WO2012117891A1 - Output wire for solar cell modules, solar cell module, and method for manufacturing same - Google Patents

Output wire for solar cell modules, solar cell module, and method for manufacturing same Download PDF

Info

Publication number
WO2012117891A1
WO2012117891A1 PCT/JP2012/054099 JP2012054099W WO2012117891A1 WO 2012117891 A1 WO2012117891 A1 WO 2012117891A1 JP 2012054099 W JP2012054099 W JP 2012054099W WO 2012117891 A1 WO2012117891 A1 WO 2012117891A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
cell module
resin
surface protection
protection member
Prior art date
Application number
PCT/JP2012/054099
Other languages
French (fr)
Japanese (ja)
Inventor
瞳 一之瀬
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Publication of WO2012117891A1 publication Critical patent/WO2012117891A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02002Arrangements for conducting electric current to or from the device in operations
    • H01L31/02005Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier
    • H01L31/02008Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier for solar cells or solar cell modules
    • H01L31/02013Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier for solar cells or solar cell modules comprising output lead wires elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to an output wiring of a solar cell module, a solar cell module, and a manufacturing method thereof.
  • Solar cells are expected as a new energy source because they can directly convert clean and infinitely supplied sunlight into electricity.
  • the output per solar cell is about several watts. For this reason, when a solar cell is used as a power source for a house, a building, or the like, a solar cell module whose output is increased by connecting a plurality of solar cells is used.
  • the solar cell module has a structure in which a plurality of solar cells are connected in series or in parallel by a wiring member.
  • the above-described solar cell module is obtained by disposing a plurality of solar cells connected by wiring members between a translucent surface protective member and a back surface protective member, and an ethylene / vinyl acetate copolymer (EVA). It is comprised by sealing with resin which has as a main component. Thereby, the weather resistance and impact resistance of the solar cell module can be improved, and a practical electrical output can be taken out outdoors.
  • EVA ethylene / vinyl acetate copolymer
  • the above-mentioned solar cell module is often provided with a terminal box for taking out the output of the solar cell on the back side.
  • a slit is provided in the back surface protection member in order to extract the output of the solar cell to the back surface side, and output wiring is taken out from this slit.
  • the solar cell module has a problem that the solar cell deteriorates when water penetrates inside. For this reason, it is necessary to prevent water from entering from the slit provided in the back surface protection member.
  • Patent Document 1 the bottom material of the terminal box is positioned on the slit, and the output wiring is taken in from the through hole provided adjacent to the bottom material, and the slit is covered with the bottom member of the terminal box.
  • solar cell modules that prevent water from entering through the slits have been proposed.
  • the bottom surface member of the terminal box covers the slit of the back surface protection member to prevent water from entering from the slit.
  • the slit portion remains open, and when water enters between the bottom surface member and the back surface protection member, water penetrates into the solar cell module from the slit portion. There is a risk of doing. When water penetrates into the solar cell module, problems such as deterioration of the characteristics of the solar cell module occur.
  • An object of the present invention is to prevent moisture permeation from the slit and improve the reliability of the solar cell module.
  • the output wiring of the solar cell module of the present invention is drawn out from a slit provided in the back surface protection member of the solar cell module in which a plurality of solar cells are sealed with a sealing material between the front surface protection member and the back surface protection member.
  • the output wiring is coated with a resin for preventing moisture permeation at least at a position located in the slit.
  • the solar cell module of the present invention includes a surface protection member, a back surface protection member, a plurality of solar cells disposed between the surface protection member and the back surface protection member and electrically connected by a wiring member, and the surface A solar cell module comprising a sealing member for sealing the plurality of solar cells and an output wiring for taking out the output of the solar cell between the protective member and the back surface protective member, wherein the back surface protection A slit is provided in the member, and the output wiring is taken out of the back surface protection member from the slit, and at least the slit portion is provided with a resin for preventing moisture permeation from the output wiring to the back surface protection member.
  • the manufacturing method of the solar cell module of the present invention is connected to the surface protection member, the front surface side sealing resin sheet, the plurality of solar cells connected by the wiring member, the back surface side sealing resin sheet, and the solar cell from below.
  • the back surface protection member in which the output wiring is inserted into the slit is disposed in this order, and a hot-melt resin for preventing moisture penetration is disposed at least in a position including the slit, and the pressure is applied while heating.
  • the hot-melt resin for preventing penetration is melted and integrated, and the solar cell is sealed in a state sandwiched between the surface protection member and the back surface protection member.
  • a moisture penetration preventing resin is provided across the protective member.
  • the moisture permeation preventing resin is provided in the slit portion of the back surface protection member from the output wiring to the back surface protection member, it is possible to prevent the water from permeating from the slit.
  • FIG. 1 It is a schematic sectional drawing of the solar cell module which concerns on 1st Embodiment. It is a top view which shows the output wiring part of the solar cell module of 1st Embodiment. It is a schematic diagram which shows the output wiring used for 1st Embodiment. It is a top view which shows the output wiring and slit part of the solar cell module of 1st Embodiment. It is a fragmentary sectional view which shows the extraction part of the output wiring before the lamination of 1st Embodiment. It is a schematic block diagram of the manufacturing apparatus which manufactures the solar cell module of 1st Embodiment.
  • FIG. 1 is an enlarged side sectional view of a solar cell module 10 according to the first embodiment.
  • the solar cell module 10 includes a solar cell 11, a surface protection member 12, a back surface protection member 13, and a sealing member 14.
  • the solar cell module 10 is configured by sealing a plurality of solar cells 11 between the surface protection member 12 and the back surface protection member 13.
  • the plurality of solar cells 11 are connected to each other by the wiring member 16.
  • the solar cell 11 and the wiring member 16 are connected using solder or a resin adhesive.
  • the plurality of solar cells 11 connected by the wiring member 16 constitutes a string that is one unit.
  • the plurality of strings are connected by connection wiring 21.
  • a part of the connection wiring 21 is connected to the output wiring 20 for outputting electricity to the outside.
  • the solar cell 11 is made of, for example, a crystalline semiconductor made of single crystal silicon or polycrystalline silicon having a thickness of about 0.15 mm, and has a substantially square shape with one side being 100 mm.
  • the size and material of the solar cell 11 are not limited to this, and other solar cells may be used.
  • This solar cell 11 has, for example, an n-type region, a p-type region, and a junction provided between the n-type region and the p-type region. An electric field for carrier separation is formed at the junction.
  • the solar cell 11 includes an electrode connected to the n-type region or the p-type region.
  • the wiring member 16 is connected to the electrode of one solar cell 11 and the electrode of the other solar cell 11 in the plurality of solar cells 11 provided adjacent to each other. Thereby, the adjacent solar cells 11 and 11 are electrically connected.
  • the wiring member 16 includes a thin plate-like copper foil and solder that covers the surface of the copper foil.
  • the solder covering the surface of the wiring member 16 is melted and connected to the wiring member 16 and the electrode of the solar cell 11.
  • the solar cell 11 and the wiring member 16 can be connected using a resin adhesive in addition to the connection using solder.
  • a resin adhesive having anisotropic conductivity is preferably used.
  • the surface protection member 12 is disposed on the light receiving surface side of the sealing member 14 and protects the surface of the solar cell module 10 on the light receiving surface side.
  • glass having translucency and water shielding properties, translucent plastic, or the like can be used as the surface protection member 12.
  • the back surface protection member 13 is disposed on the back surface side of the sealing member 14 and protects the back surface of the solar cell module 10.
  • a resin film such as PET (Polyethylene Terephthalate), a laminated film having a structure in which an aluminum foil is sandwiched between resin films, or the like can be used.
  • the back surface protection member 13 is comprised with the laminated
  • the sealing member 14 seals the plurality of solar cells 11 between the surface protection member 12 and the back surface protection member 13.
  • the sealing member 14 disposed between the surface protection member 12 and the solar cell 11 has translucency.
  • the sealing member 14 is selected from ethylene / vinyl acetate copolymer (EVA), polyolefin, cyclic polyethylene, ionomer, polyacrylic acid polymer, or a copolymer obtained by polymerizing a plurality of these. In the first embodiment, EVA resin is used.
  • an aluminum frame (not shown) can be attached to the outer periphery of the solar cell module 10 having the above-described configuration.
  • the wiring member 16 is connected directly or via the connection wiring 21 to the output wiring 20 for taking out the output to the outside of the module.
  • the output wiring 20 is connected to the terminal of the terminal box 40 through the slit 13 s provided in the back surface protection member 13.
  • the output wiring 20 is obtained by cutting a copper foil having a thickness of about 0.1 mm to 0.3 mm and a solder coating on the entire surface thereof into a predetermined length, and is connected to the wiring member 16 or the connection wiring 21. Soldered.
  • the surface of the output wiring 20 is covered with a moisture penetration preventing resin 30 made of a hot melt resin.
  • a moisture penetration preventing resin 30 made of a hot melt resin.
  • butyl having excellent water repellency and insulation is used for the moisture penetration preventing resin 30.
  • the moisture permeation preventing resin 30 is not limited to butyl, and any resin may be used as long as it can melt at the time of laminating to close the slit 13s and suppress the penetration of moisture from the slit 13s.
  • styrene-isoprene-styrene block copolymer system (“SIS system”), styrene-butadiene-styrene block copolymer system (“SBS system, SBR system”) and their hydrogenated deformation
  • SEBS styrene-ethylene-butylene-styrene
  • SEPS styrene-ethylene-propylene-styrene
  • styrene block copolymers are used, but amorphous polymers
  • a hot melt resin that also uses ⁇ -olefin (APAO), or a rubber-based, butyl rubber-based, synthetic resin-based, olefin-based, EVA-based, or acrylic polymer-based resin can be used.
  • APAO ⁇ -olefin
  • the water penetration preventing resin 30 has higher water repellency than the sealing material 14.
  • JIS K7129 B method water vapor permeability is measured based on the MOCON method pursuant to (infrared sensor method), used not more than 1.0g / m 2 ⁇ day for the resin 30 to prevent moisture penetration It is preferable.
  • the moisture permeation preventing resin 30 is preferably insulative.
  • the insulating water penetration preventing resin 30 it is possible to prevent contact between the output wiring 20 and the Al foil of the back surface protection member 13, and to prevent current from leaking.
  • regulated to JISC2110 is 5 kV or more.
  • the rear surface protection member 13 is provided with a slit 13s for taking out the output wiring 20.
  • the sheet member constituting the sealing member 14 on the back side is also provided with a slit 14c for taking out the output wiring 20 as will be described later.
  • the slits 13s and 14c have a width wider than the thickness of the output wiring 20, and have a length that allows the plurality of output wirings 20 to be inserted in parallel.
  • the terminal box 40 is attached so as to cover the slit 13s of the back surface protection member 13. Silicone resin or the like is used for bonding the back surface protective material 13 and the terminal box 40.
  • the output wiring 20 taken out from the slit 13s is connected to a terminal in the terminal box 40 and is connected to an external circuit.
  • FIG. 2 is a plan view showing the arrangement of the output wirings 20 1 to 20 4 of the solar cell module 10 according to the first embodiment
  • FIG. 3 is a schematic diagram showing the output wiring used in the first embodiment.
  • FIG. 5 is a fragmentary sectional view which shows the taking-out part of the output wiring before lamination of 1st Embodiment.
  • connection wirings 21 six strings are connected in series using connection wirings 21. Based on the state of the slit 13s and the horizontal, the leftmost of the connected output lines 20 1 to the connection wiring 21 of the string is pulled out from the slit 13s. Second and third string from the left are connected by connection wiring 21, connected output line 20 2 is drawn out from the slit 13s of the back surface protective film 13 on the connecting wire 21.
  • connection wiring 21 connected to the output line 20 4 is drawn out from the slit 13s of the back surface protective film 13.
  • the output lines 20 1 to 20 4 respectively connected to the six strings are drawn out from the slits 13s of the back surface protection member 13, and then connected to predetermined terminals of the terminal box 40, so that the solar cell module Is configured.
  • the terminal block of the terminal box 40 is provided with four terminals, to which the corresponding output lines 20 1 to 20 4 are respectively connected.
  • a backflow prevention diode is connected between the terminals of the four terminals.
  • the output wirings 20 (20 1 to 20 4 ) derived from the slit 13s may be two for taking out positive and negative outputs.
  • slits 14c and 13s are formed in the back surface side sealing member 14b and the back surface protection member 13, respectively.
  • the output wiring 20 covered with the moisture penetration preventing resin 30 made of hot melt resin as shown in FIG. 3 is inserted into the slits 14c and 13s.
  • Slit 13s has a width greater than the thickness of the output interconnection 20 (20 1 to 20 4) has a length which can be inserted a plurality of output lines 20 (20 1 to 20 4) in parallel.
  • the output wiring 20 (20 1 to 20 4 ) led out from the slit 13s is taken out from the back surface protection member 13 of the solar cell module 10 at a predetermined length and interval.
  • the solar cell module 10 when manufacturing the solar cell module 10, a plurality of solar cells 11 connected by a surface protection member 12, a surface side EVA sheet 14 a (sealing member sheet), and a wiring member 16 from below. ..., the EVA sheet 14b (sealing member sheet) and the back surface protection member 13 are stacked in this order.
  • an output wiring 20 having a surface coated with a water permeation preventing resin 30 made of a water-repellent and insulating hot melt resin is inserted.
  • the members arranged in this way are laminated by a laminating apparatus.
  • the moisture penetration preventing resin 30, which is melted and hardened by the hot melt resin, is located across the back surface protection member 13 from the output wiring 20 in the slit 13 s. For this reason, the slit 13s is covered with the water penetration preventing resin 30 having excellent water repellency and insulation, and water penetration from the slit 13s is suppressed. Then, the bottom portion 40 a of the terminal box 40 is bonded to the location of the slit 13 s of the back surface protection member 13 with the silicone resin 50.
  • the output wiring 20 is connected to the terminal block 40 b in the terminal box 40.
  • the solar cell module 10 is comprised by attaching the case upper cover of the terminal box 40.
  • FIG. 6 is a schematic configuration diagram of a manufacturing apparatus for manufacturing the solar cell module 10.
  • the apparatus includes a lower housing 200 and an upper housing 202 that is airtightly coupled to the lower housing.
  • a heater plate 201 is disposed in the upper opening of the lower housing 200 in a substantially flush state.
  • the upper housing 202 is provided with a rubber diaphragm 203 on the side facing the opening of the lower housing 200.
  • a packing 204 for holding an airtight state when the two are joined is attached to the peripheral portions of the lower housing 200 and the upper housing 202 over the entire circumference.
  • a vacuum pump is connected to the lower housing 200.
  • the surface protection member 12 On the heater plate 201 of the manufacturing apparatus, the surface protection member 12, the EVA sheet 14 a on the surface side, the plurality of solar cells 11...
  • the protection members 13 are stacked in this order.
  • An output wiring 20 whose surface is coated with a water-repellent and insulating hot melt resin is inserted into the slit 13s of the back surface protection member 13, and the output wiring 20 is positioned at a predetermined position and temporarily held.
  • the lower housing 200 and the upper housing 202 are joined. Thereafter, the lower housing 200 is evacuated by a vacuum pump (not shown). At this time, the heater plate 201 is heated to about 130 ° C. to 200 ° C. In this state, the diaphragm 203 is pressed against the solar cell module 10 placed on the heater plate 201. Then, the EVA sheets 14 a and 14 b are gelled to form a predetermined EVA layer 14. Further, the moisture penetration preventing resin 30 made of hot melt resin is also melted and laminated integrally with the EVA layer so as to close the slit 13s.
  • the solar cells 11 are sealed in the EVA layer 14 while being sandwiched between the front surface side protection member 12 and the rear surface side protection member 13.
  • a part of the moisture permeation preventing resin 30 enters and is integrated into the slit 14c of the EVA sheet 14b, and the slit 14c is closed.
  • the slit 13s of the back surface protection member 13 is also integrated with a part of the hot melt resin 30 entering, and the slit 13s is closed.
  • the terminal box 40 is attached to the back surface protection member 13 by the silicone resin 50.
  • a moisture penetration preventing resin 30 is provided at a location where the slit 13 s of the back surface protection member 13 is provided.
  • the moisture penetration preventing resin 30 can suppress moisture intrusion from the slit 13s.
  • the output wiring 20 is led out from the slit 13s, and the moisture penetration preventing resin 30 is melted and cured to close the slit 13s. Yes.
  • the slit 13 s can be closed without leaving a space between the output wiring 20 and the back surface protection member 13.
  • FIG. 8 is a schematic diagram showing the output wiring 20 used in the second embodiment
  • FIG. 9 is a plan view showing the output wiring 20 and the slit 13s of the solar cell module of the second embodiment
  • FIG. It is a fragmentary sectional view showing an extraction portion of output wiring 20 before lamination of a 2nd embodiment.
  • the output wiring 20 covered with an insulating tape 25 is used.
  • the output wiring 20 (20 1 to 20 4 ) is taken out from the slit 13s of the back surface protection member 13, as shown in FIG. 9, moisture permeation made of a water-repellent hot melt resin such as butyl is closed so as to close the slit 13s.
  • the prevention resin 30a is applied.
  • the moisture penetration preventing resin 30 a which is melted and cured by the hot melt resin, extends from the output wiring 20 to the back surface protection member 13 at the slit 13 s. To position.
  • FIG. 1 The output wiring 20 is connected to the terminal block 40 b in the terminal box 40.
  • the solar cell module 10 is comprised by attaching the case upper cover of the terminal box 40.
  • the output wiring 20 (20 1 to 20 4 ) is led out from the slit 13s, and the moisture permeation preventing resin 30 is provided and melted and cured.
  • the slit 13s is closed. By manufacturing in this way, the slit 13 s can be closed while the electrical insulation between the output wiring 20 (20 1 to 20 4 ) and the back surface protection member 13 is reliably maintained.
  • the output wiring 20 is coated with a water penetration preventing resin 30 made of butyl, and the output wiring 20 (20 1 to 20 4 ) is further connected to the slit 13s of the back surface protection member 13.
  • a moisture penetration preventing resin 30a made of butyl is applied so as to close the slit 13s.
  • lamination is performed, and the slit 13s is more reliably closed with the moisture permeation preventing resins 30 and 30a. By comprising in this way, waterproofness improves further.
  • the third embodiment it is possible to obtain both the waterproof property obtained by the first embodiment and the insulating property obtained by the second embodiment.

Abstract

The purpose of the present invention is to improve the reliability of a solar cell module by preventing penetration of moisture from a slit even in cases when water has penetrated into the space between a bottom surface member of a terminal box and a backside protective member. A solar cell module which is provided with: a frontside protective member (12); a backside protective member (13); a plurality of solar cells (11) that are electrically connected by a wiring member (16); a sealing member (14) that seals the plurality of solar cells between the frontside protective member (12) and the backside protective member (13); and an output wire (20) for taking out the output of the solar cells (11). The backside protective member (13) is provided with a slit (13s), and the output wire (20) is drawn out from the slit (13s) to the outside of the backside protective member (13). At least the slit (13s) portion is provided with a resin for preventing moisture penetration (30) over the range from the output wire (20) to the backside protective member (13).

Description

太陽電池モジュールの出力配線、太陽電池モジュール及びその製造方法Output wiring of solar cell module, solar cell module and manufacturing method thereof
 この発明は、太陽電池モジュールの出力配線、太陽電池モジュール及びその製造方法に関するものである。 The present invention relates to an output wiring of a solar cell module, a solar cell module, and a manufacturing method thereof.
 太陽電池は、クリーンで無尽蔵に供給される太陽光を直接電気に変換することができるため、新しいエネルギー源として期待されている。 Solar cells are expected as a new energy source because they can directly convert clean and infinitely supplied sunlight into electricity.
 一般に、太陽電池1枚当たりの出力は数W程度である。このため、家屋やビル等の電源として太陽電池を用いる場合には、複数の太陽電池を接続することにより出力を高めた太陽電池モジュールが用いられる。太陽電池モジュールは、複数の太陽電池が配線部材により直列又は並列に接続された構造を有している。 Generally, the output per solar cell is about several watts. For this reason, when a solar cell is used as a power source for a house, a building, or the like, a solar cell module whose output is increased by connecting a plurality of solar cells is used. The solar cell module has a structure in which a plurality of solar cells are connected in series or in parallel by a wiring member.
 上記した太陽電池モジュールは、複数の太陽電池を配線部材で接続したものを、透光性を有する表面保護部材と裏面保護部材との間に配設し、エチレン・酢酸ビニル共重合体(EVA)などを主成分とする樹脂で封止することにより構成される。これによって、太陽電池モジュールの耐候性や耐衝撃性を高め、屋外で実用的な電気出力を取り出すことができる。 The above-described solar cell module is obtained by disposing a plurality of solar cells connected by wiring members between a translucent surface protective member and a back surface protective member, and an ethylene / vinyl acetate copolymer (EVA). It is comprised by sealing with resin which has as a main component. Thereby, the weather resistance and impact resistance of the solar cell module can be improved, and a practical electrical output can be taken out outdoors.
 上記した太陽電池モジュールには、裏面側に太陽電池の出力を取り出すための端子ボックスが設けられている場合が多い。裏面側に端子ボックスを設けた太陽電池モジュールにおいては、太陽電池の出力を裏面側に取り出すために、裏面保護部材にスリットを設け、このスリットから出力用の配線を取り出している。 The above-mentioned solar cell module is often provided with a terminal box for taking out the output of the solar cell on the back side. In a solar cell module provided with a terminal box on the back surface side, a slit is provided in the back surface protection member in order to extract the output of the solar cell to the back surface side, and output wiring is taken out from this slit.
 太陽電池モジュールは、内部に水が染み込むと、太陽電池が劣化する問題があった。このため、裏面保護部材に設けたスリットからの水の侵入を防ぐ必要がある。 The solar cell module has a problem that the solar cell deteriorates when water penetrates inside. For this reason, it is necessary to prevent water from entering from the slit provided in the back surface protection member.
 特許文献1には、スリット上に端子ボックスの底面材を位置させて、この底面材に隣接して設けた透孔部から出力配線を取り込むように構成し、端子ボックスの底面部材でスリットを覆うことでスリットからの水の侵入を防止する太陽電池モジュールが提案されている。 In Patent Document 1, the bottom material of the terminal box is positioned on the slit, and the output wiring is taken in from the through hole provided adjacent to the bottom material, and the slit is covered with the bottom member of the terminal box. Thus, solar cell modules that prevent water from entering through the slits have been proposed.
特開2003-282915号公報JP 2003-282915 A
 上記特許文献1に記載の太陽電池モジュールでは、端子ボックスの底面部材で裏面保護部材のスリットを覆って、スリットからの水の侵入を防いでいる。しかしながら、上記した特許文献1の太陽電池モジュールでは、スリット部分は開口した状態のままであり、底面部材と裏面保護部材との間に水が入り込むと、スリット部分から太陽電池モジュール内部に水が浸透する虞がある。太陽電池モジュール内部に水が浸透すると、太陽電池モジュールの特性が低下するなどの問題が生じる。 In the solar cell module described in Patent Document 1, the bottom surface member of the terminal box covers the slit of the back surface protection member to prevent water from entering from the slit. However, in the solar cell module of Patent Document 1 described above, the slit portion remains open, and when water enters between the bottom surface member and the back surface protection member, water penetrates into the solar cell module from the slit portion. There is a risk of doing. When water penetrates into the solar cell module, problems such as deterioration of the characteristics of the solar cell module occur.
 この発明は、スリットからの水分の浸透を防ぎ、太陽電池モジュールの信頼性を向上させることを目的とする。 An object of the present invention is to prevent moisture permeation from the slit and improve the reliability of the solar cell module.
 この発明の太陽電池モジュールの出力配線は、表面保護部材と裏面保護部材との間に、複数の太陽電池が封止材により封止された太陽電池モジュールの前記裏面保護部材に設けたスリットから引き出され、前記太陽電池の出力を取り出すため出力配線であって、前記出力配線は、少なくとも前記スリットに位置する箇所に、水分浸透防止用樹脂が被覆されている。 The output wiring of the solar cell module of the present invention is drawn out from a slit provided in the back surface protection member of the solar cell module in which a plurality of solar cells are sealed with a sealing material between the front surface protection member and the back surface protection member. In order to take out the output of the solar cell, the output wiring is coated with a resin for preventing moisture permeation at least at a position located in the slit.
 この発明の太陽電池モジュールは、表面保護部材と、裏面保護部材と、前記表面保護部材と裏面保護部材との間に配設され、配線部材によって電気的接続された複数の太陽電池と、前記表面保護部材と裏面保護部材との間に、前記複数の太陽電池を封止する封止部材と、太陽電池の出力を取り出すための出力配線と、を備えた太陽電池モジュールであって、前記裏面保護部材にスリットが設けられ、前記出力配線が前記スリットから前記裏面保護部材の外部に取り出されるとともに、少なくとも前記スリット部分は、前記出力配線から裏面保護部材に跨って水分浸透防止用樹脂が設けられている。 The solar cell module of the present invention includes a surface protection member, a back surface protection member, a plurality of solar cells disposed between the surface protection member and the back surface protection member and electrically connected by a wiring member, and the surface A solar cell module comprising a sealing member for sealing the plurality of solar cells and an output wiring for taking out the output of the solar cell between the protective member and the back surface protective member, wherein the back surface protection A slit is provided in the member, and the output wiring is taken out of the back surface protection member from the slit, and at least the slit portion is provided with a resin for preventing moisture permeation from the output wiring to the back surface protection member. Yes.
 この発明の太陽電池モジュールの製造方法は、下側から表面保護部材、表面側の封止樹脂シート、配線部材により接続された複数の太陽電池、裏面側の封止樹脂シート、太陽電池と接続された出力配線をスリットに挿入した裏面保護部材をこの順序で配置するとともに、少なくともスリットを含む位置に水分浸透防止用のホットメルト樹脂を配し、加熱しながら加圧し、前記封止樹脂シートと水分浸透防止用のホットメルト樹脂を溶融して一体化し、前記太陽電池が前記表面保護部材と裏面保護部材との間に挟まれた状態で封止されるとともに、前記スリット部分は、出力配線から裏面保護部材に跨って水分浸透防止用樹脂が設けられる。 The manufacturing method of the solar cell module of the present invention is connected to the surface protection member, the front surface side sealing resin sheet, the plurality of solar cells connected by the wiring member, the back surface side sealing resin sheet, and the solar cell from below. The back surface protection member in which the output wiring is inserted into the slit is disposed in this order, and a hot-melt resin for preventing moisture penetration is disposed at least in a position including the slit, and the pressure is applied while heating. The hot-melt resin for preventing penetration is melted and integrated, and the solar cell is sealed in a state sandwiched between the surface protection member and the back surface protection member. A moisture penetration preventing resin is provided across the protective member.
 裏面保護部材のスリット部分に、出力配線から裏面保護部材に跨って水分浸透防止用樹脂が設けられているので、スリットからの水分の浸透を防ぐことができる。 Since the moisture permeation preventing resin is provided in the slit portion of the back surface protection member from the output wiring to the back surface protection member, it is possible to prevent the water from permeating from the slit.
第1の実施形態に係る太陽電池モジュールの概略断面図である。It is a schematic sectional drawing of the solar cell module which concerns on 1st Embodiment. 第1の実施形態の太陽電池モジュールの出力配線部分を示す平面図である。It is a top view which shows the output wiring part of the solar cell module of 1st Embodiment. 第1の実施形態に用いられる出力配線を示す模式図である。It is a schematic diagram which shows the output wiring used for 1st Embodiment. 第1の実施形態の太陽電池モジュールの出力配線とスリット部分を示す平面図である。It is a top view which shows the output wiring and slit part of the solar cell module of 1st Embodiment. 第1の実施形態のラミネート前の出力配線の取り出し部分を示す部分断面図である。It is a fragmentary sectional view which shows the extraction part of the output wiring before the lamination of 1st Embodiment. 第1の実施形態の太陽電池モジュールを製造する製造装置の概略構成図である。It is a schematic block diagram of the manufacturing apparatus which manufactures the solar cell module of 1st Embodiment. 第1の実施形態の太陽電池モジュールの出力配線の取り出し部分を示す部分断面図である。It is a fragmentary sectional view which shows the taking-out part of the output wiring of the solar cell module of 1st Embodiment. 第2の実施形態に用いられる出力配線を示す模式図である。It is a schematic diagram which shows the output wiring used for 2nd Embodiment. 第2の実施形態の太陽電池モジュールの出力配線部分を示す平面図である。It is a top view which shows the output wiring part of the solar cell module of 2nd Embodiment. 第2の実施形態の太陽電池モジュールの出力配線の取り出し部分を示す部分断面図である。It is a fragmentary sectional view which shows the taking-out part of the output wiring of the solar cell module of 2nd Embodiment. 第3の実施形態の太陽電池モジュールのスリット部分を示す平面図である。It is a top view which shows the slit part of the solar cell module of 3rd Embodiment.
 第1の実施形態について図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付し、説明の重複を避けるためにその説明は繰返さない。ただし、図面は模式的なものであり、各寸法の比率等は現実のものとは異なることに留意すべきである。従って、具体的な寸法等は以下の説明を参酌して判断すべきものである。又、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。 The first embodiment will be described in detail with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals, and the description thereof will not be repeated in order to avoid duplication of description. However, it should be noted that the drawings are schematic and ratios of dimensions and the like are different from actual ones. Accordingly, specific dimensions and the like should be determined in consideration of the following description. Moreover, it is a matter of course that portions having different dimensional relationships and ratios are included between the drawings.
 第1の実施形態に係る太陽電池モジュール10の概略構成について、図1を参照しながら説明する。図1は、第1の実施形態に係る太陽電池モジュール10の側面拡大断面図である。 A schematic configuration of the solar cell module 10 according to the first embodiment will be described with reference to FIG. FIG. 1 is an enlarged side sectional view of a solar cell module 10 according to the first embodiment.
 太陽電池モジュール10は、太陽電池11、表面保護部材12、裏面保護部材13及び封止部材14を備える。太陽電池モジュール10は、表面保護部材12と裏面保護部材13との間に、複数の太陽電池11を封止することにより構成される。 The solar cell module 10 includes a solar cell 11, a surface protection member 12, a back surface protection member 13, and a sealing member 14. The solar cell module 10 is configured by sealing a plurality of solar cells 11 between the surface protection member 12 and the back surface protection member 13.
 複数の太陽電池11は配線部材16によって互いに接続される。太陽電池11と配線部材16とは、半田または樹脂接着剤を用いて接続される。 The plurality of solar cells 11 are connected to each other by the wiring member 16. The solar cell 11 and the wiring member 16 are connected using solder or a resin adhesive.
 配線材16により接続された複数の太陽電池11…は、1単位ユニットであるストリングを構成する。複数のストリングは接続用配線21により接続されている。接続用配線21の一部は、外部に電気を出力するための出力配線20と接続される。 The plurality of solar cells 11 connected by the wiring member 16 constitutes a string that is one unit. The plurality of strings are connected by connection wiring 21. A part of the connection wiring 21 is connected to the output wiring 20 for outputting electricity to the outside.
 太陽電池11は、例えば、厚みが0.15mm程度の単結晶シリコンや多結晶シリコンなどで構成される結晶系半導体からなり、1辺が100mmの略正方形状を有する。太陽電池11の大きさや材料はこれに限られるものではなく、他の太陽電池を用いても良い。 The solar cell 11 is made of, for example, a crystalline semiconductor made of single crystal silicon or polycrystalline silicon having a thickness of about 0.15 mm, and has a substantially square shape with one side being 100 mm. The size and material of the solar cell 11 are not limited to this, and other solar cells may be used.
 この太陽電池11内には、例えば、n型領域と、p型領域と、n型領域とp型領域との間に設けられた接合部と、を有する。接合部には、キャリア分離用の電界が形成されている。 This solar cell 11 has, for example, an n-type region, a p-type region, and a junction provided between the n-type region and the p-type region. An electric field for carrier separation is formed at the junction.
 太陽電池11は、n型領域またはp型領域に接続される電極を備える。配線部材16は、隣接して設けられる複数の太陽電池11において、一方の太陽電池11の電極と、他方の太陽電池11の電極とに接続される。これにより、隣接する太陽電池11、11間は電気的に接続される。例えば、配線部材16は、薄板状の銅箔と、銅箔の表面を覆う半田とを含む。 The solar cell 11 includes an electrode connected to the n-type region or the p-type region. The wiring member 16 is connected to the electrode of one solar cell 11 and the electrode of the other solar cell 11 in the plurality of solar cells 11 provided adjacent to each other. Thereby, the adjacent solar cells 11 and 11 are electrically connected. For example, the wiring member 16 includes a thin plate-like copper foil and solder that covers the surface of the copper foil.
 配線部材16と太陽電池11とを半田で接続させる場合には、配線部材16の表面を覆う半田を溶融させて、配線部材16と太陽電池11の電極と接続させる。なお、太陽電池11と配線部材16との接続は、半田を用いた接続以外に、樹脂接着剤を用いて接続することも可能である。樹脂接着剤としては、異方導電性を有する樹脂接着剤が好適に用いられる。 When the wiring member 16 and the solar cell 11 are connected by solder, the solder covering the surface of the wiring member 16 is melted and connected to the wiring member 16 and the electrode of the solar cell 11. Note that the solar cell 11 and the wiring member 16 can be connected using a resin adhesive in addition to the connection using solder. As the resin adhesive, a resin adhesive having anisotropic conductivity is preferably used.
 表面保護部材12は、封止部材14の受光面側に配置されており、太陽電池モジュール10の受光面側の表面を保護する。表面保護部材12としては、透光性及び遮水性を有するガラス、透光性プラスチック等を用いることができる。 The surface protection member 12 is disposed on the light receiving surface side of the sealing member 14 and protects the surface of the solar cell module 10 on the light receiving surface side. As the surface protection member 12, glass having translucency and water shielding properties, translucent plastic, or the like can be used.
 裏面保護部材13は、封止部材14の裏面側に配置されており、太陽電池モジュール10の背面を保護する。裏面保護部材13としては、PET(Polyethylene Terephthalate)等の樹脂フィルム、アルミニウム箔を樹脂フィルムで挟んだ構造を有する積層フィルムなどを用いることができる。第1の実施形態において、裏面保護部材13は、アルミニウム箔13bを樹脂フィルム13aで挟んだ構造を有する積層フィルムで構成している。 The back surface protection member 13 is disposed on the back surface side of the sealing member 14 and protects the back surface of the solar cell module 10. As the back surface protection member 13, a resin film such as PET (Polyethylene Terephthalate), a laminated film having a structure in which an aluminum foil is sandwiched between resin films, or the like can be used. In 1st Embodiment, the back surface protection member 13 is comprised with the laminated | multilayer film which has the structure which pinched | interposed the aluminum foil 13b with the resin film 13a.
 封止部材14は、表面保護部材12と裏面保護部材13との間に複数の太陽電池11を封止する。表面保護部材12と太陽電池11との間に配される封止部材14は透光性を有する。封止部材14としては、エチレン・酢酸ビニル共重合体(EVA)、ポリオレフィン、環状ポリエチレン、アイオノマー、ポリアクリル酸系ポリマー又はこれらを複数種類重合させたコポリマーの中から選択される。第1の実施形態では、EVA樹脂を用いている。 The sealing member 14 seals the plurality of solar cells 11 between the surface protection member 12 and the back surface protection member 13. The sealing member 14 disposed between the surface protection member 12 and the solar cell 11 has translucency. The sealing member 14 is selected from ethylene / vinyl acetate copolymer (EVA), polyolefin, cyclic polyethylene, ionomer, polyacrylic acid polymer, or a copolymer obtained by polymerizing a plurality of these. In the first embodiment, EVA resin is used.
 なお、以上のような構成を有する太陽電池モジュール10の外周には、アルミニウムフレーム(図示しない)を取り付けることができる。 Note that an aluminum frame (not shown) can be attached to the outer periphery of the solar cell module 10 having the above-described configuration.
 配線部材16は、モジュール外部に出力を取り出す出力配線20と直接または接続用配線21を介して接続される。出力配線20は、裏面保護部材13に設けられたスリット13sと通って、端子ボックス40の端子と接続される。出力配線20は、厚さ0.1mm~0.3mm程度、幅6mmの銅箔にその全面を半田コートしたものを所定の長さに切断したものであり、配線部材16または接続用配線21に半田付けされる。 The wiring member 16 is connected directly or via the connection wiring 21 to the output wiring 20 for taking out the output to the outside of the module. The output wiring 20 is connected to the terminal of the terminal box 40 through the slit 13 s provided in the back surface protection member 13. The output wiring 20 is obtained by cutting a copper foil having a thickness of about 0.1 mm to 0.3 mm and a solder coating on the entire surface thereof into a predetermined length, and is connected to the wiring member 16 or the connection wiring 21. Soldered.
 第1の実施形態では、出力配線20の表面は、ホットメルト樹脂からなる水分浸透防止用樹脂30により被覆されている。具体的には、水分浸透防止用樹脂30は、撥水性、絶縁性に優れたブチルが用いられる。水分浸透防止用樹脂30は、ブチルに限らず、ラミネート時に溶融してスリット13sを閉塞でき、スリット13sからの水分の浸透を抑制できるものであればよい。例えば、水分浸透防止用樹脂30として、スチレン-イソプレン-スチレンブロックコポリマー系(「SIS系」)、スチレン-ブタジエン-スチレンブロックコポリマ-系(「SBS系、SBR系」)ならびにそれらの水素化変形(例えば、スチレン-エチレン-ブチレン-スチレン系(「SEBS系」)およびスチレン-エチレン-プロピレン-スチレン系(「SEPS系」ブロックコポリマ-など)、スチレンブロックコポリマ-が使用されるが、非晶質ポリ-α-オレフィン(APAO)も使用されたホットメルト樹脂、または、ゴム系、ブチルゴム系、合成樹脂系、オレフィン系、EVA系、アクリルポリマー系を用いることができる。水の浸透をより防止するために、水分浸透防止用樹脂30は封止材14より撥水性が高いものが好ましい。例えば、JIS K7129 B法(赤外センサー法)に準ずるMOCON法に基づいて測定される水蒸気透過度が、1.0g/m・day以下であるものを水分浸透防止用樹脂30として用いることが好ましい。 In the first embodiment, the surface of the output wiring 20 is covered with a moisture penetration preventing resin 30 made of a hot melt resin. Specifically, butyl having excellent water repellency and insulation is used for the moisture penetration preventing resin 30. The moisture permeation preventing resin 30 is not limited to butyl, and any resin may be used as long as it can melt at the time of laminating to close the slit 13s and suppress the penetration of moisture from the slit 13s. For example, as the resin 30 for preventing moisture permeation, styrene-isoprene-styrene block copolymer system (“SIS system”), styrene-butadiene-styrene block copolymer system (“SBS system, SBR system”) and their hydrogenated deformation ( For example, styrene-ethylene-butylene-styrene (“SEBS”), styrene-ethylene-propylene-styrene (such as “SEPS”) block copolymers, styrene block copolymers are used, but amorphous polymers A hot melt resin that also uses α-olefin (APAO), or a rubber-based, butyl rubber-based, synthetic resin-based, olefin-based, EVA-based, or acrylic polymer-based resin can be used. In addition, the water penetration preventing resin 30 has higher water repellency than the sealing material 14. Preferred. For example, JIS K7129 B method water vapor permeability is measured based on the MOCON method pursuant to (infrared sensor method), used not more than 1.0g / m 2 · day for the resin 30 to prevent moisture penetration It is preferable.
 また、裏面保護部材13としてAl箔を樹脂フィルムで挟んだ構造を有する積層フィルムを用いた場合、水分浸透防止用樹脂30は絶縁性を有する方が好ましい。絶縁性を有する水分浸透防止用樹脂30を用いることで、出力配線20と裏面保護部材13のAl箔との接触を防ぐことができ、電流がリークすることを防止できるという効果がある。絶縁性としては、JIS C2110に規定される絶縁破壊電圧試験に基づいて測定される絶縁破壊電圧が、5kV以上であることが好ましい。 Further, when a laminated film having a structure in which an Al foil is sandwiched between resin films is used as the back surface protection member 13, the moisture permeation preventing resin 30 is preferably insulative. By using the insulating water penetration preventing resin 30, it is possible to prevent contact between the output wiring 20 and the Al foil of the back surface protection member 13, and to prevent current from leaking. As insulation, it is preferable that the dielectric breakdown voltage measured based on the dielectric breakdown voltage test prescribed | regulated to JISC2110 is 5 kV or more.
 裏面保護部材13には、出力配線20を取り出すために、スリット13sが設けられている。また、裏面側の封止部材14を構成するシート部材にも、後述するように出力配線20を取り出すスリット14cが設けられている。スリット13s、14cは、出力配線20の厚さより広い幅を有し、複数の出力配線20を並列に挿入できる長さを有している。 The rear surface protection member 13 is provided with a slit 13s for taking out the output wiring 20. The sheet member constituting the sealing member 14 on the back side is also provided with a slit 14c for taking out the output wiring 20 as will be described later. The slits 13s and 14c have a width wider than the thickness of the output wiring 20, and have a length that allows the plurality of output wirings 20 to be inserted in parallel.
 裏面保護部材13のスリット13sを被覆するように、端子ボックス40が取り付けられる。裏面保護材13と端子ボックス40の接着には、シリコーン樹脂などが用いられる。スリット13sから取り出された出力配線20が端子ボックス40内の端子と接続され、外部回路と接続される。 The terminal box 40 is attached so as to cover the slit 13s of the back surface protection member 13. Silicone resin or the like is used for bonding the back surface protective material 13 and the terminal box 40. The output wiring 20 taken out from the slit 13s is connected to a terminal in the terminal box 40 and is connected to an external circuit.
 出力配線20の太陽電池モジュール10からの取り出しについて、図2及び図5を参照して説明する。図2は、第1の実施形態の太陽電池モジュール10の出力配線20~20の配置を示す平面図、図3は、第1の実施形態に用いられる出力配線を示す模式図、図4は、第1の実施形態の太陽電池モジュール10の出力配線20とスリット13sを示す平面図、図5は、第1の実施形態のラミネート前の出力配線の取り出し部分を示す部分断面図である。 The extraction of the output wiring 20 from the solar cell module 10 will be described with reference to FIGS. FIG. 2 is a plan view showing the arrangement of the output wirings 20 1 to 20 4 of the solar cell module 10 according to the first embodiment, and FIG. 3 is a schematic diagram showing the output wiring used in the first embodiment. These are the top views which show the output wiring 20 and the slit 13s of the solar cell module 10 of 1st Embodiment, FIG. 5 is a fragmentary sectional view which shows the taking-out part of the output wiring before lamination of 1st Embodiment.
 この図2において、6個のストリングが接続用配線21を用いて直列に接続されている。スリット13sを水平にした状態を基準として、一番左端のストリングの接続用配線21に接続された出力線20がスリット13sから引き出される。左から2番目と3番目のストリングが接続用配線21で接続され、接続用配線21に接続された出力配線20が裏面保護フィルム13のスリット13sから引き出される。 In FIG. 2, six strings are connected in series using connection wirings 21. Based on the state of the slit 13s and the horizontal, the leftmost of the connected output lines 20 1 to the connection wiring 21 of the string is pulled out from the slit 13s. Second and third string from the left are connected by connection wiring 21, connected output line 20 2 is drawn out from the slit 13s of the back surface protective film 13 on the connecting wire 21.
 また、一番右端のストリングの接続用配線21に接続された出力線20が、スリット13sから引き出される。そして、右から2番目と3番目のストリングが接続用配線21で接続され、接続用配線21に接続された出力線20が裏面保護フィルム13のスリット13sから引き出される。 Further, the rightmost of the connected output line connecting wire 21 of the string 20 4 is drawn from the slit 13s. The second from the right and third strings are connected by connection wiring 21, connection wiring 21 connected to the output line 20 3 is drawn out from the slit 13s of the back surface protective film 13.
 このようにして、6個のストリングにそれぞれ接続された出力線20~20が裏面保護部材13のスリット13sから引き出され、そして、端子ボックス40の所定の端子に接続されて、太陽電池モジュールが構成されている。 In this way, the output lines 20 1 to 20 4 respectively connected to the six strings are drawn out from the slits 13s of the back surface protection member 13, and then connected to predetermined terminals of the terminal box 40, so that the solar cell module Is configured.
 第1の実施形態において、スリット13sから導出される出力配線20(20~20)は、4本ある。このため、端子ボックス40の端子台には、4つの端子が設けられ、それぞれ該当する出力線20~20が接続される。4つの端子の端子間には逆流防止ダイオードが接続されている。尚、スリット13sから導出される出力配線20(20~20)は、正負の出力取出し用の2本であっても良い。 In the first embodiment, there are four output wires 20 (20 1 to 20 4 ) derived from the slits 13s. For this reason, the terminal block of the terminal box 40 is provided with four terminals, to which the corresponding output lines 20 1 to 20 4 are respectively connected. A backflow prevention diode is connected between the terminals of the four terminals. The output wirings 20 (20 1 to 20 4 ) derived from the slit 13s may be two for taking out positive and negative outputs.
 図4及び図5に示すように、裏面側封止部材14bと裏面保護部材13には、それぞれスリット14c、13sが形成されている。これらスリット14c、13sに、図3に示すようなホットメルト樹脂からなる水分浸透防止用樹脂30を被覆した出力配線20が挿入される。 4 and 5, slits 14c and 13s are formed in the back surface side sealing member 14b and the back surface protection member 13, respectively. The output wiring 20 covered with the moisture penetration preventing resin 30 made of hot melt resin as shown in FIG. 3 is inserted into the slits 14c and 13s.
 スリット13sは、出力配線20(20~20)の厚さより広い幅を有し、複数の出力配線20(20~20)を並列に挿入できる長さを有している。 Slit 13s has a width greater than the thickness of the output interconnection 20 (20 1 to 20 4) has a length which can be inserted a plurality of output lines 20 (20 1 to 20 4) in parallel.
 スリット13sから導出される出力配線20(20~20)は、太陽電池モジュール10の裏面保護部材13から所定の長さ並びに間隔で取り出されることになる。 The output wiring 20 (20 1 to 20 4 ) led out from the slit 13s is taken out from the back surface protection member 13 of the solar cell module 10 at a predetermined length and interval.
 図5に示すように、太陽電池モジュール10を製造するにあたっては、下側から表面保護部材12、表面側のEVAシート14a(封止部材シート)、配線部材16により接続された複数の太陽電池11…、EVAシート14b(封止部材シート)、裏面保護部材13をこの順序で積み重ねる。裏面保護部材13のスリット13sには、表面に撥水性、絶縁性のホットメルト樹脂からなる水分浸透防止用樹脂30が被覆された出力配線20が挿入されている。このように配置された部材をラミネート装置でラミネートする。 As shown in FIG. 5, when manufacturing the solar cell module 10, a plurality of solar cells 11 connected by a surface protection member 12, a surface side EVA sheet 14 a (sealing member sheet), and a wiring member 16 from below. ..., the EVA sheet 14b (sealing member sheet) and the back surface protection member 13 are stacked in this order. In the slit 13 s of the back surface protection member 13, an output wiring 20 having a surface coated with a water permeation preventing resin 30 made of a water-repellent and insulating hot melt resin is inserted. The members arranged in this way are laminated by a laminating apparatus.
 図7に示すように、ラミネート後は、スリット13sには、ホットメルト樹脂が溶融して硬化した水分浸透防止用樹脂30が出力配線20から裏面保護部材13に跨って位置する。このため、スリット13sは、撥水性、絶縁性に優れた水分浸透防止用樹脂30で覆われ、スリット13sからの水の浸透が抑制される。そして、裏面保護部材13のスリット13sの箇所に端子ボックス40の底部40aがシリコーン樹脂50により接着される。端子ボックス40内の端子台40bに出力配線20が接続される。そして、図示はしないが端子ボックス40のケース上蓋を取り付けて太陽電池モジュール10が構成される。 As shown in FIG. 7, after lamination, the moisture penetration preventing resin 30, which is melted and hardened by the hot melt resin, is located across the back surface protection member 13 from the output wiring 20 in the slit 13 s. For this reason, the slit 13s is covered with the water penetration preventing resin 30 having excellent water repellency and insulation, and water penetration from the slit 13s is suppressed. Then, the bottom portion 40 a of the terminal box 40 is bonded to the location of the slit 13 s of the back surface protection member 13 with the silicone resin 50. The output wiring 20 is connected to the terminal block 40 b in the terminal box 40. And although not shown in figure, the solar cell module 10 is comprised by attaching the case upper cover of the terminal box 40. FIG.
 次に、太陽電池モジュール10の製造方法について、図6を参照して説明する。図6は太陽電池モジュール10を製造する製造装置の概略構成図である。この装置は、下側ハウジング200とこの下側ハウジングに気密に結合される上側ハウジング202とを備える。下側ハウジング200の上部開口部には、略面一の状態でヒータプレート201が配置される。この上側ハウジング202には、下側ハウジング200の開口部に対向する側にゴム製のダイアフラム203が設けられている。下側ハウジング200と上側ハウジング202の周縁部には、両者を結合した時の気密状態を保持するためのパッキン204が全周に渡って取り付けられている。 Next, a method for manufacturing the solar cell module 10 will be described with reference to FIG. FIG. 6 is a schematic configuration diagram of a manufacturing apparatus for manufacturing the solar cell module 10. The apparatus includes a lower housing 200 and an upper housing 202 that is airtightly coupled to the lower housing. A heater plate 201 is disposed in the upper opening of the lower housing 200 in a substantially flush state. The upper housing 202 is provided with a rubber diaphragm 203 on the side facing the opening of the lower housing 200. A packing 204 for holding an airtight state when the two are joined is attached to the peripheral portions of the lower housing 200 and the upper housing 202 over the entire circumference.
 更に、下側ハウジング200には、図示はしないが真空ポンプが接続されている。 Furthermore, although not shown, a vacuum pump is connected to the lower housing 200.
 そして、太陽電池モジュール10を製造するにあたっては、まず、製造装置のヒータプレート201上に、下側から表面保護部材12、表面側のEVAシート14a、複数の太陽電池11…、EVAシート14b、裏面保護部材13をこの順序で積み重ねる。裏面保護部材13のスリット13sには、表面に撥水性、絶縁性のホットメルト樹脂が被覆された出力配線20が挿入され、出力配線20が所定の位置に位置決めされて、仮保持されている。 In manufacturing the solar cell module 10, first, on the heater plate 201 of the manufacturing apparatus, the surface protection member 12, the EVA sheet 14 a on the surface side, the plurality of solar cells 11... The protection members 13 are stacked in this order. An output wiring 20 whose surface is coated with a water-repellent and insulating hot melt resin is inserted into the slit 13s of the back surface protection member 13, and the output wiring 20 is positioned at a predetermined position and temporarily held.
 上記のようにヒータプレート201上に各構成部品を積み合わせた後、下側ハウジング200と上側ハウジング202とを結合させる。その後、下側ハウジング200を図示しない真空ポンプにより排気する。この時ヒータプレート201を約130℃~200℃に加熱する。この状態で、ダイアフラム203がヒータプレート201上に載置された太陽電池モジュール10側に押し付けられる。そして、EVAシート14a、14bがゲル状化し、所定のEVA層14を構成する。また、ホットメルト樹脂からなる水分浸透防止用樹脂30も溶融し、スリット13sを閉鎖するように、EVA層と一体にラミネートされる。これにより、太陽電池11…が表面側の表面保護部材12と裏面側の裏面保護部材13との間に挟まれた状態でEVA層14内に封止される。そして、EVAシート14bのスリット14cには、水分浸透防止用樹脂30の一部が入り込んで一体化され、スリット14cが閉塞される。裏面保護部材13のスリット13sもホットメルト樹脂30の一部が入り込んで一体化され、スリット13sが閉塞される After the components are stacked on the heater plate 201 as described above, the lower housing 200 and the upper housing 202 are joined. Thereafter, the lower housing 200 is evacuated by a vacuum pump (not shown). At this time, the heater plate 201 is heated to about 130 ° C. to 200 ° C. In this state, the diaphragm 203 is pressed against the solar cell module 10 placed on the heater plate 201. Then, the EVA sheets 14 a and 14 b are gelled to form a predetermined EVA layer 14. Further, the moisture penetration preventing resin 30 made of hot melt resin is also melted and laminated integrally with the EVA layer so as to close the slit 13s. Thus, the solar cells 11 are sealed in the EVA layer 14 while being sandwiched between the front surface side protection member 12 and the rear surface side protection member 13. A part of the moisture permeation preventing resin 30 enters and is integrated into the slit 14c of the EVA sheet 14b, and the slit 14c is closed. The slit 13s of the back surface protection member 13 is also integrated with a part of the hot melt resin 30 entering, and the slit 13s is closed.
 その後、端子ボックス40がシリコーン樹脂50により裏面保護部材13に取り付けられる。 Thereafter, the terminal box 40 is attached to the back surface protection member 13 by the silicone resin 50.
 図7に示すように、第1の実施形態においては、裏面保護部材13のスリット13sが設けられる箇所には水分浸透防止用樹脂30が配設されている。そして、水分浸透防止用樹脂30により、スリット13sの部分からの水分浸入を抑制できる。 As shown in FIG. 7, in the first embodiment, a moisture penetration preventing resin 30 is provided at a location where the slit 13 s of the back surface protection member 13 is provided. The moisture penetration preventing resin 30 can suppress moisture intrusion from the slit 13s.
 第1の実施形態では、水分浸透防止用樹脂30を出力配線20に被覆したあと、出力配線20をスリット13sから導出させ、水分浸透防止用樹脂30を溶融、硬化してスリット13sを閉塞している。このような方法で製造することにより、出力配線20と裏面保護部材13との間に空間を残すことなく、スリット13sを閉塞することができる。 In the first embodiment, after the moisture penetration preventing resin 30 is coated on the output wiring 20, the output wiring 20 is led out from the slit 13s, and the moisture penetration preventing resin 30 is melted and cured to close the slit 13s. Yes. By manufacturing in this way, the slit 13 s can be closed without leaving a space between the output wiring 20 and the back surface protection member 13.
 次に、第2の実施形態につき図8ないし図10に従い説明する。図8は、第2の実施形態に用いられる出力配線20を示す模式図、図9は、第2の実施形態の太陽電池モジュールの出力配線20とスリット13sの部分を示す平面図、図10は第2の実施形態のラミネート前の出力配線20の取り出し部分を示す部分断面図である。 Next, a second embodiment will be described with reference to FIGS. FIG. 8 is a schematic diagram showing the output wiring 20 used in the second embodiment, FIG. 9 is a plan view showing the output wiring 20 and the slit 13s of the solar cell module of the second embodiment, and FIG. It is a fragmentary sectional view showing an extraction portion of output wiring 20 before lamination of a 2nd embodiment.
 第2の実施形態では、図8に示すように、出力配線20に絶縁テープ25で被覆したものを用いている。裏面保護部材13のスリット13sから出力配線20(20~20)を取り出した後、図9に示すように、スリット13sを閉塞するように、ブチルなどの撥水性ホットメルト樹脂からなる水分浸透防止用樹脂30aを塗布する。その後、ラミネート処理を施すことにより、図10に示すように、スリット13sの箇所には、ホットメルト樹脂が溶融して硬化した水分浸透防止用樹脂30aが出力配線20から裏面保護部材13に跨って位置する。このため、スリット13sは、撥水性、絶縁性に優れた水分浸透防止用樹脂30aで完全に覆われ、スリット13sからの水の浸透が防止される。そして、裏面保護部材13のスリット13sの箇所に端子ボックス40の底部40aがシリコーン樹脂50などにより接着される。端子ボックス40内の端子台40bに出力配線20が接続される。そして、図示はしないが端子ボックス40のケース上蓋を取り付けて太陽電池モジュール10が構成される。 In the second embodiment, as shown in FIG. 8, the output wiring 20 covered with an insulating tape 25 is used. After the output wiring 20 (20 1 to 20 4 ) is taken out from the slit 13s of the back surface protection member 13, as shown in FIG. 9, moisture permeation made of a water-repellent hot melt resin such as butyl is closed so as to close the slit 13s. The prevention resin 30a is applied. After that, by performing a laminating process, as shown in FIG. 10, the moisture penetration preventing resin 30 a, which is melted and cured by the hot melt resin, extends from the output wiring 20 to the back surface protection member 13 at the slit 13 s. To position. For this reason, the slit 13s is completely covered with the water penetration preventing resin 30a excellent in water repellency and insulation, and water penetration from the slit 13s is prevented. And the bottom part 40a of the terminal box 40 is adhere | attached by the silicone resin 50 etc. in the location of the slit 13s of the back surface protection member 13. FIG. The output wiring 20 is connected to the terminal block 40 b in the terminal box 40. And although not shown in figure, the solar cell module 10 is comprised by attaching the case upper cover of the terminal box 40. FIG.
 第2の実施形態では、絶縁テープ25を出力配線20に被覆したあと、出力配線20(20~20)をスリット13sから導出させ、水分浸透防止用樹脂30を設けて溶融、硬化してスリット13sを閉塞している。このような方法で製造することにより、出力配線20(20~20)と裏面保護部材13との間の電気的絶縁を確実に保ちつつ、スリット13sを閉塞することができる。 In the second embodiment, after covering the output wiring 20 with the insulating tape 25, the output wiring 20 (20 1 to 20 4 ) is led out from the slit 13s, and the moisture permeation preventing resin 30 is provided and melted and cured. The slit 13s is closed. By manufacturing in this way, the slit 13 s can be closed while the electrical insulation between the output wiring 20 (20 1 to 20 4 ) and the back surface protection member 13 is reliably maintained.
 次に、第3の実施形態につき、図11に従い説明する。第3の実施形態は、出力配線20は周囲にブチルからなる水分浸透防止用樹脂30を被覆したものを用い、更に、裏面保護部材13のスリット13sから出力配線20(20~20)を取り出した後、図11に示すように、スリット13sを閉塞するように、ブチルからなる水分浸透防止用樹脂30aを塗布する。その後、ラミネートし、スリット13sをより確実に水分浸透防止用樹脂30、30aで閉塞する。このように構成することで、さらに、防水性が向上する。 Next, a third embodiment will be described with reference to FIG. In the third embodiment, the output wiring 20 is coated with a water penetration preventing resin 30 made of butyl, and the output wiring 20 (20 1 to 20 4 ) is further connected to the slit 13s of the back surface protection member 13. After the removal, as shown in FIG. 11, a moisture penetration preventing resin 30a made of butyl is applied so as to close the slit 13s. Thereafter, lamination is performed, and the slit 13s is more reliably closed with the moisture permeation preventing resins 30 and 30a. By comprising in this way, waterproofness improves further.
 第3の実施形態では、第1の実施形態によって得られる防水性と、第2の実施形態によって得られる絶縁性と、の両方の効果を得ることができる。 In the third embodiment, it is possible to obtain both the waterproof property obtained by the first embodiment and the insulating property obtained by the second embodiment.
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。この発明の範囲は、上記した実施の形態の説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is shown not by the above description of the embodiment but by the scope of claims, and is intended to include all modifications within the meaning and scope equivalent to the scope of claims.
 10 太陽電池モジュール
 11 太陽電池
 12 表面保護部材
 13 裏面保護部材
 13s スリット
 14 封止部材
 16 配線部材
 20 出力配線
 20~20 出力配線
 30、30a 水分浸透防止用樹脂
10 solar cell module 11 solar cell 12 surface protective member 13 back protective member 13s slit 14 sealing member 16 wiring member 20 output lines 20 1 to 20 4 output lines 30,30a moisture permeation preventive resin

Claims (14)

  1.  表面保護部材と裏面保護部材との間に、複数の太陽電池が封止材により封止された太陽電池モジュールの前記裏面保護部材に設けたスリットから引き出され、前記太陽電池の出力を取り出すため出力配線であって、
     前記出力配線は、少なくとも前記スリットに位置する箇所に、水分浸透防止用樹脂が被覆されている、太陽電池モジュールの出力配線。
    Between the surface protection member and the back surface protection member, a plurality of solar cells are drawn out from a slit provided in the back surface protection member of the solar cell module sealed with a sealing material, and output for taking out the output of the solar cell Wiring,
    The output wiring is an output wiring of a solar cell module, wherein at least a portion located in the slit is coated with a resin for preventing moisture penetration.
  2.  前記水分浸透防止用樹脂は、撥水性と絶縁性を有する樹脂からなる、請求項1に記載の太陽電池モジュールの出力配線。 The output wiring of the solar cell module according to claim 1, wherein the moisture penetration preventing resin is made of a resin having water repellency and insulating properties.
  3.  前記水分浸透防止用樹脂は、絶縁破壊電圧が5kV以上である、請求項1または請求項2に記載の太陽電池モジュールの出力配線。 The output wiring of the solar cell module according to claim 1 or 2, wherein the moisture penetration preventing resin has a dielectric breakdown voltage of 5 kV or more.
  4.  前記水分浸透防止用樹脂は、水蒸気透過度が1.0g/m・day以下である、請求項1ないし請求項3のいずれかに1項に記載の太陽電池モジュールの出力配線。 4. The solar cell module output wiring according to claim 1, wherein the moisture penetration preventing resin has a water vapor permeability of 1.0 g / m 2 · day or less. 5.
  5.  表面保護部材と、
     裏面保護部材と、
     前記表面保護部材と裏面保護部材との間に配設され、配線部材によって電気的に接続された複数の太陽電池と、
     前記表面保護部材と裏面保護部材との間に、前記複数の太陽電池を封止する封止部材と、
    前記太陽電池の出力を取り出すための出力配線と、を備えた太陽電池モジュールであって、
     前記裏面保護部材にスリットが設けられ、前記出力配線が前記スリットから前記裏面保護部材の外部に取り出されるとともに、少なくとも前記スリット部分は、前記出力配線から裏面保護部材に跨って水分浸透防止用樹脂が設けられている、太陽電池モジュール。
    A surface protection member;
    A back surface protection member;
    A plurality of solar cells disposed between the surface protection member and the back surface protection member and electrically connected by a wiring member;
    Between the surface protection member and the back surface protection member, a sealing member that seals the plurality of solar cells;
    An output wiring for taking out the output of the solar cell, and a solar cell module comprising:
    A slit is provided in the back surface protection member, and the output wiring is taken out from the slit to the outside of the back surface protection member, and at least the slit portion is made of a resin for preventing moisture permeation across the back surface protection member from the output wiring. A solar cell module provided.
  6.  前記出力配線の周囲にホットメルト樹脂からなる水分浸透防止用樹脂が設けられ、前記封止部材とともに溶融され一体化されている、請求項5に記載の太陽電池モジュール。 6. The solar cell module according to claim 5, wherein a water penetration preventing resin made of a hot melt resin is provided around the output wiring, and is melted and integrated with the sealing member.
  7.  前記ホットメルト樹脂は、撥水性と絶縁性を有する樹脂からなる、請求項6に記載の太陽電池モジュール。 The solar cell module according to claim 6, wherein the hot melt resin is made of a resin having water repellency and insulation.
  8.  前記表面保護部材は透光性を有するガラスまたはプラスチックであり、前記裏面保護部材は樹脂フィルムである、請求項5に記載の太陽電池モジュール。 The solar cell module according to claim 5, wherein the surface protection member is glass or plastic having translucency, and the back surface protection member is a resin film.
  9.  前記ホットメルト樹脂は、絶縁破壊電圧が5kV以上である、請求項6または請求項7に記載の太陽電池モジュール。 The solar cell module according to claim 6 or 7, wherein the hot melt resin has a dielectric breakdown voltage of 5 kV or more.
  10.  前記ホットメルト樹脂は、水蒸気透過度が1.0g/m・day以下である、請求項6、請求項8または請求項9に記載の太陽電池モジュール。 10. The solar cell module according to claim 6, wherein the hot melt resin has a water vapor permeability of 1.0 g / m 2 · day or less.
  11.  配線部材で接続した複数の太陽電池に出力配線を接続する工程と、
     裏面側の封止部材に設けられたスリットに前記出力配線を導出し、前記出力配線から裏面保護部材に跨って水分浸透防止用樹脂が設けられるように、表面保護部材、表面側の封止部材、前記複数の太陽電池、前記裏面側の封止部材、裏面保護部材をこの順序で配置する工程と、
     前記表面保護部材、前記表面側の封止部材、前記複数の太陽電池、前記裏面側の封止部材、裏面保護部材を加熱しながら加圧し、前記封止部材と前記水分浸透防止用樹脂を溶融する工程と、
    を備える太陽電池モジュールの製造方法。
    Connecting output wiring to a plurality of solar cells connected by wiring members;
    The surface protective member and the front surface side sealing member are provided so that the output wiring is led out to the slit provided in the rear surface side sealing member, and the moisture penetration preventing resin is provided across the back surface protective member from the output wiring. A step of arranging the plurality of solar cells, the sealing member on the back surface side, and the back surface protection member in this order;
    The surface protection member, the surface side sealing member, the plurality of solar cells, the back surface side sealing member, and the back surface protection member are pressurized while being heated, and the sealing member and the moisture penetration preventing resin are melted. And a process of
    A method for manufacturing a solar cell module comprising:
  12.  前記水分浸透防止用樹脂は、絶縁破壊電圧が5kV以上である、請求項11に記載の太陽電池モジュールの製造方法。 The method for manufacturing a solar cell module according to claim 11, wherein the moisture penetration preventing resin has a dielectric breakdown voltage of 5 kV or more.
  13.  前記水分浸透防止用樹脂は、水蒸気透過度が1.0g/m・day以下である、請求項11または請求項12に記載の太陽電池モジュールの製造方法。 The method for producing a solar cell module according to claim 11 or 12, wherein the moisture penetration preventing resin has a water vapor permeability of 1.0 g / m 2 · day or less.
  14.  前記出力配線を接続する工程に先立って、出力配線を水分浸透防止用樹脂で被覆する工程と、をさらに備え、
     前記スリットから前記出力配線を導出することにより、前記出力配線から前記裏面保護部材に跨って水分浸透防止用樹脂を設ける、請求項11に記載の太陽電池モジュールの製造方法。
    Prior to the step of connecting the output wiring, further comprising the step of coating the output wiring with a resin for preventing moisture penetration,
    The method of manufacturing a solar cell module according to claim 11, wherein a resin for preventing moisture permeation is provided across the back surface protection member from the output wiring by deriving the output wiring from the slit.
PCT/JP2012/054099 2011-02-28 2012-02-21 Output wire for solar cell modules, solar cell module, and method for manufacturing same WO2012117891A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011041865 2011-02-28
JP2011-041865 2011-02-28

Publications (1)

Publication Number Publication Date
WO2012117891A1 true WO2012117891A1 (en) 2012-09-07

Family

ID=46757830

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/054099 WO2012117891A1 (en) 2011-02-28 2012-02-21 Output wire for solar cell modules, solar cell module, and method for manufacturing same

Country Status (1)

Country Link
WO (1) WO2012117891A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018158803A1 (en) * 2017-02-28 2018-09-07 株式会社 東芝 Solar cell module
WO2019065430A1 (en) * 2017-09-29 2019-04-04 積水化学工業株式会社 Solar cell module, and method of manufacturing solar cell module
WO2022127998A1 (en) * 2020-12-18 2022-06-23 Hanwha Q Cells Gmbh Solar module

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62152183A (en) * 1985-12-25 1987-07-07 Kyocera Corp Solar cell module
JP2001077383A (en) * 1999-09-01 2001-03-23 Kanegafuchi Chem Ind Co Ltd Thin film solar battery module and manufacturing method thereof
JP2001102616A (en) * 1999-09-29 2001-04-13 Sharp Corp Solar cell module
JP2004327698A (en) * 2003-04-24 2004-11-18 Fuji Electric Holdings Co Ltd Solar cell module and method for manufacturing the same
JP2008186764A (en) * 2007-01-31 2008-08-14 Fujimori Kogyo Co Ltd Dye-sensitized solar cell module and its manufacturing method
WO2009091068A1 (en) * 2008-01-15 2009-07-23 Affinity Co., Ltd. Solar cell module and method for manufacturing the same
JP2009188345A (en) * 2008-02-08 2009-08-20 Fujifilm Corp Solar cell sealant and method for manufacturing the same
JP2010027972A (en) * 2008-07-23 2010-02-04 Sharp Corp Solar battery module, and manufacturing method thereof
JP2010232692A (en) * 2010-07-12 2010-10-14 Sharp Corp Thin-film solar battery module and manufacturing method therefor

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62152183A (en) * 1985-12-25 1987-07-07 Kyocera Corp Solar cell module
JP2001077383A (en) * 1999-09-01 2001-03-23 Kanegafuchi Chem Ind Co Ltd Thin film solar battery module and manufacturing method thereof
JP2001102616A (en) * 1999-09-29 2001-04-13 Sharp Corp Solar cell module
JP2004327698A (en) * 2003-04-24 2004-11-18 Fuji Electric Holdings Co Ltd Solar cell module and method for manufacturing the same
JP2008186764A (en) * 2007-01-31 2008-08-14 Fujimori Kogyo Co Ltd Dye-sensitized solar cell module and its manufacturing method
WO2009091068A1 (en) * 2008-01-15 2009-07-23 Affinity Co., Ltd. Solar cell module and method for manufacturing the same
JP2009188345A (en) * 2008-02-08 2009-08-20 Fujifilm Corp Solar cell sealant and method for manufacturing the same
JP2010027972A (en) * 2008-07-23 2010-02-04 Sharp Corp Solar battery module, and manufacturing method thereof
JP2010232692A (en) * 2010-07-12 2010-10-14 Sharp Corp Thin-film solar battery module and manufacturing method therefor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018158803A1 (en) * 2017-02-28 2018-09-07 株式会社 東芝 Solar cell module
JPWO2018158803A1 (en) * 2017-02-28 2019-06-27 株式会社東芝 Solar cell module
WO2019065430A1 (en) * 2017-09-29 2019-04-04 積水化学工業株式会社 Solar cell module, and method of manufacturing solar cell module
CN110892540A (en) * 2017-09-29 2020-03-17 积水化学工业株式会社 Solar cell module and method for manufacturing solar cell module
JPWO2019065430A1 (en) * 2017-09-29 2020-10-22 積水化学工業株式会社 Solar cell module and manufacturing method of solar cell module
WO2022127998A1 (en) * 2020-12-18 2022-06-23 Hanwha Q Cells Gmbh Solar module

Similar Documents

Publication Publication Date Title
US7960643B2 (en) Isolated metallic flexible back sheet for solar module encapsulation
US20120048349A1 (en) Flexible solar modules and manufacturing the same
US20110168238A1 (en) Flexible solar modules and manufacturing the same
JP6286736B2 (en) Back contact type solar cell module
US20120152349A1 (en) Junction box attachment for photovoltaic thin film devices
JP5268596B2 (en) Solar cell module and manufacturing method thereof
US20100071756A1 (en) Isolated metallic flexible back sheet for solar module encapsulation
KR20080041652A (en) Photovoltaic modules having improved back sheet
US20110214716A1 (en) Isolated metallic flexible back sheet for solar module encapsulation
JP2008235603A (en) Solar battery module
US20160164453A1 (en) Solar Roof Tile
WO2011024993A1 (en) Solar cell module
WO2011024991A1 (en) Solar cell module
JP2004356349A (en) Method of manufacturing solar cell module
JP4101611B2 (en) Thin film solar cell
WO2012117891A1 (en) Output wire for solar cell modules, solar cell module, and method for manufacturing same
WO2011024992A1 (en) Solar cell module
JP2010283231A (en) Solar cell module and method of manufacturing the same
JP2012204533A (en) Solar cell module and manufacturing method of the same
US9252312B2 (en) Solar cell module and manufacturing method therefor
JP2012204535A (en) Manufacturing method of solar cell module
JP5312284B2 (en) Solar cell module and manufacturing method thereof
TW201911585A (en) Solar battery module and manufacturing method thereof
JP2000243996A (en) Solar-cell module and manufacture thereof
WO2012128341A1 (en) Solar cell module and method for producing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12752108

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12752108

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP