JPH06310742A - Fabrication of photovoltaic element - Google Patents

Fabrication of photovoltaic element

Info

Publication number
JPH06310742A
JPH06310742A JP5101411A JP10141193A JPH06310742A JP H06310742 A JPH06310742 A JP H06310742A JP 5101411 A JP5101411 A JP 5101411A JP 10141193 A JP10141193 A JP 10141193A JP H06310742 A JPH06310742 A JP H06310742A
Authority
JP
Japan
Prior art keywords
electrode
photovoltaic
pinhole
transparent electrode
photovoltaic element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5101411A
Other languages
Japanese (ja)
Inventor
Keiichi Sano
景一 佐野
Satoshi Ishida
聡 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP5101411A priority Critical patent/JPH06310742A/en
Publication of JPH06310742A publication Critical patent/JPH06310742A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Abstract

PURPOSE:To enhance the conversion efficiency and the production yield of a photovoltaic element by immersing the photovoltaic element into an acidic or alkaline aqueous solution thereby removing the second electrode in a pinhole. CONSTITUTION:When a photovoltaic layer 22 is formed on a transparent electrode 20, a pinhole 24 is made in the photovoltaic layer 22. When a transparent electrode 26 is formed on the photovoltaic layer, the photovoltaic electrode 26 enters into the pinhole 24 and short-circuited to the transparent electrode 20. In order to solve the problem, a photovoltaic power element 30 is immersed into an acidic or alkaline aqueous solution until the transparent electrode 26 formed in the pinhole 24 is dissolved. Since the metal layer 16 has higher ionization tendency than the transparent electrode 26, the metal layer 16 is dissolved preferentially and excess electrons are stored. The electrons flow through the pinhole 24 to the transparent electrode 26 which is locally corroded through chemical battery function thus preventing short circuit of the transparent electrodes 20, 26.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は光起電力素子の製造方
法に関し、特にたとえば太陽電池に用いられる光起電力
素子の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a photovoltaic element, and more particularly to a method for manufacturing a photovoltaic element used in, for example, a solar cell.

【0002】[0002]

【従来の技術】従来から光起電力素子には、安価でかつ
容易に大面積の素子を形成できる非晶質半導体薄膜が用
いられてきた。
2. Description of the Related Art Conventionally, an amorphous semiconductor thin film has been used for a photovoltaic device, which is inexpensive and can easily form a large-area device.

【0003】[0003]

【発明が解決しようとする課題】しかし、非晶質半導体
薄膜を用いた従来技術では、非晶質半導体薄膜の作成時
に、非晶質半導体薄膜に微少なピンホールが形成され、
このピンホールによって非晶質半導体薄膜の両面の表面
電極と裏面電極とが短絡しリーク電流が流れることか
ら、変換効率や歩留まりが低下するという問題点があっ
た。さらに、大面積の光起電力素子を得ようとすれば、
さらに歩留まりが悪くなっていた。
However, in the prior art using the amorphous semiconductor thin film, minute pinholes are formed in the amorphous semiconductor thin film when the amorphous semiconductor thin film is formed,
Due to this pinhole, the front surface electrode and the back surface electrode on both surfaces of the amorphous semiconductor thin film are short-circuited and a leak current flows, so that there is a problem that the conversion efficiency and the yield are reduced. Furthermore, if one tries to obtain a large-area photovoltaic element,
Furthermore, the yield was getting worse.

【0004】そこで、たとえば特開昭58−4984号
公報で提案されているように、ピンホールのリーク電流
を減少させるために、溶液中で電圧を印加する技術など
があるが、絶縁コートの形成や導線の接続など手順が複
雑になってしまうという問題点があった。それゆえに、
この発明の主たる目的は、光起電力素子の変換効率およ
び歩留まりを容易に向上できる、光起電力素子の製造方
法を提供することである。
Therefore, as proposed in, for example, Japanese Patent Laid-Open No. 58-4984, there is a technique of applying a voltage in a solution in order to reduce the leak current of a pinhole. There was a problem that the procedure such as connecting wires and conducting wires became complicated. Hence,
A main object of the present invention is to provide a method for manufacturing a photovoltaic element, which can easily improve the conversion efficiency and yield of the photovoltaic element.

【0005】[0005]

【課題を解決するための手段】この発明は、基板,基板
上に配置されかつ光起電力層および光起電力層の基板側
主面と他方主面とにそれぞれ形成される第1電極と金属
を含む第2電極とを含む光起電力素子の製造方法におい
て、第2電極に含まれる金属よりイオン化傾向の高い導
体を第1電極の少なくとも一部に接触させた状態の光起
電力素子を、酸性またはアルカリ性水溶液中に所定条件
下で浸漬することによって、光起電力層のピンホール中
の第2電極を除去することを特徴とする、光起電力素子
の製造方法である。
According to the present invention, there is provided a substrate, a first electrode disposed on the substrate, and a first electrode and a metal which are respectively formed on the substrate-side main surface and the other main surface of the photovoltaic layer. In the method for manufacturing a photovoltaic element including a second electrode including, a photovoltaic element in a state in which a conductor having a higher ionization tendency than a metal included in the second electrode is in contact with at least a part of the first electrode, A method of manufacturing a photovoltaic element, comprising removing the second electrode in a pinhole of the photovoltaic layer by immersing the second electrode in an acidic or alkaline aqueous solution under predetermined conditions.

【0006】[0006]

【作用】導体を第1電極に接触させた状態で、光起電力
素子を酸性またはアルカリ性水溶液中に所定条件下で浸
漬する。すると、導体は第2電極に含まれる金属よりも
イオン化傾向が高いために、第2電極に含まれる金属よ
り優先的に溶解し、過剰な電子が蓄積される。この電子
は、第1電極中を通ってピンホール中の第2電極へ流れ
る。すると、化学電池作用によって第2電極は局所的に
腐食し、ピンホール中の第2電極は除去される。したが
って、第1電極と第2電極とがピンホールを介して短絡
することはない。
The photovoltaic element is immersed in an acidic or alkaline aqueous solution under predetermined conditions with the conductor in contact with the first electrode. Then, since the conductor has a higher ionization tendency than the metal contained in the second electrode, the conductor is preferentially dissolved over the metal contained in the second electrode, and excess electrons are accumulated. The electrons flow through the first electrode to the second electrode in the pinhole. Then, the second electrode is locally corroded by the action of the chemical cell, and the second electrode in the pinhole is removed. Therefore, the first electrode and the second electrode are not short-circuited via the pinhole.

【0007】[0007]

【発明の効果】この発明によれば、変換効率が高くかつ
歩留まりのよい光起電力素子が容易に得られる。この発
明の上述の目的,その他の目的,特徴および利点は、図
面を参照して行う以下の実施例の詳細な説明から一層明
らかとなろう。
According to the present invention, a photovoltaic element having a high conversion efficiency and a high yield can be easily obtained. The above-mentioned objects, other objects, features and advantages of the present invention will become more apparent from the following detailed description of the embodiments with reference to the drawings.

【0008】[0008]

【実施例】図8を参照して、この実施例の光起電力素子
10の構造をまず簡単に説明する。この光起電力素子1
0は、矢印a方向から照射された光を電気エネルギに変
換するいわゆる逆タイプに構成される。光起電力素子1
0は、基板12を含み、基板12上には透光性電極14
が形成される。透光性電極14上の一端には導体である
金属層16が形成され、透光性電極14上には金属層1
6と接触するように金属反射膜18が形成される。金属
反射膜18上には裏面電極となる透光性電極20が形成
され、透光性電極20上には光起電力層22が形成され
る。光起電力層22はピンホール24を有し、光起電力
層22上には表面電極となる透光性電極26が形成され
る。
EXAMPLE The structure of the photovoltaic element 10 of this example will first be briefly described with reference to FIG. This photovoltaic element 1
0 is configured as a so-called reverse type that converts light emitted from the direction of arrow a into electric energy. Photovoltaic element 1
0 includes the substrate 12, and the transparent electrode 14 is provided on the substrate 12.
Is formed. A metal layer 16 which is a conductor is formed on one end of the transparent electrode 14, and the metal layer 1 is formed on the transparent electrode 14.
The metal reflection film 18 is formed so as to be in contact with 6. A transparent electrode 20 serving as a back electrode is formed on the metal reflective film 18, and a photovoltaic layer 22 is formed on the transparent electrode 20. The photovoltaic layer 22 has a pinhole 24, and a transparent electrode 26 serving as a surface electrode is formed on the photovoltaic layer 22.

【0009】この実施例の光起電力素子10は、図1か
ら図8に示す工程を経て製造される。まず、図1に示す
ように、ガラスやSUS(ステンレス)などからなる基
板12上に、ITO(酸化錫インジウム)やZnOなど
の透明導電膜からなる透光性電極14が形成される。次
いで、図2に示すように、透光性電極14の周辺部に透
光性電極26に含まれる金属よりイオン化傾向が高いA
lなどの金属層16が形成される。またこの実施例で
は、金属層16は透光性電極20よりイオン化傾向が高
い。
The photovoltaic element 10 of this embodiment is manufactured through the steps shown in FIGS. First, as shown in FIG. 1, a transparent electrode 14 made of a transparent conductive film such as ITO (indium tin oxide) or ZnO is formed on a substrate 12 made of glass or SUS (stainless steel). Next, as shown in FIG. 2, in the peripheral portion of the transparent electrode 14, the ionization tendency A higher than that of the metal contained in the transparent electrode 26
A metal layer 16 such as 1 is formed. Also, in this embodiment, the metal layer 16 has a higher ionization tendency than the translucent electrode 20.

【0010】次いで、図3に示すように、透光性電極1
4上に、金属層16と接触するように金属反射膜18が
形成される。金属反射膜18は、光を反射するフォトリ
フレクタとして機能するため、光の反射率の高い銀,チ
タン,Alなどが用いられる。なお、金属層16は、金
属反射膜18と接続されるならば、いかなる位置に形成
されてもよい。そして、図4に示すように、金属反射膜
18上に、たとえばITOやZnOなどの透明導電膜か
らなる透光性電極20が形成される。このように、金属
反射膜18を透光性電極14および20で挟むことによ
って、この3層と基板12や光起電力層22との接着性
が良くなる。なお、基板12にSUSを用いる場合に
は、基板12上に金属反射膜18を直接形成し、さらに
その上に透光性電極20を形成する2層構造としてもよ
い。また、隣接する部材との接着性が良くかつ電極およ
び反射板としての役割を果たせるならば、金属反射膜1
8を単層で基板12上に形成してもよい。
Next, as shown in FIG. 3, the transparent electrode 1
A metal reflection film 18 is formed on the metal layer 4 so as to be in contact with the metal layer 16. Since the metal reflection film 18 functions as a photo reflector that reflects light, silver, titanium, Al, or the like having a high light reflectance is used. The metal layer 16 may be formed at any position as long as it is connected to the metal reflection film 18. Then, as shown in FIG. 4, a transparent electrode 20 made of a transparent conductive film such as ITO or ZnO is formed on the metal reflective film 18. By sandwiching the metal reflective film 18 between the translucent electrodes 14 and 20 in this manner, the adhesion between these three layers and the substrate 12 or the photovoltaic layer 22 is improved. When the substrate 12 is made of SUS, the metal reflective film 18 may be directly formed on the substrate 12, and the translucent electrode 20 may be formed on the metal reflective film 18 to form a two-layer structure. In addition, the metal reflective film 1 may be used if it has good adhesiveness with an adjacent member and can serve as an electrode and a reflector.
8 may be formed as a single layer on the substrate 12.

【0011】次いで、図5に示すように、透光性電極2
0上に、たとえばプラズマCVD法などによって非晶質
Siなどの非晶質半導体薄膜からなる光起電力層22が
形成される。このとき、光起電力層22にはピンホール
24が形成されてしまう。そして、図6に示すように、
光起電力層22上に、たとえばITOやZnOなどの透
明導電膜からなる透光性電極26が形成される。このと
き、ピンホール24中に透光性電極26が入り込み、透
光性電極20と26とは短絡してしまう。そこで、この
発明の特徴となる図7の工程を行う。
Next, as shown in FIG. 5, the transparent electrode 2
A photovoltaic layer 22 made of an amorphous semiconductor thin film such as amorphous Si is formed on the substrate 0 by plasma CVD or the like. At this time, the pinhole 24 is formed in the photovoltaic layer 22. Then, as shown in FIG.
A transparent electrode 26 made of a transparent conductive film such as ITO or ZnO is formed on the photovoltaic layer 22. At this time, the translucent electrode 26 enters the pinhole 24, and the translucent electrodes 20 and 26 are short-circuited. Therefore, the process shown in FIG. 7, which is a feature of the present invention, is performed.

【0012】すなわち、まず、金属層16が溶解するよ
うな酸性またはアルカリ性の水溶液28を準備する。水
溶液28には、たとえば20%塩酸水溶液,20%硫酸
水溶液および10%水酸化ナトリウム水溶液,10%水
酸化アンモニウム水溶液や硝酸水溶液などが用いられ
る。このような水溶液28中に、図6の状態の光起電力
素子30を、ピンホール24中に形成された透光性電極
26が溶解するまでの時間(2〜180秒)、暗中、室
温で浸漬する。すると、水溶液28中では、金属層16
が透光性電極26よりもイオン化傾向が高いために、金
属層16が優先的に溶解し、過剰な電子が蓄積される。
この電子は、金属反射膜18および透光性電極20を通
って移動するが、暗中では光起電力層22中を流れるこ
とができず、光起電力層22が形成されていないすなわ
ちピンホール24を優先的に通って透光性電極26へ流
れ、化学電池作用によって透光性電極26が局所的に腐
食する。この透光性電極26の局所的な腐食によって、
ピンホール24中の透光性電極26が除去されるので、
ピンホール24を介して透光性電極20と26とが短絡
するのを防ぐことができる。このとき、ピンホール24
付近の透光性電極20も除去される。その後、その光起
電力素子を、純水の流水中で5分以上洗浄すると、図8
に示すような光起電力素子10が得られる。
That is, first, an acidic or alkaline aqueous solution 28 in which the metal layer 16 is dissolved is prepared. As the aqueous solution 28, for example, a 20% hydrochloric acid aqueous solution, a 20% sulfuric acid aqueous solution, a 10% sodium hydroxide aqueous solution, a 10% ammonium hydroxide aqueous solution, a nitric acid aqueous solution, or the like is used. The photovoltaic element 30 in the state of FIG. 6 is dissolved in such an aqueous solution 28 for a period of time until the transparent electrode 26 formed in the pinhole 24 is dissolved (2 to 180 seconds), in the dark and at room temperature. Soak. Then, in the aqueous solution 28, the metal layer 16
However, since the ionization tendency is higher than that of the translucent electrode 26, the metal layer 16 is preferentially dissolved and excess electrons are accumulated.
The electrons move through the metal reflection film 18 and the transparent electrode 20, but cannot flow in the photovoltaic layer 22 in the dark, and the photovoltaic layer 22 is not formed, that is, the pinhole 24. Flow preferentially to the transparent electrode 26, and the transparent electrode 26 is locally corroded by the action of the chemical cell. Due to the local corrosion of the translucent electrode 26,
Since the transparent electrode 26 in the pinhole 24 is removed,
It is possible to prevent the translucent electrodes 20 and 26 from being short-circuited via the pinhole 24. At this time, the pinhole 24
The transparent electrode 20 in the vicinity is also removed. After that, when the photovoltaic element is washed in running pure water for 5 minutes or more,
The photovoltaic element 10 as shown in is obtained.

【0013】図9に、このようにして得られた「処理あ
り」の光起電力素子10と、水溶液28中に浸漬しその
後洗浄するという処理を経ないで得られた「処理なし」
の光起電力素子とのそれぞれ電流−電圧特性の一例を示
す。この「処理なし」の光起電力素子は、上述の浸漬・
洗浄という処理の有無以外は、「処理あり」の場合と同
一の形成条件で形成されている。一般に、光起電力素子
ではリーク電流が小さいほど曲線因子が増大し、変換効
率が大きいものとなる。図9に示すセルの場合、「処理
あり」の光起電力素子10の曲線因子および変換効率は
それぞれ0.7および8.5%であるのに対し、「処理
なし」の光起電力素子の曲線因子および変換効率はそれ
ぞれ0.6および7.3%であった。このことから、浸
漬・洗浄という処理を行ったこの実施例の光起電力素子
10では、ピンホール24中のリーク電流が減少し、変
換効率が向上することがわかる。
FIG. 9 shows the thus-obtained “with treatment” photovoltaic element 10 and the “without treatment” obtained without the treatment of immersing in the aqueous solution 28 and then washing.
An example of current-voltage characteristics of the photovoltaic element and the photovoltaic element of FIG. This "untreated" photovoltaic element is
It is formed under the same forming conditions as in the case of “with processing” except for the presence or absence of the processing of washing. Generally, in a photovoltaic element, the smaller the leak current, the larger the fill factor and the greater the conversion efficiency. In the case of the cell shown in FIG. 9, the fill factor and conversion efficiency of the “with treatment” photovoltaic element 10 are 0.7 and 8.5%, respectively, whereas that of the “without treatment” photovoltaic element is Fill factor and conversion efficiency were 0.6 and 7.3%, respectively. From this, it can be seen that in the photovoltaic element 10 of this example, which has been subjected to the treatment of immersion and cleaning, the leak current in the pinhole 24 is reduced and the conversion efficiency is improved.

【0014】なお、「処理あり」の光起電力素子10お
よび「処理なし」の光起電力素子の変換効率は、それぞ
れ数1および数2のように求められる。
The conversion efficiencies of the “with treatment” photovoltaic element 10 and the “without treatment” photovoltaic element are obtained as in Equations 1 and 2, respectively.

【0015】[0015]

【数1】 [Equation 1]

【0016】[0016]

【数2】 [Equation 2]

【0017】なお、表1に、「処理あり」の光起電力素
子10および「処理なし」の光起電力素子の良品の割合
を、1cm角素子および5cm角素子のそれぞれについて示
す。ここで良品とは、曲線因子が0.5以上であるもの
を指す。この表1より、「処理あり」の光起電力素子1
0の歩留まりが「処理なし」の光起電力素子より向上し
ていることがわかる。
Table 1 shows the proportions of non-defective photovoltaic elements 10 with and without treatment and non-treated photovoltaic elements with respect to 1 cm square element and 5 cm square element, respectively. Here, the non-defective product refers to one having a fill factor of 0.5 or more. From this Table 1, the photovoltaic element 1 with "treatment"
It can be seen that the yield of 0 is higher than that of the “untreated” photovoltaic element.

【0018】[0018]

【表1】 [Table 1]

【0019】このように、この実施例によれば、非晶質
半導体薄膜を用いる光起電力素子において、化学電池作
用を利用してピンホール24のリペアを行うことによっ
て、レーザや別途電源を用いることなく、変換効率や歩
留まりの低下をもたらすピンホール24を選択的かつ容
易に除去することができる。また、図12に示す他の実
施例の光起電力素子10は、矢印b方向から照射された
光を電気エネルギに変換するいわゆる順タイプに構成さ
れる。図12に示す光起電力素子10では、ガラスなど
からなる基板32上にSnO2 (酸化錫)などの透明導
電膜からなる透光性電極34が形成される。透光性電極
34上の一端には、Alなどからなる導体である金属層
36が形成され、透光性電極34上には金属層36と接
触するように非晶質半導体薄膜からなる光起電力層38
が形成され、光起電力層38上には、ZnO,ITOな
どの透明導電膜からなる透光性電極40が形成される。
そして、ピンホール42にはシリコン樹脂などの絶縁物
44が塗布され、透光性電極40上には銀,チタンなど
の金属反射膜46が形成される。ここで、透光性電極3
4は表面電極となり、透光性電極40は裏面電極とな
る。
As described above, according to this embodiment, in the photovoltaic device using the amorphous semiconductor thin film, the laser and the separate power source are used by repairing the pinhole 24 by utilizing the chemical cell action. It is possible to selectively and easily remove the pinholes 24 that cause a reduction in conversion efficiency and yield without using the pinholes 24. In addition, the photovoltaic element 10 of another embodiment shown in FIG. 12 is configured as a so-called forward type that converts light emitted from the direction of arrow b into electric energy. In the photovoltaic element 10 shown in FIG. 12, a transparent electrode 34 made of a transparent conductive film such as SnO 2 (tin oxide) is formed on a substrate 32 made of glass or the like. A metal layer 36, which is a conductor made of Al or the like, is formed on one end of the transparent electrode 34, and a photovoltaic layer made of an amorphous semiconductor thin film is formed on the transparent electrode 34 so as to be in contact with the metal layer 36. Power layer 38
And a transparent electrode 40 made of a transparent conductive film such as ZnO or ITO is formed on the photovoltaic layer 38.
Then, an insulator 44 such as silicon resin is applied to the pinhole 42, and a metal reflection film 46 such as silver or titanium is formed on the translucent electrode 40. Here, the transparent electrode 3
4 is a front surface electrode, and the translucent electrode 40 is a back surface electrode.

【0020】この光起電力素子10は、図8に示す光起
電力素子10と同様の工程を経て形成される。そして、
図10に示す状態まで形成されると、先の実施例と同様
に図11に示す水溶液28中に浸漬され、処理される。
すると、ピンホール42中に入り込んだ透光性電極40
およびピンホール42付近の透光性電極34が除去され
る。順タイプの光起電力素子10では、透光性電極40
上の全面に金属反射膜46が形成されるため、透光性電
極40が除去されたピンホール42において金属反射膜
46と透光性電極34とが短絡しないように、金属反射
膜46と透光性電極34とを絶縁しておかなければなら
ない。したがって、ピンホール42に金属反射膜46が
入らないように、ピンホール42には絶縁物44が塗布
され、絶縁化が図られる。なお、ピンホール42は小さ
くても、透光性電極40はピンホール42より広めに除
去されるので、その除去された部分を視認することがで
きる。また、透光性電極40と光起電力層38とは屈折
率が異なるため、透光性電極40が除去されたピンホー
ル42と透光性電極40が形成されている個所とは色が
異なる。このことからも、ピンホール42を視認でき
る。したがって、ピンホール42に対してスポット的に
絶縁物44を塗布することができる。
This photovoltaic element 10 is formed through the same steps as the photovoltaic element 10 shown in FIG. And
After being formed to the state shown in FIG. 10, it is immersed in the aqueous solution 28 shown in FIG. 11 and treated in the same manner as in the previous embodiment.
Then, the translucent electrode 40 that has entered the pinhole 42.
The transparent electrode 34 near the pinhole 42 is removed. In the forward type photovoltaic element 10, the transparent electrode 40
Since the metal reflective film 46 is formed on the entire upper surface, the metal reflective film 46 and the translucent electrode 34 and the translucent electrode 34 are not short-circuited in the pinhole 42 where the translucent electrode 40 is removed. It must be insulated from the photoelectrode 34. Therefore, the insulating material 44 is applied to the pinhole 42 so that the metal reflection film 46 does not enter the pinhole 42, and insulation is achieved. Even if the pinhole 42 is small, the transparent electrode 40 is removed wider than the pinhole 42, so that the removed portion can be visually recognized. Further, since the translucent electrode 40 and the photovoltaic layer 38 have different refractive indices, the pinhole 42 from which the translucent electrode 40 is removed and the portion where the translucent electrode 40 is formed have different colors. . Also from this, the pinhole 42 can be visually recognized. Therefore, the insulator 44 can be applied spotwise to the pinhole 42.

【0021】このような順タイプの光起電力素子10に
おいても、上述した逆タイプの光起電力素子10と同様
の効果が得られる。また、透光性電極26および40を
それぞれ光起電力層22および38上に形成することに
よって、水溶液28中に浸漬した際に、光起電力層22
および38がダメージを受けるのを防ぐことができる。
Also in such a forward type photovoltaic element 10, the same effect as the above-mentioned reverse type photovoltaic element 10 can be obtained. Further, by forming the translucent electrodes 26 and 40 on the photovoltaic layers 22 and 38, respectively, the photovoltaic layer 22 when immersed in the aqueous solution 28.
And 38 can be prevented from being damaged.

【図面の簡単な説明】[Brief description of drawings]

【図1】基板上に透光性電極が形成された状態を示す断
面図である。
FIG. 1 is a cross-sectional view showing a state in which a translucent electrode is formed on a substrate.

【図2】透光性電極の周辺部にAlなどからなる金属層
が形成された状態を示す断面図である。
FIG. 2 is a cross-sectional view showing a state in which a metal layer made of Al or the like is formed around the translucent electrode.

【図3】透光性電極上に金属反射膜が形成された状態を
示す断面図である。
FIG. 3 is a cross-sectional view showing a state in which a metal reflective film is formed on a translucent electrode.

【図4】金属反射膜上に透光性電極が形成された状態を
示す断面図である。
FIG. 4 is a cross-sectional view showing a state in which a translucent electrode is formed on a metal reflective film.

【図5】透光性電極上に光起電力層が形成された状態を
示す断面図である。
FIG. 5 is a cross-sectional view showing a state in which a photovoltaic layer is formed on a translucent electrode.

【図6】光起電力層上に透光性電極が形成された状態を
示す断面図である。
FIG. 6 is a cross-sectional view showing a state in which a translucent electrode is formed on the photovoltaic layer.

【図7】図6の状態の光起電力素子が水溶液に浸漬され
た状態を示す断面図である。
FIG. 7 is a cross-sectional view showing a state where the photovoltaic element in the state of FIG. 6 is immersed in an aqueous solution.

【図8】この実施例の逆タイプの光起電力素子を示す断
面図である。
FIG. 8 is a cross-sectional view showing a photovoltaic element of the reverse type of this embodiment.

【図9】この実施例の「処理あり」の光起電力素子およ
び「処理なし」の光起電力素子のそれぞれの電流−電圧
特性の一例を示すグラフである。
FIG. 9 is a graph showing an example of current-voltage characteristics of a photovoltaic element with “treatment” and a photovoltaic element with “no treatment” of this example.

【図10】図6に相当し、光起電力層上に透光性電極が
形成された状態を示す断面図である。
10 is a cross-sectional view corresponding to FIG. 6 and showing a state in which a transparent electrode is formed on the photovoltaic layer.

【図11】図10の状態の光起電力素子が水溶液に浸漬
された状態を示す断面図である。
11 is a cross-sectional view showing a state where the photovoltaic element in the state of FIG. 10 is immersed in an aqueous solution.

【図12】この実施例の順タイプ型の光起電力素子を示
す断面図である。
FIG. 12 is a cross-sectional view showing a forward type photovoltaic element of this example.

【符号の説明】[Explanation of symbols]

10,30 …光起電力素子 12,32 …基板 14,20,26,34,40 …透光性電極 16,36 …金属層 18,46 …金属反射膜 22,38 …光起電力層 24,42 …ピンホール 28 …水溶液 44 …絶縁物 10, 30 ... Photovoltaic element 12, 32 ... Substrate 14, 20, 26, 34, 40 ... Translucent electrode 16, 36 ... Metal layer 18, 46 ... Metal reflective film 22, 38 ... Photovoltaic layer 24, 42 ... Pinhole 28 ... Aqueous solution 44 ... Insulator

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】基板,前記基板上に配置されかつ光起電力
層および前記光起電力層の前記基板側主面と他方主面と
にそれぞれ形成される第1電極と金属を含む第2電極と
を含む光起電力素子の製造方法において、 前記第2電極に含まれる前記金属よりイオン化傾向の高
い導体を前記第1電極の少なくとも一部に接触させた状
態の前記光起電力素子を、酸性またはアルカリ性水溶液
中に所定条件下で浸漬することによって、前記光起電力
層のピンホール中の前記第2電極を除去することを特徴
とする、光起電力素子の製造方法。
1. A substrate, a first electrode disposed on the substrate and formed on the substrate-side main surface and the other main surface of the photovoltaic layer and the photovoltaic layer, and a second electrode containing a metal. In the method for manufacturing a photovoltaic element, including: the photovoltaic element in a state in which a conductor having a higher ionization tendency than the metal contained in the second electrode is in contact with at least a part of the first electrode; Alternatively, the second electrode in the pinhole of the photovoltaic layer is removed by immersing the second electrode in an alkaline aqueous solution under a predetermined condition.
JP5101411A 1993-04-27 1993-04-27 Fabrication of photovoltaic element Withdrawn JPH06310742A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5101411A JPH06310742A (en) 1993-04-27 1993-04-27 Fabrication of photovoltaic element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5101411A JPH06310742A (en) 1993-04-27 1993-04-27 Fabrication of photovoltaic element

Publications (1)

Publication Number Publication Date
JPH06310742A true JPH06310742A (en) 1994-11-04

Family

ID=14299972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5101411A Withdrawn JPH06310742A (en) 1993-04-27 1993-04-27 Fabrication of photovoltaic element

Country Status (1)

Country Link
JP (1) JPH06310742A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003124483A (en) * 2001-10-17 2003-04-25 Toyota Motor Corp Photovoltaic element
WO2010066693A1 (en) * 2008-12-08 2010-06-17 Gebr. Schmid Gmbh & Co. Method for machining the surface of a wafer for producing a solar cell, and wafer
US10950391B2 (en) 2017-09-15 2021-03-16 Kabushiki Kaisha Toshiba Photoelectric conversion device and manufacturing method and apparatus thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003124483A (en) * 2001-10-17 2003-04-25 Toyota Motor Corp Photovoltaic element
WO2010066693A1 (en) * 2008-12-08 2010-06-17 Gebr. Schmid Gmbh & Co. Method for machining the surface of a wafer for producing a solar cell, and wafer
CN102246323A (en) * 2008-12-08 2011-11-16 吉布尔.施密德有限责任公司 Method for machining the surface of a wafer for producing a solar cell, and wafer
US10950391B2 (en) 2017-09-15 2021-03-16 Kabushiki Kaisha Toshiba Photoelectric conversion device and manufacturing method and apparatus thereof

Similar Documents

Publication Publication Date Title
JP3809237B2 (en) Electrolytic pattern etching method
US7638707B2 (en) Photovoltaic cell, photovoltaic cell module, method of fabricating photovoltaic cell and method of repairing photovoltaic cell
US4749454A (en) Method of removing electrical shorts and shunts from a thin-film semiconductor device
US4385971A (en) Electrolytic etch for eliminating shorts and shunts in large area amorphous silicon solar cells
US5055416A (en) Electrolytic etch for preventing electrical shorts in solar cells on polymer surfaces
KR100334595B1 (en) Manufacturing method of photovoltaic device
WO2015166780A1 (en) Crystalline-silicon solar cell, crystalline-silicon solar-cell module, and manufacturing methods therefor
JP6564874B2 (en) Method for manufacturing crystalline silicon-based solar cell and method for manufacturing crystalline silicon-based solar cell module
JPH06310742A (en) Fabrication of photovoltaic element
KR100242498B1 (en) Lcd and thin film transistor fabrication method for lcd
JPS63276278A (en) Transparent electrode with buried interconnection
JPS62213282A (en) Method for avoiding short circuit when amorphous silicon thin film solar battery is produced
JP2892742B2 (en) Method for cleaning mesa-type semiconductor device
JPH09199742A (en) Field effect solar cell
JP4183369B2 (en) Manufacturing method of integrated photovoltaic device
JP4458697B2 (en) Photovoltaic device manufacturing method
JPS62113483A (en) Thin-film solar cell
GB2065380A (en) Electronic thin-film circuit and method of its fabrication
JPS59110175A (en) Manufacture of solar battery
JP2001223379A (en) Manufacturing method for photovoltaic device
JPS61279178A (en) Manufacture of photoelectric conversion device
JPS61255072A (en) Photoelectric conversion device
JPH06310743A (en) Photovoltaic element
JPH0554274B2 (en)
JPH0572113B2 (en)

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000704