WO2015064959A1 - Solar cell and manufacturing method thereof - Google Patents

Solar cell and manufacturing method thereof Download PDF

Info

Publication number
WO2015064959A1
WO2015064959A1 PCT/KR2014/010028 KR2014010028W WO2015064959A1 WO 2015064959 A1 WO2015064959 A1 WO 2015064959A1 KR 2014010028 W KR2014010028 W KR 2014010028W WO 2015064959 A1 WO2015064959 A1 WO 2015064959A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
solar cell
charged
charge
cathode
Prior art date
Application number
PCT/KR2014/010028
Other languages
French (fr)
Korean (ko)
Inventor
전영권
Original Assignee
전영권
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020140058483A external-priority patent/KR20150050315A/en
Application filed by 전영권 filed Critical 전영권
Publication of WO2015064959A1 publication Critical patent/WO2015064959A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type
    • H01L31/0749Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type including a AIBIIICVI compound, e.g. CdS/CulnSe2 [CIS] heterojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1884Manufacture of transparent electrodes, e.g. TCO, ITO
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a solar cell and a method of manufacturing the same, and more particularly, to the charge particles for forming a built-in electric field in silicon-based solar cells such as crystalline and amorphous silicon as well as thin film solar cells such as CIGS-based, dye-sensitized and organic
  • the present invention relates to a structure of a solar cell and a method of manufacturing the same, which improve the photoelectric conversion efficiency of the solar cell.
  • Thin film solar cell technology is a next-generation solar cell technology compared to crystalline Si solar cells, which currently has the largest market share. Thin film solar cells are more efficient and cheaper to manufacture than crystalline Si solar cells.
  • CIGS Cu (In, Ga) Se 2
  • a CIGS solar cell is a cell composed of a substrate, a back electrode, a light absorbing layer, a buffer layer, a front transparent electrode, etc., using a common glass substrate, among which a light absorbing layer absorbing sunlight is CIGS or CIS (CuIn (S, Se) 2 ). It means a battery consisting of). Since CIGS is more widely used among the CIGS or CIS, a CIGS solar cell will be described below.
  • CIGS is a chalcopyrite-based compound semiconductor of Group I-III-VI, has a direct transition energy band gap, and has a light absorption coefficient of about 1 ⁇ 10 5 cm -1 , which is the highest among semiconductors, and has a thickness of 1 ⁇ m. Even a thin film having a thickness of 2 ⁇ m is a material capable of manufacturing a high efficiency solar cell.
  • CIGS solar cells are suitable for spacecraft solar cells because they have excellent long-term stability and excellent resistance to radiation.
  • Such CIGS solar cells generally use glass as a substrate, but may be manufactured in the form of a flexible solar cell by being deposited on a polymer (eg polyimide) or metal thin film (eg stainless steel, Ti) substrate in addition to the glass substrate.
  • a polymer eg polyimide
  • metal thin film eg stainless steel, Ti
  • a low-cost, high-efficiency thin-film solar cell that can replace a silicon crystalline solar cell is known as a solar cell having a high commercial potential.
  • Patent Document 1 (US Patent No. US 7,705,523 (2010.04.27) by Wang et al.) Discloses an electrode of a dye-sensitized solar cell in a hybrid solar nanogenerator.
  • a method for improving efficiency by installing piezoelectric nanogenerators using ZnO nanowires in series or in parallel to collect charges generated by mechanical vibration and contributing to the amount of power generation with photocurrent is presented.
  • the technique disclosed in Patent Document 1 has a disadvantage in that economic efficiency is inferior because energy and an apparatus for generating mechanical vibration are incidentally required.
  • Patent Document 2 Korean Unexamined Patent Publication No. 2011-0087226 (2011.08.02) discloses a solar cell technology capable of exhibiting improved light conversion efficiency by an electric field improving effect, which is a thin film solar cell.
  • a field emission layer including nanostructures having a form of nanorods, nanowires or nanotubes having a field emission effect on the electrodes of the battery, electrons and holes generated from the photoactive layer by light are effectively transmitted to each electrode.
  • An object of the present invention for solving the problems of the prior art described above is to provide a material layer including charged particles that can form a built-in electric field in a solar cell adjacent to a light absorbing layer. And a solar cell structure capable of increasing the photoelectric conversion efficiency by reducing the recombination of electrons and holes generated in the pn junction semiconductor by light absorption and improving the collection efficiency at the electrode. It is to provide a manufacturing method.
  • Another object of the present invention is to provide a method of manufacturing a solar cell including a material layer including charged particles.
  • the first aspect of the present invention for achieving the above object is a solar cell having a light absorption layer formed between the cathode and the anode disposed to face each other, is disposed inside or adjacent to the cathode or anode, positive (+
  • the present invention provides a solar cell in which a charge layer having a negative or negative charge amount is formed.
  • a charge layer having a positive charge amount may be formed inside the cathode, a side of the cathode not facing the light absorbing layer, or between the cathode and the light absorbing layer.
  • a charged layer having a negative charge amount may be formed inside the anode, a side of the anode not facing the light absorbing layer, or between the anode and the light absorbing layer.
  • An entire layer is formed, and at the same time, a second charged layer including charged particles having a negative charge amount is formed inside the anode, on the side of the anode not facing the light absorbing layer, or between the anode and the light absorbing layer.
  • the size of the charged particles included in the charged layer may be 0.1nm ⁇ 100nm.
  • the light absorption layer may be any one of a p-n junction semiconductor, a p-type semiconductor, an n-type semiconductor, and an intrinsic (i-type) semiconductor.
  • the second aspect of the present invention for solving the above another problem is a manufacturing method of a solar cell having a light absorption layer formed between the cathode and the anode disposed to face each other, having a positive (+) or negative (-) amount of charge
  • a method for manufacturing a solar cell wherein the charge layer is formed to be inside or adjacent to the cathode or the anode.
  • the charged layer may be formed by ion implantation, plasma doping or wet method.
  • the charged layer may be formed by coating and drying a colloidal solution in which charged particles are dispersed in a fluid.
  • the charged particles included in the charged layer may have a positive (+) or a negative (-) amount of charge.
  • a charged layer including charged particles is disposed adjacent to a light absorbing layer of the solar cell to form an internal electric field in the solar cell through the charged layer, thereby forming electrons and holes in the pn junction semiconductor.
  • the efficiency of the solar cell can be increased by reducing the recombination and improving the collection efficiency to the electrode.
  • the solar cell technology according to the present invention can be applied to conventional crystalline silicon solar cells as well as thin film solar cells.
  • FIG. 1 is a view schematically showing a cross-sectional structure of a solar cell including a charged particle material according to an embodiment of the present invention.
  • FIG. 2 is a schematic view for explaining the movement of electrons and holes in the solar cell according to an embodiment of the present invention.
  • FIG 3 is a schematic cross-sectional view of a solar cell including a charged particle material according to another embodiment of the present invention.
  • the present invention is the result of research on a method for improving photoelectric conversion efficiency while minimizing additional cost.
  • a charged layer having a positive (+) or a negative (-) amount of charge is inserted between a light absorbing layer and an electrode of a solar cell, the charged layer is formed between the light absorbing layer and the 'built-in electric'. field), which reduces the recombination of electrons and holes generated in the pn junction semiconductor by light absorption, and improves the collection efficiency of the electrode, thereby improving the photoelectric conversion efficiency of the solar cell.
  • FIG. 1 is a view schematically showing a cross-sectional structure of a solar cell including a charged particle material according to an embodiment of the present invention.
  • a substrate 10 As shown in FIG. 1, a substrate 10, a lower electrode 20 formed on the substrate 10, a light absorbing layer 30 formed on the lower electrode 20, and the light absorbing layer 30 are formed.
  • the upper electrode 40 is formed on the (), and the charge layer (C) formed between the light absorption layer 30 and the upper electrode 40.
  • the charged layer C may be formed between the lower electrode 20 and the light absorbing layer 30.
  • the charged layer (C) may be formed in a form embedded in the lower electrode 20, the upper electrode 40 or the light absorbing layer, the light absorbing layer and the surface of the lower electrode 20 or the upper electrode (40). It may be formed on the outside that does not.
  • the solar cell according to the exemplary embodiment is a case where a charged layer having a positive charge is disposed between an n-type semiconductor and a cathode in a p-n junction solar cell.
  • a built-in electric field is formed between the charged layer having a positive charge and the n-type semiconductor, electrons generated in the semiconductor absorption layer by the absorption of sunlight accelerate in the cathode direction, and the holes in the opposite direction. Accelerated by, reduces recombination between electrons and holes and increases the collection speed, thereby increasing the light conversion current.
  • the charged layer having a positive charge amount in the direction toward the cathode where electrons are collected and the charged layer having a negative charge amount in the direction toward the anode where the holes are collected have the effect of a built-in electric field. It can be maximized.
  • a charged particle layer is provided between a light absorption layer and an electrode in a p-type semiconductor, an n-type semiconductor, an intrinsic semiconductor, and the like to obtain the same internal electric field increase effect.
  • FIG. 3 is a schematic cross-sectional view of a solar cell including a charged particle material according to another embodiment of the present invention.
  • a substrate 10 a lower electrode 20 formed on the substrate 10, a light absorbing layer 30 formed on the lower electrode 20, and the light absorbing layer 30 are formed.
  • Two charge layers C formed on the upper electrode 40 and the lower electrode 20 and the light absorbing layer 30, and between the light absorbing layer 30 and the upper electrode 40, respectively.
  • two charge layers C are formed with the light absorption layer 30 interposed therebetween.
  • a charged layer C having a negative charge amount is formed between the lower electrode 20 and the light absorbing layer 30, which are anodes, and a positive amount between the upper electrode 40 and the light absorbing layer 30, which are cathodes.
  • the charged layer C having a positive charge amount is formed.
  • FIG. 4 It is a schematic diagram for demonstrating the movement of an electron and a hole in the solar cell which concerns on other embodiment of this invention.
  • a positively charged layer is provided between an n-type semiconductor and a cathode
  • a negatively charged layer is disposed between a p-type semiconductor and an anode.
  • the positively charged layer is formed between the n-type semiconductor and the charged layer, and the negatively-charged layer forms a built-in electric field between the p-type semiconductor and the anode, respectively. Since the electrons are accelerated toward the cathode and the holes are accelerated toward the anode, the recombination between the electrons and the holes is reduced and the collection speed is further increased, thereby increasing the light conversion current.
  • the effect of strengthening the built-in electric field may be increased.
  • the 'charged layer' is a layer having a positive (+) or negative (-) charge amount, and includes charged particles, and the layer is formed continuously or in a form in which charged particles are discontinuously dispersed. Formed, or the portion containing the charged particles is formed on the island (island), and all that is injected or diffused in the anode, cathode or light absorbing layer and the like.
  • the substrate 10 may be any one used in the art, such as a glass substrate including soda-lime glass (SLG), a ceramic substrate, a metal substrate including a stainless steel substrate, a polymer substrate, and the like. .
  • a glass substrate including soda-lime glass (SLG)
  • a ceramic substrate including soda-lime glass (SG)
  • a metal substrate including a stainless steel substrate
  • a polymer substrate and the like.
  • the lower electrode 20 and the upper electrode 40 are electrodes for receiving electrons and holes generated by the photoelectric effect and transferring them to the outside, and the upper electrode 40 is a transparent electrode formed of a transparent transparent material. It is more preferable to form.
  • a transparent conductive oxide such as ITO, FTO, ZnO, ATO, PTO, AZO, IZO, or a material such as chalcogenide may be used as the transparent electrode, and the lower electrode 20 and the upper electrode ( There is no limitation on the material as long as it can realize the characteristics of 40).
  • the light absorbing layer 30 is formed by stacking at least one n-type semiconductor layer and at least one p-type semiconductor layer, and an additional light absorbing layer is additionally formed between the n-type semiconductor layer and the p-type semiconductor layer. It may be provided.
  • the n-type semiconductor layer and the p-type semiconductor layer may include a compound semiconductor including an inorganic material, an organic material, an organometallic compound, an organic-inorganic composite, or a combination thereof, but are not limited thereto.
  • the charged layer (C) is a layer having positive (+) or negative (-) charges, including charged particles that are positively (+) or negative (-), between the light absorbing layer (30) By forming a built-in electric field in the, it is a layer that serves to reduce the mutual recombination between the electrons and holes by applying an electric field in the forward direction to the electrons or holes that are charge carriers generated in the semiconductor of the light absorption layer 30.
  • the charged layer is not limited to any form as long as it has a positive (+) or negative (-) form.
  • the film or charged particles in which the charged particles are dispersed may have the light absorbing layer 30 and the lower electrode ( 20) or may be formed in a dispersed form between the upper electrodes 40.
  • a method such as an ion implantation method, a plasma doping method, a colloidal solution coating method, or the like can be used, and any method that can apply the charged particles between the light absorption layer and the electrode is particularly limited. It doesn't work.
  • an ion generating device for generating ions from a solid phase material including a metal or a nonmetal at room temperature may be used, and a target that is a solid phase material including basic particles of ions to be generated at room temperature.
  • a method of implanting ions may be applied including an ion acceleration step of applying a high voltage to the ions so as to be ion beams.
  • the ionizer is a mechanism that emits hot electrons by heating the filament.
  • the ionic material target of the cation general metals such as Na, Mg, Al, and Si, and transition metal materials such as Ti, Cr, Zn, Ti, Cr, Fe, Ni, Cu, and Zn may be used.
  • nonmetallic materials such as O, P, S, As, and Se may be used.
  • a direct current (DC) voltage may be applied to generate plasma, and in the case of a non-metal, it is preferable to apply an alternating voltage having a repetitive cycle, in particular RF power, instead of the direct voltage.
  • an alternating voltage having a repetitive cycle in particular RF power
  • ions may be implanted by applying a voltage in the range of 80 to 150 kW using an ion acceleration electrode composed of at least two electrodes.
  • forming a charged layer by ion implantation of metal ions or nonmetal ions, etc. includes forming a light absorption layer, forming a transparent electrode on the entire surface, and then performing ion implantation.
  • the implantation depth is adjusted by selecting an acceleration voltage so that an ion implantation layer can be formed in the interface between the upper transparent electrode layer and the lower light absorbing layer or in the transparent electrode in consideration of the ion beam transmission characteristic of the transparent electrode material. .
  • a plasma is formed by using a precursor gas containing a base material for preparing charged particles as a raw material to form a charged layer, and the ion doping method also in the plasma doping method.
  • a precursor gas containing a general metal such as Na, Mg, Al, and Si and transition metal materials such as Ti, Cr, Fe, Ni, Cu, and Zn may be used for plasma generation.
  • a nonmetal material O, P Precursor gases including materials such as S, As, Se, and the like may be used, but are not necessarily limited to these materials.
  • heat treatment may be further performed after the plasma doping. At this time, the heat treatment may be a method of heating for at least 1 minute at a temperature of 300 °C or more in N 2 , Ar and / or air atmosphere.
  • the colloidal solution may be formed by coating and drying a solution in which charged particles are dispersed in a fluid and present in a colloidal state, and the charged particles may be positively charged black particles or negative charges.
  • White particles may be used, but are not necessarily limited thereto.
  • the charged particles may have a diameter of about 10nm ⁇ 100nm, preferably has a diameter of 30nm ⁇ 50nm.
  • the charged particles are charged so that the black and white base particles have a charge, so that a polymer binder including a backbone and a side chain bonded to the main chain may be formed to surround the base particles.
  • a polymer binder including a backbone and a side chain bonded to the main chain may be formed to surround the base particles.
  • the binder consisting of the main chain and the side chain gives a charge to the basic particles and determines the type of charge of the particles.
  • the binder allows the basic particles to be charged with positive or negative charges. do.
  • the charged particles have the same polar group of the main chain and the side chain, or have a polar group having the opposite polarity, at least of the number of polar groups of the main chain and the side chain and the polarity and amount of the charge control agent (CCA)
  • CCA charge control agent
  • the amount of charge control agent can be increased to increase the amount of charge of the finally obtained charged particles, and the amount of charge of the finally charged particles can be increased by increasing the number of polar groups in the main chain and the side chain, and the polar groups in the main chain and the side chain can be increased. It is also possible to control the charging polarity positively or negatively through the number of.
  • Titanium oxide (TiO 2 ), zinc oxide (ZnO), tungsten oxide (WO 3 ), zirconium oxide (ZrO), silicon oxide (SiO 2 ), and the like may be used as basic particles for forming charged particles. It is preferable to use titanium oxide (TiO 2 ) which has ease of handling and low price. However, since titanium oxide (TiO 2 ) causes photochemical activity with respect to ultraviolet rays, discoloration and deterioration are promoted when the ultraviolet rays are exposed to the ultraviolet rays themselves.
  • the UV blocking layer includes applying an oxide semiconductor such as silicon oxide (SiO 2 ), aluminum oxide (Al 2 O 3 ), zirconium oxide (ZrO 2 ), tungsten oxide (WO 3 ), molybdenum oxide (MoO 3 ), or the like. can do.
  • oxide semiconductor such as silicon oxide (SiO 2 ), aluminum oxide (Al 2 O 3 ), zirconium oxide (ZrO 2 ), tungsten oxide (WO 3 ), molybdenum oxide (MoO 3 ), or the like. can do.
  • the process for producing the titanium oxide charged particles is as follows. First, a polymer resin including a main chain and a side chain and a titanium oxide basic particle are first dispersed in a solvent to form a colloidal solution.
  • the polymer resin may serve as a binder, and for this purpose, a polymer resin having thermoplasticity or having a low molecular weight is easy to mold.
  • the polymer resin constituting the main chain is polystyrene, acrylic resin, urethane ester, polyamide, polymethmethyl acrylate, unsaturated polyester It may be made of an unsaturated polyester, water dispersive polyester and the like, and may be used in combination of one or two or more of them.
  • the side chain bonded to the main chain may be formed of the same material as the main chain or have a different polar group, and may be polyvinyl alcohol, polycarbonate, silicone, sulfonyl ) May further include one kind, such as a metal salt or an amine.
  • a main chain and a side chain have an uncrosslinked state backbone and side chain in which a polar group capable of reacting with a charge control agent is partially bonded to each other, or have polar groups having opposite polarities to each other.
  • the amount of charge of the particles can be controlled by the amount of charge of the charge control agent bonded through the main chain and the side chain, the amount of charge of the charge control agent bonded to each other through the main and side chains by controlling the number of polar groups in the main and side chains.
  • the amount of charge of the particles may be controlled by the amount of charge of the charge control agent bonded to the main chain and the side chain itself.
  • the polar group of the main chain and the side chain may be formed to include 1 to 10% by weight based on the total weight of the polymer resin.
  • the colloidal solution is formed by mixing a polymer resin, a solvent, and a dispersant, using an ultrasonic dispersion method, a ball mill method, a mediamill method, a stirring dispersion method, and the like.
  • a solvent a polar solvent consisting of ethyl acetate, water, alcohols, ethylene glycol, dimethylformamide, or a mixture thereof, or halogenated hydrocarbon oil, galden, isopar-based substance, or a mixture thereof.
  • a nonpolar solvent consisting of, or a mixture of a polar solvent and a nonpolar solvent can be used.
  • Most binders can be dispersed in a polar or nonpolar solvent, but an appropriate solvent can be selected according to the physical properties of the binder.
  • the dispersant is a surfactant having a hydrophile lipophile balance (HLB) of 3 or more.
  • a byk TM -190, byk TM -183 or a tween-based surfactant is used as the dispersant.
  • a non-polar solvent as the dispersant, byk TM -110, byk TM -161, byk TM -183, or tween, span, OLOA series (manufactured by Chevron oronite Inc.), Ganex series ( Dispersants from ISP Inc. may be used.
  • the next step is to form a colloidal solution containing charged particles as follows.
  • the charge control agent is secondaryly dispersed in the colloidal solution in which the polymer resin including the main chain and the side chain and the color pigment are first dispersed. At this time, the charge control agent is formed to be included in an amount of 0.5 to 50% by weight based on the total weight of the colloidal solution according to the number of polar groups in the main chain and the side chain. In this case, when the content of the charge control agent is insufficient, there may be a problem that the charging speed is low and the charging amount is not large. When the content is more than 50%, the amount of the charge is excessively increased, resulting in a drop in stability of the particles.
  • the charge control agent includes at least one of a positive charge control agent and a negative charge control agent.
  • Examples of the charge control agent that can be used in the present embodiment include metal soap, Ganex series, and the like. At this time, by selectively adjusting the polarity of the charge control agent, it is possible to control the charging polarity of the finally obtained particles positive or negative.
  • the main chain and the side chain of the polymer resin have a positive polar group
  • the charge control agent having a negative polarity when the charge control agent having a negative polarity is dispersed, the main chain and the side chain may be formed around the negative charge of the charge control agent.
  • the particles form enclosing shapes, and the particles become polar in the negative charge of the charge control agent.
  • the amount of the charge control agent it is possible to control the amount of charge coupled to the polar groups of the main chain and side chain, it is possible to control the amount of charge of the polarity of the particles. That is, charged particles having a desired amount of charge are obtained by controlling the number of polar groups in the main and side chains and the amount of the charge control agent.
  • the negative charge can be combined with other negative charges through the positive (+) polar group of the main chain and side chain, thereby controlling the amount of charge of the particles. That is, when the number of polar groups in the main chain and the side chain is large, a large amount of negative charges can be bonded to each other, thereby increasing the amount of charge of the particles. At this time, the amount of charge of the particles may be controlled by adjusting the amount of the charge control agent.
  • the colloidal solution in which the charged particles are dispersed is coated on the surface of the CIGS light absorbing layer.
  • the method of forming the colloidal solution may include chemical bath deposition (CBD), spin coating, doctor-blade coating, drop-casting, and screen printing. ) And wet coating methods such as inkjet printing can be used.
  • inorganic pigments such as carbon black, titanium black, or organic pigments such as aniline black are added to the reaction vessel with ion-exchanged water as the basic particles for preparing charged particles. After the formation of the precipitate, the precipitate may be separated, and then subjected to condensation polymerization and drying.
  • CIGS-based thin film solar cell including a charge layer according to an embodiment of the present invention can be manufactured through the following process.
  • a Mo layer is deposited to a thickness of about 1 ⁇ m using a sputtering method to form a lower electrode.
  • a CIGS thin film having a p-n junction structure or any conductive type is deposited to a thickness of about 2 ⁇ m to form a light absorption layer.
  • the semiconductor substrate having any conductivity type includes using one or a combination of n-type, p-type, and i-type (intrinsic) semiconductor materials.
  • the method for forming the CIGS thin film may be applied to all known methods, and is not particularly limited.
  • one of the non-vacuum coating methods including the spray method, the ultrasonic spray method, the spin coating method, the doctor blade method, the screen printing method and the inkjet printing method, or the sputtering method, the simultaneous sputtering method and the evaporation deposition method, etc. It can be carried out by selecting one of the vacuum coating method.
  • a process of improving the physical properties of the thin film may be performed by promoting the diffusion of atoms or crystal growth in the CIGS thin film by applying a selenization heat treatment step.
  • a ZnO layer is deposited on the surface of the CIGS light absorbing layer with a window layer of about 0.5 ⁇ m, and then a charged particle layer is formed within the range from the interface between the ZnO layer and the CIGS light absorbing layer to the inside of the ZnO layer by using an ion implantation method. Ion implantation of metal cations as possible. At this time, Cu ions are preferably implanted at a concentration of 1 ⁇ 10 17 to 1 ⁇ 10 20 ions / cm 2 at an acceleration voltage of 100 to 120 mA.
  • an Al grid layer having a thickness of about 0.5 ⁇ m is formed on the window layer to form an upper electrode, thereby completing a CIGS thin film solar cell.
  • a charge layer between the electrode and the light absorbing layer in the solar cell it can be applied by connecting the charge layer in series to the outside of the solar cell. That is, in a general solar cell structure consisting of a substrate, a lower electrode, a light absorption layer (or a pn junction semiconductor layer), and an upper electrode, a charged layer is connected in series to an electrode below or below the lower electrode, or both.
  • a charged layer is connected in series to an electrode below or below the lower electrode, or both.
  • the above-described method of forming the charged layer can also be applied to the case where the charged layer is provided inside or adjacent to the electrode. That is, a positive charged layer is provided inside the cathode or in the direction of the cathode, and a negative charged layer is provided inside the anode or in the direction of the anode.
  • the CIGS-based thin film solar cell (where CIGS-based solar cell is a light absorbing layer material is a compound semiconductor material M1, M2, X (M1 is Cu, Ag or a combination thereof, M2 is In, Ga, Al, Zn , Ge, Sn, or a combination thereof, X is Se, S, or a combination thereof), but a method of forming a built-in electric field by introducing a charged particle material is described.
  • Thin film solar cells such as dye-sensitized, organic solar cells, as well as Si-based solar cells (where Si-based solar cells are light-absorbing layer materials are monocrystalline, polycrystalline and amorphous Si materials, or a combination thereof). Can be.

Abstract

The present invention relates to a structure of a solar cell that can enhance photoelectric conversion efficiency of the solar cell and a manufacturing method thereof. An implemented embodiment of a solar cell according to the present invention provides a solar cell comprising charged particle material between two electrodes disposed to face each other. The charged particles or charged particle material layer is installed adjacent to a light-absorption layer of the solar cell so that an inner electric field is formed by the electric charge of the charged particles, which makes it possible to reduce recombination of electrons and holes generated in a semiconductor and improve collection efficiency of the electrodes at the same time, thereby increasing efficiency. In addition, the solar cell technology according to the present invention can also be applied to existing crystalline solar cells as well as thin film solar cells.

Description

태양전지 및 그 제조방법Solar cell and manufacturing method
본 발명은 태양전지 및 그 제조방법에 관한 것으로, 더욱 상세하게는 CIGS계, 염료감응형 및 유기 등의 박막 태양전지는 물론 결정질 및 비정질 실리콘 등의 실리콘계 태양전지에 내장전계를 형성하는 하전 입자의 물질층을 배치함으로써, 태양전지의 광전 변환 효율을 향상시킨 태양전지의 구조 및 그 제조방법에 관한 것이다.The present invention relates to a solar cell and a method of manufacturing the same, and more particularly, to the charge particles for forming a built-in electric field in silicon-based solar cells such as crystalline and amorphous silicon as well as thin film solar cells such as CIGS-based, dye-sensitized and organic By disposing a material layer, the present invention relates to a structure of a solar cell and a method of manufacturing the same, which improve the photoelectric conversion efficiency of the solar cell.
박막 태양전지 기술은 현재 가장 큰 시장점유율을 보이고 있는 결정질 Si 태양전지와 비교되는 차세대 태양전지 기술로서, 박막 태양전지는 결정질 Si 태양전지보다 효율은 높으면서 저가로 제조할 수 있는 태양전지이다.Thin film solar cell technology is a next-generation solar cell technology compared to crystalline Si solar cells, which currently has the largest market share. Thin film solar cells are more efficient and cheaper to manufacture than crystalline Si solar cells.
박막 태양전지는 다양한 종류가 개발되고 있는데, 그 대표적인 예로 CIGS(Cu(In, Ga)Se2) 태양전지를 들 수 있다.Various types of thin film solar cells are being developed, and a typical example thereof is CIGS (Cu (In, Ga) Se 2 ) solar cell.
CIGS 태양전지란, 일반적인 유리를 기판으로 기판, 배면 전극, 광흡수층, 버퍼층, 전면 투명전극 등으로 이루어진 전지로서, 그 중 태양광을 흡수하는 광흡수층이 CIGS 또는 CIS(CuIn(S,Se)2)로 이루어진 전지를 의미한다. 상기 CIGS 또는 CIS 중, CIGS가 더 널리 사용되므로, 이하에서는 CIGS 태양전지에 대하여 설명하기로 한다.A CIGS solar cell is a cell composed of a substrate, a back electrode, a light absorbing layer, a buffer layer, a front transparent electrode, etc., using a common glass substrate, among which a light absorbing layer absorbing sunlight is CIGS or CIS (CuIn (S, Se) 2 ). It means a battery consisting of). Since CIGS is more widely used among the CIGS or CIS, a CIGS solar cell will be described below.
CIGS는 I-III-VI족 황동광(chalcopyrite)계 화합물 반도체로서 직접천이형 에너지 밴드갭을 가지고 있고, 광흡수계수가 약 1×105-1로 반도체 중에서 가장 높은 편에 속하여, 두께 1㎛ 내지 2㎛의 박막으로도 고효율의 태양전지 제조가 가능한 물질이다.CIGS is a chalcopyrite-based compound semiconductor of Group I-III-VI, has a direct transition energy band gap, and has a light absorption coefficient of about 1 × 10 5 cm -1 , which is the highest among semiconductors, and has a thickness of 1 μm. Even a thin film having a thickness of 2 μm is a material capable of manufacturing a high efficiency solar cell.
CIGS 태양전지는 실외에서도 전기광학적으로 장기 안정성이 매우 우수하고, 복사선에 대한 저항력이 뛰어나므로 우주선용 태양전지에도 적합한 태양전지이다.CIGS solar cells are suitable for spacecraft solar cells because they have excellent long-term stability and excellent resistance to radiation.
이러한 CIGS 태양전지는 일반적으로는 유리를 기판으로 사용하나, 유리 기판 이외에도 고분자(예: 폴리이미드) 또는 금속박막(예: 스테인리스강, Ti) 기판 위에 증착하여 플렉시블 태양전지 형태로 제조할 수도 있으며, 특히, 최근 박막 태양전지 중 가장 높은 19.5%의 에너지 변환 효율의 구현됨에 따라 실리콘 결정질 태양전지를 대체할 수 있는 저가형 고효율 박막형 태양전지로써 상업화 가능성이 아주 높은 태양전지로 알려져 있다.Such CIGS solar cells generally use glass as a substrate, but may be manufactured in the form of a flexible solar cell by being deposited on a polymer (eg polyimide) or metal thin film (eg stainless steel, Ti) substrate in addition to the glass substrate. Particularly, as the energy conversion efficiency of 19.5%, which is the highest among thin film solar cells, is realized, a low-cost, high-efficiency thin-film solar cell that can replace a silicon crystalline solar cell is known as a solar cell having a high commercial potential.
한편, 종래의 박막 태양전지에 있어서 압전소자(piezoelectric device)와의 융합을 통하여 효율을 더욱 증가시키기 위한 기술이 개발되고 있다.Meanwhile, in the conventional thin film solar cell, a technology for further increasing efficiency through fusion with a piezoelectric device has been developed.
예를 들어, Wang 등에 의한 특허문헌 1(미국 등록 특허공보 US7,705,523 (2010.04.27))에는 하이브리드 태양광 발전기(hybrid solar nanogenerator)에 있어서, 염료태양전지(dye-sensitized solar cell)의 전극에 직렬 또는 병렬로 ZnO 나노선(nanowire)을 이용한 압전 나노발전소자(piezoelectric nanogenerator)를 설치하여 기계적 진동에 의해 생성된 전하를 수집하여 광전류와 함께 발전량에 기여하도록 함으로써 효율을 개선하도록 하는 방법이 제시되어 있다. 그런데, 상기 특허문헌 1에 개시된 기술은 기계적 진동을 발생시키기 위한 에너지와 장치가 부수적으로 필요하므로 경제성이 떨어지는 단점이 있다.For example, Patent Document 1 (US Patent No. US 7,705,523 (2010.04.27) by Wang et al.) Discloses an electrode of a dye-sensitized solar cell in a hybrid solar nanogenerator. A method for improving efficiency by installing piezoelectric nanogenerators using ZnO nanowires in series or in parallel to collect charges generated by mechanical vibration and contributing to the amount of power generation with photocurrent is presented. have. However, the technique disclosed in Patent Document 1 has a disadvantage in that economic efficiency is inferior because energy and an apparatus for generating mechanical vibration are incidentally required.
또한, 특허문헌 2(대한민국 공개 특허공보 제2011-0087226호 (2011.08.02))에는, 전기장 향상 효과에 의하여 개선된 광전환 효율을 나타낼 수 있는 태양전지 기술이 개시되어 있는데, 이 기술은 박막 태양전지의 전극에 전계 방출 효과를 갖는 나노막대, 나노선 또는 나노튜브 등의 형태를 갖는 나노구조물을 포함하는 전계방출층을 설치하여 빛에 의하여 광활성층으로부터 발생된 전자와 정공을 각 전극으로 효과적으로 전달시킴으로써 태양전지의 광전변환효율을 향상시키기 위한 것이나, 실제 다양한 박막 태양전지에 적용한 결과, 효율 개선 효과는 미미한 반면, 나노구조물의 제작에 소요되는 공정비용이 증가하여, 특허문헌 1에 개시된 기술과 마찬가지로 경제성이 떨어지는 문제점이 있다.In addition, Patent Document 2 (Korean Unexamined Patent Publication No. 2011-0087226 (2011.08.02)) discloses a solar cell technology capable of exhibiting improved light conversion efficiency by an electric field improving effect, which is a thin film solar cell. By installing a field emission layer including nanostructures having a form of nanorods, nanowires or nanotubes having a field emission effect on the electrodes of the battery, electrons and holes generated from the photoactive layer by light are effectively transmitted to each electrode. In order to improve the photoelectric conversion efficiency of the solar cell, but as a result of applying to various thin film solar cells, the efficiency improvement effect is insignificant, but the process cost required for the fabrication of the nanostructure increases, similar to the technique disclosed in Patent Document 1 There is a problem of low economic efficiency.
전술한 종래기술의 문제점을 해결하기 위한 본 발명의 과제는, 광흡수층에 인접하여 태양전지 내에 내장 전계(built-in electric field)를 형성할 수 있는 하전 입자(charged particle)를 포함하는 물질층을 배치하여, 광흡수에 의해 p-n 접합 반도체 내에서 생성된 전자와 정공의 재결합(recombination)을 감소시키는 동시에 전극에의 수집(collection) 효율을 개선하여 광전 변환 효율을 증대시킬 수 있는 태양전지의 구조와 제조방법을 제공하는 것이다.An object of the present invention for solving the problems of the prior art described above is to provide a material layer including charged particles that can form a built-in electric field in a solar cell adjacent to a light absorbing layer. And a solar cell structure capable of increasing the photoelectric conversion efficiency by reducing the recombination of electrons and holes generated in the pn junction semiconductor by light absorption and improving the collection efficiency at the electrode. It is to provide a manufacturing method.
본 발명의 다른 과제는 하전 입자를 포함하는 물질층을 포함하는 태양전지의 제조방법을 제공하는 것이다.Another object of the present invention is to provide a method of manufacturing a solar cell including a material layer including charged particles.
상기 과제를 달성하기 위한 본 발명의 제1측면은, 상호 대향되게 배치되는 음극과 양극의 사이에 광흡수층이 형성된 태양전지로, 상기 음극 또는 양극의 내부나 이들에 인접하게 배치되며, 양(+) 또는 음(-)의 전하량을 갖는 하전층이 형성된 태양전지를 제공하는 것이다.The first aspect of the present invention for achieving the above object is a solar cell having a light absorption layer formed between the cathode and the anode disposed to face each other, is disposed inside or adjacent to the cathode or anode, positive (+ The present invention provides a solar cell in which a charge layer having a negative or negative charge amount is formed.
본 발명의 제1측면에 있어서, 상기 음극의 내부, 상기 음극 중 상기 광흡수층에 면하지 않는 측, 또는 상기 음극과 광흡수층 사이에 양(+)의 전하량을 갖는 하전층이 형성될 수 있다.In the first aspect of the present invention, a charge layer having a positive charge amount may be formed inside the cathode, a side of the cathode not facing the light absorbing layer, or between the cathode and the light absorbing layer.
본 발명의 제1측면에 있어서, 상기 양극의 내부, 상기 양극 중 상기 광흡수층에 면하지 않는 측, 또는 상기 양극과 광흡수층 사이에 음(-)의 전하량을 갖는 하전층이 형성될 수 있다.In the first aspect of the present invention, a charged layer having a negative charge amount may be formed inside the anode, a side of the anode not facing the light absorbing layer, or between the anode and the light absorbing layer.
본 발명의 제1측면에 있어서, 상기 음극의 내부, 상기 음극 중 상기 광흡수층에 면하지 않는 측, 또는 상기 음극과 광흡수층 사이에 양(+)의 전하량을 갖는 하전 입자를 포함하는 제1 하전층이 형성되고, 동시에 상기 양극의 내부, 상기 양극 중 상기 광흡수층에 면하지 않는 측, 또는 상기 양극과 광흡수층 사이에 음(-)의 전하량을 갖는 하전 입자를 포함하는 제2 하전층이 형성될 수 있다.In the first aspect of the present invention, a first charge including charged particles having a positive amount of charge inside the cathode, one of the cathodes that does not face the light absorbing layer, or between the cathode and the light absorbing layer. An entire layer is formed, and at the same time, a second charged layer including charged particles having a negative charge amount is formed inside the anode, on the side of the anode not facing the light absorbing layer, or between the anode and the light absorbing layer. Can be.
본 발명의 제1측면에 있어서, 상기 하전층에 포함되는 하전 입자의 크기는 0.1㎚~100㎚일 수 있다.In the first aspect of the present invention, the size of the charged particles included in the charged layer may be 0.1nm ~ 100nm.
본 발명의 제1측면에 있어서, 상기 광흡수층은 p-n 접합 반도체, p형 반도체, n형 반도체, 진성(i형)반도체 중의 어느 하나일 수 있다.In the first aspect of the present invention, the light absorption layer may be any one of a p-n junction semiconductor, a p-type semiconductor, an n-type semiconductor, and an intrinsic (i-type) semiconductor.
상기 다른 과제를 해결하기 위한 본 발명의 제2측면은, 상호 대향되게 배치되는 음극과 양극의 사이에 광흡수층이 형성된 태양전지의 제조방법으로, 양(+) 또는 음(-)의 전하량을 갖는 하전층을 상기 음극 또는 양극의 내부나 이들에 인접하도록 형성하는 것을 특징으로 하는 태양전지의 제조방법을 제공한다.The second aspect of the present invention for solving the above another problem is a manufacturing method of a solar cell having a light absorption layer formed between the cathode and the anode disposed to face each other, having a positive (+) or negative (-) amount of charge Provided is a method for manufacturing a solar cell, wherein the charge layer is formed to be inside or adjacent to the cathode or the anode.
본 발명의 제2측면에 있어서, 상기 하전층은 이온 주입법, 플라즈마 도핑 또는 습식법에 의해 형성될 수 있다.In the second aspect of the present invention, the charged layer may be formed by ion implantation, plasma doping or wet method.
본 발명의 제2측면에 있어서, 상기 하전층은 유체 내에 하전 입자들이 분산되어 있는 콜로이드 용액을 도포하고 건조하는 방법으로 형성될 수 있다.In the second aspect of the present invention, the charged layer may be formed by coating and drying a colloidal solution in which charged particles are dispersed in a fluid.
본 발명의 제2측면에 있어서, 상기 하전층에 포함되는 하전 입자는 양(+) 또는 음(-)의 전하량을 가질 수 있다.In the second aspect of the present invention, the charged particles included in the charged layer may have a positive (+) or a negative (-) amount of charge.
본 발명에 따른 태양전지는 하전 입자를 포함하는 하전층을 태양전지의 광흡수층에 인접하여 배치하여 상기 하전층을 통해 태양전지 내에 내장전계를 형성함으로써, p-n접합 반도체 내에서 생성된 전자와 정공의 재결합을 감소시키는 동시에 전극에의 수집효율을 개선하여 태양전지의 효율을 증대시킬 수 있다.In the solar cell according to the present invention, a charged layer including charged particles is disposed adjacent to a light absorbing layer of the solar cell to form an internal electric field in the solar cell through the charged layer, thereby forming electrons and holes in the pn junction semiconductor. The efficiency of the solar cell can be increased by reducing the recombination and improving the collection efficiency to the electrode.
본 발명에 따른 태양전지 기술은 박막 태양전지는 물론 기존의 결정질 실리콘 태양전지에도 적용될 수 있다.The solar cell technology according to the present invention can be applied to conventional crystalline silicon solar cells as well as thin film solar cells.
도 1은 본 발명의 일 실시형태에 따른 하전 입자 물질을 포함하는 태양전지의 단면 구조를 개략적으로 나타낸 도면이다.1 is a view schematically showing a cross-sectional structure of a solar cell including a charged particle material according to an embodiment of the present invention.
도 2는 본 발명의 일 실시형태에 따른 태양전지에 있어서 전자와 정공의 움직임을 설명하기 위한 모식도이다.2 is a schematic view for explaining the movement of electrons and holes in the solar cell according to an embodiment of the present invention.
도 3은 본 발명의 다른 실시형태에 따른 하전 입자 물질을 포함하는 태양전지의 단면 구조를 개략적으로 나타낸 도면이다.3 is a schematic cross-sectional view of a solar cell including a charged particle material according to another embodiment of the present invention.
도 4는 본 발명의 다른 실시형태에 따른 태양전지에 있어서 전자와 정공의 움직임을 설명하기 위한 모식도이다.It is a schematic diagram for demonstrating the movement of an electron and a hole in the solar cell which concerns on other embodiment of this invention.
이하 본 발명의 실시예에 대하여 첨부된 도면을 참고로 그 구성 및 작용을 설명하기로 한다.Hereinafter, the configuration and operation of the present invention will be described with reference to the accompanying drawings.
본 발명을 설명함에 있어, 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략할 것이다. 또한, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.In describing the present invention, if it is determined that the detailed description of the related known function or configuration may unnecessarily obscure the subject matter of the present invention, the detailed description thereof will be omitted. In addition, when a part is said to "include" a certain component, this means that it may further include other components, except to exclude other components unless otherwise stated.
본 발명은 추가적인 비용 소요를 최소화하면서도 광전변환효율을 향상시킬 수 있는 방법에 대해 연구한 것의 결과물이다. 본 발명에 따라, 태양전지의 광흡수층과 전극 사이에 양(+) 또는 음(-)의 전하량을 갖는 하전층이 삽입되면, 하전층이 광흡수층과의 사이에 '내장전계(built-in electric field)'에 형성되어, 광흡수에 의해 p-n 접합 반도체 내에서 생성된 전자와 정공의 재결합(recombination)이 감소되는 동시에 전극에의 수집(collection) 효율이 개선되어 태양전지의 광전 변환 효율이 향상될 수 있다.The present invention is the result of research on a method for improving photoelectric conversion efficiency while minimizing additional cost. According to the present invention, when a charged layer having a positive (+) or a negative (-) amount of charge is inserted between a light absorbing layer and an electrode of a solar cell, the charged layer is formed between the light absorbing layer and the 'built-in electric'. field), which reduces the recombination of electrons and holes generated in the pn junction semiconductor by light absorption, and improves the collection efficiency of the electrode, thereby improving the photoelectric conversion efficiency of the solar cell. Can be.
도 1은 본 발명의 일 실시형태에 따른 하전 입자 물질을 포함하는 태양전지의 단면 구조를 개략적으로 나타낸 도면이다. 도 1에 도시된 바와 같이, 기판(10)과, 상기 기판(10) 상에 형성되는 하부전극(20)과, 상기 하부전극(20) 상에 형성된 광흡수층(30)과 상기 광흡수층(30) 상에 형성되는 상부전극(40)과, 상기 광흡수층(30)과 상부전극(40) 사이에 형성되는 하전층(C)를 포함하여 이루어진다. 1 is a view schematically showing a cross-sectional structure of a solar cell including a charged particle material according to an embodiment of the present invention. As shown in FIG. 1, a substrate 10, a lower electrode 20 formed on the substrate 10, a light absorbing layer 30 formed on the lower electrode 20, and the light absorbing layer 30 are formed. The upper electrode 40 is formed on the (), and the charge layer (C) formed between the light absorption layer 30 and the upper electrode 40.
이때, 상기 하전층(C)은 상기 하부전극(20)과 광흡수층(30)의 사이에 형성될 수도 있다.In this case, the charged layer C may be formed between the lower electrode 20 and the light absorbing layer 30.
또한 상기 하전층(C)은 상기 하부전극(20), 상부전극(40) 또는 광흡수층에 내포된 형태로 형성될 수 있으며, 상기 하부전극(20) 또는 상부전극(40) 중 광흡수층과 면하지 않는 외측에 형성될 수도 있다.In addition, the charged layer (C) may be formed in a form embedded in the lower electrode 20, the upper electrode 40 or the light absorbing layer, the light absorbing layer and the surface of the lower electrode 20 or the upper electrode (40). It may be formed on the outside that does not.
도 2는 본 발명의 일 실시형태에 따른 태양전지에 있어서 전자와 정공의 움직임을 설명하기 위한 모식도이다. 도 2에 도시된 바와 같이, 일 실시형태에 따른 태양전지는 p-n 접합 태양전지에 있어서 양(+)의 전하를 갖는 하전층을 n형 반도체와 음극 사이에 배치한 경우이다. 이 경우, 양(+)의 전하를 갖는 하전층과 n형 반도체와의 사이에 내장 전계가 형성되므로, 태양광의 흡수에 의하여 반도체 흡수층 내에서 생성된 전자는 음극 방향으로 가속되고, 정공은 반대 방향으로 가속되므로 전자와 정공 상호간의 재결합이 감소하고 수집 속도가 증가하게 되므로 광변환 전류가 증가하게 된다. 이와 같이 양(+)의 전하량을 갖는 하전층은 전자가 수집되는 음극 쪽 방향에, 그리고 음(-)의 전하량을 갖는 하전층은 정공이 수집되는 양극 쪽 방향에 설치하면 내장 전계에 의한 효과를 극대화할 수 있다. 또한, p-n 접합 반도체 외에, p형 반도체, n형 반도체, 진성(intrinsic) 반도체 등에도 광흡수층과 전극 사이에 하전 입자층을 설치하면 동일한 내장전계 증대 효과를 얻을 수 있다.2 is a schematic view for explaining the movement of electrons and holes in the solar cell according to an embodiment of the present invention. As shown in FIG. 2, the solar cell according to the exemplary embodiment is a case where a charged layer having a positive charge is disposed between an n-type semiconductor and a cathode in a p-n junction solar cell. In this case, since a built-in electric field is formed between the charged layer having a positive charge and the n-type semiconductor, electrons generated in the semiconductor absorption layer by the absorption of sunlight accelerate in the cathode direction, and the holes in the opposite direction. Accelerated by, reduces recombination between electrons and holes and increases the collection speed, thereby increasing the light conversion current. In this way, the charged layer having a positive charge amount in the direction toward the cathode where electrons are collected and the charged layer having a negative charge amount in the direction toward the anode where the holes are collected have the effect of a built-in electric field. It can be maximized. In addition to a p-n junction semiconductor, a charged particle layer is provided between a light absorption layer and an electrode in a p-type semiconductor, an n-type semiconductor, an intrinsic semiconductor, and the like to obtain the same internal electric field increase effect.
도 3은 본 발명의 다른 실시형태에 따른 하전 입자 물질을 포함하는 태양전지의 단면 구조를 개략적으로 나타낸 도면이다. 도 3에 도시된 바와 같이, 기판(10)과, 상기 기판(10) 상에 형성되는 하부전극(20)과, 상기 하부전극(20) 상에 형성된 광흡수층(30)과 상기 광흡수층(30) 상에 형성되는 상부전극(40)과, 상기 하부전극(20)과 상기 광흡수층(30) 사이와 상기 광흡수층(30)과 상부전극(40) 사이에 각각 형성되는 2개의 하전층(C)를 포함하여 이루어진다. 즉, 본 발명의 다른 실시형태에 의하면, 광흡수층(30)을 사이에 두고 2개의 하전층(C)이 형성되어 있는 것을 특징으로 한다. 이때, 양극인 하부전극(20)과 광흡수층(30) 사이에는 음(-)의 전하량을 갖는 하전층(C)이 형성되고, 음극인 상부전극(40)과 광흡수층(30) 사이에는 양(+)의 전하량을 갖는 하전층(C)이 형성된다.3 is a schematic cross-sectional view of a solar cell including a charged particle material according to another embodiment of the present invention. As shown in FIG. 3, a substrate 10, a lower electrode 20 formed on the substrate 10, a light absorbing layer 30 formed on the lower electrode 20, and the light absorbing layer 30 are formed. ) Two charge layers C formed on the upper electrode 40 and the lower electrode 20 and the light absorbing layer 30, and between the light absorbing layer 30 and the upper electrode 40, respectively. ) That is, according to another embodiment of the present invention, two charge layers C are formed with the light absorption layer 30 interposed therebetween. At this time, a charged layer C having a negative charge amount is formed between the lower electrode 20 and the light absorbing layer 30, which are anodes, and a positive amount between the upper electrode 40 and the light absorbing layer 30, which are cathodes. The charged layer C having a positive charge amount is formed.
도 4는 본 발명의 다른 실시형태에 따른 태양전지에 있어서 전자와 정공의 움직임을 설명하기 위한 모식도이다. 도 4에 도시된 바와 같이, 양(+)의 전하를 갖는 하전층을 n형 반도체와 음극 사이에 설치하는 동시에 음(-)의 전하를 갖는 하전층을 p형 반도체와 양극 사이에 배치하게 되면, 양(+)의 하전층은 n형 반도체와 하전층 사이에, 음(-)의 하전층은 p형 반도체와 양극 사이에 내장 전계를 각각 형성하므로, 태양광의 흡수에 의하여 반도체 흡수층 내에서 생성된 전자는 음극 방향으로 가속되고 정공은 양극 방향으로 가속되므로 전자와 정공 상호간의 재결합이 감소하고 수집 속도가 더욱 증가하게 되므로 광변환 전류가 증가하게 된다. 이와 같이 서로 다른 극성의 하전층을 하나의 태양전지 내에 복수개 설치하면 내장전계를 강화시키는 효과를 증대시킬 수 있다.It is a schematic diagram for demonstrating the movement of an electron and a hole in the solar cell which concerns on other embodiment of this invention. As shown in FIG. 4, when a positively charged layer is provided between an n-type semiconductor and a cathode, a negatively charged layer is disposed between a p-type semiconductor and an anode. The positively charged layer is formed between the n-type semiconductor and the charged layer, and the negatively-charged layer forms a built-in electric field between the p-type semiconductor and the anode, respectively. Since the electrons are accelerated toward the cathode and the holes are accelerated toward the anode, the recombination between the electrons and the holes is reduced and the collection speed is further increased, thereby increasing the light conversion current. As such, when a plurality of charge layers having different polarities are installed in one solar cell, the effect of strengthening the built-in electric field may be increased.
본 발명에 있어서, '하전층'이란 양(+) 또는 음(-)의 전하량을 갖는 층으로, 하전 입자를 포함하며, 상기 층은 연속적으로 형성되거나, 하전 입자가 불연속적으로 분산된 형태로 형성되거나, 하전 입자가 포함된 부분이 섬(island) 상으로 형성된 것, 양극, 음극 또는 광흡수층에 주입 또는 확산된 것 등을 모두 포함한다.In the present invention, the 'charged layer' is a layer having a positive (+) or negative (-) charge amount, and includes charged particles, and the layer is formed continuously or in a form in which charged particles are discontinuously dispersed. Formed, or the portion containing the charged particles is formed on the island (island), and all that is injected or diffused in the anode, cathode or light absorbing layer and the like.
상기 기판(10)은 소다-라임 유리(soda-lime glass, SLG)를 포함하는 유리 기판, 세라믹 기판, 스테인리스강 기판을 포함하는 금속 기판, 폴리머 기판 등 당해 분야에 사용되는 것은 어떠한 것도 사용할 수 있다.The substrate 10 may be any one used in the art, such as a glass substrate including soda-lime glass (SLG), a ceramic substrate, a metal substrate including a stainless steel substrate, a polymer substrate, and the like. .
상기 하부전극(20)과 상부전극(40)은, 각각 광전효과로 생성된 전자와 정공을 받아들이며 외부로 전달시키기 위한 전극이며, 특히 상기 상부전극(40)은 도전성이 있는 투명한 물질로 형성된 투명전극으로 형성되는 것이 보다 바람직하다. 투명전극으로는 예를 들어, ITO, FTO, ZnO, ATO, PTO, AZO, IZO 와 같은 투명 전도성 산화물이나 칼코지나이드와 같은 물질이 사용될 수 있으며, 본 발명의 하부전극(20)과 상부전극(40)의 특성을 구현할 수 있는 것이라면 그 물질에 제한이 없다.The lower electrode 20 and the upper electrode 40 are electrodes for receiving electrons and holes generated by the photoelectric effect and transferring them to the outside, and the upper electrode 40 is a transparent electrode formed of a transparent transparent material. It is more preferable to form. For example, a transparent conductive oxide such as ITO, FTO, ZnO, ATO, PTO, AZO, IZO, or a material such as chalcogenide may be used as the transparent electrode, and the lower electrode 20 and the upper electrode ( There is no limitation on the material as long as it can realize the characteristics of 40).
상기 광흡수층(30)은 하나 이상의 n-형 반도체층과 하나 이상이 p-형 반도체층이 적층 형성되는 것으로, 상기 n-형 반도체층과 p-형 반도체층 사이에는 추가로 별도의 광흡수층을 구비할 수도 있다. 상기 n-형 반도체층과 p-형 반도체층은 무기물, 유기물, 유기금속화합물, 유무기 복합체 또는 이들의 조합을 포함하는 화합물 반도체를 포함할 수 있으나, 이에 제한되는 것은 아니다.The light absorbing layer 30 is formed by stacking at least one n-type semiconductor layer and at least one p-type semiconductor layer, and an additional light absorbing layer is additionally formed between the n-type semiconductor layer and the p-type semiconductor layer. It may be provided. The n-type semiconductor layer and the p-type semiconductor layer may include a compound semiconductor including an inorganic material, an organic material, an organometallic compound, an organic-inorganic composite, or a combination thereof, but are not limited thereto.
상기 하전층(C)은 양(+) 또는 음(-)으로 대전된 하전 입자를 포함하여, 양(+) 또는 음(-)으로 전하를 띠는 층으로, 광흡수층(30)과의 사이에 내장전계를 형성함으로써, 상기 광흡수층(30)의 반도체 내에서 생성된 전하 캐리어인 전자 또는 정공에 대하여 순방향으로 전기장을 인가하여 전자와 정공 사이의 상호 재결합을 감소시키는 역할을 하는 층이다. 상기 하전층은 양(+) 또는 음(-)으로 전하를 띠는 형태이면 어떠한 형태이든 한정되지 않으며, 예를 들어 하전 입자가 분산된 막 또는 하전 입자가 상기 광흡수층(30)과 하부전극(20) 또는 상부전극(40)의 사이에 분산된 형태로 형성될 수 있다.The charged layer (C) is a layer having positive (+) or negative (-) charges, including charged particles that are positively (+) or negative (-), between the light absorbing layer (30) By forming a built-in electric field in the, it is a layer that serves to reduce the mutual recombination between the electrons and holes by applying an electric field in the forward direction to the electrons or holes that are charge carriers generated in the semiconductor of the light absorption layer 30. The charged layer is not limited to any form as long as it has a positive (+) or negative (-) form. For example, the film or charged particles in which the charged particles are dispersed may have the light absorbing layer 30 and the lower electrode ( 20) or may be formed in a dispersed form between the upper electrodes 40.
상기 하전층을 형성하는 방법으로는, 예를 들어 이온 주입법, 플라즈마 도핑법, 콜로이드 용액 도포법 등의 방법이 사용될 수 있으며, 광흡수층과 전극의 사이에 하전 입자를 도포할 수 있는 방법이라면 특별히 제한되지 않는다.As the method of forming the charged layer, for example, a method such as an ion implantation method, a plasma doping method, a colloidal solution coating method, or the like can be used, and any method that can apply the charged particles between the light absorption layer and the electrode is particularly limited. It doesn't work.
상기 이온 주입법의 경우, 상온에서 금속 또는 비금속을 포함한 고체상의 물질로부터 이온을 발생시키기 위한 이온 발생 장치를 이용할 수 있으며, 상온에서 발생시키고자 하는 이온의 기본 입자들을 포함하는 고체상의 물질인 타겟(target)을 이용하여 기본 입자들을 방출시키고, 이오나이저를 이용하여 방출되는 전자를 상기 기본입자들에 충돌시킴으로써 상기 기본 입자들이 이온화하는 단계와, 생성된 플라즈마 상태의 이온들에 일정한 방향성 및 속도를 부여하여 이온빔(ion beam)화 될 수 있도록 상기 이온들에 고전압을 걸어주는 이온 가속 단계를 포함하여 이온을 주입하는 방법을 적용할 수 있다. 이때, 상기 이오나이저는 필라멘트를 가열하여 열전자를 방출시키는 기구이다. 이때, 양이온의 이온 물질 타겟으로는 Na, Mg, Al, Si 등의 일반 금속과 Ti, Cr, Zn, Ti, Cr, Fe, Ni, Cu, Zn 등의 전이 금속 물질이 사용될 수 있으며, 음이온의 이온 물질 타겟으로는 O, P, S, As, Se 등의 비금속 물질이 사용될 수 있다. 구체적으로, 상기 이온 물질 타겟으로부터 기본입자들을 방출시키기 위해서는 화학 반응성이 낮은 비활성 기체인 산소, 질소, 헬륨, 네온, 아르곤 등을 고전압으로 가속시켜서 플라즈마를 발생시키고 비활성 기체의 플라즈마를 이온 물질 타겟에 충돌시켜서 기본입자를 방출시킨다. 이온 물질 타겟이 금속인 경우, 플라즈마 발생을 위하여 직류(DC) 전압을 인가할 수 있으며, 비금속일 경우는 직류전압 대신 반복적인 사이클을 가지는 교류전압, 특히 RF 전력을 걸어주는 것이 바람직하다. 이후 태양전지에 하전 입자 물질 층을 형성하기 위해서는 이온 기체와 같은 플라즈마 상태 중의 이온들이 일정한 방향성과 속도를 갖는 이온빔화 되도록 하는 것이 필요하다. 이러한 이온빔 형성을 위해서는 적어도 두 개 이상의 전극으로 구성된 이온 가속 전극을 사용하여 80~150㎸ 범위의 전압을 인가하여 이온을 주입할 수 있다. 이 가속 전압이 높을수록 금속 이온빔의 속도가 증가하고 이에 따라 이온 주입 깊이도 깊어질 수 있다. 또한, 금속 이온 또는 비금속 이온 등을 이온 주입하여 하전층을 형성하는 것은, 광흡수층을 형성하고 투명전극을 전면에 형성한 다음에 이온 주입을 실시하는 것을 포함한다. 이 경우에, 투명전극 재료의 이온빔 투과 특성을 고려하여 상부의 투명전극 층과 하부의 광흡수층 사이의 계면 또는 투명전극 내부에 이온 주입층이 형성될 수 있도록 가속 전압을 선택하여 주입 깊이를 조절한다.In the ion implantation method, an ion generating device for generating ions from a solid phase material including a metal or a nonmetal at room temperature may be used, and a target that is a solid phase material including basic particles of ions to be generated at room temperature. ) To emit the basic particles, and ionize the basic particles by bombarding the electrons emitted using the ionizer to the basic particles, and to give the generated ions in the plasma state a constant direction and speed A method of implanting ions may be applied including an ion acceleration step of applying a high voltage to the ions so as to be ion beams. At this time, the ionizer is a mechanism that emits hot electrons by heating the filament. In this case, as the ionic material target of the cation, general metals such as Na, Mg, Al, and Si, and transition metal materials such as Ti, Cr, Zn, Ti, Cr, Fe, Ni, Cu, and Zn may be used. As the ionic material target, nonmetallic materials such as O, P, S, As, and Se may be used. Specifically, in order to release the basic particles from the ionic material target, to generate a plasma by accelerating an inert gas of low chemical reactivity, such as oxygen, nitrogen, helium, neon, argon, etc. to a high voltage and impinge the plasma of the inert gas to the ionic material target To release the basic particles. When the ionic material target is a metal, a direct current (DC) voltage may be applied to generate plasma, and in the case of a non-metal, it is preferable to apply an alternating voltage having a repetitive cycle, in particular RF power, instead of the direct voltage. Then, in order to form a charged particle material layer in the solar cell, it is necessary to allow ions in a plasma state such as an ionic gas to be ion beams having a constant directivity and velocity. In order to form the ion beam, ions may be implanted by applying a voltage in the range of 80 to 150 kW using an ion acceleration electrode composed of at least two electrodes. The higher the acceleration voltage, the higher the speed of the metal ion beam and thus the deeper the ion implantation depth. In addition, forming a charged layer by ion implantation of metal ions or nonmetal ions, etc. includes forming a light absorption layer, forming a transparent electrode on the entire surface, and then performing ion implantation. In this case, the implantation depth is adjusted by selecting an acceleration voltage so that an ion implantation layer can be formed in the interface between the upper transparent electrode layer and the lower light absorbing layer or in the transparent electrode in consideration of the ion beam transmission characteristic of the transparent electrode material. .
상기 플라즈마 도핑(plasma doping)법의 경우, 하전 입자 제조를 위한 기본물질을 포함하는 전구체(precursor) 기체를 원료로 이용하여 플라즈마를 형성하여 하전층을 형성하며, 상기 플라즈마 도핑 방법에 있어서도 이온 주입법과 유사하게 플라즈마 발생을 위하여 Na, Mg, Al, Si 등의 일반 금속과 Ti, Cr, Fe, Ni, Cu, Zn 등의 전이 금속 물질을 포함하는 전구체 기체를 이용할 수 있으며, 비금속 물질로서는 O, P, S, As, Se 등의 물질을 포함하는 전구체 기체를 이용할 수 있으며, 반드시 이들 물질에 제한되는 것은 아니다. 또한, 상기 플라즈마 도핑 후에는 추가로 열처리를 수행할 수 있다. 이때, 열처리는 N2, Ar 및/또는 공기 분위기로 300℃ 이상의 온도에서 1분 이상 가열하는 방법을 사용할 수 있다.In the case of the plasma doping method, a plasma is formed by using a precursor gas containing a base material for preparing charged particles as a raw material to form a charged layer, and the ion doping method also in the plasma doping method. Similarly, a precursor gas containing a general metal such as Na, Mg, Al, and Si and transition metal materials such as Ti, Cr, Fe, Ni, Cu, and Zn may be used for plasma generation. As a nonmetal material, O, P Precursor gases including materials such as S, As, Se, and the like may be used, but are not necessarily limited to these materials. In addition, heat treatment may be further performed after the plasma doping. At this time, the heat treatment may be a method of heating for at least 1 minute at a temperature of 300 ℃ or more in N 2 , Ar and / or air atmosphere.
상기 콜로이드 용액 도포법의 경우, 상기 콜로이드 용액은 하전 입자가 유체 내에 분산되어 콜로이드 상태로 존재하는 용액을 도포하고 건조하는 방법으로 형성할 수 있으며, 상기 하전 입자로는 양전하를 띠는 흑색입자 또는 음전하를 띠는 백색입자가 사용될 수 있으나, 반드시 이에 제한되지 않는다. 이때, 상기 하전 입자는 10㎚~100㎚정도의 직경을 가질 수 있으며, 30㎚~50㎚의 직경을 갖는 것이 바람직하다.In the colloidal solution coating method, the colloidal solution may be formed by coating and drying a solution in which charged particles are dispersed in a fluid and present in a colloidal state, and the charged particles may be positively charged black particles or negative charges. White particles may be used, but are not necessarily limited thereto. At this time, the charged particles may have a diameter of about 10nm ~ 100nm, preferably has a diameter of 30nm ~ 50nm.
상기 하전 입자는 흑색 및 백색 기본입자가 전하를 갖도록 대전된 것으로, 주쇄(backbone)와 주쇄에 결합된 측쇄(side chain)를 포함하는 고분자 바인더(binder)가 기본입자의 주변을 감싸도록 형성되게 할 수 있다. 주쇄와 측쇄로 이루어지는 바인더는 기본입자에 전하를 부여하고, 입자의 전하의 종류를 결정하는 역할을 하며, 이러한 바인더에 의해 기본 입자는 양(+) 또는 음(-)의 전하를 띄는 하전 입자가 된다. 이때, 상기 하전 입자는 주쇄와 측쇄가 서로 동일한 극성기를 갖거나, 또는 서로 반대 극성을 갖는 극성기를 가지며, 주쇄와 측쇄의 극성기의 수 그리고 전하 조절제(charge control agent, CCA)의 극성과 양 중 적어도 하나의 조건을 설정함으로써, 입자의 대전 극성 및 전하량을 제어할 수 있다. 즉, 전하 조절제의 극성을 양(+) 또는 음(-)으로 설정함으로써, 최종적으로 얻어지는 하전 입자의 대전 극성을 양(+) 또는 음(-)으로 각각 제어할 수 있다. 또한, 전하 조절제의 양을 증대시켜 최종적으로 얻어지는 하전 입자의 전하량을 증대시킬 수도 있고, 주쇄 및 측쇄의 극성기의 수를 많게 함으로써 최종적으로 얻어지는 하전 입자의 전하량을 증대시킬 수 있으며, 주쇄 및 측쇄의 극성기의 수를 통해 대전 극성을 양(+) 또는 음(-)으로 각각 제어할 수도 있다.The charged particles are charged so that the black and white base particles have a charge, so that a polymer binder including a backbone and a side chain bonded to the main chain may be formed to surround the base particles. Can be. The binder consisting of the main chain and the side chain gives a charge to the basic particles and determines the type of charge of the particles. The binder allows the basic particles to be charged with positive or negative charges. do. In this case, the charged particles have the same polar group of the main chain and the side chain, or have a polar group having the opposite polarity, at least of the number of polar groups of the main chain and the side chain and the polarity and amount of the charge control agent (CCA) By setting one condition, the charging polarity and the charge amount of the particles can be controlled. That is, by setting the polarity of the charge control agent to be positive (+) or negative (-), the charging polarity of the finally-charged charged particles can be controlled to be positive (+) or negative (-), respectively. In addition, the amount of charge control agent can be increased to increase the amount of charge of the finally obtained charged particles, and the amount of charge of the finally charged particles can be increased by increasing the number of polar groups in the main chain and the side chain, and the polar groups in the main chain and the side chain can be increased. It is also possible to control the charging polarity positively or negatively through the number of.
상기 하전 입자 형성을 위한 기본입자로는 산화티타늄(TiO2), 산화아연(ZnO), 산화텅스텐(WO3), 산화지르코늄(ZrO), 산화규소(SiO2) 등을 사용할 수 있으나, 화학적 안정성, 취급의 용이성, 저렴한 가격을 가지고 있는 산화티타늄(TiO2)을 사용하는 것이 바람직하다. 그러나 산화티타늄(TiO2)은 자외선에 대하여 광화학적 활성을 일으키므로 자외선 자체에 노출될 경우 변색과 열화가 촉진되게 되므로 자외선 차단층을 부가적으로 피복할 수 있다. 상기 자외선 차단층은 산화규소(SiO2), 산화알루미늄(Al2O3), 산화지르코늄(ZrO2), 산화텅스텐(WO3), 산화몰리브덴(MoO3) 등의 산화물 반도체를 적용하는 것을 포함할 수 있다.Titanium oxide (TiO 2 ), zinc oxide (ZnO), tungsten oxide (WO 3 ), zirconium oxide (ZrO), silicon oxide (SiO 2 ), and the like may be used as basic particles for forming charged particles. It is preferable to use titanium oxide (TiO 2 ) which has ease of handling and low price. However, since titanium oxide (TiO 2 ) causes photochemical activity with respect to ultraviolet rays, discoloration and deterioration are promoted when the ultraviolet rays are exposed to the ultraviolet rays themselves. The UV blocking layer includes applying an oxide semiconductor such as silicon oxide (SiO 2 ), aluminum oxide (Al 2 O 3 ), zirconium oxide (ZrO 2 ), tungsten oxide (WO 3 ), molybdenum oxide (MoO 3 ), or the like. can do.
산화티타늄 하전 입자를 제조하는 과정은 다음과 같다. 먼저, 용제에 주쇄와 측쇄를 포함하는 고분자 수지와 산화티타늄 기본입자를 1차 분산시켜 콜로이드 용액을 형성한다.The process for producing the titanium oxide charged particles is as follows. First, a polymer resin including a main chain and a side chain and a titanium oxide basic particle are first dispersed in a solvent to form a colloidal solution.
여기서, 고분자 수지는 바인더 역할을 할 수 있는 것으로, 이를 위하여 열가소성을 가지거나, 분자량이 작아 성형이 쉬운 고분자 수지가 유리하다. 여기서, 주쇄를 이루는 고분자수지는 폴리스틸렌계(polystyrene), 아크릴계 수지(acrylic resin), 우레탄 에스테르계(urethane ester), 폴리아미드계 (polyamide), 폴리 메타메틸 아크릴레이트계(polymethmethyl acrylate), 불포화폴리에스테르계(unsaturated polyester), 수분산성 폴리에스테르계(water dispersive polyester) 등으로 이루어질 수 있으며, 이들 중의 1 종 또는 2 종 이상을 조합시켜 사용할 수 있다.Here, the polymer resin may serve as a binder, and for this purpose, a polymer resin having thermoplasticity or having a low molecular weight is easy to mold. Here, the polymer resin constituting the main chain is polystyrene, acrylic resin, urethane ester, polyamide, polymethmethyl acrylate, unsaturated polyester It may be made of an unsaturated polyester, water dispersive polyester and the like, and may be used in combination of one or two or more of them.
그리고, 주쇄에 결합된 측쇄는 주쇄와 동일한 물질로 이루어지거나 또는 다른 극성기를 갖도록 형성될 수 있으며, 폴리비닐알코올계(polyvinyl alcohol), 폴리카보네이트계(polycarbonate), 실리콘계(silicon), 설포닐계(sulfonyl) 금속염, 아민(amine) 등의 1종을 더욱 포함할 수 있다. 이러한, 주쇄와 측쇄는 전하 조절제와 반응할 수 있는 극성기가 부분적으로 접합되어 있는 가교되지 않은 상태주쇄와 측쇄는 서로 동일한 극성기를 갖거나, 서로 반대 극성을 갖는 극성기를 갖는다.In addition, the side chain bonded to the main chain may be formed of the same material as the main chain or have a different polar group, and may be polyvinyl alcohol, polycarbonate, silicone, sulfonyl ) May further include one kind, such as a metal salt or an amine. Such a main chain and a side chain have an uncrosslinked state backbone and side chain in which a polar group capable of reacting with a charge control agent is partially bonded to each other, or have polar groups having opposite polarities to each other.
이때, 주쇄와 측쇄의 극성기의 수의 조절을 통해, 최종적으로 얻어지는 입자의 전하량을 조절할 수 있다. 즉, 입자의 전하량은 주쇄와 측쇄를 통해 결합되는 전하 조절제의 전하의 양을 통해 조절할 수 있으므로, 주쇄와 측쇄의 극성기의 수의 조절을 통해 주쇄와 측쇄를 통해 서로 결합되는 전하 조절제의 전하의 양을 조절하여, 입자의 전하량을 조절할 수 있다. 그밖에, 주쇄와 측쇄 자체에 결합되는 전하 조절제의 전하의 양을 통해 입자의 전하량을 조절할 수도 있다. 여기서, 주쇄와 측쇄의 극성기는 고분자 수지의 총 중량을 기준으로 1~10%의 중량으로 포함되도록 형성할 수 있다.At this time, by controlling the number of polar groups in the main chain and side chain, it is possible to control the amount of charge of the particles finally obtained. That is, since the amount of charge of the particles can be controlled by the amount of charge of the charge control agent bonded through the main chain and the side chain, the amount of charge of the charge control agent bonded to each other through the main and side chains by controlling the number of polar groups in the main and side chains. By controlling the amount of charge of the particles can be adjusted. In addition, the amount of charge of the particles may be controlled by the amount of charge of the charge control agent bonded to the main chain and the side chain itself. Here, the polar group of the main chain and the side chain may be formed to include 1 to 10% by weight based on the total weight of the polymer resin.
콜로이드 용액은 고분자 수지와 용제 그리고 분산제를 혼합하여, 초음파 분산법, 볼밀법, 메디아밀(mediamill)법, 교반분산법 등을 이용하여 형성한다.The colloidal solution is formed by mixing a polymer resin, a solvent, and a dispersant, using an ultrasonic dispersion method, a ball mill method, a mediamill method, a stirring dispersion method, and the like.
여기서, 용제로서는 에틸아세테이트, 물, 알코올류, 에틸렌 글리콜, 디메틸포름아미드, 또는 이들의 혼합물로 이루어지는 극성용매, 또는 할로겐화 탄화수소 오일, 갈덴(galden), 아이소파(isopar) 계열 물질, 또는 이들의 혼합물로 이루어지는 비극성용매, 또는 극성용매 및 비극성용매의 혼합물을 사용할 수 있다. 대부분의 바인더는 극성 또는 비극성용제에서 분산이 가능하나 바인더의 물리적 성질에 따라 적절한 용제가 선택될 수 있다. 분산제는 HLB(hydrophile lipophile balance)가 3 이상인 계면활성제로, 바람직하게는, 극성 용제를 사용하는 경우에는 분산제로서 bykTM-190, bykTM-183 또는 트윈(tween) 계열의 계면활성제를 사용하고, 비극성 용제를 사용하는 경우에는 상기 분산제로서 bykTM-110, bykTM-161, bykTM-183, 또는 트윈(tween), 스팬(span), OLOA계열(chevron oronite Inc.사제품), Ganex 계열(ISP Inc.사 제품)의 분산제를 사용할 수 있다.Here, as a solvent, a polar solvent consisting of ethyl acetate, water, alcohols, ethylene glycol, dimethylformamide, or a mixture thereof, or halogenated hydrocarbon oil, galden, isopar-based substance, or a mixture thereof. A nonpolar solvent consisting of, or a mixture of a polar solvent and a nonpolar solvent can be used. Most binders can be dispersed in a polar or nonpolar solvent, but an appropriate solvent can be selected according to the physical properties of the binder. The dispersant is a surfactant having a hydrophile lipophile balance (HLB) of 3 or more. Preferably, when a polar solvent is used, a byk TM -190, byk TM -183 or a tween-based surfactant is used as the dispersant. When using a non-polar solvent, as the dispersant, byk TM -110, byk TM -161, byk TM -183, or tween, span, OLOA series (manufactured by Chevron oronite Inc.), Ganex series ( Dispersants from ISP Inc. may be used.
다음 단계는 하전 입자가 포함된 콜로이드용액을 형성하는 과정으로 다음과 같다.The next step is to form a colloidal solution containing charged particles as follows.
주쇄와 측쇄를 포함하는 고분자 수지와 색안료가 1차 분산된 콜로이드 용액에 전하 조절제를 2차 분산시킨다. 이때, 전하 조절제는 주쇄와 측쇄의 극성기의 수에 따라 콜로이드 용액의 총 중량을 기준으로 0.5~50%의 중량의 양으로 포함되도록 형성된다. 여기서, 전하 조절제의 함량이 부족한 경우 대전속도가 느리고 대전량이 많지 않은 문제가 발생할 수 있고, 함량이 50%를 초과하는 경우 지나치게 전하량이 많아져 입자의 안정성이 떨어지는 문제가 있다. 전하 조절제는 양전하 조절제와 음전하 조절제 중 적어도 하나를 포함한다. 본 실시예에서 사용 가능한 전하 조절제로서는 금속 비누(metal soap) 또는 가넥스(Ganex) 계열 등이 있으며, 이들을 혼합하여 사용할 수도 있다. 이때, 전하 조절제의 극성을 선택적으로 조절함으로써, 최종적으로 얻어지는 입자의 대전 극성을 양 또는 음으로 제어할 수 있다.The charge control agent is secondaryly dispersed in the colloidal solution in which the polymer resin including the main chain and the side chain and the color pigment are first dispersed. At this time, the charge control agent is formed to be included in an amount of 0.5 to 50% by weight based on the total weight of the colloidal solution according to the number of polar groups in the main chain and the side chain. In this case, when the content of the charge control agent is insufficient, there may be a problem that the charging speed is low and the charging amount is not large. When the content is more than 50%, the amount of the charge is excessively increased, resulting in a drop in stability of the particles. The charge control agent includes at least one of a positive charge control agent and a negative charge control agent. Examples of the charge control agent that can be used in the present embodiment include metal soap, Ganex series, and the like. At this time, by selectively adjusting the polarity of the charge control agent, it is possible to control the charging polarity of the finally obtained particles positive or negative.
예를 들어 고분자 수지의 주쇄와 측쇄가 양(+)의 극성기를 가질 경우, 음(-)의 극성을 갖는 전하 조절제를 분산시키면, 전하 조절제의 음(-)의 전하를 중심으로 주쇄와 측쇄가 둘러싸는 형태의 입자를 형성하게 되며, 입자는 전하 조절제의 음(-)의 전하의 극성을 띄게 된다. 그리고, 전하 조절제의 양을 조절함으로써, 주쇄와 측쇄의 극성기에 결합되는 전하의 양을 조절할 수 있어, 입자의 극성의 전하량을 조절할 수 있다. 즉, 주쇄 및 측쇄의 극성기의 수와 전하 조절제의 양의 조절을 통해 원하는 전하량을 갖는 하전 입자를 얻게 되는 것이다.For example, when the main chain and the side chain of the polymer resin have a positive polar group, when the charge control agent having a negative polarity is dispersed, the main chain and the side chain may be formed around the negative charge of the charge control agent. The particles form enclosing shapes, and the particles become polar in the negative charge of the charge control agent. And, by adjusting the amount of the charge control agent, it is possible to control the amount of charge coupled to the polar groups of the main chain and side chain, it is possible to control the amount of charge of the polarity of the particles. That is, charged particles having a desired amount of charge are obtained by controlling the number of polar groups in the main and side chains and the amount of the charge control agent.
그 외에도 음 전하는 주쇄와 측쇄의 양(+)의 극성기를 통해 다른 음 전하와 결합할 수 있으므로 이를 통하여 입자의 전하량을 제어하게 된다. 즉, 주쇄와 측쇄의 극성기의 수가 많을 경우 많은 양의 음 전하가 서로 결합되도록 하여, 입자의 전하량을 증대시킬 수 있는 것이다. 이때, 전하 조절제의 양을 조절함으로써, 입자의 전하량을 제어할 수도 있다.In addition, the negative charge can be combined with other negative charges through the positive (+) polar group of the main chain and side chain, thereby controlling the amount of charge of the particles. That is, when the number of polar groups in the main chain and the side chain is large, a large amount of negative charges can be bonded to each other, thereby increasing the amount of charge of the particles. At this time, the amount of charge of the particles may be controlled by adjusting the amount of the charge control agent.
이후 CIGS 광흡수층의 표면에 상기 하전 입자가 분산된 콜로이드 용액을 도포한다. 상기 콜로이드 용액을 형성하는 방법으로는 화학적 용액 성장(chemical bath deposition; CBD), 스핀 코팅(spin coating), 닥터 블레이드 코팅(doctor-blade coating), 드롭 캐스팅(drop-casting), 스크린 프린팅(screen printing) 및 잉크젯 프린팅(inkjet printing) 등의 습식 코팅 방법을 이용할 수 있다.Then, the colloidal solution in which the charged particles are dispersed is coated on the surface of the CIGS light absorbing layer. The method of forming the colloidal solution may include chemical bath deposition (CBD), spin coating, doctor-blade coating, drop-casting, and screen printing. ) And wet coating methods such as inkjet printing can be used.
한편, 이상에서는 하전 입자 제조를 위한 기본입자로 상기 산화물 또는 산화물 반도체 외에도, 카본 블랙, 티탄 블랙 등의 무기 안료나, 아닐린 블랙 등의 유기 안료를 반응용기에 이온교환수와 첨가하여 가수분해 침전물을 형성시킨 후, 침전물을 분리한 뒤 축중합반응과 건조 단계를 거쳐 기본입자를 이용하는 방법도 사용될 수 있다.On the other hand, in addition to the above-described oxide or oxide semiconductor, inorganic pigments such as carbon black, titanium black, or organic pigments such as aniline black are added to the reaction vessel with ion-exchanged water as the basic particles for preparing charged particles. After the formation of the precipitate, the precipitate may be separated, and then subjected to condensation polymerization and drying.
[실시예]EXAMPLE
본 발명의 일 실시형태에 따른 하전층을 포함하는 CIGS계 박막 태양전지는 다음과 같은 과정을 통해 제조될 수 있다.CIGS-based thin film solar cell including a charge layer according to an embodiment of the present invention can be manufactured through the following process.
먼저, SLG 유리 기판상에, 스퍼터링 방법을 사용하여 Mo 층을 약 1㎛ 두께로 증착하여 하부전극을 형성한다. 이어서 p-n 접합(junction) 구조 또는 임의의 도전형을 갖는 CIGS 박막을 약 2㎛ 두께로 증착하여 광흡수층을 형성한다. 여기서 임의의 도전형을 갖는 반도체 기판으로는 n형, p형, i형(진성) 반도체 물질 중에서 한 가지 또는 이들의 조합을 이용하는 것을 포함한다.First, on the SLG glass substrate, a Mo layer is deposited to a thickness of about 1 μm using a sputtering method to form a lower electrode. Subsequently, a CIGS thin film having a p-n junction structure or any conductive type is deposited to a thickness of about 2 μm to form a light absorption layer. Here, the semiconductor substrate having any conductivity type includes using one or a combination of n-type, p-type, and i-type (intrinsic) semiconductor materials.
상기 CIGS 박막을 형성하는 방법은 공지된 모든 방법을 적용할 수 있으며, 특별히 한정되지는 않는다. 예를 들면, 스프레이법, 초음파 스프레이법, 스핀코팅법, 닥터 블레이드법, 스크린 인쇄법 및 잉크젯 프린팅법 등을 포함하는 비진공 코팅법 중 하나, 또는 스퍼터링법, 동시 스퍼터링법 및 증발 증착법 등을 포함하는 진공 코팅법 중 하나의 방법을 선택하여 수행할 수 있다. 이후 경우에 따라서는 셀렌화 열처리 단계를 적용하여 통해 CIGS 박막 내에 원자의 확산이나 결정 성장을 촉진함으로써 박막의 물성이 개선되도록 하는 공정을 수행할 수도 있다.The method for forming the CIGS thin film may be applied to all known methods, and is not particularly limited. For example, one of the non-vacuum coating methods including the spray method, the ultrasonic spray method, the spin coating method, the doctor blade method, the screen printing method and the inkjet printing method, or the sputtering method, the simultaneous sputtering method and the evaporation deposition method, etc. It can be carried out by selecting one of the vacuum coating method. Thereafter, in some cases, a process of improving the physical properties of the thin film may be performed by promoting the diffusion of atoms or crystal growth in the CIGS thin film by applying a selenization heat treatment step.
다음으로, CIGS 광흡수층의 표면에 윈도우층으로 약 0.5㎛ 두께로 ZnO층을 증착한 다음, 이온 주입법을 이용하여 ZnO층과 CIGS 광흡수층사이의 계면에서 ZnO층 내부까지의 범위 안에 하전 입자층이 형성되도록 금속 양이온을 이온 주입한다. 이때, 바람직하게는 Cu 이온을 100~120㎸의 가속전압에서 1×1017~1×1020ions/㎠의 농도로 주입한다.Next, a ZnO layer is deposited on the surface of the CIGS light absorbing layer with a window layer of about 0.5 μm, and then a charged particle layer is formed within the range from the interface between the ZnO layer and the CIGS light absorbing layer to the inside of the ZnO layer by using an ion implantation method. Ion implantation of metal cations as possible. At this time, Cu ions are preferably implanted at a concentration of 1 × 10 17 to 1 × 10 20 ions / cm 2 at an acceleration voltage of 100 to 120 mA.
이후, 상기 윈도우층 상에 약 0.5㎛ 두께의 Al 그리드층을 형성하여 상부전극을 형성함으로써, CIGS 박막 태양전지를 완성한다.Thereafter, an Al grid layer having a thickness of about 0.5 μm is formed on the window layer to form an upper electrode, thereby completing a CIGS thin film solar cell.
본 발명의 실시예에 있어서는 태양전지 내에서 전극과 광흡수층 사이에 하전층을 형성하는 경우의 예를 기술하였으나, 태양전지 외부에 하전층을 직렬로 연결하여 적용할 수도 있다. 즉, 기판-하부전극-광흡수층(또는 p-n 접합 반도체층)-상부전극으로 이루어진 일반적인 태양전지 구조에 있어서, 하부전극 아래쪽 또는 상부전극 위쪽, 또는 이들을 포함하여 양쪽에 하전층이 전극에 직렬로 연결되도록 형성하면 하전층으로부터 발생하는 전기장을 이용하여 태양전지에서 수집되는 전자와 정공에 대하여 내장 전계를 인가하는 효과를 얻을 수 있게 된다. 그 외에도 상부전극이나 하부전극 내부에 하전층을 설치하더라도 유사한 효과를 얻을 수 있다.In the embodiment of the present invention has been described an example of forming a charge layer between the electrode and the light absorbing layer in the solar cell, it can be applied by connecting the charge layer in series to the outside of the solar cell. That is, in a general solar cell structure consisting of a substrate, a lower electrode, a light absorption layer (or a pn junction semiconductor layer), and an upper electrode, a charged layer is connected in series to an electrode below or below the lower electrode, or both. When formed so as to be able to obtain the effect of applying a built-in electric field to the electrons and holes collected in the solar cell using the electric field generated from the charge layer. In addition, similar effects can be obtained by installing a charged layer inside the upper electrode or the lower electrode.
이와 같이 전극 내부나 전극에 인접하여 하전층을 설치하는 경우에도 상기 기술한 하전층의 형성방법을 동일하게 적용할 수 있다. 즉, 음극 내부나 음극 방향으로는 양의 하전층을, 양극 내부나 양극 방향으로는 음의 하전층을 설치한다.In this way, the above-described method of forming the charged layer can also be applied to the case where the charged layer is provided inside or adjacent to the electrode. That is, a positive charged layer is provided inside the cathode or in the direction of the cathode, and a negative charged layer is provided inside the anode or in the direction of the anode.
이상의 실시예에 있어서는 CIGS계 박막 태양전지(여기서 CIGS계 태양전지는 광흡수층 물질이 화합물 반도체 물질로서 M1, M2, X(M1은 Cu, Ag 또는 이들의 조합, M2는 In, Ga, Al, Zn, Ge, Sn 또는 이들의 조합이고, X는 Se, S 또는 이들의 조합임)에 하전 입자 물질을 도입하여 내장 전계를 형성하는 방법을 기술하였으나, 본 발명의 실시예에 따른 방법은, CIGS계, 염료감응형, 유기 태양전지 등의 박막 태양전지는 물론 Si계 태양전지(여기서 Si계 태양전지는 광흡수층 물질이 단결정, 다결정 및 비정질 Si 물질이거나 이들의 조합임) 등 각종 태양전지에 모두 적용될 수 있다.In the above embodiment, the CIGS-based thin film solar cell (where CIGS-based solar cell is a light absorbing layer material is a compound semiconductor material M1, M2, X (M1 is Cu, Ag or a combination thereof, M2 is In, Ga, Al, Zn , Ge, Sn, or a combination thereof, X is Se, S, or a combination thereof), but a method of forming a built-in electric field by introducing a charged particle material is described. Thin film solar cells such as dye-sensitized, organic solar cells, as well as Si-based solar cells (where Si-based solar cells are light-absorbing layer materials are monocrystalline, polycrystalline and amorphous Si materials, or a combination thereof). Can be.
[부호의 설명][Description of the code]
10: 기판10: Substrate
20: 하부전극20: lower electrode
30: 광흡수층30: light absorption layer
40: 상부전극40: upper electrode
C: 하전층C: charged layer

Claims (11)

  1. 상호 대향되게 배치되는 음극과 양극의 사이에 광흡수층이 형성된 태양전지로,A solar cell formed with a light absorption layer between the cathode and the anode disposed to face each other,
    상기 음극 또는 양극의 내부나 이들에 인접하게 배치되며, 양(+) 또는 음(-)의 전하량을 갖는 하전층이 형성된 태양전지.A solar cell disposed inside or adjacent to the cathode or anode and having a charged layer having a positive (+) or negative (−) charge amount.
  2. 제1항에 있어서,The method of claim 1,
    상기 음극의 내부, 상기 음극 중 상기 광흡수층에 면하지 않는 측, 또는 상기 음극과 광흡수층 사이에 양(+)의 전하량을 갖는 하전층이 형성되는 것을 특징으로 하는 태양전지.The charge cell having a positive charge amount is formed inside the cathode, the side of the cathode that does not face the light absorption layer, or between the cathode and the light absorption layer.
  3. 제1항에 있어서,The method of claim 1,
    상기 양극의 내부, 상기 양극 중 상기 광흡수층에 면하지 않는 측, 또는 상기 양극과 광흡수층 사이에 음(-)의 전하량을 갖는 하전층이 형성되는 것을 특징으로 하는 태양전지.The charge cell having a negative (-) charge amount is formed inside the anode, the side of the anode that does not face the light absorbing layer, or between the anode and the light absorbing layer.
  4. 제1항에 있어서,The method of claim 1,
    상기 음극의 내부, 상기 음극 중 상기 광흡수층에 면하지 않는 측, 또는 상기 음극과 광흡수층 사이에 양(+)의 전하량을 갖는 제1 하전층이 형성되고,A first charged layer having a positive charge amount is formed inside the cathode, a side of the cathode not facing the light absorbing layer, or between the cathode and the light absorbing layer,
    상기 양극의 내부, 상기 양극 중 상기 광흡수층에 면하지 않는 측, 또는 상기 양극과 광흡수층 사이에 음(-)의 전하량을 갖는 제2 하전층이 형성되는 것을 특징으로 하는 태양전지.And a second charged layer having a negative charge amount inside the anode, a side of the anode not facing the light absorbing layer, or between the anode and the light absorbing layer.
  5. 제1항에 있어서,The method of claim 1,
    상기 음극 또는 양극의 광흡수층에 면하는 내측 또는 상기 음극 또는 양극의 광흡수층에 면하지 않는 외측에 상기 하전층이 직렬로 연결되어 형성되는 것을 특징으로 하는 태양전지.The solar cell, characterized in that the charge layer is formed in series on the inner side facing the light absorption layer of the cathode or anode or the outer side not facing the light absorption layer of the cathode or anode.
  6. 제1항에 있어서,The method of claim 1,
    상기 하전층에는 직경 0.1㎚~100㎚의 하전 입자가 포함되는 것을 특징으로 하는 태양전지.The charged layer is a solar cell, characterized in that charged particles having a diameter of 0.1nm ~ 100nm.
  7. 제1항에 있어서,The method of claim 1,
    상기 광흡수층은 p-n 접합 반도체, p형 반도체, n형 반도체 및 진성(i형)반도체 중의 어느 하나인 것을 특징으로 하는 태양전지.The light absorbing layer is a solar cell, characterized in that any one of p-n junction semiconductor, p-type semiconductor, n-type semiconductor and intrinsic (i-type) semiconductor.
  8. 상호 대향되게 배치되는 음극과 양극의 사이에 광흡수층이 형성된 태양전지의 제조방법으로,In the manufacturing method of the solar cell formed with a light absorption layer between the cathode and the anode disposed to face each other,
    양(+) 또는 음(-)의 전하량을 갖는 하전층을 상기 음극 또는 양극의 내부나 이들에 인접하도록 형성하는 것을 특징으로 하는 태양전지의 제조방법.A method of manufacturing a solar cell, characterized in that the charge layer having a positive or negative charge amount is formed to be inside or adjacent to the cathode or anode.
  9. 제8항에 있어서,The method of claim 8,
    상기 하전층은 이온 주입법, 플라즈마 도핑법, 또는 습식법에 의해 형성되는 것을 특징으로 하는 태양전지의 제조방법.The charged layer is a method of manufacturing a solar cell, characterized in that formed by ion implantation, plasma doping, or wet method.
  10. 제9항에 있어서,The method of claim 9,
    상기 습식법은, 콜로이드 용액 도포법인 것을 특징으로 하는 태양전지의 제조방법.The wet method is a method of manufacturing a solar cell, characterized in that the colloidal solution coating method.
  11. 제8항 내지 제10항 중 어느 한 항에 있어서,The method according to any one of claims 8 to 10,
    상기 하전층은 양(+) 또는 음(-)의 전하량을 갖는 하전 입자를 포함하는 것을 특징으로 하는 태양전지의 제조방법.The charged layer is a manufacturing method of a solar cell, characterized in that it comprises charged particles having a positive (+) or negative (-) amount of charge.
PCT/KR2014/010028 2013-10-31 2014-10-23 Solar cell and manufacturing method thereof WO2015064959A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2013-0130723 2013-10-31
KR20130130723 2013-10-31
KR1020140058483A KR20150050315A (en) 2013-10-31 2014-05-15 Solar cells and manufacturing method for the same
KR10-2014-0058483 2014-05-15

Publications (1)

Publication Number Publication Date
WO2015064959A1 true WO2015064959A1 (en) 2015-05-07

Family

ID=53004499

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/010028 WO2015064959A1 (en) 2013-10-31 2014-10-23 Solar cell and manufacturing method thereof

Country Status (1)

Country Link
WO (1) WO2015064959A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61206270A (en) * 1985-03-08 1986-09-12 Sanyo Electric Co Ltd Photovoltaic device
JPH03285360A (en) * 1990-03-31 1991-12-16 Mitsubishi Materials Corp Solar cell
KR20100021540A (en) * 2008-08-16 2010-02-25 다이나믹솔라디자인 주식회사 High efficiency solar cells
KR20100119516A (en) * 2009-04-30 2010-11-09 한양대학교 산학협력단 Silicon solar cell including carbon nanotube layer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61206270A (en) * 1985-03-08 1986-09-12 Sanyo Electric Co Ltd Photovoltaic device
JPH03285360A (en) * 1990-03-31 1991-12-16 Mitsubishi Materials Corp Solar cell
KR20100021540A (en) * 2008-08-16 2010-02-25 다이나믹솔라디자인 주식회사 High efficiency solar cells
KR20100119516A (en) * 2009-04-30 2010-11-09 한양대학교 산학협력단 Silicon solar cell including carbon nanotube layer

Similar Documents

Publication Publication Date Title
WO2009145418A1 (en) Bulk heterojunction solar cell and method of manufacturing the same
WO2013042967A1 (en) Solar cell and method of fabricating the same
WO2015119380A1 (en) Solar cell with improved visibility and method for manufacturing same
WO2012115392A2 (en) Solar cell having a double-sided structure, and method for manufacturing same
JP2011205098A (en) Thin film photovoltaic cell
WO2014010926A1 (en) Method for forming cigs light absorption layer for solar cell and cigs solar cell
WO2012138194A2 (en) Solar cell and manufacturing method thereof
WO2013058540A1 (en) Solar cell apparatus and method of fabricating the same
WO2015160069A1 (en) Method for preparing light absorbing layer of thin-film solar cell, and thin-film solar cell using same
WO2013151313A1 (en) Solar cell apparatus and method of fabricating the same
WO2012002602A1 (en) Synthetic light-emitting converter for a polycrystalline silicon solar cell, and solar cell based thereon
WO2013058459A1 (en) Solar cell module and preparing method of the same
WO2013055008A1 (en) Solar cell and solar cell module
CN107732014B (en) Solar cell based on ternary inorganic body type heterojunction thin film and preparation method thereof
WO2013085372A1 (en) Solar cell module and method of fabricating the same
WO2021107184A1 (en) Monolithic tandem solar cell and method for producing same
WO2013058521A1 (en) Solar cell and method of fabricating the same
WO2015064959A1 (en) Solar cell and manufacturing method thereof
WO2011049270A1 (en) Hetero-junction solar cell and a fabrication method therefor
EP2668668A2 (en) Solar cell apparatus and method of fabricating the same
WO2013051854A2 (en) Solar cell and solar cell module using the same
WO2013058611A1 (en) Solar cell and method of fabricating the same
WO2013055005A1 (en) Solar cell and preparing method of the same
KR20150050315A (en) Solar cells and manufacturing method for the same
WO2013019028A2 (en) Solar cell and method of fabricating the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14859128

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14859128

Country of ref document: EP

Kind code of ref document: A1