

又分割部所面の電子顕微鏡観察の結果、下部金属電極と
上部透明電極層とが溶融して接合している事が観察され
、この点も太陽電池特性を低下させる原因であることが
わかった。
Furthermore, as a result of electron microscopy observation of the split area, it was observed that the lower metal electrode and the upper transparent electrode layer were melted and bonded, which was also found to be a cause of deterioration of the solar cell characteristics. .

その−例を第2図の◎に示す。これに対して、その解決
策を種々検討した結果、非晶質太陽電池の非晶質シリコ
ン半導体層と金属電極層の間あるいは非晶質シリコン半
導体層と透明電極層の間に電気絶縁性高分子樹脂層を介
在させることにより、透明電極層と結晶化した非晶質シ
リコン半導体層及び金属電極層との短絡が防止でき、分
割後の太陽電池特性の低下を防止出来ることを見出し、
本発明に到達したのである。
An example of this is shown in ◎ in Figure 2. As a result of examining various solutions to this problem, we found that high electrical insulation is required between the amorphous silicon semiconductor layer and the metal electrode layer or between the amorphous silicon semiconductor layer and the transparent electrode layer of the amorphous solar cell. We have discovered that by interposing a molecular resin layer, it is possible to prevent short circuits between the transparent electrode layer and the crystallized amorphous silicon semiconductor layer and the metal electrode layer, and to prevent the deterioration of solar cell characteristics after division,
The present invention has been achieved.

ところで、上記検討において、本発明者らは上記高分子
樹脂層をレーザー光に不透明なものにすることにより、
レーザー光を高パワーにすると金層切断でき、低パワー
にすると高分子樹脂層よりレーザー照射側に位置する層
のみ切断できることを見出した。従って不透明な高分子
樹脂層を設けることにより、レーザー光のパワーの切換
えのみで、照射側のみの表層切断とその反対側まで含め
た表裏層切断の選択的分割ができ、一層で2種類のパタ
ーニングができることになる。
By the way, in the above study, the present inventors made the above polymer resin layer opaque to laser light,
It was discovered that when the power of the laser beam is set to high, the gold layer can be cut, and when the power is set to low, only the layer located on the laser irradiation side of the polymer resin layer can be cut. Therefore, by providing an opaque polymer resin layer, it is possible to selectively cut the surface layer only on the irradiated side and cut the front and back layers including the opposite side by simply changing the power of the laser beam, allowing two types of patterning to be performed in one layer. will be possible.

以下本発明の詳細な説明する。The present invention will be explained in detail below.

前述の点から、パターンに沿って形成する電気絶縁性高
分子樹脂層は、レザー光による分割加工後に分割面の短
絡防止ができるようにレーザ光の分割中より若干広い巾
で設ける必要がある。又、当該高分子層の厚みは1μm
以下では金属電極層。
From the above point, the electrically insulating polymer resin layer formed along the pattern needs to be provided with a width slightly wider than during the laser beam division so that short circuits on the dividing surface can be prevented after the laser beam division process. In addition, the thickness of the polymer layer is 1 μm
Below is a metal electrode layer.

透明電極1間の短絡を防止出来ず、又50μm以上では
段差が生じ透明電極層の堆積及び後工程での収集電極の
形成に困難を生じる。
Short circuits between the transparent electrodes 1 cannot be prevented, and if the thickness is 50 μm or more, a step will occur, making it difficult to deposit the transparent electrode layer and form the collecting electrode in a subsequent step.

かかる該高分子樹脂層としてはエポキシ樹脂。The polymer resin layer is an epoxy resin.

ポリアミド樹脂、ポリイミド樹脂、ポリエステル樹脂等
も用いる事が出来る。なお、前記界面に設けるに際して
は、スクリーン印刷法等が適用できる。
Polyamide resin, polyimide resin, polyester resin, etc. can also be used. In addition, when providing on the interface, a screen printing method or the like can be applied.

又、咳高分子樹脂層は、レーザー光に対して透明であっ
ても不透明であっても良い。該高分子樹脂層も含めその
レーザー照射側と反対側の層まで切断分割する場合には
、透明な方が必要なレーザー光のパワーが小さくなる利
点がある。一方眼高分子樹脂層が不透明な場合には、前
述の通りレーザー光のパワーの選択によりレーザー照射
側のみの表層切断とその反対側を含めた表裏層切断との
選択切断が出来る利点がある。これは、前述の非晶質太
陽電池において一層の高分子樹脂層を透明電極層と起電
力層との間に所定のパターンに従って設けるのみで、金
属電極層までのパターン分割と透明電極層のみのパター
ン分割ができることであり、そのバターニング及びモジ
ュール化に非常に大きな効果を奏する。
Further, the cough polymer resin layer may be transparent or opaque to laser light. When cutting and dividing layers including the polymer resin layer on the side opposite to the laser irradiation side, a transparent material has the advantage that the power of the laser beam required is smaller. On the other hand, when the polymeric resin layer is opaque, there is an advantage that selective cutting can be performed by selecting the power of the laser beam to selectively cut the surface layer only on the laser irradiation side and cut the front and back layers including the opposite side. In the above-mentioned amorphous solar cell, only one polymer resin layer is provided between the transparent electrode layer and the electromotive force layer according to a predetermined pattern, and the pattern is divided up to the metal electrode layer and only the transparent electrode layer is separated. It is possible to divide patterns, which has a very large effect on patterning and modularization.

いずれにしてもレーザーで分割する時には最適パワーを
選択する事によって任意の形状に分割する事が出来る。
In any case, when dividing with a laser, it is possible to divide into any shape by selecting the optimum power.

レーザーとしては各構成層が吸収し得る波長域の光なら
良り0.2〜2μmの波長光が用いられるが、好ましく
は現在工業的にも広く利用されているYAGレーザーが
使用される。
As the laser, light with a wavelength of 0.2 to 2 μm is preferably used as long as it is in a wavelength range that can be absorbed by each of the constituent layers, but YAG laser, which is currently widely used industrially, is preferably used.

ところで、本発明が適用できる非晶質太陽電池は、特に
限定されず、非晶質シリコン半導体層を起電力層とした
ものであれば良いが、生産性面から電気絶縁性基板、更
には可撓性長尺基板上に連続製膜されたものが好ましい
Incidentally, the amorphous solar cell to which the present invention can be applied is not particularly limited, and may be one having an amorphous silicon semiconductor layer as an electromotive force layer, but from the viewpoint of productivity, an electrically insulating substrate, more preferably a flexible solar cell may be used. It is preferable that the film be continuously formed on a flexible elongated substrate.

なお、分割加工された非晶質太陽電池を、120℃〜2
00℃の空気中で加熱処理すると、分割後の太陽電池の
性能低下を防止できる効果があり、分割後前記加熱処理
を施すことが好ましい。
In addition, the divided amorphous solar cells were heated at 120°C to 2°C.
Heat treatment in air at 00° C. has the effect of preventing deterioration in performance of the solar cell after division, and it is preferable to perform the heat treatment after division.

以下本発明を実施例に基いて説明する。The present invention will be explained below based on examples.

第1図は実施例の非晶質シリコン太陽電池の側断面図で
ある。基板1として、ロールツーロール法によって太陽
電池構成層を順次長尺の走行する基板上に堆積出来、大
量生産に適した高分子フィルムを用いた例である。高分
子フィルムとしては非晶質シリコン堆積に必要な耐熱性
を有する高分子フィルムならどれでも良いが好ましくは
、ポリエチレンナレフタレート(PET)フィルム、ポ
リイミドフィルムなどが用いられる。図の例はPETフ
ィルムを用いである。
FIG. 1 is a side sectional view of an amorphous silicon solar cell according to an example. In this example, a polymer film suitable for mass production is used as the substrate 1, in which the solar cell constituent layers can be sequentially deposited on a long running substrate by a roll-to-roll method. The polymer film may be any polymer film that has the heat resistance necessary for amorphous silicon deposition, but polyethylene nalphthalate (PET) film, polyimide film, etc. are preferably used. The example shown uses PET film.

金a電極層2として0.5μm程度のA1層2aと30
0人〜10人程度のステンレス層2bを順次スパッタリ
ング法を用いて堆積したAn/ステンレス積層体を用い
た。
A1 layers 2a and 30 with a thickness of about 0.5 μm are used as the gold a electrode layer 2.
An An/stainless steel laminate in which approximately 0 to 10 stainless steel layers 2b were sequentially deposited using a sputtering method was used.

光起電力層の非晶質シリコン半導体層3は周知のpin
形構成を採用し、特開昭59−34668号公報に開示
のものと同様なシランガス等のグロー放電分解法を用い
て金属電極層2上に堆積した。
The amorphous silicon semiconductor layer 3 of the photovoltaic layer is a well-known pin
The film was deposited on the metal electrode layer 2 using a glow discharge decomposition method using silane gas, etc., similar to that disclosed in Japanese Patent Application Laid-Open No. 59-34668.

次に非晶質シリコン半導体3と透明電極層4との界面に
設ける電気絶縁性高分子樹脂層5として、非晶質シリコ
ン半導体層3上にエポキシ樹脂をスクリーン印刷法を用
いてレーザーで分割加工する所定のパターン形状に10
μmの厚さに設けた。
Next, as the electrically insulating polymer resin layer 5 provided at the interface between the amorphous silicon semiconductor 3 and the transparent electrode layer 4, epoxy resin is divided into parts on the amorphous silicon semiconductor layer 3 using a screen printing method using a laser. 10 in the predetermined pattern shape
It was provided with a thickness of μm.

次に透明電極層4として酸化インジューム(ITo)層
を電子ビーム蒸着あるいはスパッタリング法によって6
00人程度に堆積し、第1図に示すPET/An/SU
S/非晶質シリコ7p;n7パターン化したエポキシ樹
脂FM/ITO構造の非晶質太陽電池を得た。
Next, an indium oxide (ITo) layer is deposited as a transparent electrode layer 4 by electron beam evaporation or sputtering.
PET/An/SU deposited on about 00 people and shown in Figure 1.
An amorphous solar cell having an epoxy resin FM/ITO structure patterned with S/amorphous silico 7p;n7 was obtained.

なお、非晶質シリコン太i電池としては上記構成体に限
らず例えば基板1としてセラミック板。
Note that the amorphous silicon thick i battery is not limited to the above-mentioned structure, and for example, a ceramic plate may be used as the substrate 1.

ガラス板あるいは絶縁性層を表面に設けた金属フォイル
が使用出来、特に連続膜形成及び分割、加工が適用でき
る長尺可撓性基板が有利である。又、その上に設ける金
属電極層2してもTi、八〇。
A glass plate or a metal foil provided with an insulating layer on the surface can be used, and a long flexible substrate that can be used for continuous film formation, division, and processing is particularly advantageous. Moreover, the metal electrode layer 2 provided thereon is also made of Ti, 80 yen.

W、Pt 、Ni 、Go 、クロム、ニクロムなどの
単体金属1合金金属が使用出来る。又起電力層の非晶質
シリコン半導体層3の構成としてもpinの他、pan
 /ptn 、 pin /Din 7prn等の多層
タンデム構造はもちろんのこと、非晶質シリコンゲルマ
ニウム、非晶質シリコンカーバイトなどのナローバンド
ギャップあるいはワイドバンドギャップの非晶質シリコ
ン半導体層を適時用いる事も出来る。さらに透明電極I
!i4としては酸化スズ、スズ酸カドミウム等公知の透
明1電層が適用できる。
Single metals and alloy metals such as W, Pt 2 , Ni 2 , Go 2 , chromium, and nichrome can be used. Moreover, as the structure of the amorphous silicon semiconductor layer 3 of the electromotive force layer, in addition to pin, pan
In addition to multilayer tandem structures such as /ptn, pin /Din 7prn, narrow bandgap or wide bandgap amorphous silicon semiconductor layers such as amorphous silicon germanium and amorphous silicon carbide can also be used as appropriate. . Furthermore, transparent electrode I
! As i4, a known transparent monoelectric layer such as tin oxide or cadmium stannate can be used.

次いで、前述の第1図のPET/A文/SUS/非晶質
シリコンptn /パターン化したエポキシ樹脂層/I
TO構造の非晶質太陽電池の10aRX101角セルを
YAGレーザーで、エポキシ樹脂層からなる電気絶縁性
高分子樹脂層5上を走査して太陽電池成分を溶融・蒸発
させて第1図の如く金属電極層2までの溝6を形成して
、2つの5CrR×10値角セルに分割した。なお、Y
AGレーザーはQスイッチパルスレーザ−で平均レーザ
ーパワーを0.8W、パルス周波数2 K I−I Z
とし太陽電池表面上に照射し、速度80馴/ 5eIC
で走査させた。
Next, the PET/A pattern/SUS/amorphous silicon PTN/patterned epoxy resin layer/I shown in FIG.
A 10aRX101 square cell of an amorphous solar cell with a TO structure is scanned with a YAG laser over the electrically insulating polymer resin layer 5 made of an epoxy resin layer to melt and evaporate the solar cell components to form a metal layer as shown in Figure 1. A groove 6 up to the electrode layer 2 was formed to divide the cell into two 5CrR×10 square cells. Furthermore, Y
The AG laser is a Q-switched pulsed laser with an average laser power of 0.8W and a pulse frequency of 2 K I-I Z
Then, irradiate the surface of the solar cell at a speed of 80cm/5eIC.
I scanned it with

分割後の5czX10α角セルの電流−電圧特性は第3
図のBであった。同図のAは分割前の10c、Xl 0
 cm角セルの特性であり、Cは上述の実施例と同じ構
成で高分子樹脂層を設けない従来の非晶質太陽電池をY
AGレーザーで分割した比較例の特性である。
The current-voltage characteristics of the 5cz x 10α square cell after division are as follows:
It was B in the diagram. A in the same figure is 10c before division, Xl 0
C is the characteristic of a cm square cell, where C is a conventional amorphous solar cell with the same configuration as the above example but without a polymer resin layer;
This is the characteristic of a comparative example divided by AG laser.

図より、本発明によれば、殆どセル性能を低下さぼるこ
となく分割できることが明らかである。
From the figure, it is clear that according to the present invention, it is possible to divide the cell without substantially degrading the cell performance.

又、実施例の分割後のセルを150℃で30分空気中熱
処理したところ、はぼ第3図のへの分割前の特性と同じ
特性となった。なお、200℃までほぼ同様の結果が得
られることを確認した。
Further, when the divided cell of Example was heat-treated in air at 150° C. for 30 minutes, it had the same characteristics as the cell before dividing as shown in FIG. 3. It was confirmed that almost the same results could be obtained up to 200°C.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例に用いた太陽電池の側断面図。 第2図は実施例の結果を示す太陽電池の電圧−電流特性
のグラフである。 1:基板 2:金属電極層 3:非晶質シリコン半導体層 4:透明電極層 5:電気絶縁性高分子樹脂層矛2図
FIG. 1 is a side sectional view of the solar cell used in the example. FIG. 2 is a graph of voltage-current characteristics of a solar cell showing the results of an example. 1: Substrate 2: Metal electrode layer 3: Amorphous silicon semiconductor layer 4: Transparent electrode layer 5: Electrically insulating polymer resin layer Figure 2

Claims (6)

【特許請求の範囲】[Claims] (1)非晶質シリコン半導体層を光起電層とした、金属
電極層、非晶質シリコン半導体層、透明電極層の積層構
造を基板上に形成した非晶質太陽電池をレーザー光によ
り所定のパターンに分割加工するに際し、あらかじめ前
記パターンの金属電極層と非晶質シリコン半導体層の界
面あるいは非晶質シリコン半導体層と透明電極層の界面
に電気絶縁性の高分子樹脂層を形成しておくことを特徴
とする非晶質太陽電池の分割加工方法。
(1) An amorphous solar cell in which a laminated structure of a metal electrode layer, an amorphous silicon semiconductor layer, and a transparent electrode layer is formed on a substrate, with an amorphous silicon semiconductor layer as a photovoltaic layer, is fixed with a laser beam. When dividing into patterns, an electrically insulating polymer resin layer is formed in advance at the interface between the metal electrode layer and the amorphous silicon semiconductor layer or the interface between the amorphous silicon semiconductor layer and the transparent electrode layer of the pattern. A method for dividing an amorphous solar cell, which is characterized by:
(2)前記高分子性樹脂層がレーザー光に不透明である
特許請求の範囲1項記載の非晶質太陽電池の分割加工法
(2) The method for dividing an amorphous solar cell according to claim 1, wherein the polymeric resin layer is opaque to laser light.
(3)前記絶縁性高分子樹脂層の厚みが1μ以上50μ
以下である特許請求の範囲第1項若しくは第2項記載の
非晶質太陽電池の分割加工方法。
(3) The thickness of the insulating polymer resin layer is 1μ or more and 50μ
A method for dividing an amorphous solar cell according to claim 1 or 2 below.
(4)分割加工後の非晶質太陽電池を120℃〜200
℃の空気中で加熱処理する特許請求の範囲第1項、第2
項若しくは第3項記載の非晶質太陽電池の分割加工方法
(4) Heat the amorphous solar cell after splitting to 120°C to 200°C.
Claims 1 and 2, in which heat treatment is performed in air at ℃
The method for dividing an amorphous solar cell according to item 1 or 3.
(5)前記非晶質太陽電池が絶縁性基板上に形成されて
いる特許請求の範囲第1項、第2項、第3項若しくは第
4項記載非晶質太陽電池の分割加工方法。
(5) The method for dividing an amorphous solar cell according to claim 1, 2, 3, or 4, wherein the amorphous solar cell is formed on an insulating substrate.
(6)前記非晶質太陽電池が長尺可撓性基板上に連続的
に形成されている特許請求の範囲第1項、第2項、第3
項、第4項若しくは第5項記載の非晶質太陽電池の分割
加工方法。
(6) Claims 1, 2, and 3, wherein the amorphous solar cell is continuously formed on a long flexible substrate.
The method for dividing an amorphous solar cell according to item 4 or 5.
JP60026426A 1985-02-15 1985-02-15 Dividing method for processing of amorphous solar battery Granted JPS61187377A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP60026426A JPS61187377A (en) 1985-02-15 1985-02-15 Dividing method for processing of amorphous solar battery
US06/828,197 US4697041A (en) 1985-02-15 1986-02-10 Integrated solar cells
FR868602039A FR2577716B1 (en) 1985-02-15 1986-02-14 INTEGRATED SOLAR CELLS AND THEIR MANUFACTURING METHOD
DE19863604894 DE3604894A1 (en) 1985-02-15 1986-02-15 INTEGRATED SOLAR CELLS AND METHOD FOR THEIR PRODUCTION

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60026426A JPS61187377A (en) 1985-02-15 1985-02-15 Dividing method for processing of amorphous solar battery

Publications (2)

Publication Number Publication Date
JPS61187377A true JPS61187377A (en) 1986-08-21
JPH0149019B2 JPH0149019B2 (en) 1989-10-23

Family

ID=12193191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60026426A Granted JPS61187377A (en) 1985-02-15 1985-02-15 Dividing method for processing of amorphous solar battery

Country Status (1)

Country Link
JP (1) JPS61187377A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63287076A (en) * 1987-05-19 1988-11-24 Sanyo Electric Co Ltd Photovoltaic device
JP2003124483A (en) * 2001-10-17 2003-04-25 Toyota Motor Corp Photovoltaic element
JP2004503112A (en) * 2000-07-06 2004-01-29 ビーピー・コーポレーション・ノース・アメリカ・インコーポレーテッド Partially transparent photovoltaic module
JP2006073690A (en) * 2004-09-01 2006-03-16 Disco Abrasive Syst Ltd Dividing method of wafer
WO2013054600A1 (en) * 2011-10-14 2013-04-18 日東電工株式会社 Solar cell manufacturing method and solar cell module
EP2701877A4 (en) * 2011-04-25 2016-11-23 Vladimir G Kozlov Single-shot laser ablation of a metal film on a polymer membrane

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63287076A (en) * 1987-05-19 1988-11-24 Sanyo Electric Co Ltd Photovoltaic device
JP2004503112A (en) * 2000-07-06 2004-01-29 ビーピー・コーポレーション・ノース・アメリカ・インコーポレーテッド Partially transparent photovoltaic module
JP2003124483A (en) * 2001-10-17 2003-04-25 Toyota Motor Corp Photovoltaic element
JP2006073690A (en) * 2004-09-01 2006-03-16 Disco Abrasive Syst Ltd Dividing method of wafer
EP2701877A4 (en) * 2011-04-25 2016-11-23 Vladimir G Kozlov Single-shot laser ablation of a metal film on a polymer membrane
WO2013054600A1 (en) * 2011-10-14 2013-04-18 日東電工株式会社 Solar cell manufacturing method and solar cell module

Also Published As

Publication number Publication date
JPH0149019B2 (en) 1989-10-23

Similar Documents

Publication Publication Date Title
US4697041A (en) Integrated solar cells
DE69907866T2 (en) Process for the production of thin-film solar cell modules
US6720576B1 (en) Plasma processing method and photoelectric conversion device
JP3035565B2 (en) Fabrication method of thin film solar cell
US4721629A (en) Method of manufacturing photovoltaic device
WO2004064167A1 (en) Transparent thin-film solar cell module and its manufacturing method
JPH0472392B2 (en)
JPH09260695A (en) Manufacture of photovoltaic device array
EP0481094A1 (en) Solar cell
JPS61187377A (en) Dividing method for processing of amorphous solar battery
JPH0851229A (en) Integrated solar battery and its manufacture
JPH053151B2 (en)
JPS61214483A (en) Manufacture of integrated type solar cell
JP2000196117A (en) Manufacture of photoelectric conversion device
JP2001237442A (en) Solar cell and its manufacturing method
JPS61241981A (en) Manufacture of thin film solar battery
JP3685964B2 (en) Photoelectric conversion device
JPS62147784A (en) Amorphous solar cell and manufacture thereof
JPS61156775A (en) Split processing method for amorphous silicon solar cell
JPH0243776A (en) Manufacture of thin film solar cell
JPS61183975A (en) Processing method for thin film solar cell
JPH01134976A (en) Manufacture of solar cell
JP2517226B2 (en) Method for manufacturing semiconductor device
JP2002231982A (en) Method for forming flexible solar battery module
JPH055194B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees