JP3762013B2 - Manufacturing method of integrated thin film photoelectric conversion device - Google Patents

Manufacturing method of integrated thin film photoelectric conversion device Download PDF

Info

Publication number
JP3762013B2
JP3762013B2 JP00537897A JP537897A JP3762013B2 JP 3762013 B2 JP3762013 B2 JP 3762013B2 JP 00537897 A JP00537897 A JP 00537897A JP 537897 A JP537897 A JP 537897A JP 3762013 B2 JP3762013 B2 JP 3762013B2
Authority
JP
Japan
Prior art keywords
photoelectric conversion
cells
cell
thin film
integrated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP00537897A
Other languages
Japanese (ja)
Other versions
JPH10209477A (en
Inventor
敦夫 石川
淳 竹中
正隆 近藤
国夫 西村
英雄 山岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP00537897A priority Critical patent/JP3762013B2/en
Publication of JPH10209477A publication Critical patent/JPH10209477A/en
Application granted granted Critical
Publication of JP3762013B2 publication Critical patent/JP3762013B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は集積型薄膜光電変換装置の製造方法に関し、特に、その光電変換装置が光起電力を生じ得る状態になった後における水洗工程に関するものである。
【0002】
【従来の技術】
太陽光のエネルギを直接電気エネルギに変換する光電変換装置である太陽電池の実用化は近年本格的に進められており、単結晶シリコンや多結晶シリコン等を利用した結晶系太陽電池は屋外の電力用太陽電池として既に実用化されている。他方、非結晶シリコン系の薄膜太陽電池は、その製造のための原材料が少なくて済みかつ大面積の集積型太陽電池が絶縁基板上に直接作製可能なことから、低コストの太陽電池として注目されている。しかし、非結晶系薄膜太陽電池は屋外用としては未だ開発段階にあり、既に普及している電卓などの民生機器の電源用途における実績をもとにして、屋外用途に発展させるために研究開発が進められている。
【0003】
薄膜太陽電池の製造においては、CVD法やスパッタリング法などによる薄膜の堆積ステップとレーザスクライブ法などによるパターニングステップの適宜の繰返しや組合せを含む製造プロセスによって、所望の構造が形成される。通常は1枚の絶縁基板上に複数の光電変換セルが電気的に直列接続された集積型構造が採用され、屋外用途のための電力用太陽電池では、たとえば0.4m×0.4mを超える大面積の基板が用いられる。
【0004】
図5は、このような集積型薄膜太陽電池の構造を模式的な断面図で示している。なお、本願の各図において、図面の明瞭化のために寸法関係は適宜に変更されていて実際の寸法関係を反映しておらず、他方、同一の参照符号は同一部分を表わしている。図5の集積型薄膜太陽電池1においては、絶縁基板2上に第1電極層3,アモルファスシリコンなどからなる半導体光電変換層5,および第2電極層7が順次積層されており、パターニングによって半導体層5に設けられた接続用開口溝6を介して、互いに左右に隣接し合う光電変換セルが電気的に直列に接続されている。第1電極層3としては、一般に酸化錫(SnO2 ),酸化亜鉛(ZnO),酸化インジウム錫(ITO)等の透明導電膜が用いられ、また、第2電極層7としては銀(Ag),アルミニウム(Al),クロム(Cr)等の金属膜が用いられる。
【0005】
図5に示されているような構造を有する集積型薄膜太陽電池1は、一般に次のような方法によって作製される。まず、ガラス基板2上にSnO2 ,ZnO,ITO等の透明導電膜が第1電極層3として堆積され、その第1電極層3を複数の光電変換セルに対応する複数の領域に分離するために、レーザスクライブ法によって下部電極分離溝4が形成される。すなわち、これらの下部電極分離溝4は、図5の紙面に直交する方向に直線状に延びている。そして、複数の領域に分離された第1電極層3を覆うように、プラズマCVD法を用いて、pin接合を含む非晶質シリコンの半導体光電変換層5が堆積される。この半導体層5には、左右に隣接する光電変換セルを電気的に直列接続するための接続用開口溝6がレーザスクライブ法によって形成される。これらの接続用開口溝6も、図5の紙面に垂直な方向に直線状に延びている。続いて、これらの接続用溝6を埋めかつ半導体層5を覆うように、Ag,Al,Cr等の金属膜の単層または複層が第2電極層7として堆積される。第1電極層3の場合と同様に、第2電極層7を複数の光電変換セルに対応する複数の領域に分離するように、上部電極分離溝8がレーザスクライブ法によって形成される。これらの上部電極分離溝8も図5の紙面に直交する方向に直線状に延びており、かつ好ましくは第1電極層5に至る深さを有している。このようにして、図5に示されているような集積型薄膜太陽電池が完成する。
【0006】
一般に、図5に示されているような集積型薄膜太陽電池の製造においては、光入射側の透明電極3やその反対側の裏面金属電極7を形成するときに、絶縁基板2の端面や下面に透明導電材料や金属材料がまわり込んで付着する。このため、集積化される個々の光電変換セルが基板上面で互いに分離されていても、基板端面や基板下面に付着した透明導電材料や金属材料を介して互いに導通し、その集積型薄膜太陽電池の出力特性が低下させられる。
【0007】
この問題を改善するために、図6の平面図に示されているように、集積型薄膜太陽電池の裏面金属電極7および上部分離溝8を含むセル集積領域とその周縁に沿った周縁領域10とを互いに電気的に分離する絶縁ラインとしての周縁分離溝9がフォトリソグラフィ法等によって作製される。すなわち、周縁分離溝9を形成することによって、基板端面や基板下面に付着した透明導電材料や金属材料による光電変換セル相互間の短絡が防止され、集積型太陽電池の出力特性,絶縁特性,および耐電圧特性が改善される。フォトリソグラフィ法によって形成される周縁分離溝は、一般に0.1mm〜1.0mmの範囲内の幅を有し、このスクライブラインによってセル集積領域と周縁領域10とが電気的に分離される。なお、図6においては図面の明瞭化のために12段の直列接続されたセルが例示されているが、実際にはさらに多くの段数のセルが形成され得る。
【0008】
このような周縁分離溝9が形成された後に、集積型太陽電池の裏面金属電極7上を封止する前に、その集積型太陽電池を清浄にすることを目的として水洗浄が行なわれる。このような水洗浄の間に、その集積型太陽電池は製造工程室内の光を受けて発電し、起電力を発生する。ここで、実用向けの集積型太陽電池はたとえば63段のセル集積段数を有し、その1段当りに約0.85Vの開放電圧を有している。すなわち、このような集積型太陽電池の正極側と負極側では、電位差が約53Vにもなる。
【0009】
このように正負両極間で約53Vの電位差がある状態で、図7に示されているように、洗浄工程において絶縁ライン9aの一部を覆うように水滴11がいずれかのセルに付着すれば、周縁領域10はその水滴11の付着した段のセルと短絡し、その段のセルの電位に等しくなる(なお、図7において、図面の明瞭化のために周縁分離溝9aはその幅が拡大されて示されている)。その結果、水滴11より正極側の段のセルと周縁領域10との間では、セルが周縁領域10に対して高電位になる。他方、水滴11より負極側の段のセルと周縁領域10との間では、セルに対して周縁領域10の方が高電位になる。
【0010】
続いて、このような電位差がある状態で図8に示されているように別の新たな水滴12,13が絶縁ライン9aを覆うように付着すれば、それらの水滴12,13中には電位差が存在するので、周縁領域10とセルとの間で低電位側から高電位側に向かってたとえば銀の金属電極層から銀のマイグレーションが発生し、樹枝状の銀結晶14,15が成長する。このような銀のマイグレーションが起こる速度は、水滴のようなイオンパスが形成された場合には、電界強度が数百V/mmであれば、その成長速度が0.1mm/秒に近い大きな値となる。このようにして、洗浄工程において金属電極層から金属マイグレーションが発生し、セル集積領域と周縁領域10との間に絶縁不良が生じる。
【0011】
実際の水洗工程では集積型太陽電池1がコンベアで洗浄チャンバ内へ搬送されるので、水洗が開始される際には、前方からの水の飛沫が集積型太陽電池セル上に付着する。そして、そのような飛沫による水滴が、図8を参照して説明されたように、周縁分離溝9a内で金属イオンマイグレーションを生じさせる。しかも、このマイグレーションによる樹枝状金属結晶の成長速度が十分に速いので、集積型太陽電池全体を水が覆ってすべてのセルが同電位になる前に、セルと周縁部10との間の電位差に起因して、金属マイグレーションによる金属樹枝状晶の短絡通路が形成されてしまう。すなわち、金属電極層からのイオンマイグレーションによってセル集積領域と周縁領域とが導通させられ、集積型太陽電池の出力特性,絶縁特性,および耐電圧特性が低下させられる原因となっている。
【0012】
【発明が解決しようとする課題】
以上のような先行技術の課題に鑑み、本発明は、集積型薄膜光電変換装置の周縁分離溝中にイオンマイグレーションによる短絡を生じさせることのない洗浄工程を可能にし、それによって、出力特性,絶縁特性,および耐電圧特性の優れた集積型薄膜光電変換装置の製造方法を提供することを目的としている。
【0013】
【課題を解決するための手段】
本発明の1つの態様による集積型薄膜光電変換装置の製造方法は、絶縁性基板上に順次積層された第1電極層,半導体光電変換層,および第2電極層を含む積層体を備え、第1と第2の電極層の少なくとも一方は金属層を含み、積層体は周縁分離溝によって光電変換セル集積領域と周縁領域とに分離されており、セル集積領域は複数の光電変換セルを形成するように分割されかつそれらの複数のセルの少なくとも一部は電気的に直列接続されている集積型薄膜光電変換装置の製造方法であって、その光電変換装置の水洗工程においては直列接続された複数のセルのうちの正極および負極のセルまたはそれらに近いセルと周縁領域との間は周縁分離溝によって完全には分離されずに電気的にショートさせられており、その水洗工程の完了後に正極と負極のセルまたはそれらに近いセルと周縁領域との間にも完全な周縁分離溝を形成することによってその電気的ショートを除去することを特徴としている。
【0014】
本発明のもう1つの態様による集積型薄膜光電変換装置の製造方法は、その光電変換装置の水洗工程において、直列接続された複数のセルのうちの正極および負極のセルまたはそれらに近いセルと周縁領域との間は導電体によって電気的にショートさせられており、その水洗工程の完了後にその電気的にショートさせる導電体を除去することを特徴としている。
【0015】
本発明のさらに他の態様による集積型薄膜光電変換装置の製造方法は、その光電変換装置の水洗工程において、光から遮蔽された水洗チャンバ内で水洗が行なわれることを特徴としている。
【0017】
【発明の実施の形態】
以下において、本発明の種々の実施の形態に対応した種々の実施例を説明する。
【0018】
(実施例1)
まず、図5の場合と同様に、基板2上に透明電極層3,半導体光電変換層5,および裏面金属電極層7が形成された。このとき、基板2として、910mm×455mmの面積と4mmの厚さを有するガラス基板が用いられた。ガラス基板2上には、熱CVD法によって透明導電膜層3が形成された。そして、波長0.53μmのYAGレーザの第2高調波を上方から照射してスクライブライン4を形成することによって、透明導電膜層3は複数の短冊状の領域に分割された。
【0019】
次に、透明電極層3を覆うように、200℃の基板温度と0.5〜1.0Torrの反応圧力の下に、モノシラン,メタンおよびジボランを含む第1の混合ガス、モノシランおよび水素を含む第2の混合ガス、さらにモノシラン,水素およびホスフィンを含む第3の混合ガスをこの順序で容量結合型グロー放電分解装置内で分解することにより、p型,i型およびn型の非晶質半導体層が積層された。このpin半導体層5には、ガラス基板2を介して、透明電極3にダメージを与えないように前述のレーザ光を照射することによって接続用溝6が形成された。
【0020】
これに続いて、金属層7として、スパッタリング法によって300nm厚さの銀層が形成された。この銀層7と半導体光電変換層5には、フォトリソグラフィ法を用いて、上部電極分離溝8が形成された。これによって、基板2上で複数の光電変換セルが直列接続された集積型非晶質シリコン太陽電池が形成された。
【0021】
その後、図1に示されているように、セル集積領域と周縁領域10とを分離するために、周縁分離溝9,9aがフォトリソグラフィ法によって形成された。ただし、正極端側のセルおよび負極端側セルと周縁領域10とが同電位になるように、周縁分離溝9aは部分的に途切れている。すなわち、正極端側および負極端側のセルは、周縁分離溝9aが途切れた微小領域10aによって周縁領域10と連続している。
【0022】
この結果、セル集積領域と周縁領域10とが電気的に接続されており、2つの短絡領域10aの間にある各段のセルと周縁領域10とが同電位になる。この後に、集積型太陽電池の両端には正極と負極の出力取出し電極が設けられた。これらの取出し電極として、半田めっきされた銅箔が用いられ、ガラス基板との接着は超音波半田付け法によって行なわれた。
【0023】
このように、微小短絡領域10aを残した状態で、裏面金属電極7の表面を清浄にする目的で水洗浄が行なわれた。水洗浄後に乾燥を行ない、周縁領域10とセル集積領域の正負極とを導通させていた微小短絡領域10aを新たにフォトリソグラフィまたはレーザを用いてカットし、その後にこの集積型薄膜太陽電池の出力特性および絶縁特性が測定された。
【0024】
以上の実施例1の水洗工程を含む方法を用いて28枚の集積型薄膜太陽電池のサンプルが作製された。他方、比較例として、図1に示されているような微小な短絡領域10aが残されていないことを除けば実施例1と同じ条件で水洗工程を経て製造されたサンプル54枚が作製さた。これらの実施例1と比較例による集積型薄膜太陽電池において出力特性と絶縁特性を比較したところ、出力特性に関しては大きな相違は見られなかった。しかしながら、絶縁特性に関しては、実施例1によるサンプルではセル集積領域と周縁領域との間で1MΩ以上の抵抗を有していて絶縁不良は見られなかったが、比較例によるサンプルでは54枚中の43枚が1MΩ未満の低い抵抗を有し、絶縁不良が見られた。また、その絶縁不良が見られた比較例のサンプルのいずれにおいても、マイグレーションによる銀結晶のパスができたことによる絶縁不良であった。
【0025】
(実施例2)
実施例2における集積型薄膜太陽電池も、基本的には実施例1の場合と同様に作製された。ただし実施例2における集積型太陽電池では、実施例1における場合のように残存させられた微小短絡領域10aを含んでおらず、周縁分離溝9はセル集積領域を周縁領域10から完全に分離している。他方、この実施例2においては、正極側セルおよび負極側セルと周縁領域とが同一電位になるように、図2に示されているようなリード線10bが半田付けされた。この状態で実施例1の場合と同様に水洗工程を行なって乾燥させた後に、これらのリード線10bを取外し、積層型薄膜太陽電池の出力特性および絶縁特性が測定された。このような実施例2による水洗工程を経た50枚の集積型薄膜太陽電池について調べた結果、出力特性に関しては前述の比較例のものと大きな相違は見られなかったが、実施例2によるいずれの太陽電池もセル集積領域と周縁領域との間で1MΩ以上の十分な抵抗を有しており、絶縁不良は見出されなかった。
【0026】
(実施例3)
図3は、実施例3による集積型薄膜太陽電池の水洗工程を説明するための模式的な断面図である。
【0027】
この実施例3による水洗工程は、実施例1の図1に示された状態の太陽電池や実施例2の図2に示された状態の太陽電池のみならず、先行技術の図6に示された状態の太陽電池の水洗のためにも好ましく用いられ得る。
【0028】
図3に示された水洗装置20Aは、複数の水洗チャンバ21を含んでいる。それらの複数の水洗チャンバ21に続いて乾燥チャンバ22が設けられている。乾燥チャンバ22は、たとえば矢印22aで表されているような温風乾燥機を設けることができる。集積型薄膜太陽電池1はコンベア23によって搬送され、複数の水洗チャンバ21を通過した後に乾燥チャンバ22において乾燥させられる。水洗チャンバ21内においては、上方からの水洗スプレー(図示せず)を設けてもよく、さらにそれに加えて下方からの水洗スプレー(図示せず)を設けてもよい。また、コンベア23はメッシュ状または梯子状のものを用いてもよい。各水洗チャンバ21や乾燥チャンバ22の境界には、好ましくは、たとえば短冊状に切断されたゴムまたはポリマーのシートからなるカーテン24が設けられてもよい。
【0029】
これらの水洗チャンバ21や乾燥チャンバ22は、光を遮断する光遮蔽ガード25によって包囲されている。したがって、図3に示されているような水洗装置において集積型薄膜太陽電池を水洗すれば、その水洗工程中に太陽電池が光起電力を生じることがないので、周縁分離溝9のいずれかの位置に部分的に水滴が付着したとしても、セル集積領域と周縁領域との間に電位差が生じていないのでイオンマイグレーションによる短絡を生じることがない。
【0030】
この実施例3に関して、基本的に実施例1の場合と同様の製造条件で図6に示されているような集積型太陽電池が16枚作製された。これら16枚の太陽電池について図3に示されているような水洗工程を行なった後に絶縁特性を測定したが、イオンマイグレーションの発生による絶縁不良を生じたものは1枚も存在しなかった。
【0031】
(実施例4)
図4は、実施例4による水洗工程に用いられる水洗装置を示す模式的な断面図である。図4の水洗装置20Bは図3のものに類似しているが、光遮蔽ガード25が設けられていない。その代わりに、最初の水洗チャンバ21の前段に付加的な噴水ノズル26が設けられている。
【0032】
この実施例4の図4による水洗工程においては、実施例3の図3における場合と同様に、図6に示されているような先行技術による集積型薄膜太陽電池の水洗にも好ましく用いられ得る。
【0033】
図4に示されているような水洗方法においては、集積型太陽電池1が最初の水洗チャンバ21内に搬送される前段において、その太陽電池1が噴水ノズル26の直下に搬送されたことを光センサ等(図示せず)によって検知し、その瞬間に噴水ノズル26から水を噴射させ、周縁分離溝9の全領域が瞬間的に同時に濡らされることになる。すなわち、集積型太陽電池1が光を受けて起電力を発生している状態であっても、周縁分離溝9の全領域が同一瞬時に濡らされるので、セル集積領域と周縁領域10との全体が瞬時に同電位となる。その結果、濡れた周縁分離溝9内において電位差が存在しないので、イオンマイグレーションが生じることがなく、セル集積領域と周縁領域とが金属の樹枝状晶によって短絡されることがない。
【0034】
基本的に実施例1の場合と同様の製造条件で図6に示されているような14枚の集積型太陽電池を製造し、図4に示されているような水洗工程を施したが、イオンマイグレーションの発生による絶縁不良を生じた集積型太陽電池は1枚も見出されなかった。
【0035】
なお、以上の実施例においては透明絶縁基板上に透明電極,半導体光電変換層および金属電極が順次積層された集積型光電変換装置について説明されたが、たとえば絶縁被膜を有するステンレス基板上に金属電極、半導体光電変換層および透明電極が順次積層された集積型光電変換装置にも本発明の製造方法が適用し得ることはいうまでもない。
【0036】
【発明の効果】
以上のように、本発明によれば、周縁分離溝を有する集積型薄膜太陽電池の水洗工程において金属イオンマイグレーションによる絶縁不良を防止することができ、電流リークのない集積型薄膜太陽電池を製造し得る方法を提供することができる。
【図面の簡単な説明】
【図1】本発明の第1実施例による水洗工程における集積型薄膜太陽電池の状態を示す模式的な平面図である。
【図2】本発明の第2実施例による水洗工程における集積型薄膜太陽電池の状態を示す模式的な平面図である。
【図3】本発明の第3実施例による水洗工程に用いられ得る水洗装置の一例を示す模式的な断面図である。
【図4】本発明の第4実施例による水洗工程に用いられ得る水洗装置を示す模式的な断面図である。
【図5】集積型薄膜光電変換装置の構造を示す模式的な断面図である。
【図6】先行技術による集積型薄膜太陽電池を示す模式的な平面図である。
【図7】先行技術による集積型薄膜太陽電池の周縁分離溝上に局所的な水滴が付着した状態を示す模式的な平面図である。
【図8】先行技術による集積型薄膜太陽電池の周縁分離溝内に金属樹枝状晶が成長した状態を示す模式的な平面図てある。
【符号の説明】
1 集積型薄膜太陽電池
2 透明絶縁基板
3 透明電極
4 下部電極分離溝
5 半導体光電変換層
6 接続用開口溝
7 裏面金属電極
8 上部電極分離溝
9,9a 周縁分離溝
10 周縁領域
10a 残された微小短絡領域
11,12,13 水滴
14,15 金属樹枝状晶
20A,20B 水洗装置
21 水洗チャンバ
22 乾燥チャンバ
22a 温風ドライヤ
23 コンベア
24 ゴムまたはポリマーの短冊状カーテン
25 光遮蔽ガード
26 噴水ノズル
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing an integrated thin film photoelectric conversion device, and more particularly to a water washing step after the photoelectric conversion device is in a state where it can generate photovoltaic power.
[0002]
[Prior art]
In recent years, solar cells, which are photoelectric conversion devices that directly convert solar energy into electrical energy, have been put into practical use. Crystalline solar cells using single crystal silicon, polycrystalline silicon, etc. It has already been put into practical use as a solar cell for use. On the other hand, amorphous silicon-based thin-film solar cells are attracting attention as low-cost solar cells because they can be produced directly on an insulating substrate and require a small amount of raw materials for their production and large-area integrated solar cells. ing. However, amorphous thin-film solar cells are still in the development stage for outdoor use, and research and development are being carried out to develop them for outdoor use based on the results of power supply applications for consumer devices such as calculators that are already in widespread use. It is being advanced.
[0003]
In the manufacture of a thin film solar cell, a desired structure is formed by a manufacturing process including an appropriate repetition or combination of a thin film deposition step by a CVD method or a sputtering method and a patterning step by a laser scribing method or the like. Usually, an integrated structure in which a plurality of photoelectric conversion cells are electrically connected in series on a single insulating substrate is adopted. For example, a power solar cell for outdoor use exceeds 0.4 m × 0.4 m. A large area substrate is used.
[0004]
FIG. 5 is a schematic cross-sectional view showing the structure of such an integrated thin film solar cell. In each drawing of the present application, the dimensional relationship is appropriately changed for clarity of the drawing and does not reflect the actual dimensional relationship, while the same reference numerals represent the same parts. In the integrated thin film solar cell 1 of FIG. 5, a first electrode layer 3, a semiconductor photoelectric conversion layer 5 made of amorphous silicon, and a second electrode layer 7 are sequentially stacked on an insulating substrate 2, and a semiconductor is formed by patterning. The photoelectric conversion cells adjacent to each other on the left and right sides are electrically connected in series via the connection opening groove 6 provided in the layer 5. As the first electrode layer 3, a transparent conductive film such as tin oxide (SnO 2 ), zinc oxide (ZnO), indium tin oxide (ITO) is generally used, and as the second electrode layer 7, silver (Ag) is used. Metal films such as aluminum (Al) and chromium (Cr) are used.
[0005]
The integrated thin film solar cell 1 having the structure shown in FIG. 5 is generally manufactured by the following method. First, a transparent conductive film such as SnO 2 , ZnO, or ITO is deposited on the glass substrate 2 as the first electrode layer 3, and the first electrode layer 3 is separated into a plurality of regions corresponding to a plurality of photoelectric conversion cells. In addition, the lower electrode separation groove 4 is formed by a laser scribing method. That is, these lower electrode separation grooves 4 extend linearly in a direction perpendicular to the paper surface of FIG. Then, an amorphous silicon semiconductor photoelectric conversion layer 5 including a pin junction is deposited using a plasma CVD method so as to cover the first electrode layer 3 separated into a plurality of regions. In the semiconductor layer 5, connection opening grooves 6 for electrically connecting the photoelectric conversion cells adjacent to the left and right in series are formed by a laser scribing method. These connection opening grooves 6 also extend linearly in a direction perpendicular to the paper surface of FIG. Subsequently, a single layer or multiple layers of a metal film such as Ag, Al, Cr, etc. is deposited as the second electrode layer 7 so as to fill the connection grooves 6 and cover the semiconductor layer 5. Similar to the case of the first electrode layer 3, the upper electrode separation groove 8 is formed by a laser scribing method so as to separate the second electrode layer 7 into a plurality of regions corresponding to the plurality of photoelectric conversion cells. These upper electrode separation grooves 8 also extend linearly in a direction perpendicular to the paper surface of FIG. 5 and preferably have a depth reaching the first electrode layer 5. In this way, an integrated thin film solar cell as shown in FIG. 5 is completed.
[0006]
In general, in the manufacture of an integrated thin film solar cell as shown in FIG. 5, when forming the transparent electrode 3 on the light incident side or the back metal electrode 7 on the opposite side, the end face or the bottom face of the insulating substrate 2. A transparent conductive material or metal material wraps around and adheres. For this reason, even if the individual photoelectric conversion cells to be integrated are separated from each other on the upper surface of the substrate, they are electrically connected to each other through the transparent conductive material or metal material attached to the substrate end surface or the lower surface of the substrate. The output characteristics of the are reduced.
[0007]
In order to improve this problem, as shown in the plan view of FIG. 6, the cell integration region including the back surface metal electrode 7 and the upper separation groove 8 of the integrated thin film solar cell and the peripheral region 10 along the periphery thereof. A peripheral separation groove 9 as an insulating line that electrically isolates and from each other is produced by a photolithography method or the like. That is, by forming the peripheral separation groove 9, a short circuit between the photoelectric conversion cells due to the transparent conductive material or metal material adhering to the substrate end surface or the substrate lower surface is prevented, and the output characteristics, insulation characteristics, and Withstand voltage characteristics are improved. The peripheral separation groove formed by photolithography generally has a width in the range of 0.1 mm to 1.0 mm, and the cell integration region and the peripheral region 10 are electrically separated by this scribe line. In FIG. 6, 12 stages of cells connected in series are illustrated for the sake of clarity, but in actuality, more stages of cells can be formed.
[0008]
After such a peripheral separation groove 9 is formed, before the back surface metal electrode 7 of the integrated solar cell is sealed, water cleaning is performed for the purpose of cleaning the integrated solar cell. During such water washing, the integrated solar cell generates light by receiving light in the manufacturing process chamber and generates electromotive force. Here, the integrated solar cell for practical use has, for example, 63 cell integration stages, and has an open circuit voltage of about 0.85 V per stage. That is, the potential difference between the positive electrode side and the negative electrode side of such an integrated solar cell is about 53V.
[0009]
In the state where there is a potential difference of about 53 V between the positive and negative electrodes in this way, as shown in FIG. 7, if the water droplet 11 adheres to any cell so as to cover a part of the insulating line 9a in the cleaning process. The peripheral region 10 is short-circuited with the cell of the stage to which the water droplet 11 is attached, and becomes equal to the potential of the cell of the stage (In FIG. 7, the width of the peripheral separation groove 9a is enlarged for clarity of the drawing. Has been shown). As a result, the cell has a higher potential than the peripheral region 10 between the cell on the positive electrode side of the water droplet 11 and the peripheral region 10. On the other hand, between the cell on the negative electrode side of the water droplet 11 and the peripheral region 10, the peripheral region 10 has a higher potential than the cell.
[0010]
Subsequently, if another new water droplet 12 or 13 adheres so as to cover the insulating line 9a as shown in FIG. 8 in a state where there is such a potential difference, there is a potential difference in these water droplets 12 and 13. Therefore, for example, silver migration occurs from the silver metal electrode layer from the low potential side to the high potential side between the peripheral region 10 and the cell, and the dendritic silver crystals 14 and 15 grow. The rate at which such silver migration occurs is such that when an ion path such as a water droplet is formed, if the electric field strength is several hundred V / mm, the growth rate is a large value close to 0.1 mm / second. Become. In this way, metal migration occurs from the metal electrode layer in the cleaning process, and insulation failure occurs between the cell integration region and the peripheral region 10.
[0011]
In the actual water washing step, the integrated solar cell 1 is transported into the cleaning chamber by a conveyor, so that when water washing is started, splashes of water from the front adhere to the integrated solar cells. Then, as described with reference to FIG. 8, the water droplets due to such splashes cause metal ion migration in the peripheral separation groove 9a. Moreover, since the growth rate of the dendritic metal crystal due to this migration is sufficiently high, the potential difference between the cell and the peripheral portion 10 is reduced before the entire integrated solar cell is covered with water and all the cells have the same potential. As a result, a metal dendritic short-circuit path is formed by metal migration. In other words, the cell integrated region and the peripheral region are made conductive by ion migration from the metal electrode layer, which causes the output characteristics, insulating characteristics, and withstand voltage characteristics of the integrated solar cell to deteriorate.
[0012]
[Problems to be solved by the invention]
In view of the problems of the prior art as described above, the present invention enables a cleaning process that does not cause a short circuit due to ion migration in the peripheral separation groove of the integrated thin film photoelectric conversion device, thereby providing output characteristics and insulation. An object of the present invention is to provide a method for manufacturing an integrated thin film photoelectric conversion device having excellent characteristics and withstand voltage characteristics.
[0013]
[Means for Solving the Problems]
According to one aspect of the present invention, there is provided a method of manufacturing an integrated thin film photoelectric conversion device including a stacked body including a first electrode layer, a semiconductor photoelectric conversion layer, and a second electrode layer sequentially stacked on an insulating substrate. At least one of the first electrode layer and the second electrode layer includes a metal layer, and the stacked body is separated into a photoelectric conversion cell integrated region and a peripheral region by a peripheral separation groove, and the cell integrated region forms a plurality of photoelectric conversion cells. And a method for manufacturing an integrated thin film photoelectric conversion device in which at least some of the plurality of cells are electrically connected in series, and the plurality of cells connected in series in the water washing step of the photoelectric conversion device The positive electrode and negative electrode cells of the cells or the cells close to them and the peripheral region are not completely separated by the peripheral separation groove but are electrically short-circuited. It is characterized by removing the electrical short circuit by forming a complete peripheral isolation trench in between the cells or cell and the peripheral region close to their negative.
[0014]
According to another aspect of the present invention, there is provided a method for manufacturing an integrated thin-film photoelectric conversion device, in the water washing step of the photoelectric conversion device, the positive electrode and negative electrode cells of a plurality of cells connected in series or cells close to them The region is electrically short-circuited by a conductor, and the electrically short-circuited conductor is removed after the water washing step is completed.
[0015]
The method for manufacturing an integrated thin film photoelectric conversion device according to still another aspect of the present invention is characterized in that in the water washing step of the photoelectric conversion device, water washing is performed in a water washing chamber shielded from light.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
In the following, various examples corresponding to various embodiments of the present invention will be described.
[0018]
Example 1
First, as in the case of FIG. 5, the transparent electrode layer 3, the semiconductor photoelectric conversion layer 5, and the back metal electrode layer 7 were formed on the substrate 2. At this time, a glass substrate having an area of 910 mm × 455 mm and a thickness of 4 mm was used as the substrate 2. A transparent conductive film layer 3 was formed on the glass substrate 2 by a thermal CVD method. The transparent conductive film layer 3 was divided into a plurality of strip-shaped regions by irradiating the second harmonic of a YAG laser having a wavelength of 0.53 μm from above to form the scribe line 4.
[0019]
Next, a first mixed gas containing monosilane, methane and diborane, monosilane and hydrogen are contained under a substrate temperature of 200 ° C. and a reaction pressure of 0.5 to 1.0 Torr so as to cover the transparent electrode layer 3. The p-type, i-type and n-type amorphous semiconductors are obtained by decomposing the second mixed gas and further the third mixed gas containing monosilane, hydrogen and phosphine in this order in a capacitively coupled glow discharge decomposition apparatus. The layers were laminated. In the pin semiconductor layer 5, the connection groove 6 was formed by irradiating the laser beam through the glass substrate 2 so as not to damage the transparent electrode 3.
[0020]
Subsequently, a 300 nm thick silver layer was formed as the metal layer 7 by sputtering. An upper electrode separation groove 8 was formed in the silver layer 7 and the semiconductor photoelectric conversion layer 5 by using a photolithography method. Thus, an integrated amorphous silicon solar cell in which a plurality of photoelectric conversion cells are connected in series on the substrate 2 was formed.
[0021]
Thereafter, as shown in FIG. 1, in order to separate the cell integration region and the peripheral region 10, peripheral isolation grooves 9 and 9a were formed by photolithography. However, the peripheral edge separation groove 9a is partially interrupted so that the positive electrode end cell and the negative electrode end side cell and the peripheral region 10 have the same potential. That is, the cells on the positive electrode end side and the negative electrode end side are continuous with the peripheral region 10 by the minute region 10a where the peripheral separation groove 9a is interrupted.
[0022]
As a result, the cell integration region and the peripheral region 10 are electrically connected, and the cells in each stage between the two short-circuit regions 10a and the peripheral region 10 have the same potential. Thereafter, positive and negative output extraction electrodes were provided at both ends of the integrated solar cell. As these extraction electrodes, copper foil plated with solder was used, and adhesion to the glass substrate was performed by an ultrasonic soldering method.
[0023]
Thus, water cleaning was performed for the purpose of cleaning the surface of the back metal electrode 7 with the minute short-circuit region 10a left. After washing with water, drying is performed, and the micro short-circuit region 10a that has electrically connected the peripheral region 10 and the positive and negative electrodes of the cell integration region is newly cut using photolithography or laser, and then the output of the integrated thin-film solar cell Properties and insulation properties were measured.
[0024]
Using the method including the water washing step of Example 1 described above, 28 integrated thin film solar cell samples were produced. On the other hand, as a comparative example, 54 samples manufactured through the water washing process under the same conditions as in Example 1 except that the minute short-circuit region 10a as shown in FIG. 1 was not left were produced. . When the output characteristics and the insulation characteristics were compared in the integrated thin film solar cells according to Example 1 and the comparative example, there was no significant difference in the output characteristics. However, regarding the insulation characteristics, the sample according to Example 1 had a resistance of 1 MΩ or more between the cell integration region and the peripheral region, and no insulation failure was observed. Forty-three sheets had a low resistance of less than 1 MΩ, and insulation failure was observed. Moreover, in any of the samples of the comparative examples in which the insulation failure was observed, the insulation failure was caused by the silver crystal pass by migration.
[0025]
(Example 2)
The integrated thin film solar cell in Example 2 was also produced basically in the same manner as in Example 1. However, the integrated solar cell in Example 2 does not include the minute short-circuit region 10a left as in Example 1, and the peripheral separation groove 9 completely separates the cell integrated region from the peripheral region 10. ing. On the other hand, in Example 2, the lead wire 10b as shown in FIG. 2 was soldered so that the positive electrode side cell, the negative electrode side cell, and the peripheral region had the same potential. In this state, the water washing step was performed in the same manner as in Example 1 and dried, and then these lead wires 10b were removed, and the output characteristics and insulation characteristics of the laminated thin film solar cell were measured. As a result of examining the 50 integrated thin-film solar cells that had undergone the water washing step according to Example 2, the output characteristics were not significantly different from those of the comparative example described above. The solar cell also has a sufficient resistance of 1 MΩ or more between the cell integration region and the peripheral region, and no insulation failure was found.
[0026]
Example 3
FIG. 3 is a schematic cross-sectional view for explaining a water washing step of the integrated thin-film solar cell according to Example 3.
[0027]
The water washing process according to Example 3 is shown in FIG. 6 of the prior art as well as the solar cell in the state shown in FIG. 1 of Example 1 and the solar cell in the state shown in FIG. 2 of Example 2. It can also be preferably used for washing a solar cell in a wet state.
[0028]
The water washing apparatus 20 </ b> A shown in FIG. 3 includes a plurality of water washing chambers 21. A drying chamber 22 is provided following the plurality of washing chambers 21. The drying chamber 22 may be provided with a hot air dryer as represented by an arrow 22a, for example. The integrated thin film solar cell 1 is conveyed by the conveyor 23, passed through the plurality of water washing chambers 21, and then dried in the drying chamber 22. In the washing chamber 21, a washing spray (not shown) from above may be provided, and in addition to this, a washing spray (not shown) from below may be provided. The conveyor 23 may be a mesh or ladder. A curtain 24 made of, for example, a rubber or polymer sheet cut into a strip shape may be provided at the boundary between the water washing chamber 21 and the drying chamber 22.
[0029]
These washing chamber 21 and drying chamber 22 are surrounded by a light shielding guard 25 that blocks light. Therefore, if the integrated thin film solar cell is washed with water in the water washing apparatus as shown in FIG. 3, the photovoltaic cell will not generate photovoltaic power during the washing process, so any of the peripheral separation grooves 9 Even if water droplets partially adhere to the position, there is no potential difference between the cell integration region and the peripheral region, so that a short circuit due to ion migration does not occur.
[0030]
Regarding Example 3, 16 integrated solar cells as shown in FIG. 6 were manufactured under the same manufacturing conditions as in Example 1. These 16 solar cells were subjected to a water washing step as shown in FIG. 3 and then measured for insulation characteristics. However, none of the 16 solar cells caused insulation failure due to the occurrence of ion migration.
[0031]
(Example 4)
FIG. 4 is a schematic cross-sectional view showing a water washing apparatus used in the water washing process according to the fourth embodiment. The water washing apparatus 20B of FIG. 4 is similar to that of FIG. 3, but the light shielding guard 25 is not provided. Instead, an additional fountain nozzle 26 is provided in front of the first flush chamber 21.
[0032]
In the washing step according to FIG. 4 of the fourth embodiment, as in the case of FIG. 3 of the third embodiment, it can be preferably used for the washing of the integrated thin film solar cell according to the prior art as shown in FIG. .
[0033]
In the water washing method as shown in FIG. 4, the fact that the solar cell 1 has been conveyed immediately below the fountain nozzle 26 in the previous stage where the integrated solar cell 1 is conveyed into the first water washing chamber 21 is indicated. Detected by a sensor or the like (not shown), water is jetted from the fountain nozzle 26 at that moment, and the entire region of the peripheral separation groove 9 is instantaneously and simultaneously wetted. That is, even if the integrated solar cell 1 receives light and generates an electromotive force, the entire region of the peripheral separation groove 9 is wetted at the same instant, so the entire cell integrated region and the peripheral region 10 Are instantaneously at the same potential. As a result, since there is no potential difference in the wet peripheral separation groove 9, ion migration does not occur, and the cell integrated region and the peripheral region are not short-circuited by the metal dendrite.
[0034]
Basically, 14 integrated solar cells as shown in FIG. 6 were manufactured under the same manufacturing conditions as in Example 1, and the water washing step as shown in FIG. 4 was performed. No integrated solar cell was found that had an insulation failure due to the occurrence of ion migration.
[0035]
In the above embodiments, an integrated photoelectric conversion device in which a transparent electrode, a semiconductor photoelectric conversion layer, and a metal electrode are sequentially stacked on a transparent insulating substrate has been described. For example, a metal electrode is formed on a stainless steel substrate having an insulating film. Needless to say, the manufacturing method of the present invention can also be applied to an integrated photoelectric conversion device in which a semiconductor photoelectric conversion layer and a transparent electrode are sequentially laminated.
[0036]
【The invention's effect】
As described above, according to the present invention, it is possible to prevent an insulation failure due to metal ion migration in the washing process of an integrated thin film solar cell having a peripheral separation groove, and to manufacture an integrated thin film solar cell free from current leakage. A method of obtaining can be provided.
[Brief description of the drawings]
FIG. 1 is a schematic plan view showing a state of an integrated thin film solar cell in a water washing process according to a first embodiment of the present invention.
FIG. 2 is a schematic plan view showing a state of an integrated thin film solar cell in a water washing process according to a second embodiment of the present invention.
FIG. 3 is a schematic cross-sectional view showing an example of a washing apparatus that can be used in a washing process according to a third embodiment of the present invention.
FIG. 4 is a schematic cross-sectional view showing a water washing apparatus that can be used in a water washing process according to a fourth embodiment of the present invention.
FIG. 5 is a schematic cross-sectional view showing the structure of an integrated thin film photoelectric conversion device.
FIG. 6 is a schematic plan view showing an integrated thin film solar cell according to the prior art.
FIG. 7 is a schematic plan view showing a state in which local water droplets are attached on a peripheral separation groove of an integrated thin film solar cell according to the prior art.
FIG. 8 is a schematic plan view showing a state in which a metal dendrite has grown in a peripheral separation groove of an integrated thin film solar cell according to the prior art.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Integrated thin-film solar cell 2 Transparent insulating substrate 3 Transparent electrode 4 Lower electrode separation groove 5 Semiconductor photoelectric conversion layer 6 Connection opening groove 7 Back surface metal electrode 8 Upper electrode separation groove 9, 9a Perimeter separation groove 10 Perimeter region 10a Micro short-circuit area 11, 12, 13 Water drop 14, 15 Metal dendrites 20A, 20B Flushing device 21 Flushing chamber 22 Drying chamber 22a Hot air dryer 23 Conveyor 24 Rubber or polymer strip curtain 25 Light shielding guard 26 Fountain nozzle

Claims (3)

絶縁性基板上に順次積層された第1電極層,半導体光電変換層,および第2電極層を含む積層体を備え、前記第1と第2の電極層の少なくとも一方は金属層を含み、前記積層体は周縁分離溝によって光電変換セル集積領域と周縁領域とに分離されており、前記セル集積領域は複数の光電変換セルを形成するように分割されかつそれらの複数のセルの少なくとも一部は電気的に直列接続されている集積型薄膜光電変換装置の製造方法であって、
前記光電変換装置の水洗工程においては前記直列接続された複数のセルのうちの正極と負極のセルまたはそれらに近いセルと前記周縁領域との間は前記周縁分離溝によって完全には分離されずに電気的にショートさせられており、
前記水洗工程の完了後に前記正極と負極のセルまたはそれらに近いセルと前記周縁領域との間にも完全な分離溝を形成することによって前記電気的ショートを除去することを特徴とする集積型薄膜光電変換装置の製造方法。
A stack including a first electrode layer, a semiconductor photoelectric conversion layer, and a second electrode layer sequentially stacked on an insulating substrate, wherein at least one of the first and second electrode layers includes a metal layer; The stacked body is separated into a photoelectric conversion cell integrated region and a peripheral region by a peripheral separation groove, and the cell integrated region is divided so as to form a plurality of photoelectric conversion cells, and at least a part of the plurality of cells is formed. A method of manufacturing an integrated thin film photoelectric conversion device electrically connected in series,
In the water washing step of the photoelectric conversion device, a positive electrode and a negative electrode cell among the plurality of cells connected in series or a cell close thereto and the peripheral region are not completely separated by the peripheral separation groove. It is shorted electrically,
An integrated thin film characterized in that the electrical short circuit is removed by forming a complete separation groove between the positive electrode and negative electrode cells or cells close thereto and the peripheral region after the water washing step is completed. A method for manufacturing a photoelectric conversion device.
絶縁性基板上に順次積層された第1電極層,半導体光電変換層,および第2電極層を含む積層体を備え、前記第1と第2の電極層の少なくとも一方は金属層を含み、前記積層体は周縁分離溝によって光電変換セル集積領域と周縁領域とに分離されており、前記セル集積領域は複数の光電変換セルを形成するように分割されかつそれらの複数のセルの少なくとも一部は電気的に直列接続されている集積型薄膜光電変換装置の製造方法であって、
前記光電変換装置の水洗工程においては前記直列接続された複数のセルのうちの正極と負極のセルまたはそれらに近いセルと前記周縁領域との間は導電体によって電気的にショートさせられており、
前記水洗工程の完了後に前記ショートさせる導電体を除去することを特徴とする集積型薄膜光電変換装置の製造方法。
A stack including a first electrode layer, a semiconductor photoelectric conversion layer, and a second electrode layer sequentially stacked on an insulating substrate, wherein at least one of the first and second electrode layers includes a metal layer; The stacked body is separated into a photoelectric conversion cell integrated region and a peripheral region by a peripheral separation groove, and the cell integrated region is divided so as to form a plurality of photoelectric conversion cells, and at least a part of the plurality of cells is formed. A method of manufacturing an integrated thin film photoelectric conversion device electrically connected in series,
In the water washing step of the photoelectric conversion device, a positive electrode and a negative electrode cell among the plurality of cells connected in series or a cell close thereto and the peripheral region are electrically short-circuited by a conductor,
A method of manufacturing an integrated thin film photoelectric conversion device, wherein the conductor to be short-circuited is removed after completion of the water washing step.
絶縁性基板上に順次積層された第1電極層,半導体光電変換層,および第2電極層を含む積層体を備え、前記第1と第2の電極層の少なくとも一方は金属層を含み、前記積層体は周縁分離溝によって光電変換セル集積領域と周縁領域とに分離されており、前記セル集積領域は複数の光電変換セルを形成するように分割されかつそれらの複数のセルの少なくとも一部は電気的に直列接続されている集積型薄膜光電変換装置の製造方法であって、
前記光電変換装置の水洗工程においては光から遮蔽された水洗チャンバ内で水洗が行なわれることを特徴とする集積型薄膜光電変換装置の製造方法。
A stack including a first electrode layer, a semiconductor photoelectric conversion layer, and a second electrode layer sequentially stacked on an insulating substrate, wherein at least one of the first and second electrode layers includes a metal layer; The stacked body is separated into a photoelectric conversion cell integrated region and a peripheral region by a peripheral separation groove, and the cell integrated region is divided so as to form a plurality of photoelectric conversion cells, and at least a part of the plurality of cells is formed. A method of manufacturing an integrated thin film photoelectric conversion device electrically connected in series,
The method of manufacturing an integrated thin film photoelectric conversion device, wherein in the water washing step of the photoelectric conversion device, water washing is performed in a water washing chamber shielded from light.
JP00537897A 1997-01-16 1997-01-16 Manufacturing method of integrated thin film photoelectric conversion device Expired - Fee Related JP3762013B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00537897A JP3762013B2 (en) 1997-01-16 1997-01-16 Manufacturing method of integrated thin film photoelectric conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00537897A JP3762013B2 (en) 1997-01-16 1997-01-16 Manufacturing method of integrated thin film photoelectric conversion device

Publications (2)

Publication Number Publication Date
JPH10209477A JPH10209477A (en) 1998-08-07
JP3762013B2 true JP3762013B2 (en) 2006-03-29

Family

ID=11609516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00537897A Expired - Fee Related JP3762013B2 (en) 1997-01-16 1997-01-16 Manufacturing method of integrated thin film photoelectric conversion device

Country Status (1)

Country Link
JP (1) JP3762013B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60044762D1 (en) * 1999-05-20 2010-09-16 Kaneka Corp Method and device for producing a semiconductor component
AU772539B2 (en) * 1999-07-29 2004-04-29 Kaneka Corporation Method for cleaning photovoltaic module and cleaning apparatus
JP5230627B2 (en) * 2007-08-14 2013-07-10 三菱重工業株式会社 Photoelectric conversion device and manufacturing method thereof

Also Published As

Publication number Publication date
JPH10209477A (en) 1998-08-07

Similar Documents

Publication Publication Date Title
US9793422B2 (en) Solar cell
WO2009107517A1 (en) Thin film solar battery and method for manufacturing the same
KR100334595B1 (en) Manufacturing method of photovoltaic device
CN113921625A (en) Back contact battery and manufacturing method thereof
JP2009152222A (en) Manufacturing method of solar cell element
US20120291836A1 (en) Array of thin-film photovoltaic cells having an etchant-resistant electrode an an integrated bypass diode associated with a plurality of cells and a panel incorporating the same
JP3653800B2 (en) Method for manufacturing integrated thin film solar cell
JP2005116930A (en) Solar cell and manufacturing method thereof
CN114038922A (en) Back contact heterojunction solar cell capable of improving insulation and isolation effects and manufacturing method thereof
JP3815875B2 (en) Manufacturing method of integrated thin film photoelectric conversion device
JP3755048B2 (en) Integrated thin film tandem solar cell and manufacturing method thereof
JP2000150944A (en) Solar cell module
JP2001274447A (en) Method of manufacturing integrated thin film solar battery
KR101000383B1 (en) Integrated thin-film solar cells and method of manufacturing thereof
CN113169241B (en) Photovoltaic module
JP3762013B2 (en) Manufacturing method of integrated thin film photoelectric conversion device
US20120295395A1 (en) Method for producing an array of thin-film photovoltaic cells having a totally separated integrated bypass diode associated with a plurality of cells and method for producing a panel incorporating the same
TW201340364A (en) Method for producing integrated solar cell
JP2000133828A (en) Thin-film solar cell and manufacture thereof
JP3243229B2 (en) Solar cell module
JPH0883919A (en) Solar cell module and manufacture thereof
JP3243227B2 (en) Solar cell module
JP5539081B2 (en) Manufacturing method of integrated thin film photoelectric conversion device
JP2004260013A (en) Photoelectric converter and its manufacturing method
JP4173692B2 (en) Solar cell element and manufacturing method thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060112

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100120

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110120

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120120

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120120

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130120

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130120

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140120

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140120

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees