JPH0149019B2 - - Google Patents

Info

Publication number
JPH0149019B2
JPH0149019B2 JP60026426A JP2642685A JPH0149019B2 JP H0149019 B2 JPH0149019 B2 JP H0149019B2 JP 60026426 A JP60026426 A JP 60026426A JP 2642685 A JP2642685 A JP 2642685A JP H0149019 B2 JPH0149019 B2 JP H0149019B2
Authority
JP
Japan
Prior art keywords
solar cell
layer
amorphous
dividing
electrode layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP60026426A
Other languages
Japanese (ja)
Other versions
JPS61187377A (en
Inventor
Kenji Nakatani
Tetsuo Sato
Hiroshi Okaniwa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP60026426A priority Critical patent/JPS61187377A/en
Priority to US06/828,197 priority patent/US4697041A/en
Priority to FR868602039A priority patent/FR2577716B1/en
Priority to DE19863604894 priority patent/DE3604894A1/en
Publication of JPS61187377A publication Critical patent/JPS61187377A/en
Publication of JPH0149019B2 publication Critical patent/JPH0149019B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • H01L31/046PV modules composed of a plurality of thin film solar cells deposited on the same substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/362Laser etching
    • B23K26/364Laser etching for making a groove or trench, e.g. for scribing a break initiation groove
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03921Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate including only elements of Group IV of the Periodic System
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Description

【発明の詳細な説明】 [利用分野] 本発明はレーザー光を用いて非晶質太陽電池を
所定の形状のセルに分割する非晶質太陽電池の分
割加工方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application] The present invention relates to a method for dividing an amorphous solar cell into cells having a predetermined shape using laser light.

[従来技術] 非晶質シリコン半導体膜はシランガス等のグロ
ー放電分解法によつて、低い基板温度で広い面積
に均一に堆積でき、基板もガラス、高分子フイル
ム、セラミツク板、金属フオイル等の各種基板が
選択出来る為、太陽電池用半導体膜として広く研
究されている。非晶質シリコン太陽電池の基本構
造としては上記各種基板上に設けられた金属電極
層/非晶質シリコン半導体層/透明電極層の積層
構造が知られている。
[Prior art] Amorphous silicon semiconductor films can be deposited uniformly over a wide area at low substrate temperatures by glow discharge decomposition using silane gas, etc., and can be applied to various substrates such as glass, polymer films, ceramic plates, metal foils, etc. Because the substrate can be selected, it is widely studied as a semiconductor film for solar cells. As a basic structure of an amorphous silicon solar cell, a laminated structure of a metal electrode layer/amorphous silicon semiconductor layer/transparent electrode layer provided on the above-mentioned various substrates is known.

非晶質シリコン層堆積の特徴を生かして、上記
基本構造太陽電池を大面積に設ける事には容易で
あるが、このままでは面積によらず最大出力電圧
は0.6〜5V程度であり電力用途に必要な100V以上
の出力電圧を得る事は出来ない。このような実用
的な電圧を得る為には所定の小面積の太陽電池
セルを小面積基板上に設けその後このセルを所定
個直列接続する方法、大面積基板上に設けた大
面積の太陽電池を、エツチング等により基板をそ
こなう事なく所定の小面積のセルに分割し、その
後該セルを所定個直列接続する方法、大面積基
板上にマスク等を用いて分割した状態で所定の小
面積の太陽電池セルを堆積し、その後該セルを所
定個直列接続する方法が知られている。これらの
方法の中での方法は非晶質シリコン層堆積の特
徴を生かした大量生産方式に適さず、又、直列接
続する工程、モジユール化する工程が複雑にな
る。の方法についてはレジスト塗布とエツチン
グの組合わせによつて可能であるが、レジスト塗
布、露光、洗浄、エツチング等の多数の工程が必
要であり安価に大量に太陽電池を製造するのには
適さない。の方法については、一般に金属マス
クを基板上に密着させて太陽電池構成層を順次堆
積する事が行なわれるが、大面積化の場合、基板
とマスクの熱膨張率の違いによつて各層堆積時に
基板とマスクの密着性が悪くなり各層での堆積成
分の回り込みの生じる事が多く、良好な分割パタ
ーンが得られない。又、該マスク堆積法による分
割の場合、マスクの位置合わせがむつかしくその
誤差を0.5mm程度以下に小さくする事はむつかし
い。
Taking advantage of the characteristics of amorphous silicon layer deposition, it is easy to install a solar cell with the above basic structure over a large area, but as it is, the maximum output voltage is around 0.6 to 5 V regardless of the area, which is necessary for power applications. It is not possible to obtain an output voltage of 100V or more. In order to obtain such a practical voltage, a method is to install a predetermined number of small-area solar cells on a small-area substrate, and then connect a predetermined number of these cells in series, or a large-area solar cell placed on a large-area substrate. A method is to divide the substrate into cells of a predetermined small area by etching or the like without damaging it, and then connect a predetermined number of the cells in series. A method is known in which solar cells are deposited and then a predetermined number of the cells are connected in series. Among these methods, these methods are not suitable for mass production that takes advantage of the characteristics of amorphous silicon layer deposition, and the steps of series connection and modularization become complicated. This method is possible by combining resist coating and etching, but it requires many steps such as resist coating, exposure, cleaning, and etching, and is not suitable for manufacturing solar cells in large quantities at low cost. . In this method, the solar cell constituent layers are generally deposited one after another by placing a metal mask in close contact with the substrate, but when increasing the area, the difference in thermal expansion coefficient between the substrate and the mask makes it difficult to deposit each layer. Adhesion between the substrate and the mask deteriorates, often causing the deposited components to wrap around in each layer, making it impossible to obtain a good divided pattern. Furthermore, in the case of division by the mask deposition method, it is difficult to align the mask, and it is difficult to reduce the error to about 0.5 mm or less.

[発明の目的] 本発明は上述の従来法の欠点を解決せんとして
なされたもので、大面積基板上に設けた大面積の
非晶質太陽電池を基板をそこなう事なく簡単な工
程で高速に任意の形状に分割加工できる非晶質太
陽電池の分割加工方法を提供することを目的とす
る。
[Purpose of the Invention] The present invention has been made to solve the above-mentioned drawbacks of the conventional method, and is capable of producing a large-area amorphous solar cell formed on a large-area substrate at high speed through a simple process without damaging the substrate. It is an object of the present invention to provide a method for dividing an amorphous solar cell that can be divided into arbitrary shapes.

[発明の構成及び作用] すなわち、本発明は、非晶質シリコン半導体層
を光起電層とした、金属電極層、非晶質シリコン
半導体層、透明電極層の積層構造を基板上に形成
した非晶質太陽電池の面上にレーザー光を照射
し、その照射点を所定のパターンに沿つて移動さ
せて非晶質太陽電池を所定のパターンに分割加工
するに際し、あらかじめ前記パターンの金属電極
層と非晶質シリコン半導体層の界面あるいは非晶
質シリコン半導体層と透明電極層の界面に絶縁性
高分子樹脂層を形成しておくことを特徴とする非
晶質太陽電池の分割加工方法である。
[Structure and operation of the invention] That is, the present invention provides a laminated structure of a metal electrode layer, an amorphous silicon semiconductor layer, and a transparent electrode layer, in which an amorphous silicon semiconductor layer is used as a photovoltaic layer, on a substrate. When dividing the amorphous solar cell into predetermined patterns by irradiating laser light onto the surface of the amorphous solar cell and moving the irradiation point along a predetermined pattern, the metal electrode layer of the pattern is preliminarily processed. and an amorphous silicon semiconductor layer or an interface between an amorphous silicon semiconductor layer and a transparent electrode layer, an insulating polymer resin layer is formed in advance. .

上述の本発明は以下のようにしてなされたもの
である。レーザー光を使用する分割加工法は光学
系を調整する事によつてその分割部分の幅は数十
μ〜数百μの間で自由に変更する事が出来、又、
コンピユーター制御方式の採用によつて予め所定
のパターンをプログラムしておくことによつて正
確に再現性よく任意形状の分割が可能である。更
に、光学系内のミラー移動あるいは光学フアイバ
ーグラスを用いれば連続的に走行する広幅基板フ
イルム上の太陽電池も分割加工可能で、全体とし
て生産性の良い分割加工プロセスが実現できる。
そこで、レーザー光を照射し、分割加工したとこ
ろ、レーザー光を単に所定のパターンに沿つて走
査させパターニングするだけでは光照射部分周辺
への熱的ダメージが生じ、特に非晶質シリコン層
は結晶化が生じる事がラマンスペクトル測定によ
つて判明した。シリコン層が結晶化すると、その
部分の暗導電率が上昇するとともにpin接合特性
を失い整流作用を示さなくなる。その為、太陽電
池で生じた起電力が結晶化領域で失われパターン
化した後の太陽電池特性が低下する事がわかつ
た。
The above-mentioned present invention was made as follows. In the division processing method using laser light, by adjusting the optical system, the width of the division part can be freely changed between several tens of microns to several hundred microns, and
By using a computer control system and programming a predetermined pattern in advance, it is possible to divide into arbitrary shapes accurately and with good reproducibility. Furthermore, by using mirror movement within the optical system or optical fiber glasses, solar cells on a continuously running wide substrate film can also be divided, and a dividing process with good overall productivity can be realized.
Therefore, we irradiated the laser beam and performed the dividing process, and found that simply scanning the laser beam along a predetermined pattern and patterning would cause thermal damage to the area around the irradiated area, and in particular, the amorphous silicon layer would crystallize. It was revealed by Raman spectrum measurement that this occurs. When the silicon layer crystallizes, the dark conductivity of that part increases and it loses its pin junction characteristics and no longer exhibits a rectifying effect. Therefore, it was found that the electromotive force generated in the solar cell is lost in the crystallized region, resulting in a decrease in the solar cell characteristics after patterning.

又分割部断面の電子顕微鏡観察の結果、下部金
属電極と上部透明電極層とが溶融して接合してい
る事が観察され、この点も太陽電池特性を低下さ
せる原因であることがわかつた。
Furthermore, as a result of electron microscopic observation of the cross section of the divided portion, it was observed that the lower metal electrode and the upper transparent electrode layer were melted and bonded, and this point was also found to be a cause of deterioration of the solar cell characteristics.

その一例を第2図のCに示す。これに対して、
その解決策を種々検討した結果、非晶質太陽電池
の非晶質シリコン半導体層と金属電極層の間ある
いは非晶質シリコン半導体層と透明電極層の間に
電気絶縁性高分子樹脂層を介在させることによ
り、透明電極層と結晶化した非晶質シリコン半導
体層及び金属電極層との短絡が防止でき、分割後
の太陽電池特性の低下を防止出来ることを見出
し、本発明に到達したのである。
An example is shown in C of FIG. On the contrary,
After investigating various solutions, we found that an electrically insulating polymer resin layer was interposed between the amorphous silicon semiconductor layer and the metal electrode layer or between the amorphous silicon semiconductor layer and the transparent electrode layer of the amorphous solar cell. They discovered that by doing so, it is possible to prevent short circuits between the transparent electrode layer, the crystallized amorphous silicon semiconductor layer, and the metal electrode layer, and it is possible to prevent the deterioration of the solar cell characteristics after division, and have arrived at the present invention. .

ところで、上記検討において、本発明者らは上
記高分子樹脂層をレーザー光に不透明なものにす
ることにより、レーザー光を高パワーにすると全
層切断でき、低パワーにすると高分子樹脂層より
レーザー照射側に位置する層のみ切断できること
を見出した。従つて不透明な高分子樹脂層を設け
ることにより、レーザー光のパワーの切換えのみ
で、照射側のみの表層切断とその反対側まで含め
た表裏層切断の選択的分割ができ、一層で2種類
のパターニングができることになる。
By the way, in the above study, the present inventors found that by making the polymer resin layer opaque to laser light, the entire layer could be cut by using a high power laser beam, and by using a low power laser beam, the polymer resin layer could be cut by the laser beam. It was discovered that only the layer located on the irradiated side could be cut. Therefore, by providing an opaque polymer resin layer, it is possible to selectively cut the surface layer only on the irradiated side and cut the front and back layers including the opposite side by simply changing the power of the laser beam, allowing two types of cutting to be performed in one layer. This allows for patterning.

以下本発明の詳細を説明する。 The details of the present invention will be explained below.

前述の点から、パターンに沿つて形成する電気
絶縁性高分子樹脂層は、レザー光による分割加工
後に分割面の短絡防止ができるようにレーザ光の
分割巾より若干広い巾で設ける必要がある。又、
当該高分子層の厚みは1μm以下では金属電極層、
透明電極層間の短絡を防止出来ず、又50μm以上
では段差が生じ透明電極層の堆積及び後工程での
収集電極の形成に困難を生じる。
From the above point, it is necessary that the electrically insulating polymer resin layer formed along the pattern has a width slightly wider than the dividing width of the laser beam so as to prevent short-circuiting of the dividing surface after the dividing process using the laser beam. or,
When the thickness of the polymer layer is 1 μm or less, it is a metal electrode layer,
Short circuits between the transparent electrode layers cannot be prevented, and if the thickness exceeds 50 μm, a step will occur, making it difficult to deposit the transparent electrode layer and form a collection electrode in a subsequent process.

かかる該高分子樹脂層としてはエポキシ樹脂、
ポリアミド樹脂、ポリイミド樹脂、ポリエステル
樹脂等も用いる事が出来る。なお、前記界面に設
けるに際しては、スクリーン印刷法等が適用でき
る。
The polymer resin layer includes epoxy resin,
Polyamide resin, polyimide resin, polyester resin, etc. can also be used. In addition, when providing on the interface, a screen printing method or the like can be applied.

又、該高分子樹脂層は、レーザー光に対して透
明であつても不透明であつても良い。該高分子樹
脂層も含めそのレーザー照射側と反対側の層まで
切断分割する場合には、透明な方が必要なレーザ
ー光のパワーが小さくなる利点がある。一方該高
分子樹脂層が不透明な場合には、前述の通りレー
ザー光のパワーの選択によりレーザー照射側のみ
の表層切断とその反対側を含めた表裏層切断との
選択切断が出来る利点がある。これは、前述の非
晶質太陽電池において一層の高分子樹脂層を透明
電極層と起電力層との間に所定のパターンに従つ
て設けるのみで、金属電極層までのパターン分割
と透明電極層のみのパターン分割ができることで
あり、そのパターニング及びモジユール化に非常
に大きな効果を奏する。
Furthermore, the polymer resin layer may be transparent or opaque to laser light. When cutting and dividing layers including the polymer resin layer on the side opposite to the laser irradiation side, a transparent material has the advantage that the power of the laser beam required is smaller. On the other hand, when the polymer resin layer is opaque, there is an advantage that selective cutting can be performed by selecting the power of the laser beam, as described above, to cut the surface layer only on the laser irradiation side and cut the front and back layers including the opposite side. This is achieved by simply providing one layer of polymer resin between the transparent electrode layer and the electromotive force layer in the aforementioned amorphous solar cell according to a predetermined pattern, and dividing the pattern up to the metal electrode layer and forming the transparent electrode layer. It is possible to divide the pattern into only one pattern, which has a very large effect on patterning and modularization.

いずれにしてもレーザーで分割する時には最適
パワーを選択する事によつて任意の形状に分割す
る事が出来る。レーザーとしては各構成層が吸収
し得る波長域の光なら良く、0.2〜2μmの波長光
が用いられるが、好ましくは現在工業的にも広く
利用されているYAGレーザーが使用される。
In any case, when dividing with a laser, it is possible to divide into any shape by selecting the optimum power. The laser may be light in a wavelength range that can be absorbed by each of the constituent layers, and light with a wavelength of 0.2 to 2 μm is used. Preferably, a YAG laser, which is currently widely used industrially, is used.

ところで、本発明が適用できる非晶質太陽電池
は、特に限定されず、非晶質シリコン半導体層を
起電力層としたものであれば良いが、生産性面か
ら電気絶縁性基板、更には可撓性長尺基板上に連
続製膜されたものが好ましい。
Incidentally, the amorphous solar cell to which the present invention can be applied is not particularly limited, and may be one having an amorphous silicon semiconductor layer as an electromotive force layer, but from the viewpoint of productivity, an electrically insulating substrate, more preferably a flexible solar cell may be used. It is preferable that the film be continuously formed on a flexible elongated substrate.

なお、分割加工された非晶質太陽電池を、120
℃〜200℃の空気中で加熱処理すると、分割後の
太陽電池の性能低下を防止できる効果があり、分
割後前記加熱処理を施すことが好ましい。
In addition, the divided amorphous solar cells are divided into 120
Heat treatment in air at a temperature of .degree. C. to 200.degree. C. has the effect of preventing performance degradation of the solar cell after division, and it is preferable to perform the heat treatment after division.

以下本発明を実施例に基いて説明する。 The present invention will be explained below based on examples.

第1図は実施例の非晶質シリコン太陽電池の側
断面図である。基板1として、ロールツーロール
法によつて太陽電池構成層を順次長尺の走行する
基板上に堆積出来、大量生産に適した高分子フイ
ルムを用いた例である。高分子フイルムとしては
非晶質シリコン堆積に必要な耐熱性を有する高分
子フイルムならどれでも良いが好ましくは、ポリ
エチレンチレフタレート(PET)フイルム、ポ
リイミドフイルムなどが用いられる。図の例は
PETフイルムを用いてある。
FIG. 1 is a side sectional view of an amorphous silicon solar cell according to an example. In this example, a polymer film suitable for mass production is used as the substrate 1, in which the solar cell constituent layers can be sequentially deposited on a long running substrate by a roll-to-roll method. As the polymer film, any polymer film having the heat resistance necessary for amorphous silicon deposition may be used, but polyethylene terephthalate (PET) film, polyimide film, etc. are preferably used. The example in the diagram is
It uses PET film.

金属電極層2として0.5μm程度のAl層2aと
300Å〜10Å程度のステンレス層2bを順次スパ
ツタリング法を用いて堆積したAl/ステンレス
積層体を用いた。
As the metal electrode layer 2, an Al layer 2a of about 0.5 μm is used.
An Al/stainless steel laminate was used in which stainless steel layers 2b of about 300 Å to 10 Å were sequentially deposited using a sputtering method.

光起電力層の非晶質シリコン半導体層3は周知
のpin形構成を採用し、特開昭59−34668号公報に
開示のものと同様なシランガス等のグロー放電分
解法を用いて金属電極層2上に堆積した。
The amorphous silicon semiconductor layer 3 of the photovoltaic layer adopts a well-known pin-type structure, and is formed into a metal electrode layer using a glow discharge decomposition method using silane gas, etc., similar to that disclosed in Japanese Patent Application Laid-Open No. 59-34668. Deposited on 2.

次に非晶質シリコン半導体3と透明電極層4と
の界面に設ける電気絶縁性高分子樹脂層5とし
て、非晶質シリコン半導体層3上にエポキシ樹脂
をスクリーン印刷法を用いてレーザーで分割加工
する。所定のパターン形状に10μmの厚さに設け
た。
Next, as the electrically insulating polymer resin layer 5 provided at the interface between the amorphous silicon semiconductor 3 and the transparent electrode layer 4, epoxy resin is divided into parts on the amorphous silicon semiconductor layer 3 using a screen printing method using a laser. do. It was provided in a predetermined pattern shape with a thickness of 10 μm.

次に透明電極層4として酸化インジユーム
(ITO)層を電子ビーム蒸着あるいはスパツタリ
ング法によつて、600Å程度に堆積し、第1図に
示すPETAl/SUS非晶質シリコンpinパタ
ーン化したエポキシ樹脂層ITO構造の非晶質太
陽電池を得た。
Next, as a transparent electrode layer 4, an indium oxide (ITO) layer is deposited to a thickness of about 600 Å by electron beam evaporation or sputtering, and an epoxy resin layer ITO with a PETAl/SUS amorphous silicon pin pattern shown in FIG. An amorphous solar cell with this structure was obtained.

なお、非晶質シリコン太陽電池としては上記構
成体に限らず例えば基板1としてセラミツク板、
ガラス板あるいは絶縁性層を表面に設けた金属フ
オイルが使用出来、特に連続膜形成及び分割加工
が適用できる長尺可撓性基板が有利である。又、
その上に設ける金属電極層2してもTi、Ag、
W、Pt、Ni、C0、クロム、ニクロムなどの単体
金属、合金金属が使用出来る。又起電力層の非晶
質シリコン半導体層3の構成としてもpinの他、
pin/pin、pin/pin/pin等の多層タンデム構造
はもちろんのこと、非晶質シリコンゲルマニウ
ム、非晶質シリコンカーバイトなどのナローバン
ドギヤツプあるいはワイドバンドギヤツプの非晶
質シリコン半導体層を適時用いる事も出来る。さ
らに透明電極層4としては酸化スズ、スズ酸カド
ミウム等公知の透明導電層が適用できる。
Note that the amorphous silicon solar cell is not limited to the above-mentioned structure, but may also include, for example, a ceramic plate as the substrate 1,
A glass plate or a metal foil provided with an insulating layer on the surface can be used, and a long flexible substrate to which continuous film formation and division processing can be applied is particularly advantageous. or,
The metal electrode layer 2 provided thereon also includes Ti, Ag,
Single metals and alloy metals such as W, Pt, Ni, C 0 , chromium, and nichrome can be used. In addition to pin, the structure of the amorphous silicon semiconductor layer 3 of the electromotive force layer is
In addition to multilayer tandem structures such as pin/pin, pin/pin/pin, narrow band gap or wide band gap amorphous silicon semiconductor layers such as amorphous silicon germanium and amorphous silicon carbide. You can also use it from time to time. Further, as the transparent electrode layer 4, a known transparent conductive layer such as tin oxide or cadmium stannate can be used.

次いで、前述の第1図のPETAl/SUS非
晶質シリコンpinパターン化したエポキシ樹脂
層ITO構造の非晶質太陽電池の10cm×10cm角セ
ルをYAGレーザーで、エポキシ樹脂層からなる
電気絶縁性高分子樹脂層5上を走査して太陽電池
成分を溶融・蒸発させて第1図の如く金属電極層
2までの溝6を形成して、2つの5cm×10cm角セ
ルに分割した。なお、YAGレーザーはQスイツ
チパルスレーザーで平均レーザーパワーを0.8W、
パルス周波数2KHzとし太陽電池表面上に照射し、
速度80mm/secで走査させた。
Next, the 10 cm x 10 cm square cell of the amorphous solar cell with the epoxy resin layer ITO structure with the PETAl/SUS amorphous silicon pin patterned in the above-mentioned Fig. 1 was heated with a YAG laser to form a highly electrically insulating, highly electrically insulating cell made of an epoxy resin layer. The molecular resin layer 5 was scanned to melt and evaporate the solar cell components to form a groove 6 up to the metal electrode layer 2 as shown in FIG. 1, and the cell was divided into two 5 cm x 10 cm square cells. The YAG laser is a Q-switch pulse laser with an average laser power of 0.8W.
Irradiate the surface of the solar cell with a pulse frequency of 2KHz,
Scanning was performed at a speed of 80 mm/sec.

分割後の5cm×10cm角セルの電流−電圧特性は
第3図のBであつた。同図のAは分割前の10cm×
10cm角セルの特性であり、Cは上述の実施例と同
じ構成で高分子樹脂層を設けない従来の非晶質太
陽電池をYAGレーザーで分解した比較例の特性
である。
The current-voltage characteristics of the 5 cm x 10 cm square cell after division were as shown in B in Figure 3. A in the same figure is 10cm x before division.
These are the characteristics of a 10 cm square cell, and C is the characteristic of a comparative example in which a conventional amorphous solar cell with the same configuration as the above example but without a polymer resin layer was decomposed using a YAG laser.

図より、本発明によれば、殆どセル性能を低下
させることなく分割できることが明らかである。
From the figure, it is clear that according to the present invention, it is possible to divide the cell without substantially degrading the cell performance.

又、実施例の分割後のセルを150℃で30分空気
中熱処理したところ、ほぼ第3図のAの分割前の
特性と同じ特性となつた。なお、200℃までほぼ
同様の結果が得られることを確認した。
Further, when the cell of Example after division was heat-treated in air at 150° C. for 30 minutes, the characteristics were almost the same as those of A in FIG. 3 before division. It was confirmed that almost the same results were obtained up to 200°C.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例に用いた太陽電池の側断面図、
第2図は実施例の結果を示す太陽電池の電圧−電
流特性のグラフである。 1:基板、2:金属電極層、3:非晶質シリコ
ン半導体層、4:透明電極層、5:電気絶縁性高
分子樹脂層。
Figure 1 is a side sectional view of the solar cell used in the example.
FIG. 2 is a graph of voltage-current characteristics of a solar cell showing the results of an example. 1: Substrate, 2: Metal electrode layer, 3: Amorphous silicon semiconductor layer, 4: Transparent electrode layer, 5: Electrically insulating polymer resin layer.

Claims (1)

【特許請求の範囲】 1 非晶質シリコン半導体層を光起電層とした、
金属電極層、非晶質シリコン半導体層、透明電極
層の積層構造を基板上に形成した非晶質太陽電池
をレーザー光により所定のパターンに分割加工す
るに際し、あらかじめ前記パターンの金属電極層
と非晶質シリコン半導体層の界面あるいは非晶質
シリコン半導体層と透明電極層の界面に電気絶縁
性の高分子樹脂層を形成しておくことを特徴とす
る非晶質太陽電池の分割加工方法。 2 前記高分子性樹脂層がレーザー光に不透明で
ある特許請求の範囲第1項記載の非晶質太陽電池
の分割加工法。 3 前記絶縁性高分子樹脂層の厚みが1μ以上50μ
以下である特許請求の範囲第1項若しくは第2項
記載の非晶質太陽電池の分割加工方法。 4 分割加工後の非晶質太陽電池を120℃〜200℃
の空気中で加熱処理する特許請求の範囲第1項、
第2項若しくは第3項記載の非晶質太陽電池の分
割加工方法。 5 前記非晶質太陽電池が絶縁性基板上に形成さ
れている特許請求の範囲第1項、第2項、第3項
若しくは第4項記載非晶質太陽電池の分割加工方
法。 6 前記非晶質太陽電池が長尺可撓性基板上に連
続的に形成されている特許請求の範囲第1項、第
2項、第3項、第4項若しくは第5項記載の非晶
質太陽電池の分割加工方法。
[Claims] 1. An amorphous silicon semiconductor layer as a photovoltaic layer,
When dividing an amorphous solar cell in which a laminated structure of a metal electrode layer, an amorphous silicon semiconductor layer, and a transparent electrode layer is formed on a substrate into a predetermined pattern using laser light, the metal electrode layer of the pattern and the transparent electrode layer are separated in advance. A method for dividing an amorphous solar cell, comprising forming an electrically insulating polymer resin layer at the interface of a crystalline silicon semiconductor layer or the interface between an amorphous silicon semiconductor layer and a transparent electrode layer. 2. The method for dividing an amorphous solar cell according to claim 1, wherein the polymeric resin layer is opaque to laser light. 3 The thickness of the insulating polymer resin layer is 1μ or more and 50μ
A method for dividing an amorphous solar cell according to claim 1 or 2 below. 4. Heat the amorphous solar cell after splitting to 120°C to 200°C.
Claim 1, in which heat treatment is performed in the air of
The method for dividing an amorphous solar cell according to item 2 or 3. 5. The method for dividing an amorphous solar cell according to claim 1, 2, 3, or 4, wherein the amorphous solar cell is formed on an insulating substrate. 6. The amorphous solar cell according to claim 1, 2, 3, 4, or 5, wherein the amorphous solar cell is continuously formed on a long flexible substrate. How to divide and process quality solar cells.
JP60026426A 1985-02-15 1985-02-15 Dividing method for processing of amorphous solar battery Granted JPS61187377A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP60026426A JPS61187377A (en) 1985-02-15 1985-02-15 Dividing method for processing of amorphous solar battery
US06/828,197 US4697041A (en) 1985-02-15 1986-02-10 Integrated solar cells
FR868602039A FR2577716B1 (en) 1985-02-15 1986-02-14 INTEGRATED SOLAR CELLS AND THEIR MANUFACTURING METHOD
DE19863604894 DE3604894A1 (en) 1985-02-15 1986-02-15 INTEGRATED SOLAR CELLS AND METHOD FOR THEIR PRODUCTION

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60026426A JPS61187377A (en) 1985-02-15 1985-02-15 Dividing method for processing of amorphous solar battery

Publications (2)

Publication Number Publication Date
JPS61187377A JPS61187377A (en) 1986-08-21
JPH0149019B2 true JPH0149019B2 (en) 1989-10-23

Family

ID=12193191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60026426A Granted JPS61187377A (en) 1985-02-15 1985-02-15 Dividing method for processing of amorphous solar battery

Country Status (1)

Country Link
JP (1) JPS61187377A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63287076A (en) * 1987-05-19 1988-11-24 Sanyo Electric Co Ltd Photovoltaic device
JP2004503112A (en) * 2000-07-06 2004-01-29 ビーピー・コーポレーション・ノース・アメリカ・インコーポレーテッド Partially transparent photovoltaic module
JP2003124483A (en) * 2001-10-17 2003-04-25 Toyota Motor Corp Photovoltaic element
JP2006073690A (en) * 2004-09-01 2006-03-16 Disco Abrasive Syst Ltd Dividing method of wafer
US8593727B2 (en) * 2011-04-25 2013-11-26 Vladimir G. Kozlov Single-shot laser ablation of a metal film on a polymer membrane
JP2013089659A (en) * 2011-10-14 2013-05-13 Nitto Denko Corp Method for manufacturing solar cell, and solar cell module

Also Published As

Publication number Publication date
JPS61187377A (en) 1986-08-21

Similar Documents

Publication Publication Date Title
US4697041A (en) Integrated solar cells
US4721629A (en) Method of manufacturing photovoltaic device
US6720576B1 (en) Plasma processing method and photoelectric conversion device
JP3035565B2 (en) Fabrication method of thin film solar cell
EP0201312B1 (en) Solar cell interconnection by discrete conductive regions
US5821597A (en) Photoelectric conversion device
JPH0472392B2 (en)
US5981864A (en) Photovoltaic element array and method of fabricating the same
JPH0149019B2 (en)
JPH0851229A (en) Integrated solar battery and its manufacture
JPS61214483A (en) Manufacture of integrated type solar cell
JP2000196117A (en) Manufacture of photoelectric conversion device
US6576866B1 (en) Method for structuring transparent electrode layers
JP3685964B2 (en) Photoelectric conversion device
JPS62147784A (en) Amorphous solar cell and manufacture thereof
JPH0243776A (en) Manufacture of thin film solar cell
JPS61156775A (en) Split processing method for amorphous silicon solar cell
JP2001237442A (en) Solar cell and its manufacturing method
JP5440439B2 (en) Method for manufacturing thin film photoelectric conversion device
JPH09135036A (en) Manufacture of photovoltaic device
JP2000022187A (en) CdS/CdTe SOLAR CELL AND MANUFACTURE THEREOF
JPH0237047B2 (en)
JPS61241981A (en) Manufacture of thin film solar battery
JP2517226B2 (en) Method for manufacturing semiconductor device
JPH055194B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees