JP4314872B2 - Manufacturing method of solar cell module - Google Patents

Manufacturing method of solar cell module Download PDF

Info

Publication number
JP4314872B2
JP4314872B2 JP2003120055A JP2003120055A JP4314872B2 JP 4314872 B2 JP4314872 B2 JP 4314872B2 JP 2003120055 A JP2003120055 A JP 2003120055A JP 2003120055 A JP2003120055 A JP 2003120055A JP 4314872 B2 JP4314872 B2 JP 4314872B2
Authority
JP
Japan
Prior art keywords
solar cell
back surface
hole
sealing material
insulating sealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003120055A
Other languages
Japanese (ja)
Other versions
JP2004327698A (en
Inventor
進二 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Systems Co Ltd filed Critical Fuji Electric Systems Co Ltd
Priority to JP2003120055A priority Critical patent/JP4314872B2/en
Publication of JP2004327698A publication Critical patent/JP2004327698A/en
Application granted granted Critical
Publication of JP4314872B2 publication Critical patent/JP4314872B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Description

【0001】
【発明の属する技術分野】
本発明は太陽電池モジュールの製造方法に関し、特に、太陽電池モジュールの成型不良および電気出力端子部の絶縁不良を防止するようにした太陽電池モジュールの製造方法に関する。
【0002】
【従来の技術】
従来の太陽電池モジュールには、受光面側の最表面をガラスで覆うものと、透光性フィルムで覆うものとがある。ガラスで表面を覆う太陽電池モジュールは、非受光面側に、絶縁性封止材と、アルミニウム箔を耐候性フィルムでサンドイッチ構造にした耐湿フィルムを配してなる。一方、受光面側を透光性フィルムで覆う太陽電池モジュールは、透光性フィルムと太陽電池セルとを絶縁性封止材で接着する方法が一般的に採用されているが、表裏両面をフィルムで覆うだけでは剛性が不足するため、裏面側に裏面支持材を設けている。裏面支持材としては、鋼板、アルミ板、ステンレス板などの金属板、あるいはカーボンファイバー、ガラス繊維強化プラスチック(FRP)、セラミック、ガラス、などが用いられている。
【0003】
図9は従来の太陽電池モジュールの構造例を示す断面概略図である。
太陽電池モジュール100は、表面保護材101、表面封止材102、太陽電池セル103あるいは太陽電池セル群、裏面封止材104、および裏面支持材105を積層し、太陽電池セル103に電気出力取出し部材106を半田などの導体107により接続して構成され、電気出力取出し部材106を接続するために除去された裏面封止材104および裏面支持材105の空間部は封止材108によって太陽電池セル103の露出された電極部が被覆されている。
【0004】
このような太陽電池モジュール100の電気出力の取出し方法は以下の通りである。第1の方法は、太陽電池モジュール100内に封入する太陽電池セル103あるいは太陽電池セル群の電気出力取出し用の正極電極部と負極電極部とを太陽電池セル103の裏面側に配置し、表面保護材101、表面封止材102、裏面封止材104、裏面支持材105を積層し、ラミネート成型する。その後、電極部を被覆している裏面封止材104と裏面支持材105を除去して、電極部を露出させ、露出部に半田などの導体107を介して電気出力取出し部材106を接続することにより電気出力を取り出せるようにしている。この方法は、太陽電池セル103の電極部を露出する工程が必要なこと、また露出工程での端子部の損傷を伴うという問題があることが指摘されている。
【0005】
第2の方法は、第1の方法の問題を解決するための方法であり、裏面封止材104、裏面支持材105の電極部に予め連通する端子取出し用貫通孔を設け、その貫通孔にシリコーンゴムまたはフッ素ゴムなどの高融点樹脂からなる栓部材を配置し、ラミネート成型した後、栓部材を除去することにより太陽電池セル103の電極部を露出させ、露出部に半田などの導体107を介して電気出力取出し部材106を接続することにより電気出力を取り出せるようにする方法が取られており、電気出力端子部は配線接続後にシリコーン樹脂で被覆している(たとえば、特許文献1参照。)。
【0006】
【特許文献1】
特許第3176340号公報(段落番号〔0032〕〜〔0033〕,図2)
【0007】
【発明が解決しようとする課題】
しかしながら、電気出力を取出す従来の第2の方法では、電極露出工程時の電極部を損傷なく露出させることが可能であるが、貫通孔に栓部材を配置し、ラミネート後に除去するという工程が必要になる。また、裏面支持材の貫通孔と栓部材との嵌合状態が悪いと、ラミネート成型時に裏面封止材が溶融し、はみ出しが生じ、栓部材の除去がしにくくなる。さらに、裏面封止材のはみ出しにより、貫通孔周辺の裏面封止材の厚さが薄くなり、太陽電池セルに変形が生じ、太陽電池セルの損傷や電気出力配線の損傷、モジュールの外観不良などが発生する。加えて、裏面支持材に金属板を用いた場合には、太陽電池セルと裏面支持材との絶縁不良が発生しやすくなるという問題があった。
【0008】
また、電気出力を取出す従来の第1の方法、第2の方法とも、太陽電池セルの電極露出面に絶縁性封止樹脂が存在していない部分が生じ、端子ボックスの絶縁性充填材が直接太陽電池セル面に触れることから、安価な溶剤タイプの絶縁性充填材を用いると、配線部の信頼性が低下するという問題があった。
【0009】
本発明はこのような点に鑑みてなされたものであり、太陽電池モジュールの配線取出し時やラミネート成型時の太陽電池セルの損傷、ならびにラミネート成型モジュールの外観不良や絶縁不良の発生の少ない構造を有する太陽電池モジュールの製造方法を提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明では上記問題を解決するために、太陽電池セルが少なくとも裏面支持材と絶縁性封止材とで封止され、前記裏面支持材には貫通孔が設けられ、前記貫通孔に前記太陽電池セルの電気出力配線を通して電気出力を外部に取出すようにした太陽電池モジュールの製造方法において、前記裏面支持材に設けられた前記貫通孔の断面に前記絶縁性封止材と同じ材質の別の絶縁性封止材を介在させてラミネート成型することを特徴とする太陽電池モジュールの製造方法が提供される。
【0014】
このような太陽電池モジュールの製造方法によれば、貫通孔の裏面封止材の厚さは貫通孔の周囲よりも厚くなり、貫通孔およびその周辺の裏面封止材の薄肉化を防ぎ、太陽電池セルの変形なくラミネート成型できるため、太陽電池セルの損傷やモジュールの外観不良の発生を防ぎ、特に、裏面支持材に金属板を用いた場合には、太陽電池セルと裏面支持材の絶縁不良なくラミネート成型することができる。また、従来、貫通孔に設けていた栓部材を取り除く必要がないことから、太陽電池モジュールの製造工程の簡素化も実現できる。
【0015】
さらに、本発明では、裏面支持材の貫通孔に絶縁性封止材を介在させてラミネート成型する際に、裏面支持材の貫通孔を、太陽電池セル封止面と反対面側から、粘着テープで貫通孔全面を被覆して、ラミネート成型するようにした。これにより、裏面支持材の貫通孔に介在させる絶縁性封止材の装着状態に依存せず、安定して製造することができる。また、太陽電池セルの全面を絶縁性封止材で被覆し、太陽電池セルの露出面がないことから、端子ボックスの配線や、安価な端子ボックス充填材を適用することができる。
【0016】
【発明の実施の形態】
以下、本発明の実施の形態を図面を参照して詳細に説明するが、本発明はこれらの特定の実施の形態に限定されるものではない。
【0017】
図1は本発明による太陽電池モジュールの構造の一例を模式的に示す断面図である。
この図において、太陽電池モジュール10は、表面保護材11、表面側の絶縁性封止材12、太陽電池セル13、裏面側の絶縁性封止材14および裏面支持材15が積層配置され、電気出力配線16が太陽電池セル13から外部に導くように配置され、電気出力配線16が取出される位置は、絶縁性封止材17によって封止されている。
【0018】
太陽電池モジュール10の電気出力取出し構造は、太陽電池セル13の電気出力配線16を裏面支持材15に設けた貫通孔を通して裏面支持材15の背面側に取出すようにしており、裏面支持材15に設けた貫通孔に配置の絶縁性封止材17が、裏面側の絶縁性封止材14の厚みを貫通孔の周辺よりも厚くなるようにしている。
【0019】
次に、太陽電池モジュール10を製造するときの各材料の積層配置について説明する。
図2は本発明の太陽電池モジュールの製造方法の材料積層配置を示す断面図、図3は本発明の太陽電池モジュールの製造方法の材料積層配置を示す分解斜視図である。
【0020】
太陽電池モジュール10の製造は、表面保護材11、絶縁性封止材12、電気出力配線16を設けた太陽電池セル13、電気出力配線16を貫通させる切れ目18を設けた絶縁性封止材14、電気出力配線16を貫通させる貫通孔19を設けた裏面支持材15、電気出力配線16を貫通させる切れ目20を設けて裏面支持材15の貫通孔19に介在させるようにした絶縁性封止材17を配置し、図2に示すように粘着テープ21を、裏面支持材15の貫通孔19部を覆うように貼付し、ラミネート成型することによって行われる。
【0021】
以下に、本発明の太陽電池モジュール10で使用される表面保護材11、絶縁性封止材12,14,17、太陽電池セル13、裏面支持材15、電気出力配線16について詳しく説明する。
【0022】
本発明で用いられる表面保護材11については、ポリエチレンテトラフルオロエチレン(ETFE)、ポリ3フッ化エチレン、ポリフッ化ビニルなどのフッ素樹脂フィルムなどを用いることができる。絶縁性封止材12との接着面には、絶縁性封止材12が接着しやすいようにコロナ放電処理などの表面処理を施しておくことが望ましい。
【0023】
絶縁性封止材12,14,17としては、エチレン酢酸ビニル共重合体(EVA)樹脂、ブチラール樹脂、シリコーン樹脂、エポキシ樹脂、フッ素化ポリイミド樹脂などの透明な樹脂を使用することができる。上記充填材に架橋剤を添加することにより、架橋することも可能である。また光劣化を抑制するために、紫外線吸収剤が含有されていることが望ましい。裏面側に配置される絶縁性封止材14,17については、必ずしも透明である必要はなく、着色したものを用いてもよい。太陽電池セル13の受光面側に配置される表面保護材11および絶縁性封止材12は、あらかじめラミネート接着された積層フィルムあるいはシートを用いることが望ましい。
【0024】
太陽電池セル13としては特に限定はなく、単結晶材料の半導体pn接合や、非単結晶材料のpin接合、あるいはショットキー接合などの半導体接合などが用いられる。半導体材料としては、シリコン系化合物系が用いられる。好ましくは、可撓性を有する太陽電池セルであり、特に好ましくは、ステンレス基板やフィルム基板上に形成されたアモルファスシリコン(a−Si)半導体や化合物半導体である。
【0025】
裏面支持材15としては、鋼板、アルミ板、ステンレス(SUS)板などの金属板、プラスチック板、FRP板などを使用することができる。裏面支持材15と太陽電池セル13との間には、絶縁フィルムを設けてもよい。これは、太陽電池セル13の電気的絶縁性を保つために使用する。好適に用いられる材料としてはナイロン、ポリエチレンテレフタレート(PET)などのプラスチックフィルムを使用できる。
【0026】
電気出力配線16としては、銅、アルミ、ステンレス(SUS)、ニッケルなどの金属であり、好ましくは、箔状で、金属面が露出せず半田被覆されているものがよい。
【0027】
次に、本発明の太陽電池モジュール10の具体的な製造方法について説明する。
図4は太陽電池セルの構造を示す断面図、図5は太陽電池セルへの電気出力配線の取付け構造を示す概略図、図6は太陽電池セル間の接続構造を示す概略図、図7は太陽電池セルの裏面側の材料の積層配置を示す斜視図、図8は裏面支持材に設けた貫通孔を示す断面概略図である。
【0028】
本実施の形態においては、太陽電池モジュール10が、フィルム基板上に作製したa−Si太陽電池セルを使用し、また裏面支持材15として鋼板を用いて作製されるとする。
【0029】
フィルム基板a−Si太陽電池セル13aは、図4に示すように、0.05mm厚のポリイミドフィルムとするフィルム基板22を使用し、そのフィルム基板22の一方の面に、太陽電池素子23が複数直列に接続形成され、正極取出電極24、負極取出電極25がフィルム基板22の他方の面である非受光面側に形成されたものを用いた。
【0030】
先ず、表面保護材11としては、0.05mm厚のポリエチレンテトラフルオロエチレン(ETFE)を用い、これをロール状フィルムから巻出、所定のサイズに裁断する。次に、表面側の絶縁性封止材12として、0.4mm厚のEVAをロール状フィルムから巻出、所定のサイズに裁断し、表面保護材11上に配置する。表面保護材11および絶縁性封止材12は、あらかじめラミネート接着して、ETFE/EVAラミネートフィルムとしておくことで、工程の簡素化が可能である。
【0031】
フィルム基板a−Si太陽電池セル13aは、図5に示したように、あらかじめ、端子取出し用の正極取出電極24上に、電気出力配線16である厚さ0.1mm、幅3mmの半田被覆銅箔16aの一部分を、幅8mmの導電性粘着テープ26を用いて固定し、端子取出し部に位置する貫通孔対応部分で、フィルム基板a−Si太陽電池セル13aに対し垂直に折り曲げておく。負極取出電極25についても同様にして、電気出力配線16の固定および折り曲げ加工が行なわれる。
【0032】
このようにして形成した電気出力配線16が付いたフィルム基板a−Si太陽電池セル13aを、太陽電池セル13の受光面側が、裁断した絶縁性封止材12側にして、所定の場所に配置する。
【0033】
太陽電池セル13を複数直列に配置した太陽電池モジュール10を作製する場合は、図6に示したように、最も正極側になる太陽電池セル13−1の正極取出電極24上と、最も負極側になる太陽電池セル13−2の負極取出電極25上だけに前述同様の方法で、電気出力配線16を設けておき、太陽電池セル13−1,13−2をレイアウトした後、隣り合う太陽電池セル間の負極取出電極25と正極取出電極24とにわたって半田被覆銅箔16bを配置し、導電性粘着テープ26を用いて、半田被覆銅箔16bの全面を覆う形で固定する。
【0034】
裏面側の絶縁性封止材14としては、0.4mm厚のEVAをロール状フィルムから巻出して使用する。図7に示したように、絶縁性封止材14は、端子取出し部に当たる部分に長さ30mmの切れ目18が入れられ、所定のサイズに裁断され、切れ目18に、太陽電池セル13に固定した電気出力配線16を貫通させて、太陽電池セル13上に配置される。絶縁性封止材17の切れ目20は、絶縁性封止材17の一方の面をロール面にだかせて、封止材面からロールに刃物を当てて作製する。なお、絶縁性封止材17の切れ目20の作製方法としては、平板上で刃物を当てて作製しても良い。裏面支持材15には、あらかじめ端子取出し部に対応する場所にφ10mmの貫通孔19を形成した、厚さ0.8mmのフッ素塗装ガルバニウム鋼板を用い、これを、太陽電池セル13に固定した電気出力配線16が貫通孔19を貫通するように配置した。裏面支持材15の貫通孔19には、貫通孔19と同じφ10mmサイズで、太陽電池セル13に固定した電気出力配線16を通すための切れ目20を外周部から中央に向けて7mmの長さで設けた、厚さ0.8mmの絶縁性封止材17を電気出力配線16を貫通させて配置した。
【0035】
最後に、図8に示したように、厚さ0.1mm、幅8mmのPET粘着テープ21−1を、裏面支持材15の貫通孔19の電気出力配線16を境に、半分だけ覆う形で貼付し、貫通孔19から出ている電気出力配線16をPET粘着テープ21−1が貼り付けてある側に折り曲げ、貫通孔19に残った絶縁性封止材17の露出面の全面を覆うように、PET粘着テープ21−2を貼り付ける。
【0036】
このようにして積層配置されたモジュール構成材料は、真空加熱圧着法により、温度140℃から150℃で、15分から25分間、真空加熱圧着させることで、ラミネート成型および絶縁性封止材の架橋を行った。
【0037】
ラミネート成型されたモジュールから、PET粘着テープ21−1,21−2を剥がし取り、裏面支持材15の表面に変成ポリフェニレンエーテル樹脂からなる配線ケーブル付き端子ボックスをシリコーン樹脂で接着した。
【0038】
電気出力配線16は、端子ボックスの端子台に半田付けし、絶縁性充填材としてシリコーン樹脂を配線部に抽入し、端子ボックスに蓋を付けた。
以下に示す表1は、上記製造方法にて作製した太陽電池モジュール10の電気的特性ならびに外観評価を行った結果、裏面支持材15の貫通孔19の断面部に配置した絶縁性封止材17であるEVAの厚み依存性の結果を示す。
【0039】
裏面支持材15の厚み0.8mmに対し、裏面支持材15の貫通孔19の断面部に配置したEVAの厚みが0.6mmから1.0mmの場合は、耐電圧試験、絶縁測定に合格し、電流−電圧特性の低下や外観不良は確認できなかった。一方、裏面支持材15の貫通孔19の断面部にEVAを配置しない場合や、EVAの厚みが0.4mm以下では、太陽電池セル13の変形と絶縁抵抗の低下が確認され、EVAの厚みが0.2mm以下では裏面支持材15と太陽電池セル13との絶縁不良が発生した。
【0040】
【表1】

Figure 0004314872
【0041】
【発明の効果】
以上説明したように、本発明では、裏面支持材に設けた貫通孔の断面に、絶縁性封止材を介在させてラミネート成型する構成にした。これにより、貫通孔の裏面封止材の厚さを貫通孔の周囲よりも厚くすることができ、貫通孔およびその周辺の裏面封止材の薄肉化を防ぎ、太陽電池セルの変形なくラミネート成型できるようになった。
【0042】
また、裏面支持材の貫通孔に絶縁性封止材を介在させてラミネート成型する構成により、太陽電池セルや電気出力配線の損傷、モジュールの外観不良の発生を防ぎ、特に、裏面支持材に金属板を用いた場合には、太陽電池セルと裏面支持材の絶縁不良なくラミネート成型することができるようになった。
【0043】
さらに、裏面支持材の貫通孔に絶縁性封止材を介在させてラミネート成型する際に、裏面支持材の貫通孔を、太陽電池セル封止面と反対面側から、粘着テープで貫通孔全面を被覆して、ラミネート成型することにより、裏面支持材の貫通孔に、介在させる絶縁性封止材の装着状態に依存せず、貫通孔から裏面支持材の背面側への絶縁性封止材のはみ出しがなく、安定して製造することができるようになった。
【図面の簡単な説明】
【図1】本発明による太陽電池モジュールの構造の一例を模式的に示す断面図である。
【図2】本発明の太陽電池モジュールの製造方法の材料積層配置を示す断面図である。
【図3】本発明の太陽電池モジュールの製造方法の材料積層配置を示す分解斜視図である。
【図4】太陽電池セルの構造を示す断面図である。
【図5】太陽電池セルへの電気出力配線の取付け構造を示す概略図である。
【図6】太陽電池セル間の接続構造を示す概略図である。
【図7】太陽電池セルの裏面側の材料の積層配置を示す斜視図である。
【図8】裏面支持材に設けた貫通孔を示す断面概略図である。
【図9】従来の太陽電池モジュールの構造例を示す断面概略図である。
【符号の説明】
10 太陽電池モジュール
11 表面保護材
12,14,17 絶縁性封止材
13 太陽電池セル
15 裏面支持材
16 電気出力配線
18 切れ目
19 貫通孔
20 切れ目
21 粘着テープ
22 フィルム基板
23 太陽電池素子
24 正極取出電極
25 負極取出電極
26 導電性粘着テープ[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method of manufacturing a solar cell module, in particular, it relates to a method of manufacturing a solar cell module which is adapted to prevent defective molding and electrical output terminal unit insulation failure of the solar cell module.
[0002]
[Prior art]
Conventional solar cell modules include those that cover the outermost surface on the light-receiving surface side with glass and those that cover with a translucent film. A solar cell module whose surface is covered with glass is provided with an insulating sealing material and a moisture-resistant film in which an aluminum foil is sandwiched with a weather-resistant film on the non-light-receiving surface side. On the other hand, the solar cell module that covers the light receiving surface side with a translucent film generally employs a method in which the translucent film and solar cells are bonded with an insulating sealing material. Since the rigidity is insufficient simply by covering with, a back surface support material is provided on the back surface side. As the back support material, a metal plate such as a steel plate, an aluminum plate, a stainless steel plate, carbon fiber, glass fiber reinforced plastic (FRP), ceramic, glass, or the like is used.
[0003]
FIG. 9 is a schematic cross-sectional view showing a structural example of a conventional solar cell module.
The solar cell module 100 includes a surface protective material 101, a surface sealing material 102, a solar cell 103 or a solar cell group, a back surface sealing material 104, and a back surface support material 105, and an electrical output is extracted from the solar cell 103. The space portion of the back surface sealing material 104 and the back surface support material 105, which is configured by connecting the member 106 with a conductor 107 such as solder and removed to connect the electrical output extraction member 106, is sealed by the sealing material 108. The exposed electrode part 103 is covered.
[0004]
The method of taking out the electrical output of such a solar cell module 100 is as follows. In the first method, the positive electrode part and the negative electrode part for taking out the electric output of the solar battery cell 103 or the solar battery cell group enclosed in the solar battery module 100 are arranged on the back surface side of the solar battery cell 103, and the surface The protective material 101, the front surface sealing material 102, the back surface sealing material 104, and the back surface support material 105 are laminated and laminated. Thereafter, the back surface sealing material 104 and the back surface support material 105 covering the electrode portion are removed, the electrode portion is exposed, and the electrical output extraction member 106 is connected to the exposed portion via a conductor 107 such as solder. The electric output can be taken out. It has been pointed out that this method requires a step of exposing the electrode portion of the solar battery cell 103 and has a problem that the terminal portion is damaged in the exposure step.
[0005]
The second method is a method for solving the problem of the first method. A terminal extraction through hole communicating with the electrode portions of the back surface sealing material 104 and the back surface support material 105 is provided in advance, and the through hole is provided in the through hole. A plug member made of a high melting point resin such as silicone rubber or fluororubber is placed and laminated, and then the plug member is removed to expose the electrode portion of the solar battery cell 103, and a conductor 107 such as solder is applied to the exposed portion. A method is adopted in which an electrical output can be taken out by connecting the electrical output take-out member 106, and the electrical output terminal portion is covered with a silicone resin after wiring connection (see, for example, Patent Document 1). .
[0006]
[Patent Document 1]
Japanese Patent No. 3176340 (paragraph numbers [0032] to [0033], FIG. 2)
[0007]
[Problems to be solved by the invention]
However, in the second conventional method for taking out the electrical output, it is possible to expose the electrode part during the electrode exposing step without damage, but a step of disposing the plug member in the through hole and removing it after the lamination is necessary. become. Moreover, if the fitting state between the through hole of the back surface support material and the plug member is poor, the back surface sealing material is melted during lamination molding, causing protrusion and it is difficult to remove the plug member. Furthermore, the protrusion of the back surface sealing material reduces the thickness of the back surface sealing material around the through-hole, resulting in deformation of the solar cell, damage to the solar cell, damage to the electrical output wiring, poor appearance of the module, etc. Will occur. In addition, when a metal plate is used for the back surface support material, there is a problem that poor insulation between the solar battery cell and the back surface support material is likely to occur.
[0008]
Further, in both the first and second conventional methods for taking out the electrical output, a portion where the insulating sealing resin does not exist is formed on the electrode exposed surface of the solar battery cell, and the insulating filler of the terminal box is directly Since the solar cell surface is touched, there is a problem that the reliability of the wiring portion is lowered when an inexpensive solvent type insulating filler is used.
[0009]
The present invention has been made in view of such points, and has a structure in which the solar cell module is not damaged when the wiring of the solar cell module is taken out or when the laminate molding is performed, and the appearance failure or insulation failure of the laminate molded module is less and to provide a method of manufacturing a solar cell module that Yusuke.
[0010]
[Means for Solving the Problems]
In the present invention, in order to solve the above problem, the solar battery cell is sealed with at least a back surface support material and an insulating sealing material, the back surface support material is provided with a through hole, and the solar cell is provided in the through hole. In the method of manufacturing a solar cell module in which an electrical output is taken out through an electrical output wiring of a cell, another insulation of the same material as the insulating sealing material is provided in a cross section of the through hole provided in the back surface support material A method for manufacturing a solar cell module is provided, which is characterized by laminating with a sealing material interposed therebetween .
[0014]
According to such a method of manufacturing a solar cell module, the thickness of the back surface sealing material of the through hole is thicker than the periphery of the through hole, preventing the through hole and the back surface sealing material around the through hole from being thinned. The laminate can be molded without deformation of the battery cells, preventing damage to the solar cells and defective appearance of the module. Especially when a metal plate is used for the back support material, poor insulation between the solar cells and the back support material And can be laminated. Moreover, since it is not necessary to remove the plug member conventionally provided in the through-hole, the manufacturing process of the solar cell module can be simplified.
[0015]
Furthermore, in the present invention, when laminating with an insulating sealing material interposed in the through hole of the back surface support material, the adhesive tape is provided with the through hole of the back surface support material from the side opposite to the solar cell sealing surface. The entire surface of the through hole was covered with and laminated. Thereby, it can manufacture stably, without depending on the mounting state of the insulating sealing material interposed in the through-hole of a back surface support material. Further, since the entire surface of the solar battery cell is covered with an insulating sealing material and there is no exposed surface of the solar battery cell, the wiring of the terminal box and the inexpensive terminal box filler can be applied.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. However, the present invention is not limited to these specific embodiments.
[0017]
FIG. 1 is a cross-sectional view schematically showing an example of the structure of a solar cell module according to the present invention.
In this figure, a solar cell module 10 includes a surface protection material 11, a front surface insulating sealing material 12, a solar battery cell 13, a back surface insulating sealing material 14 and a back surface support material 15, which are stacked. The output wiring 16 is arranged so as to be guided outside from the solar battery cell 13, and the position where the electrical output wiring 16 is taken out is sealed with an insulating sealing material 17.
[0018]
The electrical output extraction structure of the solar cell module 10 is such that the electrical output wiring 16 of the solar battery cell 13 is extracted to the back side of the back surface support material 15 through a through hole provided in the back surface support material 15. The insulating sealing material 17 disposed in the provided through-hole makes the thickness of the insulating sealing material 14 on the back side thicker than the periphery of the through-hole.
[0019]
Next, the lamination arrangement of each material when manufacturing the solar cell module 10 will be described.
FIG. 2 is a cross-sectional view showing the material stacking arrangement of the solar cell module manufacturing method of the present invention, and FIG. 3 is an exploded perspective view showing the material stacking arrangement of the solar cell module manufacturing method of the present invention.
[0020]
The solar cell module 10 is manufactured by the surface protective material 11, the insulating sealing material 12, the solar cell 13 provided with the electric output wiring 16, and the insulating sealing material 14 provided with the cut 18 through which the electric output wiring 16 passes. An insulating sealing material provided with a back support member 15 provided with a through-hole 19 through which the electrical output wiring 16 passes, and a cut 20 through which the electrical output wiring 16 is provided so as to be interposed in the through-hole 19 of the back support member 15. 17, the adhesive tape 21 is pasted so as to cover the through-hole 19 portion of the back surface support member 15 as shown in FIG.
[0021]
Below, the surface protection material 11, the insulating sealing materials 12, 14, and 17, the solar cell 13, the back surface support material 15, and the electric output wiring 16 used in the solar cell module 10 of the present invention will be described in detail.
[0022]
As the surface protective material 11 used in the present invention, a fluororesin film such as polyethylene tetrafluoroethylene (ETFE), polytrifluoride ethylene, and polyvinyl fluoride can be used. It is desirable that a surface treatment such as a corona discharge treatment is performed on the adhesive surface with the insulating sealing material 12 so that the insulating sealing material 12 can be easily adhered.
[0023]
As the insulating sealing materials 12, 14, and 17, transparent resins such as ethylene vinyl acetate copolymer (EVA) resin, butyral resin, silicone resin, epoxy resin, and fluorinated polyimide resin can be used. It is also possible to crosslink by adding a crosslinking agent to the filler. Moreover, in order to suppress photodegradation, it is desirable to contain an ultraviolet absorber. About the insulating sealing materials 14 and 17 arrange | positioned at the back side, it does not necessarily need to be transparent and you may use the colored thing. As the surface protective material 11 and the insulating sealing material 12 disposed on the light receiving surface side of the solar battery cell 13, it is desirable to use a laminated film or sheet that has been laminated and bonded in advance.
[0024]
The solar cell 13 is not particularly limited, and a semiconductor pn junction made of a single crystal material, a pin junction made of a non-single crystal material, a semiconductor junction such as a Schottky junction, or the like is used. As the semiconductor material, a silicon compound system is used. A solar cell having flexibility is preferable, and an amorphous silicon (a-Si) semiconductor or a compound semiconductor formed on a stainless steel substrate or a film substrate is particularly preferable.
[0025]
As the back support member 15, a steel plate, an aluminum plate, a metal plate such as a stainless steel (SUS) plate, a plastic plate, an FRP plate, or the like can be used. An insulating film may be provided between the back support 15 and the solar battery cell 13. This is used to maintain the electrical insulation of the solar battery cell 13. As a material suitably used, a plastic film such as nylon or polyethylene terephthalate (PET) can be used.
[0026]
The electrical output wiring 16 is a metal such as copper, aluminum, stainless steel (SUS), or nickel, and is preferably a foil and is coated with solder without exposing the metal surface.
[0027]
Next, a specific method for manufacturing the solar cell module 10 of the present invention will be described.
4 is a cross-sectional view showing the structure of solar cells, FIG. 5 is a schematic diagram showing a structure for attaching electric output wiring to the solar cells, FIG. 6 is a schematic diagram showing a connection structure between solar cells, and FIG. FIG. 8 is a perspective view showing a laminated arrangement of materials on the back surface side of the solar battery cell, and FIG. 8 is a schematic sectional view showing through holes provided in the back surface support material.
[0028]
In the present embodiment, it is assumed that solar cell module 10 uses an a-Si solar cell produced on a film substrate and is produced using a steel plate as back support member 15.
[0029]
As shown in FIG. 4, the film substrate a-Si solar battery cell 13 a uses a film substrate 22 made of a 0.05 mm-thick polyimide film, and a plurality of solar cell elements 23 are provided on one surface of the film substrate 22. A positive electrode extraction electrode 24 and a negative electrode extraction electrode 25 that are connected in series and formed on the non-light-receiving surface side that is the other surface of the film substrate 22 were used.
[0030]
First, as the surface protection material 11, 0.05 mm thick polyethylene tetrafluoroethylene (ETFE) is used, which is unwound from a roll film and cut into a predetermined size. Next, as the insulating sealing material 12 on the surface side, 0.4 mm thick EVA is unwound from the roll film, cut into a predetermined size, and placed on the surface protective material 11. The surface protective material 11 and the insulating sealing material 12 are laminated and bonded in advance to form an ETFE / EVA laminate film, whereby the process can be simplified.
[0031]
As shown in FIG. 5, the film substrate a-Si solar battery cell 13 a is preliminarily formed on the positive electrode extraction electrode 24 for terminal extraction, and the solder-coated copper having a thickness of 0.1 mm and a width of 3 mm as the electric output wiring 16. A part of the foil 16a is fixed by using a conductive adhesive tape 26 having a width of 8 mm, and is bent perpendicularly to the film substrate a-Si solar battery cell 13a at a portion corresponding to the through hole located in the terminal extraction portion. The negative output electrode 25 is similarly fixed and bent for the electrical output wiring 16.
[0032]
The film substrate a-Si solar battery cell 13a with the electrical output wiring 16 formed in this way is placed at a predetermined location with the light receiving surface side of the solar battery cell 13 being the cut insulating sealing material 12 side. To do.
[0033]
When producing the solar cell module 10 in which a plurality of solar cells 13 are arranged in series, as shown in FIG. 6, on the positive electrode extraction electrode 24 of the solar cell 13-1 that is the most positive electrode side and the most negative electrode side. In the same manner as described above, the electrical output wiring 16 is provided only on the negative electrode extraction electrode 25 of the solar battery cell 13-2, and the solar battery cells 13-1 and 13-2 are laid out. Solder-coated copper foil 16b is disposed between the negative electrode extraction electrode 25 and the positive electrode extraction electrode 24 between cells, and is fixed using a conductive adhesive tape 26 so as to cover the entire surface of the solder-coated copper foil 16b.
[0034]
As the insulating sealing material 14 on the back side, 0.4 mm thick EVA is unwound from the roll film. As shown in FIG. 7, the insulating sealing material 14 has a cut 18 having a length of 30 mm at a portion corresponding to the terminal extraction portion, cut into a predetermined size, and fixed to the solar battery cell 13 at the cut 18. The electric output wiring 16 is penetrated and arranged on the solar battery cell 13. The cut 20 of the insulating sealing material 17 is produced by placing one surface of the insulating sealing material 17 on the roll surface and applying a blade to the roll from the sealing material surface. In addition, as a manufacturing method of the cut | interruption 20 of the insulating sealing material 17, you may manufacture by applying a cutter on a flat plate. The back support member 15 is a 0.8 mm thick fluorine-coated galvanium steel plate in which a φ10 mm through-hole 19 is previously formed at a location corresponding to the terminal lead-out portion, and this is fixed to the solar cell 13. The wiring 16 is arranged so as to penetrate the through hole 19. The through hole 19 of the back surface support member 15 has the same φ10 mm size as the through hole 19 and has a cut 20 for passing the electric output wiring 16 fixed to the solar battery cell 13 with a length of 7 mm from the outer periphery toward the center. The provided insulating sealing material 17 having a thickness of 0.8 mm was disposed through the electric output wiring 16.
[0035]
Finally, as shown in FIG. 8, the PET adhesive tape 21-1 having a thickness of 0.1 mm and a width of 8 mm is covered by half with the electric output wiring 16 of the through hole 19 of the back support member 15 as a boundary. The electrical output wiring 16 that sticks out from the through hole 19 is bent to the side where the PET adhesive tape 21-1 is pasted so as to cover the entire exposed surface of the insulating sealing material 17 remaining in the through hole 19. Then, the PET adhesive tape 21-2 is affixed.
[0036]
The module constituent material thus laminated is subjected to vacuum thermocompression bonding at a temperature of 140 ° C. to 150 ° C. for 15 to 25 minutes by a vacuum thermocompression bonding method, thereby laminating and cross-linking the insulating sealing material. went.
[0037]
The PET adhesive tapes 21-1 and 21-2 were peeled off from the laminated module, and a terminal box with a wiring cable made of a modified polyphenylene ether resin was adhered to the surface of the back support 15 with a silicone resin.
[0038]
The electric output wiring 16 was soldered to the terminal block of the terminal box, silicone resin was drawn into the wiring portion as an insulating filler, and the terminal box was covered.
Table 1 shown below shows the results of electrical characteristics and appearance evaluation of the solar cell module 10 produced by the above manufacturing method, and as a result, the insulating sealing material 17 disposed in the cross-sectional portion of the through hole 19 of the back surface support material 15. The result of the thickness dependence of EVA which is is shown.
[0039]
When the thickness of the EVA disposed in the cross section of the through-hole 19 of the back surface support material 15 is 0.6 mm to 1.0 mm with respect to the thickness of the back surface support material 15 of 0.8 mm, the dielectric strength test and the insulation measurement are passed. No deterioration in current-voltage characteristics or poor appearance could be confirmed. On the other hand, when EVA is not disposed in the cross-sectional portion of the through hole 19 of the back surface support member 15 or when the thickness of the EVA is 0.4 mm or less, deformation of the solar cell 13 and a decrease in insulation resistance are confirmed, and the thickness of the EVA is When the thickness was 0.2 mm or less, insulation failure between the back support 15 and the solar battery cell 13 occurred.
[0040]
[Table 1]
Figure 0004314872
[0041]
【The invention's effect】
As described above, in the present invention, the laminate molding is performed by interposing the insulating sealing material in the cross section of the through hole provided in the back surface support material. As a result, the thickness of the back surface sealing material of the through hole can be made thicker than the periphery of the through hole, preventing the through hole and the surrounding back surface sealing material from being thinned, and laminate molding without deformation of the solar cells. I can do it now.
[0042]
In addition, the structure in which an insulating sealing material is interposed in the through hole of the back support material to laminate and prevent damage to the solar cells and electrical output wiring and the appearance failure of the module. When a plate is used, laminate molding can be performed without poor insulation between the solar battery cell and the back surface support material.
[0043]
Furthermore, when laminating with an insulating sealing material interposed in the through hole of the back surface support material, the through hole of the back surface support material is formed on the entire surface of the through hole with an adhesive tape from the side opposite to the solar cell sealing surface. Insulating sealing material from the through hole to the back side of the back surface support material without depending on the mounting state of the insulating sealing material interposed in the through hole of the back surface support material. No overhang and stable production.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view schematically showing an example of the structure of a solar cell module according to the present invention.
FIG. 2 is a cross-sectional view showing a material stacking arrangement of a method for manufacturing a solar cell module according to the present invention.
FIG. 3 is an exploded perspective view showing a material stacking arrangement of a method for manufacturing a solar cell module according to the present invention.
FIG. 4 is a cross-sectional view showing the structure of a solar battery cell.
FIG. 5 is a schematic view showing a structure for attaching an electric output wiring to a solar battery cell.
FIG. 6 is a schematic view showing a connection structure between solar cells.
FIG. 7 is a perspective view showing a stacked arrangement of materials on the back surface side of the solar battery cell.
FIG. 8 is a schematic cross-sectional view showing a through hole provided in the back surface support member.
FIG. 9 is a schematic cross-sectional view showing a structural example of a conventional solar cell module.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Solar cell module 11 Surface protection material 12,14,17 Insulating sealing material 13 Solar cell 15 Back surface support material 16 Electrical output wiring 18 Notch 19 Through-hole 20 Notch 21 Adhesive tape 22 Film substrate 23 Solar cell element 24 Positive electrode extraction Electrode 25 Negative electrode take-out electrode 26 Conductive adhesive tape

Claims (4)

太陽電池セルが少なくとも裏面支持材と絶縁性封止材とで封止され、前記裏面支持材には貫通孔が設けられ、前記貫通孔に前記太陽電池セルの電気出力配線を通して電気出力を外部に取出すようにした太陽電池モジュールの製造方法において、
前記裏面支持材に設けられた前記貫通孔の断面に前記絶縁性封止材と同じ材質の別の絶縁性封止材を介在させてラミネート成型することを特徴とする太陽電池モジュールの製造方法。
The solar cell is sealed with at least a back surface support material and an insulating sealing material, the back surface support material is provided with a through hole, and an electrical output is externally supplied to the through hole through an electrical output wiring of the solar cell. In the method for manufacturing a solar cell module that is to be taken out,
A method for manufacturing a solar cell module, comprising: laminating and molding another insulating sealing material made of the same material as the insulating sealing material in a cross-section of the through hole provided in the back surface support material.
前記裏面支持材の前記貫通孔を前記太陽電池セルの封止面と反対面側から、粘着テープで前記貫通孔の全面を被覆して、ラミネート成型することを特徴とする請求項1記載の太陽電池モジュールの製造方法。2. The sun according to claim 1, wherein the through hole of the back surface support material is covered with an adhesive tape from the opposite surface side to the sealing surface of the solar battery cell, and laminated to form the through hole. Manufacturing method of battery module. 前記裏面支持材の厚みをd、前記裏面支持材に設けられた前記貫通孔の断面に介在させる前記別の絶縁性封止材の厚みをXとしたとき、前記別の絶縁性封止材の厚みXが、X>(d−0.4mm)式の成立する厚みであることを特徴とする請求項1または2に記載の太陽電池モジュールの製造方法。When the thickness of the back surface supporting material is d and the thickness of the another insulating sealing material interposed in the cross section of the through hole provided in the back surface supporting material is X, The method for manufacturing a solar cell module according to claim 1, wherein the thickness X is a thickness that satisfies a formula of X> (d−0.4 mm). 前記太陽電池セルの裏面側の前記絶縁性封止材と前記裏面支持材に設けられた前記貫通孔の断面に介在させる前記別の絶縁性封止材に切れ目を設け、前記切れ目に前記太陽電池セルの前記電気出力配線を通して、ラミネート成型することを特徴とする請求項1ないし3のいずれか1項に記載の太陽電池モジュールの製造方法。A cut is provided in the insulating sealing material on the back surface side of the solar battery cell and the other insulating sealing material interposed in a cross section of the through hole provided in the back surface support material, and the solar cell is formed in the cut. The method for manufacturing a solar cell module according to any one of claims 1 to 3, wherein lamination molding is performed through the electric output wiring of the cell.
JP2003120055A 2003-04-24 2003-04-24 Manufacturing method of solar cell module Expired - Fee Related JP4314872B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003120055A JP4314872B2 (en) 2003-04-24 2003-04-24 Manufacturing method of solar cell module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003120055A JP4314872B2 (en) 2003-04-24 2003-04-24 Manufacturing method of solar cell module

Publications (2)

Publication Number Publication Date
JP2004327698A JP2004327698A (en) 2004-11-18
JP4314872B2 true JP4314872B2 (en) 2009-08-19

Family

ID=33499094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003120055A Expired - Fee Related JP4314872B2 (en) 2003-04-24 2003-04-24 Manufacturing method of solar cell module

Country Status (1)

Country Link
JP (1) JP4314872B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5380950B2 (en) * 2008-08-20 2014-01-08 富士電機株式会社 Solar cell panel, solar cell panel holding structure, and method for forming solar cell panel
CN102405532A (en) * 2009-04-20 2012-04-04 夏普株式会社 Solar cell module and method for manufacturing solar cell module
JPWO2011099228A1 (en) * 2010-02-09 2013-06-13 富士電機株式会社 Solar cell module and manufacturing method thereof
KR101117704B1 (en) 2010-06-24 2012-02-29 삼성에스디아이 주식회사 Photoelectric conversion module and the fabrication method thereof
WO2012029657A1 (en) * 2010-08-31 2012-03-08 三洋電機株式会社 Photoelectric conversion device and method for producing same
JP2012064745A (en) * 2010-09-16 2012-03-29 Fuji Electric Co Ltd Solar cell module
WO2012117891A1 (en) * 2011-02-28 2012-09-07 三洋電機株式会社 Output wire for solar cell modules, solar cell module, and method for manufacturing same
TWI699899B (en) * 2018-06-26 2020-07-21 日商亞特比目有限公司 Solar cell and method for manufacturing solar cell

Also Published As

Publication number Publication date
JP2004327698A (en) 2004-11-18

Similar Documents

Publication Publication Date Title
EP1081770B1 (en) Thin-film solar cell module and method of manufacturing the same
US9935224B2 (en) Encapsulating layer adapted to be applied to back-sheets for photovoltaic modules including back-contact cells
JP3146203B1 (en) Thin film solar cell module and method of manufacturing the same
JP5268596B2 (en) Solar cell module and manufacturing method thereof
JP5031698B2 (en) Solar cell module
US8461450B2 (en) Solar cell module and manufacturing method of solar cell module
WO2013106896A1 (en) Photovoltaic module with cell assemblies bearing adhesive for securing the assemblies in the module
JP2011054663A (en) Solar cell module
JP4314872B2 (en) Manufacturing method of solar cell module
CN213425001U (en) Photovoltaic module, seal excessive glue frock and lamination frock
US20110271998A1 (en) Solar cell module and manufacturing method thereof
JP2010283231A (en) Solar cell module and method of manufacturing the same
JP2012094817A (en) Solar cell module, moving body equipped with the solar cell module and solar cell module assembly
JP2013093625A (en) Manufacturing method of solar cell module
JP4461607B2 (en) Method for pulling out power leads of solar cell module
JP6042710B2 (en) SOLAR CELL MODULE AND METHOD FOR MANUFACTURING SOLAR CELL MODULE
JP4512650B2 (en) Manufacturing method of solar cell module
JP2003110123A (en) Method for manufacturing solar cell module
JP2012142637A (en) Solar cell module
JP2012142634A (en) Solar cell module and manufacturing method of the same
JP2012142635A (en) Solar cell module
JP2012195409A (en) Solar cell module and manufacturing method of the same
JP2010187017A (en) Solar cell module and method of manufacturing the same
JP2002134775A (en) Method for wiring lead out of electronic device
JP2012142633A (en) Solar cell module and manufacturing method of the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050517

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061225

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20081016

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20081016

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20081016

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090121

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090428

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090511

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140529

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees