JPH01134976A - Manufacture of solar cell - Google Patents
Manufacture of solar cellInfo
- Publication number
- JPH01134976A JPH01134976A JP62291874A JP29187487A JPH01134976A JP H01134976 A JPH01134976 A JP H01134976A JP 62291874 A JP62291874 A JP 62291874A JP 29187487 A JP29187487 A JP 29187487A JP H01134976 A JPH01134976 A JP H01134976A
- Authority
- JP
- Japan
- Prior art keywords
- semiconductor layer
- solar cell
- optical semiconductor
- electrode
- series
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 17
- 239000004065 semiconductor Substances 0.000 claims abstract description 35
- 239000000758 substrate Substances 0.000 claims abstract description 20
- 238000000034 method Methods 0.000 claims abstract description 15
- 230000003287 optical effect Effects 0.000 claims abstract description 15
- 229910021417 amorphous silicon Inorganic materials 0.000 claims abstract description 13
- 229910052751 metal Inorganic materials 0.000 claims abstract description 12
- 239000002184 metal Substances 0.000 claims abstract description 12
- 230000001590 oxidative effect Effects 0.000 claims description 6
- 238000006243 chemical reaction Methods 0.000 claims description 3
- 238000003475 lamination Methods 0.000 claims 2
- 238000010030 laminating Methods 0.000 claims 1
- 239000012212 insulator Substances 0.000 abstract description 3
- 230000007423 decrease Effects 0.000 abstract description 2
- 230000003247 decreasing effect Effects 0.000 abstract 1
- 229910001220 stainless steel Inorganic materials 0.000 description 11
- 239000010935 stainless steel Substances 0.000 description 11
- 239000011521 glass Substances 0.000 description 4
- 229910052779 Neodymium Inorganic materials 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 239000004020 conductor Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 3
- 239000011810 insulating material Substances 0.000 description 3
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 description 3
- 229920001721 polyimide Polymers 0.000 description 3
- 239000009719 polyimide resin Substances 0.000 description 3
- 238000004544 sputter deposition Methods 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- 229910000640 Fe alloy Inorganic materials 0.000 description 1
- 229910000990 Ni alloy Inorganic materials 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 210000003298 dental enamel Anatomy 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 229920006015 heat resistant resin Polymers 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/548—Amorphous silicon PV cells
Landscapes
- Photovoltaic Devices (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
この発明は太陽電池の製造方法に関し、特に直列接続型
太陽電池の製造方法に関する。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for manufacturing solar cells, and particularly to a method for manufacturing series-connected solar cells.
直列接続型太陽電池をレーザービーム加工によシ製造す
る方法が近年盛んに研究されている。In recent years, methods of manufacturing series-connected solar cells by laser beam processing have been actively researched.
第2図は例えば特開昭57−12568号公報に示され
た太陽電池の製造方法によって透明基板上に作られた直
列接続型太陽電池を示す断面図であり、(lO)はタン
デム接合型太陽電池で、透明基板(1)上に直列に接続
された一連のタンデム接合型太陽電池素子(20)、(
2))、(22)を含んでいる。FIG. 2 is a cross-sectional view showing a series-connected solar cell manufactured on a transparent substrate by the solar cell manufacturing method disclosed in, for example, Japanese Patent Application Laid-Open No. 57-12568. In a battery, a series of tandem junction solar cell elements (20), (
2)) and (22).
各タンデム接合型太陽電池素子(2υ)、(2))、(
22)は光が入射する側の電極となる透明導電性電極細
条(2)とトンネル接合(5)で隔てられた2つの半導
体層(3)、(4)を含んでいる。このタンデム接合型
太陽電池素子(20)、(2)) 、(22)は背面電
極(6)により直列に接続されている。Each tandem junction solar cell element (2υ), (2)), (
22) comprises a transparent conductive electrode strip (2) serving as the electrode on the side of light incidence and two semiconductor layers (3), (4) separated by a tunnel junction (5). The tandem junction solar cell elements (20), (2), and (22) are connected in series by a back electrode (6).
次に前記太陽電池の製造方法について説明する。Next, a method for manufacturing the solar cell will be explained.
まずガラスのような透明基板(1)上に酸化インジウム
錫、酸化錫等の透明電極(2)を蒸着、スパンタ等の方
法で被着し、透明電極上をネオジウムYAGレーザーで
罫書きして透明基板(1)上の透明電極な細条にする。First, a transparent electrode (2) made of indium tin oxide, tin oxide, etc. is deposited on a transparent substrate (1) such as glass by a method such as vapor deposition or spunter, and the transparent electrode is marked with a neodymium YAG laser to make it transparent. A transparent electrode strip is formed on the substrate (1).
次に透明電極細条上にアモルファスシリコン半導体層(
3)、(4)を被着し透明電極(2)の罫書に隣接して
それに平行に半導体層を罫書きする。次にチタン、アル
ミニウム、インジウム等の背面電極材料を半導体層細条
上に蒸着したのち背mt極をレーザーで罫書いて各素子
を直列に接続する背面電極細条(1+)を得る。Next, an amorphous silicon semiconductor layer (
3) and (4) are deposited and a semiconductor layer is scored adjacent to and parallel to the markings on the transparent electrode (2). Next, a back electrode material such as titanium, aluminum, or indium is deposited on the semiconductor layer strip, and the back mt poles are scored with a laser to obtain a back electrode strip (1+) connecting each element in series.
レーザービームを利用して製造される従来の直列接続型
太陽電池は以上のような構造を有しているが、透明基板
(1)として主にガラスが利用されるので製造工程中に
基板が破損して製品歩留シが低下するという問題点があ
った。このため基板としてポリイミド樹脂のような耐熱
性樹脂やガラスホーロー等の絶縁材料によってコーティ
ングされた鋼板やステンレス板を用いて、直列接続型太
陽電池を製造することも試みられている。Conventional series-connected solar cells manufactured using laser beams have the structure described above, but since glass is mainly used as the transparent substrate (1), the substrate may be damaged during the manufacturing process. However, there was a problem in that the product yield was reduced. For this reason, attempts have been made to manufacture series-connected solar cells using a steel plate or stainless steel plate coated with a heat-resistant resin such as polyimide resin or an insulating material such as glass enamel as a substrate.
第3図は例えば特開昭58−180069号公報に示さ
れた母体基板にステンレス板、絶縁層にポリイミド樹脂
を用いた基板上で直列接続を行わせ作成した従来の太陽
電池の断面図である。図において(12)はステンレス
板、(13)は厚さ20μmのポリイミド樹脂、(14
)はアルミニウムやクロムなどの下部電極、(15)は
厚さ約7UUOAのアモルファスシリコン半導体膜、(
16)は厚さ1(10UAの透明電極であシ、透明電極
(L6)と−部露出した下部電極([4)とが電気的に
直列に接続されるように形成され、複数個の光発電領域
(23) 、 (24) 、 (25)を直列に接続し
た太陽電池が得られる。FIG. 3 is a cross-sectional view of a conventional solar cell made by connecting in series on a substrate using a stainless steel plate as a base substrate and a polyimide resin as an insulating layer, as shown in, for example, Japanese Patent Application Laid-open No. 58-180069. . In the figure, (12) is a stainless steel plate, (13) is a polyimide resin with a thickness of 20 μm, and (14) is a stainless steel plate.
) is a lower electrode made of aluminum or chromium, etc., (15) is an amorphous silicon semiconductor film with a thickness of about 7UUOA, (
16) is a transparent electrode with a thickness of 1 (10 UA), and is formed so that the transparent electrode (L6) and the lower electrode ([4) with the negative part exposed] are electrically connected in series, and a plurality of light A solar cell is obtained in which power generation regions (23), (24), and (25) are connected in series.
〔発明が解決しようとする問題点]
従来の直列接続型太陽電池は以上のような製造方法およ
び構造を有して(・るので、基板としてガラス等の透明
基板を用いて製造する場合には、太陽電池としての特性
は良いけれども破損しやすく生産性がよくないという問
題を有している。また基板としてステンレス板に絶縁物
を塗布した絶縁基板を用いる場合には、第3図に示した
ように隣接する光発電領域を直列に接続する直列電極の
役目を透明電極が担うととKなるが、透明電極例えばイ
ンジウム錫酸化物は、アルミニウムのような金属電極に
比べて2桁以上電気抵抗が太き(、その上透明電極と下
部電極との段差が約foooXあるのに対して直列電極
の役目を果す透明電極の厚みは1000にしかないので
前記の段差部においてアモルファスシリコン半導体層の
壁面に被着する透明電極の厚みは極めて薄くなシ、直列
接続抵抗が増大し、太陽電池の特性を低下させるという
問題点があった。[Problems to be Solved by the Invention] Conventional series-connected solar cells have the manufacturing method and structure described above. Therefore, when manufacturing using a transparent substrate such as glass as a substrate, Although it has good characteristics as a solar cell, it has the problem of being easily damaged and having poor productivity.Furthermore, when using an insulating substrate made of a stainless steel plate coated with an insulating material, as shown in Fig. 3, When a transparent electrode plays the role of a series electrode that connects adjacent photovoltaic regions in series, the transparent electrode, for example, indium tin oxide, has an electrical resistance that is two orders of magnitude higher than that of a metal electrode such as aluminum. (Also, the height difference between the transparent electrode and the lower electrode is approximately foooX, whereas the thickness of the transparent electrode that serves as the series electrode is only 1000mm thick.) Although the thickness of the transparent electrode to be deposited is extremely thin, there is a problem in that the series connection resistance increases and the characteristics of the solar cell are deteriorated.
この発明は上記のような問題点を解消するためになされ
たもので、金属など破損し難い基体上に歩留シよく、高
効率の太陽電池を製造することのできる方法を提供する
ことを目的とする。This invention was made in order to solve the above-mentioned problems, and its purpose is to provide a method that can produce high-yield, highly efficient solar cells on a substrate that is difficult to break, such as metal. shall be.
この発明に係る太陽電池の製造方法は、光半導体層の分
割工程を、レーザービーム加工によって非酸化性雰囲気
中で行うようにしたものである。In the method for manufacturing a solar cell according to the present invention, the step of dividing the optical semiconductor layer is performed in a non-oxidizing atmosphere by laser beam processing.
この発明における太陽電池の製造方法においては、レー
ザービーム加工部周辺の光半導体層がレーザービームの
熱によって結晶化し電気抵抗値が低下するので、透明電
極を直列接続型太陽電池の直列接続電極として使用する
場合でも透明電極と接する光半導体層のレーザー加工さ
れた壁面が結晶化し良導体になるので透明電極膜が薄い
場合でも隣接する光発電領域間の電気的接続がうまく行
われる。In the solar cell manufacturing method of this invention, the optical semiconductor layer around the laser beam processing part is crystallized by the heat of the laser beam and the electrical resistance value decreases, so the transparent electrode is used as the series connection electrode of the series connection type solar cell. Even in this case, the laser-processed wall surface of the optical semiconductor layer in contact with the transparent electrode crystallizes and becomes a good conductor, so that even if the transparent electrode film is thin, electrical connection between adjacent photovoltaic regions can be made successfully.
以下この発明の一実施例を図にもとすいて説明する。第
1図において(32)はステンレス膜の基体板、 (3
3)はこのステンレス基体(32)上にコーティングさ
れた厚さ約20μmの無機絶縁物である。この基体(3
2)上に絶縁物(33)をコーティングしてなる絶縁基
板(34)上に厚さ2.u u OAにステンレス膜を
スパッタで被着させ、波長1.06μmのネオジウムY
AGレーザーを用いてビーム径50μmで幅8顛の短柵
型にステンレス膜を大気中にまたは不活性雰囲気中で切
断した絶縁基板(34)上に複数の独立したステンレス
金属電極(35)を形成する。次に前記の金属電極(3
5)および絶縁基板(34)にまたがって少なくとも1
つのPIN接合を有する光半導体層としてのアモルファ
スシリコン半導体層(36)をプラズマCVD法によっ
て約euooX厚に成膜しその後、波長0.53μmの
ネオジウムYAGレーザー第2高調波を用いてビーム径
100μmで前記金属電極(35)の切断溝に隣接して
それに平行に半導体層を切断し複数の独立した半導体領
域(36)を形成する。An embodiment of the present invention will be described below with reference to the drawings. In Fig. 1, (32) is the base plate of stainless steel membrane, (3
3) is an inorganic insulator coated on the stainless steel substrate (32) with a thickness of about 20 μm. This base (3
2) On an insulating substrate (34) formed by coating an insulating material (33) thereon, a thickness of 2. u u A stainless steel film was deposited on the OA by sputtering, and neodymium Y with a wavelength of 1.06 μm was applied.
A plurality of independent stainless steel metal electrodes (35) are formed on an insulating substrate (34) in which a stainless steel film is cut in the air or in an inert atmosphere into a short fence shape with a beam diameter of 50 μm and a width of 8 using an AG laser. do. Next, the metal electrode (3
5) and the insulating substrate (34).
An amorphous silicon semiconductor layer (36) as an optical semiconductor layer having two PIN junctions is formed to a thickness of about euooX by plasma CVD, and then a beam diameter of 100 μm is formed using the second harmonic of a neodymium YAG laser with a wavelength of 0.53 μm. The semiconductor layer is cut adjacent to and parallel to the cutting groove of the metal electrode (35) to form a plurality of independent semiconductor regions (36).
上記アモルファスシリコン半導体層(36)のレーザー
加工は、不活性ガス中または真空中のような非酸化性雰
囲気で行い、アモルファスシリコンの切断面が酸化によ
ってSiO□のような絶縁性酸化物に変化するのを防止
する。非酸化性雰囲気中でレーザー加工されたアモルフ
ァスシリコン半導体層(36)の切断面(360)はレ
ーザービームの熱影響によって約50μm深さまで微結
晶化した。次にインジュウム錫酸化物からなる厚さ20
ODAの透明電極(37)を半導体層(36)上にスパ
ッタによって形成したのち透明電極の所定の箇所をレー
ザービームによってビーム径20μmで切断して複数個
の光電変換領域としての太陽電池素子(40)。The laser processing of the amorphous silicon semiconductor layer (36) is performed in a non-oxidizing atmosphere such as an inert gas or vacuum, and the cut surface of the amorphous silicon changes into an insulating oxide such as SiO□ by oxidation. to prevent The cut surface (360) of the amorphous silicon semiconductor layer (36) laser-processed in a non-oxidizing atmosphere was microcrystallized to a depth of approximately 50 μm due to the thermal influence of the laser beam. Next, a thickness of 20 mm made of indium tin oxide
After forming an ODA transparent electrode (37) on the semiconductor layer (36) by sputtering, predetermined locations of the transparent electrode are cut with a beam diameter of 20 μm using a laser beam to form a solar cell element (40) as a plurality of photoelectric conversion regions. ).
(41)、(42)が直列に接続された直列接続型太陽
電池(30)を得る。A series-connected solar cell (30) is obtained in which (41) and (42) are connected in series.
以上のようにして製造された太陽電池は、アモルファス
シリコン半導体層の分割工程をレーザービームな用いか
つ非酸化性雰囲気中で行うことによシ、アモルファスシ
リコン半導体の切断面が結晶化し、良導体化している。In the solar cell manufactured as described above, by performing the dividing process of the amorphous silicon semiconductor layer using a laser beam in a non-oxidizing atmosphere, the cut surface of the amorphous silicon semiconductor crystallizes and becomes a good conductor. There is.
従って、太陽電池素子間の直列接続抵抗が低減し高効率
の直列接続型太陽電池を容易に、歩留りよく製造するこ
とが可能となった。Therefore, it has become possible to easily manufacture a highly efficient series-connected solar cell with a high yield and with reduced series-connection resistance between solar cell elements.
なお、上記基体(32)、絶縁膜(33)、金属電極(
35)、透明電極(37)に用いた材料の種類、膜厚、
成膜法など何れも実施例のものに限定されるものでない
ことは勿論であシ、本発明の範囲内で種々の応用、変形
、変更が可能である。例えば基体(32)は、ステンレ
スに代えて鉄、ニッケル、銅合金などの金属類、あるい
はセラミック材料などを用いることもできる。上記基体
(32)が絶縁性を有する場合には、絶縁膜(33)は
省くこともできる。Note that the base (32), the insulating film (33), and the metal electrode (
35), the type of material used for the transparent electrode (37), the film thickness,
It goes without saying that the film-forming method is not limited to those described in the embodiments, and various applications, modifications, and changes are possible within the scope of the present invention. For example, instead of stainless steel, metals such as iron, nickel, and copper alloys, or ceramic materials may be used for the base body (32). When the base (32) has insulating properties, the insulating film (33) can be omitted.
また、金属電極(35)あるいは透明電極(37)を形
成するために用いるスパッタ技術、光半導体層としての
アモルファスシリコン半導体層(36)を形成するだめ
のプラズマCVD i及びレーザービーム加工などは、
何れも公知の従来技術は特別の制限なく適宜用いること
ができる。In addition, sputtering technology used to form the metal electrode (35) or transparent electrode (37), plasma CVD i and laser beam processing used to form the amorphous silicon semiconductor layer (36) as an optical semiconductor layer, etc.
All known conventional techniques can be used as appropriate without any particular limitations.
以上のようにこの発明によれば、光半導体層の分割工程
をレーザービームを用いて非酸化性雰囲気中で行うよう
に構成したので、光半導体層の切断面を結晶化して良導
体化することができ、太陽電池素子間の直列接続抵抗が
低減し高効率の直列接続型太陽電池を製造することがで
きるという効果がある。As described above, according to the present invention, since the dividing process of the optical semiconductor layer is performed in a non-oxidizing atmosphere using a laser beam, it is possible to crystallize the cut surface of the optical semiconductor layer and make it a good conductor. This has the effect that the series connection resistance between solar cell elements can be reduced and a highly efficient series connection type solar cell can be manufactured.
第1図はこの発明の一実施例による太陽電池の製造方法
によって製作された直列接続型太陽電池の要部を示す断
面図、第2図および第3図は従来法によって製造された
直列接続型太陽電池の断面図である。
図において(34)は基板、(35)は金属電極、(3
6)は光半導体層としてのアモルファスシリコン半導体
層、(37)は透明電極、(40)(41)(42)は
光電変換領域、(360)はアモルファス半導体の結晶
化部である。FIG. 1 is a sectional view showing the main parts of a series-connected solar cell manufactured by a solar cell manufacturing method according to an embodiment of the present invention, and FIGS. 2 and 3 are series-connected solar cells manufactured by a conventional method. FIG. 2 is a cross-sectional view of a solar cell. In the figure, (34) is the substrate, (35) is the metal electrode, (3
6) is an amorphous silicon semiconductor layer as an optical semiconductor layer, (37) is a transparent electrode, (40), (41), and (42) are photoelectric conversion regions, and (360) is a crystallized portion of the amorphous semiconductor.
Claims (2)
も1つのPIN接合を有する光半導体層と、透明電極と
を順次積層する工程と、前記各積層工程によつて形成さ
れる金属電極、光半導体層、および透明電極を各積層工
程毎に所定の位置でそれぞれ複数個に分割する工程とに
よつて、前記基板上に電気的に直列接続された複数個の
光電変換領域を形成する太陽電池の製造方法において、
前記光半導体層の分割工程を、非酸化性雰囲気中でレー
ザービームを用いて行うことを特徴とする太陽電池の製
造方法。(1) A step of sequentially laminating a metal electrode, an optical semiconductor layer having at least one PIN junction, and a transparent electrode on a substrate having an insulating surface, and a metal electrode formed by each of the above lamination steps. A plurality of photoelectric conversion regions electrically connected in series are formed on the substrate by dividing the optical semiconductor layer and the transparent electrode into a plurality of parts at predetermined positions in each lamination process. In the method for manufacturing solar cells,
A method for manufacturing a solar cell, characterized in that the step of dividing the optical semiconductor layer is performed using a laser beam in a non-oxidizing atmosphere.
あることを特徴とする特許請求の範囲第1項記載の太陽
電池の製造方法。(2) The method for manufacturing a solar cell according to claim 1, wherein the optical semiconductor layer is an amorphous silicon semiconductor layer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62291874A JPH01134976A (en) | 1987-11-20 | 1987-11-20 | Manufacture of solar cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62291874A JPH01134976A (en) | 1987-11-20 | 1987-11-20 | Manufacture of solar cell |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01134976A true JPH01134976A (en) | 1989-05-26 |
Family
ID=17774554
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62291874A Pending JPH01134976A (en) | 1987-11-20 | 1987-11-20 | Manufacture of solar cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01134976A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002527910A (en) * | 1998-10-12 | 2002-08-27 | パシフィック ソーラー ピー ティ ワイ リミテッド | Melt-through contact formation method |
JP2002528888A (en) * | 1998-09-17 | 2002-09-03 | シーメンス ソーラー ゲゼルシャフト ミット ベシュレンクテル ハフツング | Method for structuring a transparent electrode layer |
JP2012504350A (en) * | 2008-09-29 | 2012-02-16 | シンシリコン・コーポレーション | Integrated solar module |
US20120152339A1 (en) * | 2010-03-18 | 2012-06-21 | Fuji Electric Co., Ltd. | Thin film solar cell and method for manufacturing same |
-
1987
- 1987-11-20 JP JP62291874A patent/JPH01134976A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002528888A (en) * | 1998-09-17 | 2002-09-03 | シーメンス ソーラー ゲゼルシャフト ミット ベシュレンクテル ハフツング | Method for structuring a transparent electrode layer |
JP2002527910A (en) * | 1998-10-12 | 2002-08-27 | パシフィック ソーラー ピー ティ ワイ リミテッド | Melt-through contact formation method |
JP2012504350A (en) * | 2008-09-29 | 2012-02-16 | シンシリコン・コーポレーション | Integrated solar module |
US20120152339A1 (en) * | 2010-03-18 | 2012-06-21 | Fuji Electric Co., Ltd. | Thin film solar cell and method for manufacturing same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4400577A (en) | Thin solar cells | |
US5268037A (en) | Monolithic, parallel connected photovoltaic array and method for its manufacture | |
US5332680A (en) | Method of making photoelectric conversion device | |
KR100831291B1 (en) | Solar cell and method for producing the same | |
KR101077046B1 (en) | New metal strip product | |
US20100059098A1 (en) | Monolithic photovoltaic module | |
KR20030093900A (en) | A solar battery apparatus, a manufacturing method thereof, a metal plate therefor, and a plant for generation of electric power | |
JP2001339081A (en) | Solar cell and method of manufacturing the same | |
US7638353B2 (en) | Method for fabrication of semiconductor devices on lightweight substrates | |
JPH01134976A (en) | Manufacture of solar cell | |
JPS61214483A (en) | Manufacture of integrated type solar cell | |
JPS59208789A (en) | Solar cell | |
JPH0864850A (en) | Thin film solar battery and fabrication thereof | |
US4645866A (en) | Photovoltaic device and a method of producing the same | |
JP2002280580A (en) | Integrated photovoltaic device and manufacturing method therefor | |
JPH0423364A (en) | Photoelectromotive force device usable as mirror | |
JP2000277764A (en) | Solar cell module | |
JP4220014B2 (en) | Method for forming thin film solar cell | |
JPS62147784A (en) | Amorphous solar cell and manufacture thereof | |
JP3332487B2 (en) | Method for manufacturing photovoltaic device | |
JP3685964B2 (en) | Photoelectric conversion device | |
JP2001237442A (en) | Solar cell and its manufacturing method | |
JPH06177408A (en) | Thin film solar battery and its manufacture | |
EP2549545A1 (en) | Thin-film solar cell and method for manufacturing the same | |
JPS60211906A (en) | Amorphous silicon solar cell and preparation thereof |