JP2003124483A - Photovoltaic element - Google Patents

Photovoltaic element

Info

Publication number
JP2003124483A
JP2003124483A JP2001319717A JP2001319717A JP2003124483A JP 2003124483 A JP2003124483 A JP 2003124483A JP 2001319717 A JP2001319717 A JP 2001319717A JP 2001319717 A JP2001319717 A JP 2001319717A JP 2003124483 A JP2003124483 A JP 2003124483A
Authority
JP
Japan
Prior art keywords
type
layer
semiconductor layer
type semiconductor
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001319717A
Other languages
Japanese (ja)
Inventor
Kenichi Okumura
健一 奥村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2001319717A priority Critical patent/JP2003124483A/en
Publication of JP2003124483A publication Critical patent/JP2003124483A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0682Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells back-junction, i.e. rearside emitter, solar cells, e.g. interdigitated base-emitter regions back-junction cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Abstract

PROBLEM TO BE SOLVED: To provide a rear surface electrode type photovoltaic element in which a performance is improved by preventing a leakage current from passing through between a p<+> -type layer and an n<+> -type layer provided as diffused layers on a rear surface by a tunnel effect by electrically separating the p<+> -type layer and the n<+> -type layer. SOLUTION: The rear surface electrode type photovoltaic element comprises a semiconductor substrate 10, a p<+> -type semiconductor layer 22 and an n<+> -type semiconductor layer 20 formed on the rear surface of the substrate 120 by diffusion and having higher carrier concentrations than the carrier concentration of the substrate 10, and a positive electrode 32 and a negative electrode 30 respectively connected to the layer 22 and the layer 20. In this photovoltaic element, a groove is formed between the layer 22 and the layer 20.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、太陽電池等の、光
エネルギーを電力に変換する光起電力(photovoltaic)素
子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a photovoltaic device for converting light energy into electric power, such as a solar cell.

【0002】[0002]

【従来の技術】光起電力素子では、表面側に電極を設け
た場合、入射する光の量が減少することから、裏面側に
のみ電極を有する裏面電極型という構造の光起電力素子
がある。かかる裏面電極型光起電力素子として、裏面で
の表面再結合を防止して高性能化を図るべく裏面全体に
拡散層を設けた構造のものが知られている(例えば、特
開平8−213646号公報参照)。
2. Description of the Related Art In a photovoltaic element, when an electrode is provided on the front surface side, the amount of incident light is reduced, and thus there is a back surface electrode type photovoltaic element having an electrode only on the back surface side. . As such a back electrode type photovoltaic element, one having a structure in which a diffusion layer is provided on the entire back surface in order to prevent surface recombination on the back surface and to improve performance is known (for example, Japanese Patent Laid-Open No. 8-213646). (See the official gazette).

【0003】[0003]

【発明が解決しようとする課題】図1は、p+型層及び
+型層からなる拡散層が裏面全体に形成された従来の
裏面電極型光起電力素子の構造を示す断面図である。こ
の構造ではp+型層とn+型層とが接しており、このよう
にp+型層とn+型層とが隣り合うときのエネルギーバン
ド構造は図2に示されるようになる。
FIG. 1 is a sectional view showing the structure of a conventional back electrode type photovoltaic element in which a diffusion layer composed of ap + type layer and an n + type layer is formed on the entire back surface. . In this structure, the p + -type layer and the n + -type layer are in contact with each other, and the energy band structure when the p + -type layer and the n + -type layer are adjacent to each other as shown in FIG.

【0004】そして、電子の波動性により、図中の矢印
で示されるような、ポテンシャルバリヤーを突き抜ける
トンネル現象が生ずる。これは、n+型層に収集された
電子の一部がp+型層に(又は、p+型層に収集された正
孔の一部がn+型層に)流れ込むことを意味する。結果
として、光起電力素子での発電による電流量が低下し、
損失となる。
Due to the wave nature of the electrons, a tunnel phenomenon that penetrates the potential barrier as shown by the arrow in the figure occurs. This is part of the collected electrons to the n + -type layer is the p + -type layer (or, a portion of holes collected to the p + -type layer is the n + -type layer) means to flow. As a result, the amount of current generated by the photovoltaic device is reduced,
It will be a loss.

【0005】本発明は、上述した問題点に鑑みてなされ
たものであり、その目的は、裏面に拡散層として設けら
れるp+型層とn+型層とを電気的に分離してトンネル効
果によりそれらの間をリーク電流が通り抜けるのを防止
することにより性能の向上を図った裏面電極型光起電力
素子を提供することにある。
The present invention has been made in view of the above-described problems, and an object thereof is to electrically separate a p + type layer and an n + type layer provided as a diffusion layer on the back surface into a tunnel effect. Therefore, it is an object of the present invention to provide a back electrode type photovoltaic element having improved performance by preventing leakage current from passing through them.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、本発明の第1の面によれば、半導体基板と、前記半
導体基板の裏面に拡散により形成され、前記半導体基板
のキャリア濃度よりも高いキャリア濃度を有するp+
半導体層及びn+型半導体層と、前記p+型半導体層及び
+型半導体層にそれぞれ接続された正電極及び負電極
と、を備えた裏面電極型の光起電力素子において、前記
+型半導体層と前記n+型半導体層との間に溝が形成さ
れていることを特徴とする光起電力素子が提供される。
In order to achieve the above object, according to a first aspect of the present invention, a semiconductor substrate and a back surface of the semiconductor substrate are formed by diffusion, and the carrier concentration of the semiconductor substrate is higher than that of the semiconductor substrate. A back electrode type having a p + type semiconductor layer and an n + type semiconductor layer having a high carrier concentration, and a positive electrode and a negative electrode connected to the p + type semiconductor layer and the n + type semiconductor layer, respectively. In the photovoltaic element, there is provided a photovoltaic element, wherein a groove is formed between the p + type semiconductor layer and the n + type semiconductor layer.

【0007】上述の如く構成された、本発明の第1の面
による光起電力素子においては、p +型半導体層とn+
半導体層とが溝により分離されることにより、トンネル
現象が発生しない。したがって、収集された電子及び正
孔を効率良く電極から取り出すことができ、光起電力素
子の性能が向上する。
The first aspect of the present invention configured as described above
In the photovoltaic element according to +Type semiconductor layer and n+Type
A tunnel separates the semiconductor layer from the trench.
The phenomenon does not occur. Therefore, the collected electrons and positive
The holes can be efficiently taken out from the electrode,
The child's performance is improved.

【0008】また、本発明の第2の面によれば、前記本
発明の第1の面による光起電力素子において前記溝が絶
縁性物質で埋められる。
Further, according to the second aspect of the present invention, in the photovoltaic element according to the first aspect of the present invention, the groove is filled with an insulating material.

【0009】この本発明の第2の面による光起電力素子
においては、溝が絶縁性物質で埋められていることで、
素子の強度が増大せしめられるとともに、溝の部分の汚
染が防止される。
In the photovoltaic element according to the second aspect of the present invention, the groove is filled with the insulating material,
The strength of the element is increased and contamination of the groove portion is prevented.

【0010】また、本発明の第3の面によれば、前記本
発明の第2の面による光起電力素子において、前記p+
型半導体層又はn+型半導体層と前記半導体基板とが接
する部分の面積よりも、前記p+型半導体層又はn+型半
導体層と前記正電極又は負電極とが接する部分の面積が
小さくなるように、前記溝が形成される。
According to a third aspect of the present invention, in the photovoltaic element according to the second aspect of the present invention, the p +
The area of the part where the p + type semiconductor layer or the n + type semiconductor layer is in contact with the positive electrode or the negative electrode is smaller than the area of the part where the type semiconductor layer or the n + type semiconductor layer is in contact with the semiconductor substrate. Thus, the groove is formed.

【0011】半導体層と電極との接触面積は、大きすぎ
るとキャリアの再結合が促進されるため、接触抵抗が問
題にならない程度にまで小さいことが好ましい。この本
発明の第3の面による光起電力素子においては、絶縁性
物質上に電極を形成することができるため、半導体層と
電極との接触面積を増加することなく電極の面積を大き
くすることができる。その結果、電極の抵抗による損失
を低減することができる。
If the contact area between the semiconductor layer and the electrode is too large, the recombination of carriers is promoted, so that it is preferable that the contact resistance is small enough not to cause a problem. In the photovoltaic device according to the third aspect of the present invention, since the electrode can be formed on the insulating material, it is possible to increase the area of the electrode without increasing the contact area between the semiconductor layer and the electrode. You can As a result, the loss due to the resistance of the electrodes can be reduced.

【0012】[0012]

【発明の実施の形態】以下、添付図面を参照して本発明
の実施形態について説明する。
DETAILED DESCRIPTION OF THE INVENTION Embodiments of the present invention will be described below with reference to the accompanying drawings.

【0013】図3は、本発明の第1実施形態に係る光起
電力素子の断面図である。p型又はn型の半導体基板1
0の裏面には、拡散法を用いて、n+型半導体層20と
+型半導体層22とがそれぞれ交互に形成されてい
る。キャリアを収集するために、これらのn+型半導体
層20及びp+型半導体層22のキャリア濃度は、p又
はn型半導体基板10のキャリア濃度よりも高い。
FIG. 3 is a sectional view of the photovoltaic element according to the first embodiment of the present invention. p-type or n-type semiconductor substrate 1
On the back surface of 0, n + type semiconductor layers 20 and p + type semiconductor layers 22 are alternately formed by a diffusion method. In order to collect carriers, the carrier concentration of these n + type semiconductor layer 20 and p + type semiconductor layer 22 is higher than that of the p or n type semiconductor substrate 10.

【0014】また、半導体基板10の裏面側には、n+
型半導体層20に接続される負(−)電極30とp+
半導体層22に接続される正(+)電極32とが設けら
れ、裏面電極型構造を実現している。
On the back side of the semiconductor substrate 10, n +
The negative (−) electrode 30 connected to the positive type semiconductor layer 20 and the positive (+) electrode 32 connected to the p + type semiconductor layer 22 are provided to realize a back electrode type structure.

【0015】図3の光起電力素子では、表面側から入射
した光が半導体基板10において吸収され、電子と正孔
とが生成される。生成された電子は、n+型半導体層2
0の領域へと拡散していき負(−)電極30に集められ
る一方、生成された正孔は、p+型半導体層22へと拡
散していき正(+)電極32に集められる。かくして、
光の吸収によって生成された電子と正孔とが分離され、
光起電力が生ずることとなる。
In the photovoltaic element of FIG. 3, light incident from the front side is absorbed by the semiconductor substrate 10 and electrons and holes are generated. The generated electrons are the n + type semiconductor layer 2
The holes are diffused to the region of 0 and collected in the negative (−) electrode 30, while the generated holes are diffused to the p + type semiconductor layer 22 and collected in the positive (+) electrode 32. Thus,
Electrons and holes generated by absorption of light are separated,
Photovoltaic will be generated.

【0016】そして、図3に示される光起電力素子で
は、n+型半導体層20とp+型半導体層22とは、その
境界にエッチング、機械加工等により溝が形成されるこ
とにより、分離されている。したがって、先に図1及び
図2により説明したトンネル現象は発生せず、収集され
た電子及び正孔は効率良く負(−)電極30及び正
(+)電極32から取り出されることとなり、光起電力
素子の性能が向上する。
In the photovoltaic element shown in FIG. 3, the n + type semiconductor layer 20 and the p + type semiconductor layer 22 are separated from each other by forming a groove at the boundary between them by etching, machining or the like. Has been done. Therefore, the tunnel phenomenon described above with reference to FIGS. 1 and 2 does not occur, and the collected electrons and holes are efficiently taken out from the negative (−) electrode 30 and the positive (+) electrode 32. The performance of the power device is improved.

【0017】なお、かかる溝の形成により露出した表面
を、水素、ハロゲン元素等で終端処理(パッシベーショ
ン)することにより、効果的に光起電力素子の特性を向
上させることができる。
The characteristics of the photovoltaic element can be effectively improved by terminating (passivating) the surface exposed by the formation of the groove with hydrogen, a halogen element or the like.

【0018】ここで、図3に示される光起電力素子の具
体的構造について説明すると、例えば、半導体基板10
は、キャリア濃度1×1016cm-3、厚さ100μmを
有するp型Ge基板である。
The specific structure of the photovoltaic element shown in FIG. 3 will now be described. For example, the semiconductor substrate 10
Is a p-type Ge substrate having a carrier concentration of 1 × 10 16 cm −3 and a thickness of 100 μm.

【0019】また、n+型半導体層20は、キャリア濃
度1×1019cm-3、拡散深さ1μmを有するn+型G
e層である。同様に、p+型半導体層22は、キャリア
濃度1×1019cm-3、拡散深さ1μmを有するp+
Ge層である。
Further, the n + type semiconductor layer 20 is an n + type G having a carrier concentration of 1 × 10 19 cm -3 and a diffusion depth of 1 μm.
It is the e layer. Similarly, the p + type semiconductor layer 22 is a p + type Ge layer having a carrier concentration of 1 × 10 19 cm −3 and a diffusion depth of 1 μm.

【0020】また、負(−)電極30は、膜厚2μmを
有するAl電極である。同様に、正(+)電極32は、
膜厚2μmを有するAl電極である。
The negative (-) electrode 30 is an Al electrode having a film thickness of 2 μm. Similarly, the positive (+) electrode 32 is
It is an Al electrode having a film thickness of 2 μm.

【0021】なお、半導体基板10としては、Ge基板
に代えて、Si、SiGe、SiC、CSiGe等の基
板を用いることができる。
As the semiconductor substrate 10, a substrate of Si, SiGe, SiC, CSiGe or the like can be used instead of the Ge substrate.

【0022】また、図3では、n+型半導体層20より
もp+型半導体層22が大きく示されているが、これと
は逆、又は同じ大きさであってもよい。
Further, in FIG. 3, the p + type semiconductor layer 22 is shown to be larger than the n + type semiconductor layer 20, but it may have the opposite size or the same size.

【0023】図4は、本発明の第2実施形態に係る光起
電力素子の断面図である。図4においては、図3におけ
る要素と同一の要素に同一の符号が付されることによ
り、その説明が省略される。
FIG. 4 is a sectional view of a photovoltaic element according to the second embodiment of the present invention. 4, the same elements as those in FIG. 3 are designated by the same reference numerals, and the description thereof will be omitted.

【0024】図3の構造に対する図4の構造の相違点
は、n+型半導体層20とp+型半導体層22と間に形成
された溝の部分が絶縁性物質40で埋められているとい
う点にある。
The structure of FIG. 4 is different from the structure of FIG. 3 in that the groove formed between the n + type semiconductor layer 20 and the p + type semiconductor layer 22 is filled with the insulating material 40. In point.

【0025】したがって、図4の構造では、図3の構造
による作用効果に加えて、溝が絶縁性物質で埋められて
いることにより、素子の強度が増大するとともに溝の部
分の汚染が防止されるという作用効果がある。
Therefore, in the structure of FIG. 4, in addition to the function and effect of the structure of FIG. 3, since the groove is filled with the insulating material, the strength of the element is increased and contamination of the groove portion is prevented. There is a function and effect.

【0026】ここで、図4に示される光起電力素子の具
体的構造について説明すると、例えば、半導体基板10
は、キャリア濃度1×1016cm-3、厚さ100μmを
有するp型Ge基板である。
The specific structure of the photovoltaic element shown in FIG. 4 will now be described. For example, the semiconductor substrate 10
Is a p-type Ge substrate having a carrier concentration of 1 × 10 16 cm −3 and a thickness of 100 μm.

【0027】また、n+型半導体層20は、キャリア濃
度1×1019cm-3、拡散深さ1μmを有するn+型G
e層である。同様に、p+型半導体層22は、キャリア
濃度1×1019cm-3、拡散深さ1μmを有するp+
Ge層である。
The n + type semiconductor layer 20 has an n + type G having a carrier concentration of 1 × 10 19 cm −3 and a diffusion depth of 1 μm.
It is the e layer. Similarly, the p + type semiconductor layer 22 is a p + type Ge layer having a carrier concentration of 1 × 10 19 cm −3 and a diffusion depth of 1 μm.

【0028】また、負(−)電極30は、膜厚2μmを
有するAl電極である。同様に、正(+)電極32は、
膜厚2μmを有するAl電極である。また、絶縁性物質
40は、SiNxである。
The negative (-) electrode 30 is an Al electrode having a film thickness of 2 μm. Similarly, the positive (+) electrode 32 is
It is an Al electrode having a film thickness of 2 μm. The insulating material 40 is SiNx.

【0029】なお、半導体基板10としては、Ge基板
に代えて、Si、SiGe、SiC、CSiGe等の基
板を用いることができる。
As the semiconductor substrate 10, a substrate of Si, SiGe, SiC, CSiGe or the like can be used instead of the Ge substrate.

【0030】また、図4では、n+型半導体層20より
もp+型半導体層22が大きく示されているが、これと
は逆、又は同じ大きさであってもよい。
Although the p + type semiconductor layer 22 is shown to be larger than the n + type semiconductor layer 20 in FIG. 4, the size may be reversed or the same.

【0031】図5は、本発明の第3実施形態に係る光起
電力素子の断面図である。図5においては、図3及び図
4における要素と同一の要素に同一の符号が付されるこ
とにより、その説明が省略される。図5の構造は、図3
又は図4の構造による作用効果に加えて、以下のような
作用効果を奏する。
FIG. 5 is a sectional view of a photovoltaic element according to the third embodiment of the present invention. In FIG. 5, the same elements as those in FIGS. 3 and 4 are designated by the same reference numerals, and the description thereof will be omitted. The structure of FIG. 5 corresponds to that of FIG.
Alternatively, the following operational effects are obtained in addition to the operational effects provided by the structure shown in FIG.

【0032】図4の構造に対する図5の構造の相違点
は、n+型半導体層20とp+型半導体層22との間に形
成された溝の形状にある。すなわち、溝の形状がV字型
とされており、p+型半導体層22又はn+型半導体層2
0と半導体基板10とが接する部分の面積よりも、p+
型半導体層22又はn+型半導体層20と正電極32又
は負電極30とが接する部分の面積が小さくなってい
る。
The structure of FIG. 5 is different from the structure of FIG. 4 in the shape of the groove formed between the n + type semiconductor layer 20 and the p + type semiconductor layer 22. That is, the shape of the groove is V-shaped, and the p + type semiconductor layer 22 or the n + type semiconductor layer 2 is formed.
0 is smaller than the area where the semiconductor substrate 10 is in contact with p +
The area of the portion where the type semiconductor layer 22 or the n + type semiconductor layer 20 is in contact with the positive electrode 32 or the negative electrode 30 is small.

【0033】半導体層20,22と電極30,32との
接触面積は、大きすぎるとキャリアの再結合が促進され
るため、接触抵抗が問題にならない程度にまで小さいこ
とが好ましい。
If the contact area between the semiconductor layers 20 and 22 and the electrodes 30 and 32 is too large, the recombination of carriers is promoted. Therefore, it is preferable that the contact resistance is small enough not to cause a problem.

【0034】図5の構造の光起電力素子においては、絶
縁性物質40上に電極30,32を形成することができ
るため、半導体層20,22と電極30,32との接触
面積を増加することなく電極30,32の面積を大きく
することができる。その結果、電極の抵抗による損失を
低減することができる。
In the photovoltaic device having the structure shown in FIG. 5, since the electrodes 30 and 32 can be formed on the insulating material 40, the contact area between the semiconductor layers 20 and 22 and the electrodes 30 and 32 is increased. The area of the electrodes 30 and 32 can be increased without the need. As a result, the loss due to the resistance of the electrodes can be reduced.

【0035】また、図5の構造の光起電力素子において
は、表面に垂直な入射光に対して垂直でない面を溝が備
えているため、裏面側まで到達した光は斜め方向に反射
する。その結果、光閉じ込め効果がある。
Further, in the photovoltaic device having the structure shown in FIG. 5, since the groove has a surface that is not perpendicular to the incident light that is perpendicular to the front surface, the light that reaches the back surface side is reflected obliquely. As a result, there is a light confinement effect.

【0036】ここで、図5に示される光起電力素子の具
体的構造について説明すると、例えば、半導体基板10
は、キャリア濃度1×1015cm-3、厚さ150μmを
有するp型Si基板である。
The specific structure of the photovoltaic element shown in FIG. 5 will now be described. For example, the semiconductor substrate 10
Is a p-type Si substrate having a carrier concentration of 1 × 10 15 cm −3 and a thickness of 150 μm.

【0037】また、n+型半導体層20は、キャリア濃
度1×1019cm-3、拡散深さ2μmを有するn+型S
i層である。同様に、p+型半導体層22は、キャリア
濃度1×1019cm-3、拡散深さ2μmを有するp+
Si層である。
The n + type semiconductor layer 20 is an n + type S having a carrier concentration of 1 × 10 19 cm -3 and a diffusion depth of 2 μm.
It is the i layer. Similarly, the p + type semiconductor layer 22 is a p + type Si layer having a carrier concentration of 1 × 10 19 cm −3 and a diffusion depth of 2 μm.

【0038】また、負(−)電極30は、膜厚2μmを
有するAl電極である。同様に、正(+)電極32は、
膜厚2μmを有するAl電極である。また、絶縁性物質
40は、SiO2である。
The negative (-) electrode 30 is an Al electrode having a film thickness of 2 μm. Similarly, the positive (+) electrode 32 is
It is an Al electrode having a film thickness of 2 μm. The insulating material 40 is SiO 2 .

【0039】なお、半導体基板10としては、Si基板
に代えて、Ge、SiGe、SiC、CSiGe等の基
板を用いることができる。
As the semiconductor substrate 10, a substrate of Ge, SiGe, SiC, CSiGe or the like can be used instead of the Si substrate.

【0040】また、図5に示される構造では、V字型の
溝が形成されているが、図6に示されるように、円弧状
の溝を形成するようにしても、あるいは、図7に示され
るように、階段状の溝を形成するようにしてもよい。た
だし、図7に示されるように階段状の溝を形成する場合
にあっては、光閉じ込めの効果はない。
Although the V-shaped groove is formed in the structure shown in FIG. 5, an arc-shaped groove may be formed as shown in FIG. As shown, a stepped groove may be formed. However, in the case of forming a stepped groove as shown in FIG. 7, there is no light confinement effect.

【0041】[0041]

【発明の効果】以上説明したように、本発明によれば、
裏面電極型光起電力素子において、裏面に拡散層として
設けられるp+型層とn+型層とが電気的に分離されるこ
とで、トンネル効果によりそれらの間をリーク電流が通
り抜けるのが防止され、性能の向上が図られる。
As described above, according to the present invention,
In the back electrode type photovoltaic element, the p + type layer and the n + type layer provided as a diffusion layer on the back surface are electrically separated from each other, so that the leakage current is prevented from passing through them due to the tunnel effect. The performance is improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】p+型層及びn+型層からなる拡散層が裏面全体
に形成された従来の裏面電極型光起電力素子の構造を示
す断面図である。
FIG. 1 is a cross-sectional view showing the structure of a conventional back electrode type photovoltaic element in which a diffusion layer including ap + type layer and an n + type layer is formed on the entire back surface.

【図2】p+型層とn+型層とが隣り合うときのエネルギ
ーバンド構造を示す図である。
FIG. 2 is a diagram showing an energy band structure when ap + type layer and an n + type layer are adjacent to each other.

【図3】本発明の第1実施形態に係る光起電力素子の断
面図である。
FIG. 3 is a cross-sectional view of the photovoltaic element according to the first embodiment of the present invention.

【図4】本発明の第2実施形態に係る光起電力素子の断
面図である。
FIG. 4 is a sectional view of a photovoltaic element according to a second embodiment of the present invention.

【図5】本発明の第3実施形態に係る光起電力素子の断
面図である。
FIG. 5 is a sectional view of a photovoltaic element according to a third embodiment of the present invention.

【図6】第3実施形態の変形例を示す断面図である。FIG. 6 is a cross-sectional view showing a modified example of the third embodiment.

【図7】第3実施形態の他の変形例を示す断面図であ
る。
FIG. 7 is a sectional view showing another modification of the third embodiment.

【符号の説明】[Explanation of symbols]

10…p型又はn型の半導体基板 20…n+型半導体層 22…p+型半導体層 30…負(−)電極 32…正(+)電極 40…絶縁性物質10 ... P-type or n-type semiconductor substrate 20 ... N + type semiconductor layer 22 ... P + type semiconductor layer 30 ... Negative (-) electrode 32 ... Positive (+) electrode 40 ... Insulating material

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板と、 前記半導体基板の裏面に拡散により形成され、前記半導
体基板のキャリア濃度よりも高いキャリア濃度を有する
+型半導体層及びn+型半導体層と、 前記p+型半導体層及びn+型半導体層にそれぞれ接続さ
れた正電極及び負電極と、 を備えた裏面電極型の光起電力素子において、 前記p+型半導体層と前記n+型半導体層との間に溝が形
成されていることを特徴とする光起電力素子。
1. A semiconductor substrate, is formed by diffusion on the rear surface of the semiconductor substrate, a p + -type semiconductor layer and the n + -type semiconductor layer having a higher carrier concentration than the carrier concentration of the semiconductor substrate, the p + -type A back electrode type photovoltaic device comprising a positive electrode and a negative electrode connected to a semiconductor layer and an n + -type semiconductor layer, respectively, wherein the p + -type semiconductor layer and the n + -type semiconductor layer are between A photovoltaic device having a groove formed therein.
【請求項2】 前記溝が絶縁性物質で埋められているこ
とを特徴とする、請求項1に記載の光起電力素子。
2. The photovoltaic device according to claim 1, wherein the groove is filled with an insulating material.
【請求項3】 前記p+型半導体層又はn+型半導体層と
前記半導体基板とが接する部分の面積よりも、前記p+
型半導体層又はn+型半導体層と前記正電極又は負電極
とが接する部分の面積が小さくなるように、前記溝が形
成されていることを特徴とする、請求項2に記載の光起
電力素子。
3. The area of the p + -type semiconductor layer or the n + -type semiconductor layer and the p +
The photovoltaic device according to claim 2, wherein the groove is formed so that an area of a portion where the positive type semiconductor layer or the n + type semiconductor layer is in contact with the positive electrode or the negative electrode is small. element.
JP2001319717A 2001-10-17 2001-10-17 Photovoltaic element Pending JP2003124483A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001319717A JP2003124483A (en) 2001-10-17 2001-10-17 Photovoltaic element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001319717A JP2003124483A (en) 2001-10-17 2001-10-17 Photovoltaic element

Publications (1)

Publication Number Publication Date
JP2003124483A true JP2003124483A (en) 2003-04-25

Family

ID=19137229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001319717A Pending JP2003124483A (en) 2001-10-17 2001-10-17 Photovoltaic element

Country Status (1)

Country Link
JP (1) JP2003124483A (en)

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006075427A1 (en) * 2004-12-27 2006-07-20 Naoetsu Electronics Co., Ltd. Back junction solar cell and process for producing the same
WO2006075426A1 (en) * 2004-12-27 2006-07-20 Naoetsu Electronics Co., Ltd. Back junction solar cell and process for producing the same
JP2006303322A (en) * 2005-04-22 2006-11-02 Sharp Corp Solar cell
JP2006303230A (en) * 2005-04-21 2006-11-02 Sharp Corp Solar cell
WO2008050889A1 (en) * 2006-10-27 2008-05-02 Kyocera Corporation Solar cell element manufacturing method and solar cell element
JP2008529265A (en) * 2005-01-20 2008-07-31 コミツサリア タ レネルジー アトミーク Semiconductor device having heterojunction and interfinger structure
CN101673776A (en) * 2008-09-09 2010-03-17 帕洛阿尔托研究中心公司 Interdigitated back contact silicon solar cell with laser ablated grooves and manufacturing method thereof
JP2010182877A (en) * 2009-02-05 2010-08-19 Sharp Corp Solar cell, wiring sheet, solar cell with wiring sheet, and solar cell module
KR100999180B1 (en) 2008-07-11 2010-12-10 주식회사 밀레니엄투자 Solar cell and method of manufacturing the same
EP2328182A1 (en) * 2009-11-27 2011-06-01 S'Tile Photovoltaic module comprising built-in photovoltaic cells
WO2011093329A1 (en) * 2010-01-26 2011-08-04 三洋電機株式会社 Solar cell and method for producing same
US8105923B2 (en) 2003-04-14 2012-01-31 Centre National De La Recherche Scientifique Sintered semiconductor material
WO2012066918A1 (en) * 2010-11-17 2012-05-24 シャープ株式会社 Back electrode type solar cell
US8192648B2 (en) 2003-04-14 2012-06-05 S'tile Method for forming a sintered semiconductor material
WO2012132595A1 (en) * 2011-03-25 2012-10-04 三洋電機株式会社 Solar cell
WO2012132729A1 (en) * 2011-03-28 2012-10-04 三洋電機株式会社 Photoelectric conversion device and method for producing same
CN102738265A (en) * 2011-04-15 2012-10-17 上海凯世通半导体有限公司 Doping unit, doping wafer, doping method, solar battery and manufacturing method
JP2013125964A (en) * 2011-12-13 2013-06-24 Samsung Sdi Co Ltd Photovoltaic device and manufacturing method of the same
FR2988908A1 (en) * 2012-04-03 2013-10-04 Commissariat Energie Atomique METHOD FOR MANUFACTURING A PHOTOVOLTAIC CELL WITH REAR-FACED INTERFIGITE CONTACTS
US8846431B2 (en) 2011-03-03 2014-09-30 Palo Alto Research Center Incorporated N-type silicon solar cell with contact/protection structures
FR3012674A1 (en) * 2013-10-29 2015-05-01 Commissariat Energie Atomique SILICON-BASED COMPOSITE SUBSTRATE WITH ACTIVE ZONES SEPARATED BY ELECTRICAL INSULATION ZONES COMPRISING A SILICON CARBIDE FOIL
FR3012668A1 (en) * 2013-10-29 2015-05-01 Commissariat Energie Atomique SILICON-BASED COMPOSITE SUBSTRATE WITH ACTIVE ZONES SEPARATED BY SILICON OXIDE-BASED ELECTRICAL INSULATION ZONES
US9150966B2 (en) 2008-11-14 2015-10-06 Palo Alto Research Center Incorporated Solar cell metallization using inline electroless plating
JP2015233142A (en) * 2014-06-10 2015-12-24 エルジー エレクトロニクス インコーポレイティド Solar cell and method for manufacturing the same
US9493358B2 (en) 2003-04-14 2016-11-15 Stile Photovoltaic module including integrated photovoltaic cells
US9741881B2 (en) 2003-04-14 2017-08-22 S'tile Photovoltaic module including integrated photovoltaic cells
JP2018037680A (en) * 2014-01-29 2018-03-08 エルジー エレクトロニクス インコーポレイティド Solar cell and method for manufacturing the same
JP2018082160A (en) * 2017-10-24 2018-05-24 信越化学工業株式会社 High photoelectric conversion efficiency solar battery, manufacturing method therefor, solar battery module and photovoltaic power generation system
CN110073504A (en) * 2016-11-15 2019-07-30 信越化学工业株式会社 The solar battery of high-photoelectric transformation efficiency, its manufacturing method, solar cell module and photovoltaic generating system
US11189739B1 (en) 2020-11-19 2021-11-30 Jinko Green Energy (shanghai) Management Co., Ltd. Solar cell

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4710743U (en) * 1971-03-04 1972-10-07
JPS5297690A (en) * 1976-02-12 1977-08-16 Agency Of Ind Science & Technol Production of solar cells
JPS538094A (en) * 1976-05-26 1978-01-25 Massachusetts Inst Technology Semiconductor solar battery
JPS5676584A (en) * 1979-11-27 1981-06-24 Mitsubishi Electric Corp Manufacture of photoelectric converter
JPS58128776A (en) * 1982-01-28 1983-08-01 Seiko Epson Corp Manufacture of sic semiconductor film
JPS61187377A (en) * 1985-02-15 1986-08-21 Teijin Ltd Dividing method for processing of amorphous solar battery
JPH0575149A (en) * 1991-09-11 1993-03-26 Hitachi Ltd Manufacture of solar cell device
JPH0637343A (en) * 1992-07-15 1994-02-10 Oome Kosumosu Denki Kk Solar cell device
JPH06244444A (en) * 1993-02-18 1994-09-02 Hitachi Ltd Light confining structure and photodetector using structure thereof
JPH06291341A (en) * 1993-02-08 1994-10-18 Sony Corp Solar cell
JPH06310742A (en) * 1993-04-27 1994-11-04 Sanyo Electric Co Ltd Fabrication of photovoltaic element
JPH0745843A (en) * 1993-06-29 1995-02-14 Sharp Corp Solar cell element
JPH09172196A (en) * 1995-11-22 1997-06-30 Ebara Solar Inc Structure of aluminum alloy junction self-alignment rear surface electrode type silicon solar cell and its manufacture
JPH11312814A (en) * 1998-04-28 1999-11-09 Toyota Motor Corp Solar cell device
JP2000323740A (en) * 1999-05-11 2000-11-24 Hitachi Ltd Condensing photovoltaic power-generation device
JP2001127331A (en) * 1999-10-29 2001-05-11 Sanyo Electric Co Ltd Solar battery module
JP2001267610A (en) * 2000-03-17 2001-09-28 Hitachi Ltd Solar battery
JP2001284616A (en) * 2000-04-03 2001-10-12 Toyota Motor Corp Photoelectric transfer element for thermal optical generating device

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4710743U (en) * 1971-03-04 1972-10-07
JPS5297690A (en) * 1976-02-12 1977-08-16 Agency Of Ind Science & Technol Production of solar cells
JPS538094A (en) * 1976-05-26 1978-01-25 Massachusetts Inst Technology Semiconductor solar battery
JPS5676584A (en) * 1979-11-27 1981-06-24 Mitsubishi Electric Corp Manufacture of photoelectric converter
JPS58128776A (en) * 1982-01-28 1983-08-01 Seiko Epson Corp Manufacture of sic semiconductor film
JPS61187377A (en) * 1985-02-15 1986-08-21 Teijin Ltd Dividing method for processing of amorphous solar battery
JPH0575149A (en) * 1991-09-11 1993-03-26 Hitachi Ltd Manufacture of solar cell device
JPH0637343A (en) * 1992-07-15 1994-02-10 Oome Kosumosu Denki Kk Solar cell device
JPH06291341A (en) * 1993-02-08 1994-10-18 Sony Corp Solar cell
JPH06244444A (en) * 1993-02-18 1994-09-02 Hitachi Ltd Light confining structure and photodetector using structure thereof
JPH06310742A (en) * 1993-04-27 1994-11-04 Sanyo Electric Co Ltd Fabrication of photovoltaic element
JPH0745843A (en) * 1993-06-29 1995-02-14 Sharp Corp Solar cell element
JPH09172196A (en) * 1995-11-22 1997-06-30 Ebara Solar Inc Structure of aluminum alloy junction self-alignment rear surface electrode type silicon solar cell and its manufacture
JPH11312814A (en) * 1998-04-28 1999-11-09 Toyota Motor Corp Solar cell device
JP2000323740A (en) * 1999-05-11 2000-11-24 Hitachi Ltd Condensing photovoltaic power-generation device
JP2001127331A (en) * 1999-10-29 2001-05-11 Sanyo Electric Co Ltd Solar battery module
JP2001267610A (en) * 2000-03-17 2001-09-28 Hitachi Ltd Solar battery
JP2001284616A (en) * 2000-04-03 2001-10-12 Toyota Motor Corp Photoelectric transfer element for thermal optical generating device

Cited By (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8105923B2 (en) 2003-04-14 2012-01-31 Centre National De La Recherche Scientifique Sintered semiconductor material
US9493358B2 (en) 2003-04-14 2016-11-15 Stile Photovoltaic module including integrated photovoltaic cells
US8192648B2 (en) 2003-04-14 2012-06-05 S'tile Method for forming a sintered semiconductor material
US9741881B2 (en) 2003-04-14 2017-08-22 S'tile Photovoltaic module including integrated photovoltaic cells
JPWO2006075426A1 (en) * 2004-12-27 2008-08-07 直江津電子工業株式会社 Back junction solar cell and method of manufacturing the same
EP1835548A4 (en) * 2004-12-27 2010-12-01 Naoetsu Electronics Co Ltd Back junction solar cell and process for producing the same
WO2006075426A1 (en) * 2004-12-27 2006-07-20 Naoetsu Electronics Co., Ltd. Back junction solar cell and process for producing the same
EP1835548A1 (en) * 2004-12-27 2007-09-19 Naoetsu Electronics Co., Ltd. Back junction solar cell and process for producing the same
WO2006075427A1 (en) * 2004-12-27 2006-07-20 Naoetsu Electronics Co., Ltd. Back junction solar cell and process for producing the same
US7700400B2 (en) 2004-12-27 2010-04-20 Naoetsu Electronics Co., Ltd. Back junction solar cell and process for producing the same
JP2008529265A (en) * 2005-01-20 2008-07-31 コミツサリア タ レネルジー アトミーク Semiconductor device having heterojunction and interfinger structure
JP4656996B2 (en) * 2005-04-21 2011-03-23 シャープ株式会社 Solar cell
JP2006303230A (en) * 2005-04-21 2006-11-02 Sharp Corp Solar cell
JP2006303322A (en) * 2005-04-22 2006-11-02 Sharp Corp Solar cell
JP4641858B2 (en) * 2005-04-22 2011-03-02 シャープ株式会社 Solar cell
JP2013077851A (en) * 2006-10-27 2013-04-25 Kyocera Corp Solar battery element
US8455754B2 (en) 2006-10-27 2013-06-04 Kyocera Corporation Solar cell element manufacturing method and solar cell element
WO2008050889A1 (en) * 2006-10-27 2008-05-02 Kyocera Corporation Solar cell element manufacturing method and solar cell element
JP5328363B2 (en) * 2006-10-27 2013-10-30 京セラ株式会社 Method for manufacturing solar cell element and solar cell element
KR100999180B1 (en) 2008-07-11 2010-12-10 주식회사 밀레니엄투자 Solar cell and method of manufacturing the same
JP2010067972A (en) * 2008-09-09 2010-03-25 Palo Alto Research Center Inc Interdigitated back contact solar cell and method of manufacturing the same
US9054237B2 (en) 2008-09-09 2015-06-09 Palo Alto Research Center Incorporated Interdigitated back contact silicon solar cells fabrication using diffusion barriers
CN101673776A (en) * 2008-09-09 2010-03-17 帕洛阿尔托研究中心公司 Interdigitated back contact silicon solar cell with laser ablated grooves and manufacturing method thereof
KR101607088B1 (en) 2008-09-09 2016-03-29 팔로 알토 리서치 센터 인코포레이티드 Interdigitated back contact silicon solar cells with laser ablated grooves
EP2161757A3 (en) * 2008-09-09 2016-02-10 Palo Alto Research Center Incorporated Interdigitated Back Contact Silicon Solar Cells with Laser Ablated Grooves
US9150966B2 (en) 2008-11-14 2015-10-06 Palo Alto Research Center Incorporated Solar cell metallization using inline electroless plating
JP2010182877A (en) * 2009-02-05 2010-08-19 Sharp Corp Solar cell, wiring sheet, solar cell with wiring sheet, and solar cell module
FR2953330A1 (en) * 2009-11-27 2011-06-03 Tile S PHOTOVOLTAIC MODULE COMPRISING INTEGRATED PHOTOVOLTAIC CELLS
EP2328182A1 (en) * 2009-11-27 2011-06-01 S'Tile Photovoltaic module comprising built-in photovoltaic cells
WO2011093329A1 (en) * 2010-01-26 2011-08-04 三洋電機株式会社 Solar cell and method for producing same
CN103222064A (en) * 2010-11-17 2013-07-24 夏普株式会社 Back electrode type solar cell
JP2012109373A (en) * 2010-11-17 2012-06-07 Sharp Corp Back-electrode-type solar cell
WO2012066918A1 (en) * 2010-11-17 2012-05-24 シャープ株式会社 Back electrode type solar cell
US8962424B2 (en) 2011-03-03 2015-02-24 Palo Alto Research Center Incorporated N-type silicon solar cell with contact/protection structures
US8846431B2 (en) 2011-03-03 2014-09-30 Palo Alto Research Center Incorporated N-type silicon solar cell with contact/protection structures
US9627557B2 (en) 2011-03-25 2017-04-18 Panasonic Intellectual Property Management Co., Ltd. Solar cell
JPWO2012132595A1 (en) * 2011-03-25 2014-07-24 三洋電機株式会社 Solar cell
JP5820987B2 (en) * 2011-03-25 2015-11-24 パナソニックIpマネジメント株式会社 Solar cell
WO2012132595A1 (en) * 2011-03-25 2012-10-04 三洋電機株式会社 Solar cell
WO2012132729A1 (en) * 2011-03-28 2012-10-04 三洋電機株式会社 Photoelectric conversion device and method for producing same
JP5820988B2 (en) * 2011-03-28 2015-11-24 パナソニックIpマネジメント株式会社 Photoelectric conversion device and manufacturing method thereof
CN102738265A (en) * 2011-04-15 2012-10-17 上海凯世通半导体有限公司 Doping unit, doping wafer, doping method, solar battery and manufacturing method
JP2013125964A (en) * 2011-12-13 2013-06-24 Samsung Sdi Co Ltd Photovoltaic device and manufacturing method of the same
WO2013150074A1 (en) * 2012-04-03 2013-10-10 Commissariat A L'energie Atomique Et Aux Energies Alternatives Method for producing a photovoltaic cell with interdigitated contacts in the rear face
FR2988908A1 (en) * 2012-04-03 2013-10-04 Commissariat Energie Atomique METHOD FOR MANUFACTURING A PHOTOVOLTAIC CELL WITH REAR-FACED INTERFIGITE CONTACTS
WO2015063689A1 (en) * 2013-10-29 2015-05-07 Commissariat A L'energie Atomique Et Aux Energies Alternatives Silicon-based composite substrate having active zones separated by electrical insulation zones comprising a silicon carbide strip
WO2015063688A1 (en) * 2013-10-29 2015-05-07 Commissariat A L'energie Atomique Et Aux Energies Alternatives Silicon-based composite substrate having active zones separated by silicon-oxide-based electrical insulation zones
FR3012668A1 (en) * 2013-10-29 2015-05-01 Commissariat Energie Atomique SILICON-BASED COMPOSITE SUBSTRATE WITH ACTIVE ZONES SEPARATED BY SILICON OXIDE-BASED ELECTRICAL INSULATION ZONES
FR3012674A1 (en) * 2013-10-29 2015-05-01 Commissariat Energie Atomique SILICON-BASED COMPOSITE SUBSTRATE WITH ACTIVE ZONES SEPARATED BY ELECTRICAL INSULATION ZONES COMPRISING A SILICON CARBIDE FOIL
US10847663B2 (en) 2014-01-29 2020-11-24 Lg Electronics Inc. Solar cell and method for manufacturing the same
JP2018037680A (en) * 2014-01-29 2018-03-08 エルジー エレクトロニクス インコーポレイティド Solar cell and method for manufacturing the same
US10243090B2 (en) 2014-06-10 2019-03-26 Lg Electronics Inc. Solar cell and method for manufacturing the same
JP2015233142A (en) * 2014-06-10 2015-12-24 エルジー エレクトロニクス インコーポレイティド Solar cell and method for manufacturing the same
US10910502B2 (en) 2014-06-10 2021-02-02 Lg Electronics Inc. Solar cell and method for manufacturing the same
CN110073504A (en) * 2016-11-15 2019-07-30 信越化学工业株式会社 The solar battery of high-photoelectric transformation efficiency, its manufacturing method, solar cell module and photovoltaic generating system
US11201253B2 (en) 2016-11-15 2021-12-14 Shin-Etsu Chemical Co., Ltd. High photovoltaic-conversion efficiency solar cell, method for manufacturing the same, solar cell module, and photovoltaic power generation system
JP2018082160A (en) * 2017-10-24 2018-05-24 信越化学工業株式会社 High photoelectric conversion efficiency solar battery, manufacturing method therefor, solar battery module and photovoltaic power generation system
US11189739B1 (en) 2020-11-19 2021-11-30 Jinko Green Energy (shanghai) Management Co., Ltd. Solar cell
EP4002493A1 (en) * 2020-11-19 2022-05-25 Jinko Green Energy (Shanghai) Management Co., Ltd Solar cell

Similar Documents

Publication Publication Date Title
JP2003124483A (en) Photovoltaic element
JPWO2006046276A1 (en) Avalanche photodiode
JP2005252210A (en) Solar cell
JPH10117004A (en) Converging type solar battery element
JP2006173381A (en) Photoelectromotive force element
JP2006040919A (en) Avalanche photodiode
JP2004039751A (en) Photovoltaic element
JP2009252769A (en) Semiconductor light-receiving element
JP2007059644A (en) Photovoltaic element
JP2004071763A (en) Photovoltaic element
JP4325912B2 (en) Solar cell element and manufacturing method thereof
JP2004071828A (en) Solar cell
JP3368822B2 (en) Solar cell
JPH0427169A (en) Solar cell
JP2008028421A (en) Avalanche photodiode
JP3368854B2 (en) Solar cell
JPH0415963A (en) Solar cell
JP2010098239A (en) Optical semiconductor device and method of manufacturing optical semiconductor device
JPH03285360A (en) Solar cell
JP2005005376A (en) Photovoltaic device
JP2004047825A (en) Solar cell
JP3303577B2 (en) Solar cell
JP3368825B2 (en) Solar cell
JPH08162656A (en) Solar cell
JP2583032B2 (en) Light receiving element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040525

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071113

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080408