JPH06268241A - Thin-film solar cell and manufacture thereof - Google Patents

Thin-film solar cell and manufacture thereof

Info

Publication number
JPH06268241A
JPH06268241A JP5052761A JP5276193A JPH06268241A JP H06268241 A JPH06268241 A JP H06268241A JP 5052761 A JP5052761 A JP 5052761A JP 5276193 A JP5276193 A JP 5276193A JP H06268241 A JPH06268241 A JP H06268241A
Authority
JP
Japan
Prior art keywords
electrode layer
electrode
solar cell
substrate
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5052761A
Other languages
Japanese (ja)
Inventor
Takuro Ihara
卓郎 井原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP5052761A priority Critical patent/JPH06268241A/en
Publication of JPH06268241A publication Critical patent/JPH06268241A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To provide a method of manufacturing a thin-film solar cell composed of unit cells connected together in series, wherein a patterning operation through which layers are patterned with an expensive apparatus or a patterning opera tion which may cause damage to an amorphous semiconductor layer can be dispensed with. CONSTITUTION:Through-holes 6 are bored in a polymer film 1 at its edge in a line, a third electrode 5 is formed around the rear opening of the hole 6, a first electrode layer 2, an amorphous semiconductor layer 3, and a second electrode layer 4 are laminated on the front side of the film 1, the extension of the third electrode layer 5 is made to overlap the extension of the first electrode layer 2 inside the through-hole 6, and both the extensions are connected together. Then, the film 1 is separated in a lengthwise direction into unit cells 7, and the unit cell 7 is pasted on the adjacent unit cell 7 making the edge surface of the second electrode layer 4 of the former overlap the third electrode 5 of the later.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、可撓性絶縁基板上に形
成した半導体薄膜を光電変換層とするユニットセルを直
列接続してなる薄膜太陽電池およびその製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thin film solar cell in which unit cells each having a semiconductor thin film formed on a flexible insulating substrate as a photoelectric conversion layer are connected in series, and a method for manufacturing the same.

【0002】[0002]

【従来の技術】原料ガスのグロー放電分解などにより形
成されるアモルファスシリコンのようなアモルファス半
導体膜は、気相成長であるため大面積化が容易で、低コ
スト太陽電池の光電変換膜として期待されている。こう
した大面積の薄膜太陽電池から電力を取り出すためのよ
く知られた方法として、一枚の基板上で薄膜太陽電池を
複数のユニットセルに分割し、これを直列に接続する、
図2に示すような直列接続型の太陽電池がある。これ
は、ガラスあるいは高分子フィルムなどの絶縁基板10の
上に、第一電極21、22、23─を短冊状に形成し、その上
に光起電力発生部であるアモルファス半導体層領域31、
32、33─を、次いで第二電極41、42、43─を形成したも
のである。第一電極21、アモルファス半導体層31および
第二電極41の組み合わせ、第一電極22、アモルファス半
導体層32および第二電極42の組み合わせ等が各ユニット
セルを形成する。そして、一つのユニットセルの第一電
極、例えば22が隣接するユニットセルの第二電極、例え
ば41の縁部と電気的に接触する構造となるように、両電
極およびアモルファス半導体層のパターンが形成されて
各ユニットセルは直列に接続される。このような直列接
続型の太陽電池の形成は最も一般的には、各層をそれぞ
れ全面に被着した後、その都度レーザスクライブ法によ
りパターニングすることにより行われる。
2. Description of the Related Art An amorphous semiconductor film such as amorphous silicon formed by glow discharge decomposition of a raw material gas is a vapor phase growth, so that it is easy to increase the area and is expected as a photoelectric conversion film for a low-cost solar cell. ing. As a well-known method for extracting electric power from such a large area thin film solar cell, the thin film solar cell is divided into a plurality of unit cells on one substrate, and these are connected in series,
There is a series-connected solar cell as shown in FIG. This is a glass or polymer film or the like, on the insulating substrate 10, the first electrode 21, 22, 23-is formed in a strip shape, the amorphous semiconductor layer region 31, which is a photovoltaic generation portion, thereon.
32, 33-, and then second electrodes 41, 42, 43- are formed. A combination of the first electrode 21, the amorphous semiconductor layer 31, and the second electrode 41, a combination of the first electrode 22, the amorphous semiconductor layer 32, and the second electrode 42, and the like form each unit cell. Then, the pattern of both electrodes and the amorphous semiconductor layer is formed so that the first electrode of one unit cell, for example, 22 has a structure in which the second electrode of an adjacent unit cell, for example, the edge of 41 is in electrical contact. Then, the unit cells are connected in series. The formation of such a series-connected solar cell is most generally performed by depositing each layer on the entire surface and then patterning by a laser scribing method each time.

【0003】大面積太陽電池において、このような直列
接続構造をとる主な理由は二つある。一つは、一枚の太
陽電池で高い出力電圧を得ることである。もう一つのよ
り基本的な理由は、透明電極中でのジュール損失を低減
する目的である。すなわち、直列接続構造を形成するこ
となく、全面に太陽電池を1つのユニットセルで形成す
ると、発生したキャリアは、第一電極および第二電極中
を太陽電池端部に設けられるリード線取り出し部まで長
い距離にわたって移動することになる。第一、第二の電
極のうち光入射側は透明電極、反対側は金属電極とする
のが一般的である。金属電極は、一般に抵抗が小さく、
したがって金属電極中を電流が流れることによるジュー
ル消失は無視することができる。しかしながら、透明電
極の材料の透明導電膜は、シート抵抗が5〜30Ω/□で
抵抗は比較的大きく、透明電極層を電流が流れることに
よるジュール損失は無視することができない。そのため
従来技術では、大面積太陽電池を複数の短冊状ユニット
セルに分割し、そのユニットセルの幅を5〜20mm程度と
するのが一般的である。
There are two main reasons for adopting such a series connection structure in a large area solar cell. One is to obtain a high output voltage with one solar cell. Another more basic reason is the purpose of reducing Joule losses in transparent electrodes. That is, when a solar cell is formed on the entire surface by one unit cell without forming a series connection structure, the generated carriers are generated in the first electrode and the second electrode up to the lead wire extraction portion provided at the solar cell end. It will move over a long distance. In general, the light incident side of the first and second electrodes is a transparent electrode, and the opposite side is a metal electrode. Metal electrodes generally have low resistance,
Therefore, the disappearance of Joule due to the current flowing through the metal electrode can be ignored. However, the transparent conductive film as the material of the transparent electrode has a sheet resistance of 5 to 30 Ω / □ and a relatively large resistance, and Joule loss due to the current flowing through the transparent electrode layer cannot be ignored. Therefore, in the prior art, it is general to divide a large-area solar cell into a plurality of strip-shaped unit cells and set the width of the unit cell to about 5 to 20 mm.

【0004】[0004]

【発明が解決しようとする課題】しかし、このような薄
膜太陽電池には次のような問題がある。 (1) パターニングのためにレーザスクライビング装置な
どの高価なパターニング装置が必要となる。 (2) 第一電極、アモルファス半導体層、第二電極の膜形
成工程とパターニング工程が交互になるため、例えば三
つの層の成膜装置をインライン化することが難しいな
ど、工程が複雑になる。
However, such a thin film solar cell has the following problems. (1) An expensive patterning device such as a laser scribing device is required for patterning. (2) Since the film forming process of the first electrode, the amorphous semiconductor layer, and the second electrode and the patterning process are alternated, the process becomes complicated, for example, it is difficult to form a film forming apparatus for three layers in-line.

【0005】(3) アモルファス半導体層形成後、第二電
極形成前にアモルファス半導体層のパターニング工程が
入り、この間にアモルファス半導体層表面が損傷を受け
易く、短絡などの性能不良が発生し、製造歩留まりの低
下が起こる。 本発明の目的は、上述の問題を解決し、可撓性絶縁基板
を有するユニットセルの複数を直列接続するのに、高価
な装置を必要とせず、各層の成膜のインライン可撓性も
可能で、またアモルファス半導体層の損傷のおそれなく
製造できる薄膜太陽電池およびその製造方法を提供する
ことにある。
(3) After forming the amorphous semiconductor layer and before forming the second electrode, a patterning step of the amorphous semiconductor layer is performed, during which the surface of the amorphous semiconductor layer is easily damaged, performance defects such as short circuit occur, and the manufacturing yield Lowering occurs. An object of the present invention is to solve the above-mentioned problems, to connect a plurality of unit cells having a flexible insulating substrate in series, without requiring an expensive device, and enabling in-line flexibility of film formation of each layer. Another object of the present invention is to provide a thin film solar cell that can be manufactured without fear of damage to the amorphous semiconductor layer, and a manufacturing method thereof.

【0006】[0006]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明は、可撓性絶縁基板の表面上に第一電極
層、アモルファス半導体層、第二電極層を積層してなる
ユニットセルの複数個が直列接続される薄膜太陽電池に
おいて、可撓性絶縁基板の縁部に貫通孔が開けられ、前
記基板の裏面の貫通孔周囲部に設けられた第三電極層
は、同一ユニットセルの第一電極層と、貫通孔内壁上で
両電極層の延長部が重なり合うことにより電気的に接続
され、隣接ユニットセルの第二電極層と、両ユニットセ
ルの縁部が重なり合うことにより電気的に接続されたも
のとする。そして、縁部を重ね合わせて一列に配置され
た複数個のうちの一端のユニットセルの縁部の第二電極
層と他端のユニットセルの縁部の第三電極層にそれぞれ
端子板が重ね合わされたことが有効である。また、第二
電極層が貫通孔周囲部の上方に設けられないことも有効
である。このような薄膜太陽電池の製造方法は、可撓性
絶縁基板の縁部に基板長手方向に配列される貫通孔を開
けたのち、基板裏面上の貫通孔周囲部に第三電極層、基
板表面上に順に第一電極層、アモルファス半導体層、第
二電極層を成膜し、第三電極層の延長部と第一電極層の
延長部とを貫通孔内で重ね合わせ、次いで基板を長手方
向で分割して複数個のユニットセルを形成し、一つのユ
ニットセルの第二電極層の縁部と他のユニットセルの第
三電極層とを順次重ね合わせていくものとする。
To achieve the above object, the present invention provides a unit in which a first electrode layer, an amorphous semiconductor layer, and a second electrode layer are laminated on the surface of a flexible insulating substrate. In a thin film solar cell in which a plurality of cells are connected in series, a through hole is formed in an edge of a flexible insulating substrate, and the third electrode layer provided around the through hole on the back surface of the substrate has the same unit. The first electrode layer of the cell and the extension of both electrode layers on the inner wall of the through hole are overlapped to electrically connect, and the second electrode layer of the adjacent unit cell and the edge of both unit cells are overlapped to electrically connect. Be connected to each other. Then, the terminal plates are respectively overlaid on the second electrode layer on the edge of the unit cell at one end and the third electrode layer on the edge of the unit cell at the other end of the plurality of the plurality of edge parts which are arranged in a line. What has been done is effective. It is also effective that the second electrode layer is not provided above the through hole peripheral portion. The method of manufacturing such a thin film solar cell is such that after forming through holes arranged in the longitudinal direction of the substrate at the edges of the flexible insulating substrate, the third electrode layer and the substrate surface are provided on the back surface of the substrate around the through holes. A first electrode layer, an amorphous semiconductor layer, and a second electrode layer are formed in this order on the top, the extension of the third electrode layer and the extension of the first electrode layer are overlapped in the through hole, and then the substrate is set in the longitudinal direction. The unit cell is divided into a plurality of unit cells to form a plurality of unit cells, and the edge portion of the second electrode layer of one unit cell and the third electrode layer of another unit cell are sequentially stacked.

【0007】[0007]

【作用】ユニットセルに分割する前に成膜される第一電
極層、アモルファス半導体層および第三電極層のうち、
第一電極層、アモルファス半導体層はパターニングする
必要がないので、アモルファス半導体層のパターニング
工程での損傷がなくなり、これら3層の成膜のインライ
ン化が可能である。また、第一電極層と裏面の第三電極
層との接続は、両面からの成膜の際に貫通孔間で両層の
延長部が重なることにより自動的に行われる。そして、
各ユニットセルを重ね合わせて第二電極層の縁部と隣接
ユニットセルの第三電極と密着させることは、基板が可
撓性であるから容易にでき、簡単に直列接続構造を得る
ことができる。
[Function] Of the first electrode layer, the amorphous semiconductor layer and the third electrode layer formed before the division into unit cells,
Since it is not necessary to pattern the first electrode layer and the amorphous semiconductor layer, damage in the patterning process of the amorphous semiconductor layer is eliminated, and in-line film formation of these three layers is possible. Further, the connection between the first electrode layer and the third electrode layer on the back surface is automatically made by overlapping the extended portions of both layers between the through holes during film formation from both surfaces. And
Since the substrate is flexible, it is easy to stack each unit cell and bring it into close contact with the edge of the second electrode layer and the third electrode of the adjacent unit cell, and a series connection structure can be easily obtained. .

【0008】[0008]

【実施例】以下、図を引用して本発明の実施例について
述べる。本発明の一実施例の薄膜太陽電池を製造するに
は、先ず図1(a) に示すように、ロール体から順次引き
出される厚さ100 μm、幅18mm、長さ100 mのポリエチ
レンフタレートフィルムのような高分子フィルム1の一
方の縁部に20mmの間隔で小孔6を、CO2 レーザあるい
はパンチング装置により開ける。そして、図(a)のA−
A線断面図である図1(b) に示すように、基板としての
高分子フィルム1の一面上に300nm の厚さでスパッタ成
膜したAl薄膜から小孔6の部分に第三電極5を形成す
る。次いでフィルム基板1の電極5と反対の面の上に、
スパッタ法により成膜されたZnOからなる透明な第一電
極層2、プラズマCVD法により成膜されたアモルファ
スシリコン層3、スパッタ法により成膜されたAg薄膜か
らなる第二電極層4を、それぞれ1μm、500nm 、100n
m の厚さに順次形成する。このうち第二電極層4の成膜
の際には、マスクを用いるなどの方法で、図のように小
孔6の上方を覆わないようにする。この結果、図3に示
すように小孔6の内壁には第三電極層5、第二電極層2
およびアモルファスシリコン層3が付着し、反対側の面
まで延びているので、第一電極層2と第三電極層5が接
触し、電気的に導通状態となる。しかし、第二電極層4
は小孔6の上方を覆わないので、反対側の面まで延びて
第三電極層5と短絡することはない。
Embodiments of the present invention will be described below with reference to the drawings. In order to manufacture a thin film solar cell according to an embodiment of the present invention, first, as shown in FIG. 1 (a), a polyethylene phthalate film having a thickness of 100 μm, a width of 18 mm and a length of 100 m is sequentially drawn from a roll body. Small holes 6 are formed in one edge of the polymer film 1 at intervals of 20 mm by a CO 2 laser or a punching device. Then, A- in FIG.
As shown in FIG. 1 (b) which is a sectional view taken along the line A, the third electrode 5 is formed in the small hole 6 from the Al thin film sputter-deposited with a thickness of 300 nm on one surface of the polymer film 1 as the substrate. Form. Then, on the surface of the film substrate 1 opposite to the electrode 5,
A transparent first electrode layer 2 made of ZnO formed by a sputtering method, an amorphous silicon layer 3 formed by a plasma CVD method, and a second electrode layer 4 made of an Ag thin film formed by a sputtering method, respectively. 1μm, 500nm, 100n
Sequentially formed to a thickness of m. Of these, when forming the second electrode layer 4, a method such as using a mask is used so as not to cover the upper portion of the small hole 6 as illustrated. As a result, as shown in FIG. 3, the third electrode layer 5 and the second electrode layer 2 are formed on the inner wall of the small hole 6.
Since the amorphous silicon layer 3 is attached and extends to the surface on the opposite side, the first electrode layer 2 and the third electrode layer 5 come into contact with each other and become electrically conductive. However, the second electrode layer 4
Does not cover the upper part of the small hole 6 and therefore does not extend to the opposite surface and short-circuit with the third electrode layer 5.

【0009】次に、フィルム1を所定の長さに切断して
ユニットセルに分割し、図1(c) に示すように、一つの
ユニットセル7の小孔6の開けられている縁部の上に他
のユニットセル7の第三電極5が載るように重ねる。こ
のようなユニットセル7の接続は図4(a) 、(b) に示す
ように、接着付きの表面保護フィルム9の上で貼り合わ
せることによって行われる。この際、基板のフィルム1
は容易に変形するので、第二電極層4と、第三電極層5
を密着させることができる。そして、両端にはユニット
セルの代わりに端子板9が重なるようにし、直列接続型
構造を形成する。図示しないが、この上を裏面保護フィ
ルムを覆い、一体にラミネートして太陽電池モジュール
を完成する。
Next, the film 1 is cut into a predetermined length and divided into unit cells, and as shown in FIG. 1 (c), the edge portion of the small hole 6 of one unit cell 7 is opened. The third electrode 5 of another unit cell 7 is placed on top of it. Such connection of the unit cells 7 is performed by adhering the unit cells 7 on the surface protective film 9 with an adhesive as shown in FIGS. 4 (a) and 4 (b). At this time, the film 1 of the substrate
Is easily deformed, the second electrode layer 4 and the third electrode layer 5
Can be closely attached. Then, instead of the unit cells, the terminal plates 9 are overlapped at both ends to form a serial connection type structure. Although not shown, the back surface protective film is covered on this and laminated integrally to complete the solar cell module.

【0010】本実施例では、フィルム基板1の端部に小
孔6を設け、この小孔6の両面から第一電極層および第
三電極層をスパッタ成膜することにより、第一電極と第
三電極を接触させて電気的に接続しているが、要する
に、可撓性絶縁基板の第一電極と反対側の面の端部に、
第一電極と電気的に接続される第三電極を設けることが
できれば良く、スクリーン印刷法など他の方法を用いて
もよい。
In this embodiment, a small hole 6 is provided at the end of the film substrate 1, and the first electrode layer and the third electrode layer are formed on both surfaces of the small hole 6 by sputtering to form the first electrode and the first electrode layer. Three electrodes are contacted and electrically connected, but in short, at the end of the surface of the flexible insulating substrate opposite to the first electrode,
Any other method such as a screen printing method may be used as long as the third electrode electrically connected to the first electrode can be provided.

【0011】[0011]

【発明の効果】本発明によれば、一つのユニットセルの
最上層の第二電極層を隣接ユニットセルの第一電極層と
基板貫通孔内壁上で接続される第三電極と重ね合わせる
ことによって直列接続構造を形成することにより、以下
の効果が得られた。 (1) パターニングのために、レーザスクライブ装置など
の高価なパターニング装置は不要となる。
According to the present invention, the uppermost second electrode layer of one unit cell is overlapped with the first electrode layer of the adjacent unit cell and the third electrode connected on the inner wall of the substrate through hole. The following effects were obtained by forming the serial connection structure. (1) An expensive patterning device such as a laser scribing device is unnecessary for patterning.

【0012】(2) アモルファス半導体層と第二電極層の
ロール体から引き出される長尺フィルム上への連続形成
が可能で、従来のようなアモルファス半導体層のパター
ニング工程におけるアモルファス半導体層表面の損傷が
発生しにくい。 (3) 太陽電池の出力電流をテープ状ユニットセルの切り
出し長さにより、また出力電圧を直列に重ね合わされる
段数により自由に変えることができ、種々の電流、電圧
仕様に対して容易に対応することが可能である。
(2) The amorphous semiconductor layer and the second electrode layer can be continuously formed on a long film drawn from a roll body, and damage to the surface of the amorphous semiconductor layer in the conventional patterning process of the amorphous semiconductor layer can be prevented. Hard to occur. (3) The output current of the solar cell can be freely changed by the cut-out length of the tape-shaped unit cell and the output voltage can be changed according to the number of stages that are stacked in series, and it can easily correspond to various current and voltage specifications. It is possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の薄膜太陽電池を示し、(a)
が基板フィルムの平面図、(b)が(a) のA−A線断面
図、(c) はユニットセル重ね合わせ部の断面図
FIG. 1 shows a thin film solar cell according to an embodiment of the present invention, (a)
Is a plan view of the substrate film, (b) is a cross-sectional view taken along the line AA of (a), and (c) is a cross-sectional view of the unit cell overlapping portion.

【図2】従来の薄膜太陽電池の断面図FIG. 2 is a cross-sectional view of a conventional thin film solar cell.

【図3】図1の薄膜太陽電池の貫通孔部断面図FIG. 3 is a sectional view of a through hole portion of the thin film solar cell of FIG.

【図4】本発明の一実施例の薄膜太陽電池モジュールを
示し、(a) は平面図、(b) は(a) のB−B線断面図
FIG. 4 shows a thin film solar cell module according to an embodiment of the present invention, (a) is a plan view, (b) is a sectional view taken along line BB of (a).

【符号の説明】[Explanation of symbols]

1 高分子フィルム基板 2 第一電極層 3 アモルファスシリコン層 4 第二電極層 5 第三電極層 6 小孔 7 ユニットセル 8 表面保護フィルム 9 端子板 1 Polymer Film Substrate 2 First Electrode Layer 3 Amorphous Silicon Layer 4 Second Electrode Layer 5 Third Electrode Layer 6 Small Hole 7 Unit Cell 8 Surface Protection Film 9 Terminal Board

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】可撓性絶縁基板の表面上に第一電極層、ア
モルファス半導体層、第二電極層を積層してなるユニッ
トセルの複数個が直列接続されるものにおいて、可撓性
絶縁基板の縁部に貫通孔が開けられ、前記基板の裏面の
貫通孔周囲部に設けられた第三電極層は、同一ユニット
セルの第一電極層と、貫通孔内壁上で両電極層の延長部
が重なり合うことにより接続され、隣接ユニットセルの
第二電極層と、両ユニットセルの縁部が重なり合うこと
により接続されたことを特徴とする薄膜太陽電池。
1. A flexible insulating substrate in which a plurality of unit cells formed by laminating a first electrode layer, an amorphous semiconductor layer, and a second electrode layer on a surface of a flexible insulating substrate are connected in series. A through-hole is formed in the edge of the substrate, and the third electrode layer provided around the through-hole on the back surface of the substrate is the first electrode layer of the same unit cell and an extension of both electrode layers on the inner wall of the through-hole. Are connected by overlapping, and the second electrode layer of an adjacent unit cell is connected by overlapping the edges of both unit cells.
【請求項2】縁部を重ね合わせて一列に配置された複数
個のうちの一端のユニットセルの縁部の第二電極層と他
端のユニットセルの縁部の第三電極層とにそれぞれ端子
板が重ね合わされた請求項1記載の薄膜太陽電池。
2. A second electrode layer at the edge of the unit cell at one end and a third electrode layer at the edge of the unit cell at the other end out of a plurality of the plurality of which are arranged in a line with the edges overlapping each other. The thin-film solar cell according to claim 1, wherein the terminal plates are stacked.
【請求項3】第二電極層が貫通孔周囲部の上方に設けら
れない請求項1あるいは2記載の薄膜太陽電池およびそ
の製造方法。
3. The thin film solar cell according to claim 1, wherein the second electrode layer is not provided above the peripheral portion of the through hole, and the method for manufacturing the thin film solar cell.
【請求項4】可撓性絶縁基板の縁部に基板長手方向に配
列される貫通孔を開けたのち、基板裏面上の貫通孔周囲
部に第三電極層、基板表面上に順に第一電極層、アモル
ファス半導体層、第二電極層を成膜し、第三電極層の延
長部と第一電極層の延長部とを貫通孔内で重ね合わせ、
次いで基板を長手方向で分割して複数個のユニットセル
を形成し、一つのユニットセルの第二電極層の縁部と他
のユニットセルの第三電極層とを順次重ね合わせていく
ことを特徴とする請求項1、2あるいは3記載の薄膜太
陽電池の製造方法。
4. A through hole arranged in the longitudinal direction of the substrate is formed in an edge portion of the flexible insulating substrate, a third electrode layer is provided around the through hole on the back surface of the substrate, and a first electrode is provided on the front surface of the substrate in this order. A layer, an amorphous semiconductor layer, a second electrode layer is formed, and the extension of the third electrode layer and the extension of the first electrode layer are overlapped in the through hole,
Next, the substrate is divided in the longitudinal direction to form a plurality of unit cells, and the edge portion of the second electrode layer of one unit cell and the third electrode layer of the other unit cell are sequentially stacked. The method for producing a thin film solar cell according to claim 1, 2, or 3.
JP5052761A 1993-03-15 1993-03-15 Thin-film solar cell and manufacture thereof Pending JPH06268241A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5052761A JPH06268241A (en) 1993-03-15 1993-03-15 Thin-film solar cell and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5052761A JPH06268241A (en) 1993-03-15 1993-03-15 Thin-film solar cell and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH06268241A true JPH06268241A (en) 1994-09-22

Family

ID=12923867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5052761A Pending JPH06268241A (en) 1993-03-15 1993-03-15 Thin-film solar cell and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH06268241A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6020556A (en) * 1998-09-07 2000-02-01 Honda Giken Kogyo Kabushiki Kaisha Solar cell
US6188013B1 (en) 1998-09-07 2001-02-13 Honda Giken Kogyo Kabushiki Kaisha Solar cell
WO2008089657A1 (en) * 2007-01-17 2008-07-31 Binxuan Yi Solar cell and method for reducing the serial resistance of solar cells
JP2009505426A (en) * 2005-08-15 2009-02-05 コナルカ テクノロジーズ インコーポレイテッド Photovoltaic battery with interconnection to external circuit
EP4195296A4 (en) * 2020-12-28 2024-04-24 Suzhou Institute of Nano-tech and Nano-bionics (SINANO) Chinese Academy of Sciences Flexible photoelectric component assembly and manufacturing method therefor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6020556A (en) * 1998-09-07 2000-02-01 Honda Giken Kogyo Kabushiki Kaisha Solar cell
US6188013B1 (en) 1998-09-07 2001-02-13 Honda Giken Kogyo Kabushiki Kaisha Solar cell
JP2009505426A (en) * 2005-08-15 2009-02-05 コナルカ テクノロジーズ インコーポレイテッド Photovoltaic battery with interconnection to external circuit
WO2008089657A1 (en) * 2007-01-17 2008-07-31 Binxuan Yi Solar cell and method for reducing the serial resistance of solar cells
EP4195296A4 (en) * 2020-12-28 2024-04-24 Suzhou Institute of Nano-tech and Nano-bionics (SINANO) Chinese Academy of Sciences Flexible photoelectric component assembly and manufacturing method therefor

Similar Documents

Publication Publication Date Title
US5626686A (en) Thin-film solar cell and method of manufacturing the same
JP2755281B2 (en) Thin film solar cell and method of manufacturing the same
US5928439A (en) Thin-film solar cell and method for the manufacture thereof
JP3449155B2 (en) Photoelectric conversion device and method of manufacturing the same
JP3613851B2 (en) Integrated thin film solar cell
JPWO2004064167A1 (en) Translucent thin film solar cell module and manufacturing method thereof
JP3747096B2 (en) Solar cell module and manufacturing method thereof
JP2986875B2 (en) Integrated solar cell
JP3815875B2 (en) Manufacturing method of integrated thin film photoelectric conversion device
JP2005353767A (en) Solar cell module and manufacturing method thereof
JPH06268241A (en) Thin-film solar cell and manufacture thereof
JP4171959B2 (en) Method for manufacturing thin film solar cell
JP3237621B2 (en) Photoelectric conversion device and method of manufacturing the same
JP3720254B2 (en) Thin film solar cell and manufacturing method thereof
JPH08116081A (en) Thin film solar cell
JPH07321355A (en) Thin film for solar cell and manufacture
JPH07297436A (en) Thin film solar battery sub-module and thin film solar battery module
JP3584750B2 (en) Thin film solar cell and method for manufacturing the same
JP3170914B2 (en) Thin film solar cell and method of manufacturing the same
JPH0779004A (en) Thin film solar cell
JP3972233B2 (en) Solar cell module
JP2002151720A (en) Thin-film solar cell
JPH08306943A (en) Thin film solar cell and its manufacture
JP3762013B2 (en) Manufacturing method of integrated thin film photoelectric conversion device
JP2550697B2 (en) Thin film solar cell