JP2002280580A - Integrated photovoltaic device and manufacturing method therefor - Google Patents

Integrated photovoltaic device and manufacturing method therefor

Info

Publication number
JP2002280580A
JP2002280580A JP2001073226A JP2001073226A JP2002280580A JP 2002280580 A JP2002280580 A JP 2002280580A JP 2001073226 A JP2001073226 A JP 2001073226A JP 2001073226 A JP2001073226 A JP 2001073226A JP 2002280580 A JP2002280580 A JP 2002280580A
Authority
JP
Japan
Prior art keywords
electrode
film
transparent conductive
conductive film
photoelectric conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001073226A
Other languages
Japanese (ja)
Other versions
JP4124313B2 (en
Inventor
Shigero Yada
茂郎 矢田
Keisho Yamamoto
恵章 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2001073226A priority Critical patent/JP4124313B2/en
Publication of JP2002280580A publication Critical patent/JP2002280580A/en
Application granted granted Critical
Publication of JP4124313B2 publication Critical patent/JP4124313B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an integrated photovoltaic device manufacturing method which prevents process failures of a backside electrode film, even if an amorphous semiconductor layer constituting a photoelectric conversion layer is made thin. SOLUTION: The method for manufacturing an integrated photovoltaic device having transparent electrodes 2, an amorphous or microcrystal semiconductor photoelectric conversion layer 3 having at least one junction and backside electrodes 4 laminated one above another on a transparent substrate 1 wherein each layer other than a substrate is separated in a plurality of regions in each forming stage to connect them in series, is constituted by forming a transparent conductive film 4a on the conversion layer 3, irradiating the upside of the conductive film 4a with a laser beam to separate it into a plurality of regions, and forming a metal film 4b on the transparent conductive electrode film 4a by electroplating using the transparent electrode film 4a as one electrode.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は集積型光起電力装
置及びその製造方法に関するものである。
[0001] 1. Field of the Invention [0002] The present invention relates to an integrated photovoltaic device and a method of manufacturing the same.

【0002】[0002]

【従来の技術】従来からガラスなどの透光性基板、Sn
2などの透明電極、少なくとも一つの接合を有するa
−Siやa−SiGe等の非晶質半導体又は微結晶半導
体からなる光電変換層、透明導電酸化物膜、金属層など
から構成される裏面電極が順次積層されており、形成途
中の各段階において基板以外の各層を複数の領域に分離
することで、直列接続された光起電力装置として、いわ
ゆるアモルファス集積型光起電力装置が知られている。
2. Description of the Related Art Conventionally, a transparent substrate such as glass, Sn
A transparent electrode such as O 2 , having at least one junction
A back electrode composed of a photoelectric conversion layer made of an amorphous semiconductor or a microcrystalline semiconductor such as -Si or a-SiGe, a transparent conductive oxide film, a metal layer, and the like is sequentially laminated, and at each stage during the formation, A so-called amorphous integrated photovoltaic device is known as a photovoltaic device connected in series by separating each layer other than the substrate into a plurality of regions.

【0003】集積型構造を形成するためには、ガラス基
板上の透明導電膜、a−Si膜、金属電極膜を分離する
必要がある。各々の膜の分離方法としては、主にレーザ
を用いたレーザパターニング法が用いられている(例え
ば、特公平4−64473号公報参照)。
In order to form an integrated structure, it is necessary to separate a transparent conductive film, an a-Si film, and a metal electrode film on a glass substrate. As a method for separating each film, a laser patterning method using a laser is mainly used (for example, see Japanese Patent Publication No. 4-64473).

【0004】従来のレーザパターニング法を用いた集積
型光起電力装置の製造方法につき図4に従い説明する。
図4は、従来の集積型光起電力装置の製造方法を工程別
に示す要部拡大断面図であって、2つの光電変換素子を
電気的に直列接続する隣接間隔部を中心に示している。
A method of manufacturing an integrated photovoltaic device using a conventional laser patterning method will be described with reference to FIG.
FIG. 4 is an enlarged cross-sectional view of a main part showing a method of manufacturing a conventional integrated photovoltaic device for each process, focusing on an adjacent space where two photoelectric conversion elements are electrically connected in series.

【0005】ガラスなどの絶縁性透光性基板1の一主面
上にITO(In2Sn23)やSnO2などからなる透
明電極2を形成し、例えば、レーザビームの照射により
透明電極2を任意の段数に短冊状に分割する(図4
(a)参照)。そして、この分割された透明電極2上に
内部にpin接合を有するa−Si膜などの非晶質半導
体層からなる光電変換層3を堆積する(図4(b)参
照)。
[0005] forming an insulating translucent ITO (In 2 Sn 2 O 3 ) on one main surface of the substrate 1 and the transparent electrode 2 made of SnO 2 such as glass, for example, a transparent electrode by irradiation of a laser beam 2 is divided into strips in an arbitrary number of steps (FIG. 4
(A)). Then, a photoelectric conversion layer 3 made of an amorphous semiconductor layer such as an a-Si film having a pin junction inside is deposited on the divided transparent electrode 2 (see FIG. 4B).

【0006】その後、基板1の他主面側から、透明導電
膜2の分割ラインに沿って、この分割ラインと重ならな
いようにしてレーザビームを照射し、光電変換層3内の
非晶質半導体層の水素を急激に放出させ、この水素の放
出により非晶質半導体層を除去して、光電変換層3を分
割する(図4(c)参照)。
After that, a laser beam is irradiated from the other main surface side of the substrate 1 along the division line of the transparent conductive film 2 so as not to overlap with the division line, and the amorphous semiconductor in the photoelectric conversion layer 3 is irradiated. The hydrogen in the layer is rapidly released, and the release of the hydrogen removes the amorphous semiconductor layer to divide the photoelectric conversion layer 3 (see FIG. 4C).

【0007】続いて、光電変換層3上に透明導電膜4
1、アルミニウムなどの裏面金属電極膜42からなる裏
面電極4を形成して、透明導電膜2と裏面電極4とを接
続する(図4(d)参照)。その後、透明電極2及び光
電変換層3の分割ラインに沿って、両分割ラインと重な
らないようにして、基板1の他主面側からレーザビーム
を照射し、光電変換層3の非晶質半導体層3内の水素を
急激に放出させて、非晶質半導体層及びその上の透明導
電膜41及び裏面金属電極膜を42からなる裏面電極4
を除去し、隣接するセル間を分離する(図4(e)参
照)。
Subsequently, a transparent conductive film 4 is formed on the photoelectric conversion layer 3.
1. A back electrode 4 made of a back metal electrode film 42 of aluminum or the like is formed, and the transparent conductive film 2 and the back electrode 4 are connected (see FIG. 4D). Thereafter, a laser beam is irradiated from the other main surface side of the substrate 1 along the division line of the transparent electrode 2 and the photoelectric conversion layer 3 so as not to overlap with both division lines. The hydrogen in the layer 3 is rapidly released, and the amorphous semiconductor layer, the transparent conductive film 41 thereon, and the back metal electrode film
Is removed to separate adjacent cells (see FIG. 4E).

【0008】[0008]

【発明が解決しようとする課題】ところで、光劣化対策
や変換効率向上に伴う非晶質半導体層の膜厚の最適化及
びナローバンドギャップ材料を用いた積層型光起電力装
置の開発が進むにつれ、非晶質半導体層の薄膜化が進ん
でいる。
By the way, as the film thickness of the amorphous semiconductor layer is optimized and the development of a stacked photovoltaic device using a narrow band gap material is advanced with the countermeasures against light deterioration and the improvement of the conversion efficiency, Amorphous semiconductor layers are becoming thinner.

【0009】非晶質半導体層の薄膜化に伴い、裏面電極
のパターニングの際に、非晶質半導体層内の水素の絶対
量が不足し、裏面電極膜が完全に除去されないという問
題があった。特に、非晶質半導体層の膜厚が3000オ
ングストローム以下になると、非晶質半導体層内の水素
の絶対量の不足による加工不良が顕著になる。結果とし
て、開放電圧(Voc)、曲線因子(F.F.)等の特
性低下を引き起こしていた。
With the thinning of the amorphous semiconductor layer, the absolute amount of hydrogen in the amorphous semiconductor layer becomes insufficient during patterning of the back electrode, and the back electrode film is not completely removed. . In particular, when the thickness of the amorphous semiconductor layer becomes 3000 Å or less, processing defects due to a shortage of the absolute amount of hydrogen in the amorphous semiconductor layer become remarkable. As a result, characteristics such as an open-circuit voltage (Voc) and a fill factor (FF) were reduced.

【0010】この発明は、上述した従来の問題点に鑑み
なされたものにして、非晶質半導体層が薄膜化しても、
裏面電極膜の加工不良の発生を防止する集積型光起電力
装置及びその製造方法を提供することをその目的とす
る。
The present invention has been made in consideration of the above-mentioned conventional problems, and has been made in consideration of the above circumstances.
An object of the present invention is to provide an integrated photovoltaic device and a method for manufacturing the same, which prevent the occurrence of processing defects in the back electrode film.

【0011】[0011]

【課題を解決するための手段】この発明は、基板上に第
1の電極、少なくとも一つの接合を有する非晶質又は微
結晶半導体からなる光電変換層、第2の電極が順次積層
されており、各層を複数の領域に分離することで直列接
続された集積型光起電力装置であって、上記第1または
第2の電極の内、裏面側電極となる電極が透明導電膜及
び金属膜からなり、且つ前記金属膜が前記透明導電膜の
上面及び側面を覆うように形成されていることを特徴と
する。
According to the present invention, a first electrode, a photoelectric conversion layer made of an amorphous or microcrystalline semiconductor having at least one junction, and a second electrode are sequentially laminated on a substrate. An integrated photovoltaic device connected in series by separating each layer into a plurality of regions, wherein the electrode serving as the back surface side electrode of the first or second electrode is made of a transparent conductive film and a metal film; And the metal film is formed so as to cover an upper surface and side surfaces of the transparent conductive film.

【0012】前記金属膜は、前記透明導電膜を一方の電
極として用いた電気メッキ法により形成することができ
る。
The metal film can be formed by an electroplating method using the transparent conductive film as one electrode.

【0013】上記したように、裏面電極の一部を構成す
る透明導電膜を分離し、裏面電極の一部を構成する金属
層膜は透明導電膜を一方の電極とした電気メッキ法によ
り形成されるため、この透明導電膜上にのみ均一に形成
され、裏面電極に分離の悪影響を及ぼさずに裏面電極を
形成することができる。
As described above, the transparent conductive film forming part of the back electrode is separated, and the metal layer film forming part of the back electrode is formed by electroplating using the transparent conductive film as one electrode. Therefore, the back electrode can be formed uniformly only on the transparent conductive film, and the back electrode can be formed without adversely affecting the separation of the back electrode.

【0014】また、この発明は、透光性基板上に透明電
極、少なくとも一つの接合を有する非晶質又は微結晶半
導体からなる光電変換層、裏面電極が順次積層されてお
り、形成途中の各段階において基板以外の各層を複数の
領域に分離することで直列接続される集積型光起電力装
置の製造方法であって、上記光電変換層上に透明導電膜
を形成し、この透明導電膜を複数の領域に分離した後、
この透明導電膜を一方の電極として用いた電気メッキ法
により、透明導電膜上に金属膜を形成することを特徴と
する。
According to the present invention, a transparent electrode, a photoelectric conversion layer made of an amorphous or microcrystalline semiconductor having at least one junction, and a back electrode are sequentially laminated on a light-transmitting substrate. A method for manufacturing an integrated photovoltaic device connected in series by separating each layer other than the substrate into a plurality of regions in the step, wherein a transparent conductive film is formed on the photoelectric conversion layer, After separating into multiple areas,
A metal film is formed on the transparent conductive film by an electroplating method using the transparent conductive film as one electrode.

【0015】また、前記透明導電膜はこの膜側からレー
ザを照射して複数の領域に分離するように構成する。
Further, the transparent conductive film is configured to be irradiated with a laser from the film side to be separated into a plurality of regions.

【0016】上記したように、裏面電極の一部を構成す
る透明導電膜を膜側からレーザ分離することで裏面電極
分離を行うため、光電変換層の膜厚には依存せずに、良
好な裏面電極分離を行うことが可能である。また、裏面
電極の一部を構成する金属層は前記透明導電膜を一方の
電極とした電気メッキ法により形成されるため、透明導
電膜上にのみ均一に形成され、裏面電極分離に悪影響も
及ぼさない。また、この金属層により、従来同様、裏面
側光反射を増加させIscの向上を図ることが可能であ
る。従って、光電変換素子の出力特性を大幅に改善する
ことができる。
As described above, the back electrode is separated by laser-separating the transparent conductive film constituting a part of the back electrode from the film side, so that the transparent conductive film does not depend on the film thickness of the photoelectric conversion layer. It is possible to perform backside electrode separation. Further, since the metal layer constituting a part of the back electrode is formed by the electroplating method using the transparent conductive film as one electrode, the metal layer is uniformly formed only on the transparent conductive film and adversely affects the separation of the back electrode. Absent. Further, with this metal layer, it is possible to increase the backside light reflection and improve Isc as in the conventional case. Therefore, the output characteristics of the photoelectric conversion element can be significantly improved.

【0017】[0017]

【発明の実施の形態】以下、この発明の実施の形態を図
1ないし図2に従い説明する。なお、従来と同一部分に
は同一符号を付す。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. Note that the same reference numerals are given to the same parts as those in the related art.

【0018】図1は、この発明の一実施形態にかかる集
積型光起電力装置を示す断面図、図2は、この発明の集
積型光起電力装置の製造方法を工程別に示す要部拡大断
面図であって、2つの光電変換素子を電気的に直列接続
する隣接間隔部を中心に示している。
FIG. 1 is a sectional view showing an integrated photovoltaic device according to an embodiment of the present invention, and FIG. 2 is an enlarged sectional view showing a method of manufacturing the integrated photovoltaic device according to the present invention in each step. It is a figure and mainly shows the adjacent space | interval part which connects two photoelectric conversion elements electrically in series.

【0019】ガラスからなる絶縁性透光性基板1の一主
面上にSnO2からなる透明電極膜2が熱CVD法など
により形成され、この透明電極膜2は、例えば、レーザ
ビームの照射により任意の段数に短冊状に分割されてい
る。
The transparent electrode film 2 made of SnO 2 is formed by thermal CVD on one main surface of the insulating translucent substrate 1 made of glass, the transparent electrode film 2, for example, by irradiation of a laser beam It is divided into strips of an arbitrary number of stages.

【0020】この透明電極膜2上に内部にpin接合を
有する非晶質半導体からなる光電変換層3がプラズマC
VD法により形成される。この光電変換層3のトータル
膜厚は、後述するように、3000Å以下である。この
光電変換層3は、基板1の他主面側から、透明導電膜2
の分割ラインに沿って、この分割ラインと重ならないよ
うにしてレーザビームを照射することにより、分割され
ている。
A photoelectric conversion layer 3 made of an amorphous semiconductor having a pin junction inside is formed on the transparent electrode film 2 by plasma C.
It is formed by the VD method. The total thickness of the photoelectric conversion layer 3 is 3000 ° or less as described later. The photoelectric conversion layer 3 is formed on the transparent conductive film 2 from the other main surface side of the substrate 1.
The laser beam is irradiated along the divided line so that the laser beam is not overlapped with the divided line.

【0021】この光電変換層3上に、酸化亜鉛(Zn
O)からなる透明導電膜4aが設けられ、この透明導電
膜4aは、上記分割ラインと重ならないように、透明導
電膜4a側からレーザビームを照射して分割されてい
る。そして、この分割された透明導電膜4aを一方の電
極として、電気メッキ法により、ニッケル(Ni)を透
明導電膜4aの上面及び側面に設け、裏面金属膜4bが
設けられる。
On the photoelectric conversion layer 3, zinc oxide (Zn)
A transparent conductive film 4a made of O) is provided, and the transparent conductive film 4a is divided by irradiating a laser beam from the transparent conductive film 4a side so as not to overlap with the division line. Then, by using the divided transparent conductive film 4a as one electrode, nickel (Ni) is provided on the upper and side surfaces of the transparent conductive film 4a by electroplating, and the back metal film 4b is provided.

【0022】この発明の特徴とするところは、裏面電極
4を透明導電膜4aとこの透明導電膜4aを用いて電気
メッキ法により形成した裏面金属膜4bとで構成したこ
とにある。即ち、この実施形態では、裏面電極4の一部
を構成するZnOからなる透明導電膜4aのみを膜側か
ら分離する。このため、光電変換層3の総膜厚に依存せ
ずに良好な加工分離を行うことが可能となる。さらに、
裏面電極の一部を構成するZnO膜を加工分離後に、電
気メッキ法によりNi層からなる裏面金属膜4bを形成
することによって裏面側における光学ロスを防止でき
る。
The feature of the present invention resides in that the back electrode 4 is composed of the transparent conductive film 4a and the back metal film 4b formed by electroplating using the transparent conductive film 4a. That is, in this embodiment, only the transparent conductive film 4a made of ZnO that constitutes a part of the back electrode 4 is separated from the film side. For this reason, good processing separation can be performed without depending on the total film thickness of the photoelectric conversion layer 3. further,
The optical loss on the back side can be prevented by forming the back metal film 4b made of a Ni layer by electroplating after processing and separating the ZnO film forming a part of the back electrode.

【0023】上記のように構成すると、透明導電膜4a
の下に位置する光電変換層3は、除去されずに残ること
になる。ただし、光電変換層3は非晶質半導体で形成さ
れているため、隣接する裏面電極間の電気的分離は確保
できる。
With the above configuration, the transparent conductive film 4a
Will remain without being removed. However, since the photoelectric conversion layer 3 is formed of an amorphous semiconductor, electrical isolation between adjacent back electrodes can be ensured.

【0024】また、ZnO膜は耐水性に劣るが、この実
施形態においては、ZnO膜の側面までNiからなる裏
面金属膜4bで被覆されることになる。このため、分離
部でのZnO膜と光電変換層3との界面との耐水性を向
上させることもできる。
Although the ZnO film is inferior in water resistance, in this embodiment, the side surface of the ZnO film is covered with the back metal film 4b made of Ni. For this reason, the water resistance at the interface between the ZnO film and the photoelectric conversion layer 3 at the separation portion can be improved.

【0025】次に、この発明の実施の形態に係るレーザ
パターニング法を用いた集積型光起電力装置の製造方法
につき図2に従い説明する。
Next, a method of manufacturing an integrated photovoltaic device using a laser patterning method according to an embodiment of the present invention will be described with reference to FIG.

【0026】この発明の実施の形態は、ガラスからなる
絶縁性透光性基板1の一主面上に膜厚0.2から1μ
m、この実施の形態では8000Åの膜厚のSnO2
らなる透明電極膜2を熱CVD法などにより形成する。
その後、レーザビームの照射により透明電極膜2を任意
の段数に短冊状に分割する(図2(a)参照)。このレ
ーザパターニングは、波長1.06μmのNd:YAG
レーザを用い、パルス周波数3kHz、室温でレーザパ
ワー密度2×108W/cm2で行った。
According to the embodiment of the present invention, a film having a thickness of 0.2 to 1 μm is formed on one main surface of an insulating and translucent substrate 1 made of glass.
m, in this embodiment, a transparent electrode film 2 made of SnO 2 having a thickness of 8000 ° is formed by a thermal CVD method or the like.
Thereafter, the transparent electrode film 2 is divided into strips of an arbitrary number of steps by laser beam irradiation (see FIG. 2A). This laser patterning is performed using Nd: YAG having a wavelength of 1.06 μm.
A laser was used at a pulse frequency of 3 kHz and room temperature at a laser power density of 2 × 10 8 W / cm 2 .

【0027】そして、透明電極膜2上に内部にpin接
合を有するトータル膜厚が3000Å程度の非晶質半導
体層からなる光電変換層3を堆積する(図2(b)参
照)。この光電変換層3は、下記の表1に示す条件によ
り、プラズマCVD法によりp層、i層、n層と順次積
層形成した。光電変換層3(p層、i層、n層)の形成
は、公知の平行平板のプラズマCVD装置を用いて行っ
た。ここで、放電電極面積は1500cm2、電極間隔
は40mmである。
Then, a photoelectric conversion layer 3 made of an amorphous semiconductor layer having a pin junction inside and having a total thickness of about 3000 ° is deposited on the transparent electrode film 2 (see FIG. 2B). The photoelectric conversion layer 3 was formed by sequentially laminating a p-layer, an i-layer, and an n-layer by the plasma CVD method under the conditions shown in Table 1 below. The formation of the photoelectric conversion layer 3 (p-layer, i-layer, and n-layer) was performed using a known parallel-plate plasma CVD apparatus. Here, the discharge electrode area is 1500 cm 2 , and the electrode interval is 40 mm.

【0028】[0028]

【表1】 [Table 1]

【0029】その後、基板1の他主面側から、透明電極
膜2の分割ラインに沿って、この分割ラインと重ならな
いようにしてレーザビームを照射し、光電変換層3を構
成する非晶質半導体層内の水素を急激に放出させ、この
水素の放出により非晶質半導体層を除去して、光電変換
層3を分割する(図2(c)参照)。このレーザパター
ニングは、波長0.53μmのYAGレーザ(第2高調
波)を用い、パルス周波数3kHz、室温でレーザパワ
ー密度8×106W/cm2で行った。
After that, a laser beam is irradiated from the other main surface side of the substrate 1 along the division line of the transparent electrode film 2 so as not to overlap with the division line, thereby forming the amorphous layer constituting the photoelectric conversion layer 3. Hydrogen in the semiconductor layer is rapidly released, the amorphous semiconductor layer is removed by the release of the hydrogen, and the photoelectric conversion layer 3 is divided (see FIG. 2C). This laser patterning was performed using a YAG laser (second harmonic) having a wavelength of 0.53 μm, a pulse frequency of 3 kHz, and a laser power density of 8 × 10 6 W / cm 2 at room temperature.

【0030】なお、このレーザパターニングの際、非晶
質半導体層中の水素の絶対量が不足して、光電変換層3
の分離が十分でなくても、透明電極膜2の一部が露出し
ていれば、次の工程で形成される裏面電極膜4との電気
的接続が行えるので、問題にはならない。
At the time of this laser patterning, the absolute amount of hydrogen in the amorphous semiconductor layer is insufficient and the photoelectric conversion layer 3
Even if the separation is not sufficient, if a part of the transparent electrode film 2 is exposed, it can be electrically connected to the back electrode film 4 formed in the next step, so that there is no problem.

【0031】続いて、光電変換層3上に、裏面電極4の
一部を構成する透明導電膜4aとして、膜厚1000Å
のZnO膜をDCマグネトロンスパッタ法により形成し
た(図2(d)参照)。このZnO膜は、3wt%Al
23ドープのZnOターゲットを用いて、基板温度20
0℃、反応圧力1Pa、ガス流量アルゴン(Ar):4
00sccm、酸素(O):10sccm、パワー
0.1kWの条件で形成した。
Subsequently, on the photoelectric conversion layer 3, a transparent conductive film 4 a constituting a part of the back electrode 4 is formed to a thickness of 1000
Was formed by a DC magnetron sputtering method (see FIG. 2D). This ZnO film is made of 3 wt% Al
The substrate temperature was set to 20 using a 2O 3 -doped ZnO target.
0 ° C., reaction pressure 1 Pa, gas flow rate Argon (Ar): 4
The film was formed under the conditions of 00 sccm, oxygen (O 2 ): 10 sccm, and power of 0.1 kW.

【0032】続いて、この透明導電膜4aを前記分割ラ
インに沿って、各分割ラインと重ならないようにして、
透明導電膜4a側からレーザビームを照射し、透明導電
膜4aを除去して、透明導電膜4aを分割する(図2
(e)参照)。このレーザパターニングは、波長0.2
48μmのエキシマレーザを用い、パルス周波数100
Hz、室温でレーザパワー密度10W/cm2で行っ
た。
Subsequently, the transparent conductive film 4a is arranged along the division line so as not to overlap with each division line.
By irradiating a laser beam from the transparent conductive film 4a side, the transparent conductive film 4a is removed, and the transparent conductive film 4a is divided (FIG. 2).
(E)). This laser patterning has a wavelength of 0.2
Using a 48 μm excimer laser and a pulse frequency of 100
The laser power density was 10 W / cm 2 at room temperature and at room temperature.

【0033】上記のように、この実施形態では、裏面電
極の一部を構成するZnOからなる透明導電膜4aを膜
側から分離するように構成している。このため、光電変
換層3の総膜厚に依存せずに良好な加工分離を行うこと
が可能となる。
As described above, in this embodiment, the transparent conductive film 4a made of ZnO, which constitutes a part of the back electrode, is separated from the film side. For this reason, good processing separation can be performed without depending on the total film thickness of the photoelectric conversion layer 3.

【0034】その後、上記透明導電膜4aを一方の電極
(負電極)として用い、電気メッキ法により、裏面電極
の一部を構成する金属電極膜4bを形成する。この実施
の形態においては、ニッケル(Ni)を電気メッキ法で
形成することで、透明導電膜4a上にのみにNiからな
る金属電極膜4bが形成される。この結果、透明導電膜
4a上及び側面部に金属電極膜4bが形成され、従来同
様裏面側光反射を増大させると共に、裏面電極分離にも
悪影響を及ぼさない。
Thereafter, using the transparent conductive film 4a as one electrode (negative electrode), a metal electrode film 4b constituting a part of the back electrode is formed by electroplating. In this embodiment, the metal electrode film 4b made of Ni is formed only on the transparent conductive film 4a by forming nickel (Ni) by electroplating. As a result, the metal electrode film 4b is formed on the transparent conductive film 4a and on the side surface portion, so that the light reflection on the back side is increased as in the related art, and the back electrode separation is not adversely affected.

【0035】上記電気メッキ法により形成される金属電
極として、ニッケルを用いた。この形成方法は、硫酸ニ
ッケル、塩化ニッケル、硼酸の混合液を使用したメッキ
浴中で、裏面電極4の一部を構成する透明導電膜4aを
負電極として、電解メッキを行い、約30秒3000Å
のNi層を裏面電極の一部を構成するZnO膜上に形成
した。
Nickel was used as the metal electrode formed by the electroplating method. In this method, electrolytic plating is performed in a plating bath using a mixed solution of nickel sulfate, nickel chloride, and boric acid with the transparent conductive film 4a constituting a part of the back surface electrode 4 as a negative electrode, for about 3000 seconds for about 30 seconds.
Was formed on the ZnO film constituting a part of the back electrode.

【0036】次に、この発明による光起電力装置と従来
の光起電力装置を用意し、太陽電池特性を測定した結果
を表2に示す。両装置は、それぞれ35段集積型の光起
電力装置であり、基板から光入射するものである。本発
明の実施形態は上記方法により形成したもの、また、従
来装置は、裏面電極の製造方法が図4に示す従来方法で
形成したものである。この従来装置は、裏面電極の一部
を構成する金属電極膜42として、スパッタ法により形
成した膜厚3000Åのアルミニウム(Al)を用い、
レーザパターニングにより基板側からパターニングした
ものである。このレーザパターニングは、波長0.53
μmのYAGレーザ(第2高調波)を用い、パルス周波
数3kHz、室温でレーザパワー密度1×107W/c
2で行った。その他の構成は、従来装置と本発明装置
は同じ構成としている。これら装置の出力特性は、AM
−1.5、100mW/cm2、25℃の条件下で測定
した。
Next, a photovoltaic device according to the present invention and a conventional photovoltaic device were prepared, and the results of measuring solar cell characteristics are shown in Table 2. Both devices are 35-stage integrated photovoltaic devices, and light is incident from the substrate. The embodiment of the present invention is formed by the above method, and the conventional apparatus is formed by the conventional method of manufacturing the back electrode shown in FIG. This conventional apparatus uses, as a metal electrode film 42 constituting a part of a back electrode, aluminum (Al) having a thickness of 3000 ° formed by a sputtering method.
Patterned from the substrate side by laser patterning. This laser patterning has a wavelength of 0.53
Using a μm YAG laser (second harmonic), at a pulse frequency of 3 kHz and at room temperature, a laser power density of 1 × 10 7 W / c
It was carried out in m 2. In other configurations, the conventional device and the device of the present invention have the same configuration. The output characteristics of these devices are AM
It was measured under the conditions of −1.5, 100 mW / cm 2 and 25 ° C.

【0037】[0037]

【表2】 [Table 2]

【0038】従来例に対し本実施形態では、太陽電池特
性が大幅に向上しているのが分かる。本実施形態が光電
変換層3の総膜厚が2400Åと薄い場合であっても、
レーザによる加工分離が問題にならない。これは、従来
例ではガラス側からレーザビームを入射し光電変換層に
レーザ光を吸収させ、光電変換層中に含まれる水素の放
出を原動力として裏面電極を溶融飛散させることによっ
て、裏面電極分離を行うが故に、光電変換層の総膜厚が
薄い場合には水素の絶対量が少なく、裏面電極を溶融飛
散させる力が弱くなって十分な加工分離ができない。こ
れに対して、本実施形態では、裏面電極の一部を構成す
るZnOのみを膜側から分離するため、光電変換層の総
膜厚に依存せずに良好な加工分離を行うことが可能とな
る。さらに、裏面電極の一部を構成するZnOを加工分
離後に、電気メッキ法によりNi層を形成することによ
って裏面側における光学ロスを防止でき、Iscの低下
を防げる。これらによって従来よりもVoc、F.F.
が大幅に向上でき、出力特性が大幅に改善されたもので
ある。
It can be seen that, in this embodiment, the solar cell characteristics are significantly improved in comparison with the conventional example. In the present embodiment, even when the total thickness of the photoelectric conversion layer 3 is as thin as 2400 °,
Laser processing separation does not matter. This is because, in the conventional example, a laser beam is incident from the glass side, the laser beam is absorbed in the photoelectric conversion layer, and the back electrode is melted and scattered by the release of hydrogen contained in the photoelectric conversion layer as a driving force, thereby separating the back electrode. Therefore, when the total thickness of the photoelectric conversion layer is small, the absolute amount of hydrogen is small, and the force for melting and scattering the back electrode is weakened, and sufficient processing separation cannot be performed. On the other hand, in the present embodiment, since only ZnO constituting a part of the back electrode is separated from the film side, good processing separation can be performed without depending on the total film thickness of the photoelectric conversion layer. Become. Further, by forming a Ni layer by electroplating after processing and separating ZnO constituting a part of the back electrode, optical loss on the back side can be prevented, and a decrease in Isc can be prevented. Due to these, Voc, F.R. F.
Can be greatly improved, and the output characteristics have been greatly improved.

【0039】また、本実施形態では裏面電極の一部を構
成した透明導電膜としてZnOを用いたが、他の透明導
電酸化物、例えば、SnO2、ITOなどを用いても良
い。
In this embodiment, ZnO is used as the transparent conductive film constituting a part of the back electrode. However, other transparent conductive oxides, for example, SnO 2 , ITO and the like may be used.

【0040】また、本実施形態では裏面電極の一部を構
成し、電気メッキ法により形成される金属としてNiを
用いたが、そのほかにCu、Cr、Zn、Sn、Ag等
の金属を用いてもよい。
In this embodiment, Ni is used as a metal which forms a part of the back electrode and is formed by the electroplating method. In addition, a metal such as Cu, Cr, Zn, Sn and Ag is used. Is also good.

【0041】次に、この発明の第2の実施形態につき、
図3に従い説明する。図1及び図2に示すものは、基板
側から光を入射させる所謂順タイプの光起電力装置であ
るのに対し、図3に示すものは、基板とは逆の方向から
光を入射させる所謂逆タイプの光起電力装置にこの発明
を適用したものである。
Next, according to a second embodiment of the present invention,
This will be described with reference to FIG. 1 and 2 are so-called forward-type photovoltaic devices in which light is incident from the substrate side, whereas the one shown in FIG. 3 is a so-called forward-type photovoltaic device in which light is incident from the direction opposite to the substrate. The present invention is applied to a reverse type photovoltaic device.

【0042】図3に示すように、表面に絶縁処理を施し
た金属基板などからなる基板11上に、裏面側電極12
の一部を構成するZnOからなる透明導電膜12aを形
成する。このZnO膜は、3wt%Al23ドープのZ
nOターゲットを用いて、基板温度200℃、反応圧力
1Pa、ガス流量アルゴン(Ar):400sccm、
酸素(O2):10sccm、パワー0.1kWの条件
で形成した。
As shown in FIG. 3, a back side electrode 12 is placed on a substrate 11 made of a metal substrate or the like whose surface is subjected to insulation treatment.
A transparent conductive film 12a made of ZnO, which constitutes a part of the above, is formed. This ZnO film is made of 3 wt% Al 2 O 3 doped Z
Using an nO target, a substrate temperature of 200 ° C., a reaction pressure of 1 Pa, a gas flow rate of argon (Ar): 400 sccm,
Oxygen (O 2 ) was formed under the conditions of 10 sccm and power of 0.1 kW.

【0043】続いて、この透明導電膜12aを分割ライ
ンに沿って、透明導電膜12a側からレーザビームを照
射し、透明導電膜12aを除去して、透明導電膜12a
を分割する。このレーザパターニングは、波長0.24
8μmのエキシマレーザを用い、パルス周波数100H
z、室温でレーザパワー密度10W/cm2で行った。
Subsequently, the transparent conductive film 12a is irradiated with a laser beam from the side of the transparent conductive film 12a along the division line to remove the transparent conductive film 12a.
Split. This laser patterning has a wavelength of 0.24.
Using an 8 μm excimer laser, pulse frequency 100H
z, at room temperature with a laser power density of 10 W / cm 2 .

【0044】その後、上記透明導電膜12aを負電極と
して、電気メッキ法により、裏面電極の一部を構成する
金属電極膜12bを形成する。この実施の形態において
は、ニッケル(Ni)を電気メッキ法で形成すること
で、透明導電膜12a上にのみにNiからなる金属電極
膜12bが形成される。この結果、基板11上に裏面電
極12がパターニングされて設けられる。
Thereafter, a metal electrode film 12b constituting a part of the back electrode is formed by electroplating using the transparent conductive film 12a as a negative electrode. In this embodiment, the metal electrode film 12b made of Ni is formed only on the transparent conductive film 12a by forming nickel (Ni) by electroplating. As a result, the back electrode 12 is provided on the substrate 11 by patterning.

【0045】そして、裏面側電極12上に内部にnip
接合を有するトータル膜厚が3000Å程度の非晶質半
導体層からなる光電変換層13を堆積する。この光電変
換層13は、下記の表3に示す条件により、プラズマC
VD法によりn層、i層、p層と順次積層形成した。光
電変換層13(n層、i層、p層)の形成は、公知の平
行平板のプラズマCVD装置を用いて行った。ここで、
放電電極面積は1500cm2、電極間隔は40mmで
ある。
Then, a nip is internally formed on the backside electrode 12.
A photoelectric conversion layer 13 made of an amorphous semiconductor layer having a junction and a total thickness of about 3000 ° is deposited. The photoelectric conversion layer 13 has a plasma C under the conditions shown in Table 3 below.
An n-layer, an i-layer, and a p-layer were sequentially formed by a VD method. The formation of the photoelectric conversion layer 13 (the n-layer, the i-layer, and the p-layer) was performed using a known parallel-plate plasma CVD apparatus. here,
The discharge electrode area is 1500 cm 2 and the electrode interval is 40 mm.

【0046】[0046]

【表3】 [Table 3]

【0047】その後、基板1の主面側から、裏面側電極
12の分割ラインに沿って、この分割ラインと重ならな
いようにしてレーザビームを照射し、光電変換層13を
分割する。
Thereafter, a laser beam is irradiated from the main surface side of the substrate 1 along the division line of the back electrode 12 so as not to overlap the division line, thereby dividing the photoelectric conversion layer 13.

【0048】続いて、光電変換層13上に、ZnO膜、
ITO膜などからなる透明電極14を形成し、この透明
電極14を前記分割ラインに沿って、各分割ラインと重
ならないようにして、透明電極14側からレーザビーム
を照射し、透明導電膜を除去して、透明電極14を分割
する。
Subsequently, on the photoelectric conversion layer 13, a ZnO film,
A transparent electrode 14 made of an ITO film or the like is formed, and the transparent electrode 14 is irradiated with a laser beam from the transparent electrode 14 side along the division line so as not to overlap with each division line to remove the transparent conductive film. Then, the transparent electrode 14 is divided.

【0049】このようにして、図3に示す逆タイプの集
積型光起電力装置を形成することができる。
In this manner, the integrated photovoltaic device of the reverse type shown in FIG. 3 can be formed.

【0050】[0050]

【発明の効果】以上説明したように、この発明は、裏面
電極の一部を構成する透明導電膜を膜側から分離するこ
とで裏面電極分離を行うため、光電変換層の膜厚には依
存せずに、良好な裏面電極分離を行うことができる。ま
た、裏面電極の一部を構成する金属層は透明導電膜を一
方の電極とした電気メッキ法により形成されるため、透
明導電膜上にのみ均一に形成され、裏面電極分離に悪影
響も及ぼさない。そしてこの金属層により、従来同様、
裏面側光反射を増加させIscの向上を図ることが可能
である。従って、光電変換素子の出力特性を大幅に改
善、従来に比べ、特にVoc、F.F.を向上させるこ
とができる。
As described above, in the present invention, since the back electrode is separated by separating the transparent conductive film constituting a part of the back electrode from the film side, the present invention depends on the thickness of the photoelectric conversion layer. Without this, good backside electrode separation can be performed. Further, since the metal layer forming a part of the back electrode is formed by an electroplating method using the transparent conductive film as one electrode, it is uniformly formed only on the transparent conductive film and does not adversely affect the separation of the back electrode. . And with this metal layer, as before,
It is possible to increase Isc by increasing the backside light reflection. Therefore, the output characteristics of the photoelectric conversion element are greatly improved. F. Can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の第1の実施の形態にかかる光起電力
装置を示す断面図である。
FIG. 1 is a sectional view showing a photovoltaic device according to a first embodiment of the present invention.

【図2】この発明の集積型光起電力装置の製造方法を工
程別に示す要部拡大断面図である。
FIG. 2 is a fragmentary enlarged cross-sectional view showing a method of manufacturing the integrated photovoltaic device according to the present invention for each step.

【図3】この発明の第2の実施の形態にかかる光起電力
装置を示す断面図である。
FIG. 3 is a sectional view showing a photovoltaic device according to a second embodiment of the present invention.

【図4】従来の集積型光起電力装置の製造方法を工程別
に示す要部拡大断面図である。
FIG. 4 is an enlarged sectional view of a main part showing a method for manufacturing a conventional integrated photovoltaic device for each process.

【符号の説明】[Explanation of symbols]

1 絶縁性透光性基板 2 透明電極膜2 3 光電変換層3 4 裏面電極 4a 透明導電膜 4b 裏面金属膜 DESCRIPTION OF SYMBOLS 1 Insulated translucent substrate 2 Transparent electrode film 2 3 Photoelectric conversion layer 3 4 Back electrode 4a Transparent conductive film 4b Back metal film

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4M104 AA08 BB04 BB13 BB36 CC01 DD37 DD42 DD43 DD52 DD75 FF13 GG05 GG20 HH20 5F051 AA05 BA17 CA15 CB27 DA04 EA01 EA03 EA09 EA10 EA11 EA16 FA03 FA04 FA06 GA03 ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4M104 AA08 BB04 BB13 BB36 CC01 DD37 DD42 DD43 DD52 DD75 FF13 GG05 GG20 HH20 5F051 AA05 BA17 CA15 CB27 DA04 EA01 EA03 EA09 EA10 EA11 EA16 FA03 FA04 FA06 GA03

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 基板上に第1の電極、少なくとも一つの
接合を有する非晶質又は微結晶半導体からなる光電変換
層、第2の電極が順次積層されており、各層を複数の領
域に分離することで直列接続された集積型光起電力装置
であって、上記第1または第2の電極の内、裏面側電極
となる電極が透明導電膜及び金属膜からなり、且つ前記
金属膜が前記透明導電膜の上面及び側面を覆うように形
成されていることを特徴とする集積型光起電力装置。
1. A first electrode, a photoelectric conversion layer made of an amorphous or microcrystalline semiconductor having at least one junction, and a second electrode are sequentially stacked on a substrate, and each layer is separated into a plurality of regions. An integrated photovoltaic device connected in series, wherein, among the first or second electrodes, an electrode serving as a back side electrode is made of a transparent conductive film and a metal film, and the metal film is An integrated photovoltaic device formed to cover an upper surface and side surfaces of a transparent conductive film.
【請求項2】 前記金属膜が前記透明導電膜を一方の電
極として用いた電気メッキ法により形成されていること
を特徴とする請求項1に記載の集積型光起電力装置。
2. The integrated photovoltaic device according to claim 1, wherein the metal film is formed by an electroplating method using the transparent conductive film as one electrode.
【請求項3】 透光性基板上に透明電極、少なくとも一
つの接合を有する非晶質又は微結晶半導体からなる光電
変換層、裏面電極が順次積層されており、形成途中の各
段階において基板以外の各層を複数の領域に分離するこ
とで直列接続される集積型光起電力装置の製造方法であ
って、上記光電変換層上に透明導電膜を形成し、この透
明導電膜を複数の領域に分離した後、この透明導電膜を
一方の電極として用いた電気メッキ法により、透明導電
膜上に金属膜を形成することを特徴とする集積型光起電
力装置の製造方法。
3. A transparent electrode, a photoelectric conversion layer made of an amorphous or microcrystalline semiconductor having at least one junction, and a back electrode are sequentially laminated on a translucent substrate. Is a method for manufacturing an integrated photovoltaic device connected in series by separating each layer into a plurality of regions, wherein a transparent conductive film is formed on the photoelectric conversion layer, and the transparent conductive film is formed on the plurality of regions. A method for manufacturing an integrated photovoltaic device, comprising forming a metal film on a transparent conductive film by electroplating using the transparent conductive film as one electrode after separation.
【請求項4】 前記透明導電膜をこの膜側からレーザを
照射して複数の領域に分離することを特徴とする請求項
3に記載の集積型光起電力装置の製造方法。
4. The method for manufacturing an integrated photovoltaic device according to claim 3, wherein the transparent conductive film is separated into a plurality of regions by irradiating a laser from the film side.
JP2001073226A 2001-03-15 2001-03-15 Integrated photovoltaic device and method for manufacturing the same Expired - Lifetime JP4124313B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001073226A JP4124313B2 (en) 2001-03-15 2001-03-15 Integrated photovoltaic device and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001073226A JP4124313B2 (en) 2001-03-15 2001-03-15 Integrated photovoltaic device and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JP2002280580A true JP2002280580A (en) 2002-09-27
JP4124313B2 JP4124313B2 (en) 2008-07-23

Family

ID=18930682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001073226A Expired - Lifetime JP4124313B2 (en) 2001-03-15 2001-03-15 Integrated photovoltaic device and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP4124313B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004259549A (en) * 2003-02-25 2004-09-16 Rohm Co Ltd Transparent electrode film
JP2010068004A (en) * 2009-12-21 2010-03-25 Sanyo Electric Co Ltd Solar cell module
JP2010118703A (en) * 2010-02-26 2010-05-27 Sanyo Electric Co Ltd Method of manufacturing solar cell module
WO2010063970A2 (en) 2008-12-03 2010-06-10 Ecole Polytechnique Photovoltaic module including a transparent conductive electrode having a variable thickness, and methods for manufacturing same
KR100968879B1 (en) * 2008-02-28 2010-07-09 주식회사 티지솔라 Solar Cell And Method For Manufacturing The Same
KR101144447B1 (en) * 2010-09-01 2012-05-10 엘지이노텍 주식회사 Solar cell apparatus and method of fabricating the same
CN102593193A (en) * 2011-01-14 2012-07-18 Lg电子株式会社 Thin film solar cell and method for manufacturing the same
WO2014002249A1 (en) * 2012-06-29 2014-01-03 三洋電機株式会社 Solar cell, solar cell module, and method for producing solar cell

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004259549A (en) * 2003-02-25 2004-09-16 Rohm Co Ltd Transparent electrode film
KR100968879B1 (en) * 2008-02-28 2010-07-09 주식회사 티지솔라 Solar Cell And Method For Manufacturing The Same
WO2010063970A2 (en) 2008-12-03 2010-06-10 Ecole Polytechnique Photovoltaic module including a transparent conductive electrode having a variable thickness, and methods for manufacturing same
US10002978B2 (en) 2008-12-03 2018-06-19 Ecole Polytechnique Photovoltaic module including a transparent conductive electrode having a variable thickness, and methods for manufacturing same
JP2010068004A (en) * 2009-12-21 2010-03-25 Sanyo Electric Co Ltd Solar cell module
JP2010118703A (en) * 2010-02-26 2010-05-27 Sanyo Electric Co Ltd Method of manufacturing solar cell module
KR101144447B1 (en) * 2010-09-01 2012-05-10 엘지이노텍 주식회사 Solar cell apparatus and method of fabricating the same
CN102593193A (en) * 2011-01-14 2012-07-18 Lg电子株式会社 Thin film solar cell and method for manufacturing the same
JP2012151438A (en) * 2011-01-14 2012-08-09 Lg Electronics Inc Thin film solar cell and manufacturing method of the same
WO2014002249A1 (en) * 2012-06-29 2014-01-03 三洋電機株式会社 Solar cell, solar cell module, and method for producing solar cell
JPWO2014002249A1 (en) * 2012-06-29 2016-05-30 パナソニックIpマネジメント株式会社 SOLAR CELL, SOLAR CELL MODULE, AND SOLAR CELL MANUFACTURING METHOD

Also Published As

Publication number Publication date
JP4124313B2 (en) 2008-07-23

Similar Documents

Publication Publication Date Title
US4542578A (en) Method of manufacturing photovoltaic device
US5268037A (en) Monolithic, parallel connected photovoltaic array and method for its manufacture
EP1039554A1 (en) Method of manufacturing thin film solar cells
EP1583155A1 (en) Transparent thin-film solar cell module and its manufacturing method
JP2006332453A (en) Thin film solar battery and method for manufacturing the same
JPH0472392B2 (en)
JP3613851B2 (en) Integrated thin film solar cell
CN102239571B (en) Method for manufacturing thin-film photoelectric conversion device
JP2010062185A (en) Photoelectric converter and method of manufacturing the same
JP2005277113A (en) Stacked solar cell module
JP2000150944A (en) Solar cell module
JP4124313B2 (en) Integrated photovoltaic device and method for manufacturing the same
JP2002203976A (en) Thin film solar cell and its fabricating method
JP3243229B2 (en) Solar cell module
US6239474B1 (en) Integration type photovoltaic apparatus and method of fabricating the same
JP4127994B2 (en) Photovoltaic device manufacturing method
JPH10209475A (en) Manufacture of integrated photovoltaic device
JP4162373B2 (en) Photovoltaic device manufacturing method
JP2001267613A (en) Integral thin-film solar battery and its manufacturing method
JP3243227B2 (en) Solar cell module
JP2001111079A (en) Manufacturing method of photoelectric conversion device
JP2004260013A (en) Photoelectric converter and its manufacturing method
JP3762013B2 (en) Manufacturing method of integrated thin film photoelectric conversion device
JP4681581B2 (en) Solar cell module
JP2005191584A (en) Integrated thin-film solar battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080430

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080430

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4124313

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120516

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130516

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130516

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140516

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term