JPH03285360A - Solar cell - Google Patents

Solar cell

Info

Publication number
JPH03285360A
JPH03285360A JP2087191A JP8719190A JPH03285360A JP H03285360 A JPH03285360 A JP H03285360A JP 2087191 A JP2087191 A JP 2087191A JP 8719190 A JP8719190 A JP 8719190A JP H03285360 A JPH03285360 A JP H03285360A
Authority
JP
Japan
Prior art keywords
base region
region
solar cell
impurity concentration
bsf3
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2087191A
Other languages
Japanese (ja)
Inventor
Hiroyuki Oi
浩之 大井
Yoshio Murakami
義男 村上
Takayuki Shingyouchi
新行内 隆之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2087191A priority Critical patent/JPH03285360A/en
Publication of JPH03285360A publication Critical patent/JPH03285360A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To prevent recombination of minority carrier of a base region and to improve a generating efficiency by holding a base region between a pair of layers each having high impurity concentration. CONSTITUTION:A P<+> type layer 7 having further high impurity concentration is provided at the surface side of a base region 1 made of P-type semiconductor, and the region 1 having lower concentration than those of FSF7 and BSF3 of P<+> type high concentration layers is held between the SFS7 and the BSF3 from the front and rear surfaces. For example, if the base 1 contains 1X10<17>cm<-3> of impurity concentration, the FSF1 and the BSF3 are set to 5X10<17>cm<-3> of impurity concentration. Thus, recombination of minority carrier in a boundary between the front and rear surfaces of the base region can be prevented by the BSF3 and the FSF7 having higher impurity concentration than that of the region 1, a collection efficiency in an emitter region 2 is improved, and a generating efficiency is improved.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明はベース領域で発生する少数キャリアの再結合防
止を図った太陽電池に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a solar cell in which recombination of minority carriers generated in a base region is prevented.

〈従来の技術〉 光起電力効果により光エネルギーを電気エネルギーに変
換する太陽電池は、クリーン且つ無尽蔵な発電システム
としてその利用が積極的に図られている。
<Prior Art> Solar cells, which convert light energy into electrical energy through the photovoltaic effect, are actively being used as a clean and inexhaustible power generation system.

第4図に従来の太陽電池の一例を示す。FIG. 4 shows an example of a conventional solar cell.

この太陽電池は、P型半導体(Sl)基板の表面に高濃
度のN型拡散層を形成し、P型のベース領域1を形成す
ると共にN゛型のエミッタ領域2を形成しである。そし
て、基板の裏面には高濃度の不純物を拡散させてP゛型
の層(パックサーフエースフィールF’:BSF>3が
設けられており、このBSF3の表面にはA1等から成
る電極4が設けられている。また、基板の表面側には絶
縁膜(Si02)5を介してAI等から成る電極6が設
けられており、この電極6はエミッタ領域2に接続され
ている。
This solar cell has a highly concentrated N-type diffusion layer formed on the surface of a P-type semiconductor (Sl) substrate to form a P-type base region 1 and an N-type emitter region 2. Then, on the back surface of the substrate, a P' type layer (Pack Surf Ace Field F': BSF > 3) is provided by diffusing impurities at a high concentration, and on the surface of this BSF 3, an electrode 4 made of A1 or the like is provided. Further, an electrode 6 made of AI or the like is provided on the surface side of the substrate via an insulating film (Si02) 5, and this electrode 6 is connected to the emitter region 2.

この太[池によれば、表面側から光子エネルキーが禁制
帯幅より大きい光hνが解削されると、PN接合部の光
起電力効果で電極4.6間に電力が生ずる。そして、こ
の際、BSF3はベース領域1の少数キャリア(この場
合、電子)をエミッタ領域2側へ反射させて界面での再
結合を防止し、発電効率を向上させている。
According to this theory, when light hv whose photon energy is larger than the forbidden band width is removed from the surface side, electric power is generated between the electrodes 4 and 6 due to the photovoltaic effect of the PN junction. At this time, the BSF 3 reflects minority carriers (electrons in this case) in the base region 1 toward the emitter region 2 side to prevent recombination at the interface, thereby improving power generation efficiency.

〈発明が解決しようとする課題〉 従来より、太陽電池にはベース領域1よりかなり濃度が
高いBSF3が設けられ、基板の裏側での少数キャリア
の再結合を防止して発電効率向上が図られている。
<Problem to be solved by the invention> Conventionally, solar cells have been provided with BSF3 whose concentration is considerably higher than that of the base region 1, and the recombination of minority carriers on the back side of the substrate has been prevented to improve power generation efficiency. There is.

しかしながら、基板の表面側において、バッシヘーショ
ン膜、バッファー層、光反射膜等とベース領域1との界
面での少数キャリアの再結合防止は図られておらず、発
電効率の十分な向上が達成できなかった。
However, on the surface side of the substrate, there is no attempt to prevent minority carrier recombination at the interface between the base region 1 and the bashing film, buffer layer, light reflection film, etc., and sufficient improvement in power generation efficiency has not been achieved. could not.

本発明は上記従来の事情に鑑みなされたもので、ベース
領域を不純物濃度の高い一対の層で挟み込むことにより
、ベース領域の少数キャリアの再結合を隈なく防止し、
発電効率の大幅な向上を実現する太陽電池を提供するこ
とを目的とする。
The present invention was made in view of the above-mentioned conventional circumstances, and by sandwiching the base region between a pair of layers with high impurity concentration, recombination of minority carriers in the base region is completely prevented,
The aim is to provide solar cells that significantly improve power generation efficiency.

〈課題を解決するための手段〉 本発明に係る太陽電池は、一の導電型の半導体から成る
ベース領域ここ接して、他の導電型の半導体から成るエ
ミッタ領域を形成した太陽電池において、前記ベース領
域を挟み込む不純物濃度が高い一の導電型の層を設けた
ことを特徴とする。
<Means for Solving the Problems> A solar cell according to the present invention has an emitter region made of a semiconductor of another conductivity type formed in contact with a base region made of a semiconductor of one conductivity type. It is characterized by providing layers of one conductivity type with high impurity concentration sandwiching the region.

く作用〉 不純物濃度が高い同一導電型の一対の層でベース領域を
挟み込むことにより、ベース領域の少数キャリアの界面
での再結合を防止し、当該少数キャリアのエミッタ領域
での収集効率を高める。
Effect> By sandwiching the base region between a pair of layers of the same conductivity type with high impurity concentration, recombination of minority carriers in the base region at the interface is prevented and collection efficiency of the minority carriers in the emitter region is increased.

〈実施例〉 本発明の太陽電池を実施例に基づいて具体的に説明する
<Example> The solar cell of the present invention will be specifically described based on an example.

第1図には本発明の第1の実施例に係る太陽電池を示す
。尚、前述した従来例と同一部分には同一符号を付して
重複する説明は省略する。
FIG. 1 shows a solar cell according to a first embodiment of the present invention. Incidentally, the same parts as those in the conventional example described above are given the same reference numerals and redundant explanations will be omitted.

本実施例の太陽電池はP型半導体から成るベース領域1
の表面側に更に不純物濃度の高い(P゛)層()aント
サーフェースフィールト:FSF)7が設けられており
、共にP゛型の高濃度層であるFSF7とB S F 
3とによってこれらより低濃度のP型ベース領域1を表
裏面から挟み込んである。
The solar cell of this example has a base region 1 made of a P-type semiconductor.
A (P゛) layer ()a ant surface field (FSF) 7 with a higher impurity concentration is provided on the surface side of the .
3 and 3 sandwich the P-type base region 1 having a lower concentration than these from the front and back surfaces.

例えば、ベース領域1を不純物濃度lXl0”CT11
3とした場合、FSF7及びBSF3は不純物濃度5 
X 1019cyn−3に設定する。
For example, if base region 1 is doped with impurity concentration lXl0''CT11
3, FSF7 and BSF3 have an impurity concentration of 5
Set to X 1019cyn-3.

ここで、本実施例では、FSF7がエミッタ領域2に接
せず両者の間に隔たりdを設けであるが、このようにし
ても隔たりdがPN接合部の空乏層の幅程度であれば少
数キャリアの再結合防止に支障かない。尚、FSF7を
エミッタ領域2に接して設けてもよいのは勿論である。
Here, in this embodiment, the FSF 7 is not in contact with the emitter region 2 and a gap d is provided between the two, but even if this is done, if the gap d is about the width of the depletion layer of the PN junction, it will be small. There is no problem in preventing carrier recombination. It goes without saying that the FSF 7 may be provided in contact with the emitter region 2.

上記構成の太陽電池によれば、ベース領域1より不純物
濃度が高いBSF3とFSF7とてベース領域の少数キ
ャリアの表裏の界面での再結合が防止され、エミッタ領
域2ての収集効率が良くなって発電効率の向上が達成で
きる。
According to the solar cell having the above configuration, BSF3 and FSF7, which have a higher impurity concentration than the base region 1, prevent minority carriers in the base region from recombining at the front and back interfaces, improving the collection efficiency in the emitter region 2. Improved power generation efficiency can be achieved.

第4図に示した従来構造のものと第1図に示したものと
の発電効率を比較したところ、第4図に示した従来構造
のものが15.0%であったのに対し、第1図に示した
構造のものが16.1%てあり、本発明を適用すること
により発電効率が1゜1%向上した。
Comparing the power generation efficiency between the conventional structure shown in Figure 4 and the one shown in Figure 1, it was found that the conventional structure shown in Figure 4 had a power generation efficiency of 15.0%. The power generation efficiency was 16.1% higher than that of the structure shown in Figure 1, and the power generation efficiency was improved by 1.1% by applying the present invention.

第2図には本発明の第2の実施例に係る太陽電池を示す
FIG. 2 shows a solar cell according to a second embodiment of the invention.

この実施例において本発明を適用した太陽電池は、画電
極4.6を基板の一面側に設定し、これらHBの設けら
れた面とは反対側の面から光りしを翌射するようにして
光エネルギーの吸収効率を向上させ、更に、高濃度P型
コレクタ領域8とエミッタ領域2とをベース領域1の内
部に形成して発電領域を界面から超して少数キャリアの
再結合を防止すると共に発電領域の拡大を図ったもので
ある。尚、図中の9.10は絶縁膜である。
In the solar cell to which the present invention is applied in this embodiment, the picture electrode 4.6 is set on one surface of the substrate, and light is emitted from the surface opposite to the surface on which these HBs are provided. In addition to improving the absorption efficiency of optical energy, the highly concentrated P-type collector region 8 and emitter region 2 are formed inside the base region 1 to prevent minority carriers from recombining beyond the interface of the power generation region. This is an attempt to expand the power generation area. Note that 9.10 in the figure is an insulating film.

この実施例の太陽電池にあってもベース領域1を表裏面
からFSF7とBSF3とで挟み込んだ構成とし、上記
した実施例と同様に少数キャリアの再結合を防止して発
電効率の向上を図っている。
The solar cell of this example also has a structure in which the base region 1 is sandwiched between the FSF 7 and the BSF 3 from the front and back surfaces, and as in the above example, recombination of minority carriers is prevented to improve power generation efficiency. There is.

第2図に示したものとFSF7を設けないものとの発電
効率を比較したところ、FSF7を設けないものが23
.8%であったのに対し、第2図を適用することにより
発電効率が1.1%向上した。
When we compared the power generation efficiency between the system shown in Figure 2 and the system without FSF7, we found that the system without FSF7 was 23%
.. The power generation efficiency was 8%, but by applying Fig. 2, the power generation efficiency was improved by 1.1%.

第3図には本発明の第3の実施例に係る太陽電池を示す
FIG. 3 shows a solar cell according to a third embodiment of the present invention.

この実施例は上記した第2の実施例に更に改良を加えた
ものであり、エミッタ領域2及びコレクタ領域8への電
極6及び4の経路をもFSF7で被い、これによって、
この経路部分における少数キャリアの再結合を防止して
いる。
This embodiment is a further improvement on the second embodiment described above, in which the paths of the electrodes 6 and 4 to the emitter region 2 and collector region 8 are also covered with the FSF 7, and thereby,
Recombination of minority carriers in this path portion is prevented.

第3図に示したものとFSF7を設けないものとの発電
効率を比較したところ、FSF7を設けないものが23
.8%であったのに対し、第3図に示した構造のものが
25.3%であり、本発明を適用することにより発電効
率が1.5%向上した。
When we compared the power generation efficiency between the system shown in Figure 3 and the system without FSF7, we found that the system without FSF7 was 23.
.. While it was 8%, it was 25.3% for the structure shown in FIG. 3, and the power generation efficiency was improved by 1.5% by applying the present invention.

尚、本発明では、導電型のPN関係を上記の各実施例で
示したものとは逆にしてもよく、ベース領域の少数キャ
リアが上記実施例のように電子であればBSF及びFS
F!、tP”型とし、ベース領域の少数キャリアが逆に
正孔であれはBSF及びFS F !、t N ”型と
する。
Incidentally, in the present invention, the PN relationship of the conductivity type may be reversed from that shown in each of the above embodiments, and if the minority carriers in the base region are electrons as in the above embodiments, BSF and FS
F! , tP'' type, and if the minority carriers in the base region are holes, then it is assumed to be BSF and FSF!, tN'' type.

〈効果〉 本発明に係る太陽電池によれば、ベース領域を挟み込む
不純物濃度が高い層を設けたため、ベース領域の少数キ
ャリアの表裏の界面での再結合を防止することができ、
当該少数キャリアのエミッタ領域での収集効率を高め、
発電効率の大幅な向上が達成できる。
<Effects> According to the solar cell according to the present invention, since the layers with high impurity concentration sandwiching the base region are provided, it is possible to prevent minority carriers in the base region from recombining at the front and back interfaces,
Improving the collection efficiency of the minority carriers in the emitter region,
Significant improvements in power generation efficiency can be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例に係る太陽電池の斜視図
、第2図は本発明の第2の実施例に係る太陽電池の斜視
図、第3図は本発明の第3の実施例に係る太陽電池の斜
視図、第4図は従来例に係る太陽電池の斜視図である。 1はベース領域、 2はエミッタ領域、 3はパックサーフエースフィールド、 4.6ζ、を電極、 5.9.10は絶縁層、 7はフロントサーフエースフィールドである。
FIG. 1 is a perspective view of a solar cell according to a first embodiment of the present invention, FIG. 2 is a perspective view of a solar cell according to a second embodiment of the present invention, and FIG. 3 is a perspective view of a solar cell according to a third embodiment of the present invention. FIG. 4 is a perspective view of a solar cell according to an example. FIG. 4 is a perspective view of a solar cell according to a conventional example. 1 is a base region, 2 is an emitter region, 3 is a pack surf ace field, 4.6ζ is an electrode, 5.9.10 is an insulating layer, and 7 is a front surf ace field.

Claims (1)

【特許請求の範囲】[Claims]  一の導電型の半導体から成るベース領域に接して、他
の導電型の半導体から成るエミッタ領域を形成した太陽
電池において、前記ベース領域を挟み込む不純物濃度が
高い一の導電型の層を設けたことを特徴とする太陽電池
In a solar cell in which an emitter region made of a semiconductor of another conductivity type is formed in contact with a base region made of a semiconductor of one conductivity type, a layer of the first conductivity type with a high impurity concentration sandwiching the base region is provided. A solar cell featuring:
JP2087191A 1990-03-31 1990-03-31 Solar cell Pending JPH03285360A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2087191A JPH03285360A (en) 1990-03-31 1990-03-31 Solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2087191A JPH03285360A (en) 1990-03-31 1990-03-31 Solar cell

Publications (1)

Publication Number Publication Date
JPH03285360A true JPH03285360A (en) 1991-12-16

Family

ID=13908098

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2087191A Pending JPH03285360A (en) 1990-03-31 1990-03-31 Solar cell

Country Status (1)

Country Link
JP (1) JPH03285360A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010123859A (en) * 2008-11-21 2010-06-03 Kyocera Corp Solar battery element and production process of solar battery element
JP2011512661A (en) * 2008-02-15 2011-04-21 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Method for producing single-crystal n-type silicon solar cell and solar cell produced according to the method
JP2012510183A (en) * 2008-11-26 2012-04-26 マイクロリンク デバイセズ, インク. Solar cell with backside via in contact with emitter layer
JP2014093418A (en) * 2012-11-02 2014-05-19 Mitsubishi Electric Corp Photovoltaic device and method of manufacturing the same, and photovoltaic module
WO2015064959A1 (en) * 2013-10-31 2015-05-07 전영권 Solar cell and manufacturing method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011512661A (en) * 2008-02-15 2011-04-21 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Method for producing single-crystal n-type silicon solar cell and solar cell produced according to the method
JP2010123859A (en) * 2008-11-21 2010-06-03 Kyocera Corp Solar battery element and production process of solar battery element
JP2012510183A (en) * 2008-11-26 2012-04-26 マイクロリンク デバイセズ, インク. Solar cell with backside via in contact with emitter layer
JP2014093418A (en) * 2012-11-02 2014-05-19 Mitsubishi Electric Corp Photovoltaic device and method of manufacturing the same, and photovoltaic module
WO2015064959A1 (en) * 2013-10-31 2015-05-07 전영권 Solar cell and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP2003124483A (en) Photovoltaic element
JPH025576A (en) Thin film solar cell device
JP2006173381A (en) Photoelectromotive force element
JP2004039751A (en) Photovoltaic element
JP2004071763A (en) Photovoltaic element
JPH03285360A (en) Solar cell
JPH01205472A (en) Solar battery cell
JPS60234381A (en) Solar battery
JPH0427169A (en) Solar cell
JP3206350B2 (en) Solar cell
CA1157136A (en) Light-activated p-i-n switch
JP2005005376A (en) Photovoltaic device
JPH04107881A (en) Solar cell element
JP3206339B2 (en) Solar cell
JP3368854B2 (en) Solar cell
JPH11274532A (en) Solar cell
JPS5996781A (en) Photo diode
JPS61135167A (en) Thin-film solar cell
JP3303577B2 (en) Solar cell
JPH03285361A (en) Solar cell
JPH01216581A (en) Semiconductor device
JPH0745843A (en) Solar cell element
JPH04109681A (en) Vertical pn junction solar battery
JPH0559590B2 (en)
JPH1012913A (en) Semiconductor light-receiving element