JPH01134976A - Manufacture of solar cell - Google Patents

Manufacture of solar cell

Info

Publication number
JPH01134976A
JPH01134976A JP62291874A JP29187487A JPH01134976A JP H01134976 A JPH01134976 A JP H01134976A JP 62291874 A JP62291874 A JP 62291874A JP 29187487 A JP29187487 A JP 29187487A JP H01134976 A JPH01134976 A JP H01134976A
Authority
JP
Japan
Prior art keywords
semiconductor layer
solar cell
optical semiconductor
electrode
series
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62291874A
Other languages
Japanese (ja)
Inventor
Norihiko Inuzuka
犬塚 敬彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP62291874A priority Critical patent/JPH01134976A/en
Publication of JPH01134976A publication Critical patent/JPH01134976A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To make a cut area of an optical semiconductor layer crystallized and highly conductive so as to make resistors connected between solar cell elements decrease and realize a solar cell of this design excellent in efficiency. CONSTITUTION:An inorganic insulator 33 is coated on a stainless substrate 32 and a stainless metal electrode 35 is formed on the insulator 33. And, an amorphous silicon semiconductor layer 36 is formed on the whole face as an optical semiconductor layer, and then the optical semiconductor layer 36 is cut by a laser beam and formed into two or more semiconductor regions 36 independent of each other. By these processes, the cut area of the amorphous silicon semiconductor is crystallized and made to be highly conductive, so that an electrical resistance between the adjacent electrodes can be decreased even if a transparent electrode is used as a series connection electrode of a series connection type solar cell. Therefore, a solar cell excellent in efficiency can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は太陽電池の製造方法に関し、特に直列接続型
太陽電池の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for manufacturing solar cells, and particularly to a method for manufacturing series-connected solar cells.

〔従来の技術〕[Conventional technology]

直列接続型太陽電池をレーザービーム加工によシ製造す
る方法が近年盛んに研究されている。
In recent years, methods of manufacturing series-connected solar cells by laser beam processing have been actively researched.

第2図は例えば特開昭57−12568号公報に示され
た太陽電池の製造方法によって透明基板上に作られた直
列接続型太陽電池を示す断面図であり、(lO)はタン
デム接合型太陽電池で、透明基板(1)上に直列に接続
された一連のタンデム接合型太陽電池素子(20)、(
2))、(22)を含んでいる。
FIG. 2 is a cross-sectional view showing a series-connected solar cell manufactured on a transparent substrate by the solar cell manufacturing method disclosed in, for example, Japanese Patent Application Laid-Open No. 57-12568. In a battery, a series of tandem junction solar cell elements (20), (
2)) and (22).

各タンデム接合型太陽電池素子(2υ)、(2))、(
22)は光が入射する側の電極となる透明導電性電極細
条(2)とトンネル接合(5)で隔てられた2つの半導
体層(3)、(4)を含んでいる。このタンデム接合型
太陽電池素子(20)、(2)) 、(22)は背面電
極(6)により直列に接続されている。
Each tandem junction solar cell element (2υ), (2)), (
22) comprises a transparent conductive electrode strip (2) serving as the electrode on the side of light incidence and two semiconductor layers (3), (4) separated by a tunnel junction (5). The tandem junction solar cell elements (20), (2), and (22) are connected in series by a back electrode (6).

次に前記太陽電池の製造方法について説明する。Next, a method for manufacturing the solar cell will be explained.

まずガラスのような透明基板(1)上に酸化インジウム
錫、酸化錫等の透明電極(2)を蒸着、スパンタ等の方
法で被着し、透明電極上をネオジウムYAGレーザーで
罫書きして透明基板(1)上の透明電極な細条にする。
First, a transparent electrode (2) made of indium tin oxide, tin oxide, etc. is deposited on a transparent substrate (1) such as glass by a method such as vapor deposition or spunter, and the transparent electrode is marked with a neodymium YAG laser to make it transparent. A transparent electrode strip is formed on the substrate (1).

次に透明電極細条上にアモルファスシリコン半導体層(
3)、(4)を被着し透明電極(2)の罫書に隣接して
それに平行に半導体層を罫書きする。次にチタン、アル
ミニウム、インジウム等の背面電極材料を半導体層細条
上に蒸着したのち背mt極をレーザーで罫書いて各素子
を直列に接続する背面電極細条(1+)を得る。
Next, an amorphous silicon semiconductor layer (
3) and (4) are deposited and a semiconductor layer is scored adjacent to and parallel to the markings on the transparent electrode (2). Next, a back electrode material such as titanium, aluminum, or indium is deposited on the semiconductor layer strip, and the back mt poles are scored with a laser to obtain a back electrode strip (1+) connecting each element in series.

レーザービームを利用して製造される従来の直列接続型
太陽電池は以上のような構造を有しているが、透明基板
(1)として主にガラスが利用されるので製造工程中に
基板が破損して製品歩留シが低下するという問題点があ
った。このため基板としてポリイミド樹脂のような耐熱
性樹脂やガラスホーロー等の絶縁材料によってコーティ
ングされた鋼板やステンレス板を用いて、直列接続型太
陽電池を製造することも試みられている。
Conventional series-connected solar cells manufactured using laser beams have the structure described above, but since glass is mainly used as the transparent substrate (1), the substrate may be damaged during the manufacturing process. However, there was a problem in that the product yield was reduced. For this reason, attempts have been made to manufacture series-connected solar cells using a steel plate or stainless steel plate coated with a heat-resistant resin such as polyimide resin or an insulating material such as glass enamel as a substrate.

第3図は例えば特開昭58−180069号公報に示さ
れた母体基板にステンレス板、絶縁層にポリイミド樹脂
を用いた基板上で直列接続を行わせ作成した従来の太陽
電池の断面図である。図において(12)はステンレス
板、(13)は厚さ20μmのポリイミド樹脂、(14
)はアルミニウムやクロムなどの下部電極、(15)は
厚さ約7UUOAのアモルファスシリコン半導体膜、(
16)は厚さ1(10UAの透明電極であシ、透明電極
(L6)と−部露出した下部電極([4)とが電気的に
直列に接続されるように形成され、複数個の光発電領域
(23) 、 (24) 、 (25)を直列に接続し
た太陽電池が得られる。
FIG. 3 is a cross-sectional view of a conventional solar cell made by connecting in series on a substrate using a stainless steel plate as a base substrate and a polyimide resin as an insulating layer, as shown in, for example, Japanese Patent Application Laid-open No. 58-180069. . In the figure, (12) is a stainless steel plate, (13) is a polyimide resin with a thickness of 20 μm, and (14) is a stainless steel plate.
) is a lower electrode made of aluminum or chromium, etc., (15) is an amorphous silicon semiconductor film with a thickness of about 7UUOA, (
16) is a transparent electrode with a thickness of 1 (10 UA), and is formed so that the transparent electrode (L6) and the lower electrode ([4) with the negative part exposed] are electrically connected in series, and a plurality of light A solar cell is obtained in which power generation regions (23), (24), and (25) are connected in series.

〔発明が解決しようとする問題点] 従来の直列接続型太陽電池は以上のような製造方法およ
び構造を有して(・るので、基板としてガラス等の透明
基板を用いて製造する場合には、太陽電池としての特性
は良いけれども破損しやすく生産性がよくないという問
題を有している。また基板としてステンレス板に絶縁物
を塗布した絶縁基板を用いる場合には、第3図に示した
ように隣接する光発電領域を直列に接続する直列電極の
役目を透明電極が担うととKなるが、透明電極例えばイ
ンジウム錫酸化物は、アルミニウムのような金属電極に
比べて2桁以上電気抵抗が太き(、その上透明電極と下
部電極との段差が約foooXあるのに対して直列電極
の役目を果す透明電極の厚みは1000にしかないので
前記の段差部においてアモルファスシリコン半導体層の
壁面に被着する透明電極の厚みは極めて薄くなシ、直列
接続抵抗が増大し、太陽電池の特性を低下させるという
問題点があった。
[Problems to be Solved by the Invention] Conventional series-connected solar cells have the manufacturing method and structure described above. Therefore, when manufacturing using a transparent substrate such as glass as a substrate, Although it has good characteristics as a solar cell, it has the problem of being easily damaged and having poor productivity.Furthermore, when using an insulating substrate made of a stainless steel plate coated with an insulating material, as shown in Fig. 3, When a transparent electrode plays the role of a series electrode that connects adjacent photovoltaic regions in series, the transparent electrode, for example, indium tin oxide, has an electrical resistance that is two orders of magnitude higher than that of a metal electrode such as aluminum. (Also, the height difference between the transparent electrode and the lower electrode is approximately foooX, whereas the thickness of the transparent electrode that serves as the series electrode is only 1000mm thick.) Although the thickness of the transparent electrode to be deposited is extremely thin, there is a problem in that the series connection resistance increases and the characteristics of the solar cell are deteriorated.

この発明は上記のような問題点を解消するためになされ
たもので、金属など破損し難い基体上に歩留シよく、高
効率の太陽電池を製造することのできる方法を提供する
ことを目的とする。
This invention was made in order to solve the above-mentioned problems, and its purpose is to provide a method that can produce high-yield, highly efficient solar cells on a substrate that is difficult to break, such as metal. shall be.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る太陽電池の製造方法は、光半導体層の分
割工程を、レーザービーム加工によって非酸化性雰囲気
中で行うようにしたものである。
In the method for manufacturing a solar cell according to the present invention, the step of dividing the optical semiconductor layer is performed in a non-oxidizing atmosphere by laser beam processing.

〔作用〕[Effect]

この発明における太陽電池の製造方法においては、レー
ザービーム加工部周辺の光半導体層がレーザービームの
熱によって結晶化し電気抵抗値が低下するので、透明電
極を直列接続型太陽電池の直列接続電極として使用する
場合でも透明電極と接する光半導体層のレーザー加工さ
れた壁面が結晶化し良導体になるので透明電極膜が薄い
場合でも隣接する光発電領域間の電気的接続がうまく行
われる。
In the solar cell manufacturing method of this invention, the optical semiconductor layer around the laser beam processing part is crystallized by the heat of the laser beam and the electrical resistance value decreases, so the transparent electrode is used as the series connection electrode of the series connection type solar cell. Even in this case, the laser-processed wall surface of the optical semiconductor layer in contact with the transparent electrode crystallizes and becomes a good conductor, so that even if the transparent electrode film is thin, electrical connection between adjacent photovoltaic regions can be made successfully.

〔実施例〕〔Example〕

以下この発明の一実施例を図にもとすいて説明する。第
1図において(32)はステンレス膜の基体板、 (3
3)はこのステンレス基体(32)上にコーティングさ
れた厚さ約20μmの無機絶縁物である。この基体(3
2)上に絶縁物(33)をコーティングしてなる絶縁基
板(34)上に厚さ2.u u OAにステンレス膜を
スパッタで被着させ、波長1.06μmのネオジウムY
AGレーザーを用いてビーム径50μmで幅8顛の短柵
型にステンレス膜を大気中にまたは不活性雰囲気中で切
断した絶縁基板(34)上に複数の独立したステンレス
金属電極(35)を形成する。次に前記の金属電極(3
5)および絶縁基板(34)にまたがって少なくとも1
つのPIN接合を有する光半導体層としてのアモルファ
スシリコン半導体層(36)をプラズマCVD法によっ
て約euooX厚に成膜しその後、波長0.53μmの
ネオジウムYAGレーザー第2高調波を用いてビーム径
100μmで前記金属電極(35)の切断溝に隣接して
それに平行に半導体層を切断し複数の独立した半導体領
域(36)を形成する。
An embodiment of the present invention will be described below with reference to the drawings. In Fig. 1, (32) is the base plate of stainless steel membrane, (3
3) is an inorganic insulator coated on the stainless steel substrate (32) with a thickness of about 20 μm. This base (3
2) On an insulating substrate (34) formed by coating an insulating material (33) thereon, a thickness of 2. u u A stainless steel film was deposited on the OA by sputtering, and neodymium Y with a wavelength of 1.06 μm was applied.
A plurality of independent stainless steel metal electrodes (35) are formed on an insulating substrate (34) in which a stainless steel film is cut in the air or in an inert atmosphere into a short fence shape with a beam diameter of 50 μm and a width of 8 using an AG laser. do. Next, the metal electrode (3
5) and the insulating substrate (34).
An amorphous silicon semiconductor layer (36) as an optical semiconductor layer having two PIN junctions is formed to a thickness of about euooX by plasma CVD, and then a beam diameter of 100 μm is formed using the second harmonic of a neodymium YAG laser with a wavelength of 0.53 μm. The semiconductor layer is cut adjacent to and parallel to the cutting groove of the metal electrode (35) to form a plurality of independent semiconductor regions (36).

上記アモルファスシリコン半導体層(36)のレーザー
加工は、不活性ガス中または真空中のような非酸化性雰
囲気で行い、アモルファスシリコンの切断面が酸化によ
ってSiO□のような絶縁性酸化物に変化するのを防止
する。非酸化性雰囲気中でレーザー加工されたアモルフ
ァスシリコン半導体層(36)の切断面(360)はレ
ーザービームの熱影響によって約50μm深さまで微結
晶化した。次にインジュウム錫酸化物からなる厚さ20
ODAの透明電極(37)を半導体層(36)上にスパ
ッタによって形成したのち透明電極の所定の箇所をレー
ザービームによってビーム径20μmで切断して複数個
の光電変換領域としての太陽電池素子(40)。
The laser processing of the amorphous silicon semiconductor layer (36) is performed in a non-oxidizing atmosphere such as an inert gas or vacuum, and the cut surface of the amorphous silicon changes into an insulating oxide such as SiO□ by oxidation. to prevent The cut surface (360) of the amorphous silicon semiconductor layer (36) laser-processed in a non-oxidizing atmosphere was microcrystallized to a depth of approximately 50 μm due to the thermal influence of the laser beam. Next, a thickness of 20 mm made of indium tin oxide
After forming an ODA transparent electrode (37) on the semiconductor layer (36) by sputtering, predetermined locations of the transparent electrode are cut with a beam diameter of 20 μm using a laser beam to form a solar cell element (40) as a plurality of photoelectric conversion regions. ).

(41)、(42)が直列に接続された直列接続型太陽
電池(30)を得る。
A series-connected solar cell (30) is obtained in which (41) and (42) are connected in series.

以上のようにして製造された太陽電池は、アモルファス
シリコン半導体層の分割工程をレーザービームな用いか
つ非酸化性雰囲気中で行うことによシ、アモルファスシ
リコン半導体の切断面が結晶化し、良導体化している。
In the solar cell manufactured as described above, by performing the dividing process of the amorphous silicon semiconductor layer using a laser beam in a non-oxidizing atmosphere, the cut surface of the amorphous silicon semiconductor crystallizes and becomes a good conductor. There is.

従って、太陽電池素子間の直列接続抵抗が低減し高効率
の直列接続型太陽電池を容易に、歩留りよく製造するこ
とが可能となった。
Therefore, it has become possible to easily manufacture a highly efficient series-connected solar cell with a high yield and with reduced series-connection resistance between solar cell elements.

なお、上記基体(32)、絶縁膜(33)、金属電極(
35)、透明電極(37)に用いた材料の種類、膜厚、
成膜法など何れも実施例のものに限定されるものでない
ことは勿論であシ、本発明の範囲内で種々の応用、変形
、変更が可能である。例えば基体(32)は、ステンレ
スに代えて鉄、ニッケル、銅合金などの金属類、あるい
はセラミック材料などを用いることもできる。上記基体
(32)が絶縁性を有する場合には、絶縁膜(33)は
省くこともできる。
Note that the base (32), the insulating film (33), and the metal electrode (
35), the type of material used for the transparent electrode (37), the film thickness,
It goes without saying that the film-forming method is not limited to those described in the embodiments, and various applications, modifications, and changes are possible within the scope of the present invention. For example, instead of stainless steel, metals such as iron, nickel, and copper alloys, or ceramic materials may be used for the base body (32). When the base (32) has insulating properties, the insulating film (33) can be omitted.

また、金属電極(35)あるいは透明電極(37)を形
成するために用いるスパッタ技術、光半導体層としての
アモルファスシリコン半導体層(36)を形成するだめ
のプラズマCVD i及びレーザービーム加工などは、
何れも公知の従来技術は特別の制限なく適宜用いること
ができる。
In addition, sputtering technology used to form the metal electrode (35) or transparent electrode (37), plasma CVD i and laser beam processing used to form the amorphous silicon semiconductor layer (36) as an optical semiconductor layer, etc.
All known conventional techniques can be used as appropriate without any particular limitations.

〔発明の効果〕〔Effect of the invention〕

以上のようにこの発明によれば、光半導体層の分割工程
をレーザービームを用いて非酸化性雰囲気中で行うよう
に構成したので、光半導体層の切断面を結晶化して良導
体化することができ、太陽電池素子間の直列接続抵抗が
低減し高効率の直列接続型太陽電池を製造することがで
きるという効果がある。
As described above, according to the present invention, since the dividing process of the optical semiconductor layer is performed in a non-oxidizing atmosphere using a laser beam, it is possible to crystallize the cut surface of the optical semiconductor layer and make it a good conductor. This has the effect that the series connection resistance between solar cell elements can be reduced and a highly efficient series connection type solar cell can be manufactured.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例による太陽電池の製造方法
によって製作された直列接続型太陽電池の要部を示す断
面図、第2図および第3図は従来法によって製造された
直列接続型太陽電池の断面図である。 図において(34)は基板、(35)は金属電極、(3
6)は光半導体層としてのアモルファスシリコン半導体
層、(37)は透明電極、(40)(41)(42)は
光電変換領域、(360)はアモルファス半導体の結晶
化部である。
FIG. 1 is a sectional view showing the main parts of a series-connected solar cell manufactured by a solar cell manufacturing method according to an embodiment of the present invention, and FIGS. 2 and 3 are series-connected solar cells manufactured by a conventional method. FIG. 2 is a cross-sectional view of a solar cell. In the figure, (34) is the substrate, (35) is the metal electrode, (3
6) is an amorphous silicon semiconductor layer as an optical semiconductor layer, (37) is a transparent electrode, (40), (41), and (42) are photoelectric conversion regions, and (360) is a crystallized portion of the amorphous semiconductor.

Claims (2)

【特許請求の範囲】[Claims] (1)絶縁性表面を有する基板上に金属電極と、少くと
も1つのPIN接合を有する光半導体層と、透明電極と
を順次積層する工程と、前記各積層工程によつて形成さ
れる金属電極、光半導体層、および透明電極を各積層工
程毎に所定の位置でそれぞれ複数個に分割する工程とに
よつて、前記基板上に電気的に直列接続された複数個の
光電変換領域を形成する太陽電池の製造方法において、
前記光半導体層の分割工程を、非酸化性雰囲気中でレー
ザービームを用いて行うことを特徴とする太陽電池の製
造方法。
(1) A step of sequentially laminating a metal electrode, an optical semiconductor layer having at least one PIN junction, and a transparent electrode on a substrate having an insulating surface, and a metal electrode formed by each of the above lamination steps. A plurality of photoelectric conversion regions electrically connected in series are formed on the substrate by dividing the optical semiconductor layer and the transparent electrode into a plurality of parts at predetermined positions in each lamination process. In the method for manufacturing solar cells,
A method for manufacturing a solar cell, characterized in that the step of dividing the optical semiconductor layer is performed using a laser beam in a non-oxidizing atmosphere.
(2)光半導体層は、アモルファスシリコン半導体層で
あることを特徴とする特許請求の範囲第1項記載の太陽
電池の製造方法。
(2) The method for manufacturing a solar cell according to claim 1, wherein the optical semiconductor layer is an amorphous silicon semiconductor layer.
JP62291874A 1987-11-20 1987-11-20 Manufacture of solar cell Pending JPH01134976A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62291874A JPH01134976A (en) 1987-11-20 1987-11-20 Manufacture of solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62291874A JPH01134976A (en) 1987-11-20 1987-11-20 Manufacture of solar cell

Publications (1)

Publication Number Publication Date
JPH01134976A true JPH01134976A (en) 1989-05-26

Family

ID=17774554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62291874A Pending JPH01134976A (en) 1987-11-20 1987-11-20 Manufacture of solar cell

Country Status (1)

Country Link
JP (1) JPH01134976A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002527910A (en) * 1998-10-12 2002-08-27 パシフィック ソーラー ピー ティ ワイ リミテッド Melt-through contact formation method
JP2002528888A (en) * 1998-09-17 2002-09-03 シーメンス ソーラー ゲゼルシャフト ミット ベシュレンクテル ハフツング Method for structuring a transparent electrode layer
JP2012504350A (en) * 2008-09-29 2012-02-16 シンシリコン・コーポレーション Integrated solar module
US20120152339A1 (en) * 2010-03-18 2012-06-21 Fuji Electric Co., Ltd. Thin film solar cell and method for manufacturing same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002528888A (en) * 1998-09-17 2002-09-03 シーメンス ソーラー ゲゼルシャフト ミット ベシュレンクテル ハフツング Method for structuring a transparent electrode layer
JP2002527910A (en) * 1998-10-12 2002-08-27 パシフィック ソーラー ピー ティ ワイ リミテッド Melt-through contact formation method
JP2012504350A (en) * 2008-09-29 2012-02-16 シンシリコン・コーポレーション Integrated solar module
US20120152339A1 (en) * 2010-03-18 2012-06-21 Fuji Electric Co., Ltd. Thin film solar cell and method for manufacturing same

Similar Documents

Publication Publication Date Title
US4400577A (en) Thin solar cells
US5268037A (en) Monolithic, parallel connected photovoltaic array and method for its manufacture
US5332680A (en) Method of making photoelectric conversion device
KR100831291B1 (en) Solar cell and method for producing the same
KR101077046B1 (en) New metal strip product
US20100059098A1 (en) Monolithic photovoltaic module
KR20030093900A (en) A solar battery apparatus, a manufacturing method thereof, a metal plate therefor, and a plant for generation of electric power
JP2001339081A (en) Solar cell and method of manufacturing the same
US7638353B2 (en) Method for fabrication of semiconductor devices on lightweight substrates
JPH01134976A (en) Manufacture of solar cell
JPS61214483A (en) Manufacture of integrated type solar cell
JPS59208789A (en) Solar cell
JPH0864850A (en) Thin film solar battery and fabrication thereof
US4645866A (en) Photovoltaic device and a method of producing the same
JP2002280580A (en) Integrated photovoltaic device and manufacturing method therefor
JPH0423364A (en) Photoelectromotive force device usable as mirror
JP2000277764A (en) Solar cell module
JP4220014B2 (en) Method for forming thin film solar cell
JPS62147784A (en) Amorphous solar cell and manufacture thereof
JP3332487B2 (en) Method for manufacturing photovoltaic device
JP3685964B2 (en) Photoelectric conversion device
JP2001237442A (en) Solar cell and its manufacturing method
JPH06177408A (en) Thin film solar battery and its manufacture
EP2549545A1 (en) Thin-film solar cell and method for manufacturing the same
JPS60211906A (en) Amorphous silicon solar cell and preparation thereof