JP4171959B2 - Method for manufacturing thin film solar cell - Google Patents

Method for manufacturing thin film solar cell Download PDF

Info

Publication number
JP4171959B2
JP4171959B2 JP2000113672A JP2000113672A JP4171959B2 JP 4171959 B2 JP4171959 B2 JP 4171959B2 JP 2000113672 A JP2000113672 A JP 2000113672A JP 2000113672 A JP2000113672 A JP 2000113672A JP 4171959 B2 JP4171959 B2 JP 4171959B2
Authority
JP
Japan
Prior art keywords
electrode layer
film solar
solar cell
thin film
photoelectric conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000113672A
Other languages
Japanese (ja)
Other versions
JP2001298203A (en
Inventor
清雄 ▲斎▼藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP2000113672A priority Critical patent/JP4171959B2/en
Publication of JP2001298203A publication Critical patent/JP2001298203A/en
Application granted granted Critical
Publication of JP4171959B2 publication Critical patent/JP4171959B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、ユニットセルを複数個直列接続した薄膜太陽電池の製造方法に関する。
【0002】
【従来の技術】
現在、環境保護の立場から、クリーンなエネルギーの研究開発が進められている。中でも、太陽電池はその資源(太陽光)が無限であること、無公害であることから注目を集めている。同一基板上に形成された複数の太陽電池素子が、直列接続されてなる太陽電池(光電変換装置)の代表例は、薄膜太陽電池である。
【0003】
薄膜太陽電池は、薄型で軽量、製造コストの安さ、大面積化が容易であることなどから、今後の太陽電池の主流となると考えられ、電力供給用以外に、建物の屋根や窓などにとりつけて利用される業務用,一般住宅用にも需要が広がってきている。
【0004】
従来の薄膜太陽電池はガラス基板を用いているものが一般的であった。近年、軽量化、施工性、量産性においてプラスチックフィルムを用いたフレキシブルタイプの太陽電池の研究開発が進められ実用化されている。さらに、フレキシブルな金属材料に絶縁被覆したフィルム基板を用いたものも開発されている。このフレキシブル性を生かし、ロールツーロール方式やステッピングロール方式の製造方法により大量生産が可能となった。
【0005】
上記の薄膜太陽電池は、電気絶縁性フィルム基板上に第1電極(以下、下電極ともいう)、薄膜半導体層からなる光電変換層および第2電極(以下、透明電極ともいう)が積層されてなる光電変換素子(またはセル)が複数形成されている。ある光電変換素子の第1電極と隣接する光電変換素子の第2電極を電気的に接続することを繰り返すことにより、最初の光電変換素子の第1電極と最後の光電変換素子の第2電極とに必要な電圧を出力させることができる。例えば、インバータにより交流化し商用電力源として交流100Vを得るためには、薄膜太陽電池の出力電圧は100V以上が望ましく、実際には数10個以上の素子が直列接続される。
【0006】
このような光電変換素子とその直列接続は、電極層と光電変換層の成膜と各層のパターニングおよびそれらの組み合わせ手順により形成される。上記太陽電池の構成および製造方法の一例は、例えば特開平10−233517号公報や特願平11−19306号に記載されている。
【0007】
図6は、上記特開平10−233517号公報に記載された薄膜太陽電池の一例を示し、(a)は平面図、(b)は(a)における線ABCDおよびBQCに沿っての断面図であり、(c)は(a)におけるEE断面図を示す。
【0008】
電気絶縁性でフレキシブルな樹脂からなる長尺のフィルム基板上に、順次、第1電極層、光電変換層、第2電極層が積層され、フィルム基板の反対側(裏面)には第3電極層、第4電極層が積層され、裏面電極が形成されている。光電変換層は例えばアモルファスシリコンのpin接合である。フィルム基板用材料としては、ポリイミドのフィルム、例えば厚さ50μmのフィルムが用いられている。
【0009】
フィルムの材質としては、他に、ポリエチレンナフタレート(PEN)、ポリエーテルサルフォン(PES)、ポリエチレンテレフタレート(PET)、またはアラミド系のフィルムなどを用いることができる。
【0010】
次に、製造工程の概要につき以下に説明する。
【0011】
先ず、フィルム基板にパンチを用いて、接続孔h1を開け、基板の片側(表側とする)に第1電極層として、スパッタにより銀を、例えば100nmの厚さに成膜し、これと反対の面(裏側とする)には、第3電極層として、同じく銀電極を成膜する。接続孔h1の内壁で第1電極層と第3電極層とは重なり、導通する。
【0012】
電極層としては、銀(Ag)以外に、Al,Cu,Ti等の金属をスパッタまたは電子ビーム蒸着等により成膜しても良く、金属酸化膜と金属の多層膜を電極層としても良い。成膜後、表側では、第1電極層を所定の形状にレーザ加工して、下電極l1〜l6をパターニングする。下電極l1〜l6の隣接部は一本の分離線g2を、二列の直列接続の光電変換素子間および周縁導電部fとの分離のためには二本の分離線g2を形成し、下電極l1〜l6は分離線により囲まれるようにする。再度パンチを用いて、集電孔h2を開けた後、表側に、光電変換層pとしてa-Si層をプラズマCVDにより成膜する。マスクを用いて幅W2の成膜とし、レーザ加工により二列素子の間だけに第1電極層と同じ分離線を形成する。なお、前記幅W2は、接続孔h1にまたがってもよい。
【0013】
さらに第2電極層として表側に透明電極層(ITO層)を成膜する。但し、二つの素子列の間とこれに平行な基板の両側端部にはマスクを掛け接続孔h1には成膜しないようにし、素子部のみに成膜する。透明電極層としては、ITO(インジウムスズオキサイド)以外に、SnO2、ZnOなどの酸化物導電層を用いることができる。
【0014】
次いで裏面全面に第4電極層として金属膜などの低抵抗導電膜からなる層を成膜する。第4電極の成膜により、集電孔h2の内壁で第2電極と第4電極とが重なり、導通する。表側では、レーザ加工により下電極と同じパターンの分離線を入れ、個別の第2電極u1〜u6を形成し、裏側では第3電極と第4電極とを同時にレーザ加工し、接続電極e12〜e56、および電力取り出し電極o1,o2を個別化し、基板の周縁部では表側の分離線g3と重なるように分離線g2を形成し、隣接電極間には一本の分離線を形成する。
【0015】
全ての薄膜太陽電池素子を一括して囲う周縁、および二列の直列接続太陽電池素子の隣接する境界には(周縁導電部fの内側)分離線g3がある。分離線g3の中にはどの層も無い。裏側では、全ての電極を一括して囲う周縁、および二列の直列接続電極の隣接する境界には(周縁導電部fの内側)分離線g2がある。分離線g2の中にはどの層も無い。
【0016】
こうして、電力取り出し電極o1−集電孔h2−上電極u1、光電変換層、下電極l1−接続孔h1−接続電極e12−上電極u2、光電変換層、下電極l2−接続電極e23−・・・−上電極u6、光電変換層、下電極l6−接続孔h1−電力取出し電極o2の順の光電変換素子の直列接続が完成する。
【0017】
なお、第3電極層と第4電極層は電気的には同一の電位であるので、以下の説明においては説明の便宜上、併せて一層の接続電極層として扱うこともある。
【0018】
図7は、構造の理解の容易化のために、薄膜太陽電池の構成を簡略化して斜視図で示したものである。図7において、基板61の表面に形成した単位光電変換素子62および基板61の裏面に形成した接続電極層63は、それぞれ複数の単位ユニットに完全に分離され、それぞれの分離位置をずらして形成されている。このため、素子62のアモルファス半導体部分である光電変換層65で発生した電流は、まず透明電極層66に集められ、次に該透明電極層領域に形成された集電孔67(h2)を介して背面の接続電極層63に通じ、さらに該接続電極層領域で素子の透明電極層領域の外側に形成された直列接続用の接続孔68(h1)を介して上記素子と隣り合う素子の透明電極層領域の外側に延びている下電極層64に達し、両素子の直列接続が行われている。
【0019】
上記薄膜太陽電池の簡略化した製造工程を図8(a)から(g)に示す。プラスチックフィルム71を基板として(工程(a))、これに接続孔78を形成し(工程(b))、基板の両面に第1電極層(下電極)74および第3電極層(接続電極の一部)73を形成(工程(c))した後、接続孔78と所定の距離離れた位置に集電孔77を形成する(工程(d))。工程(c)と工程(d)との間に、第1電極層(下電極)74を所定の形状にレーザ加工して、下電極をパターニングする工程があるが、ここではこの工程の図を省略している。
【0020】
次に、第1電極層74の上に、光電変換層となる半導体層75および第2電極層である透明電極層76を順次形成するとともに(工程(e)および工程(f))、第3電極層73の上に第4電極層(接続電極層)79を形成する(工程(g))。この後、レーザビームを用いて、基板71の両側の薄膜を分離加工して図7に示すような直列接続構造を形成する。
【0021】
なお、図8においては、集電孔h2内における透明電極層76と第4電極層79との接続をそれぞれの層を重ねて2層で図示しているが、前記図6においては、電気的に一層として扱い、1層で図示している。
【0022】
図5は、前記図7の斜視図で示す薄膜太陽電池の構成を、この発明の説明の便宜上、模式的に示す平面図で、図5(a)は光電変換部が形成された表面の平面図、図5(b)は接続電極層が形成された裏側の平面図を示す。
【0023】
図5(a)において、uは透明電極層、aは光電変換層、sはパターニングされた分離部、h1は接続孔、h2は集電孔を示す。また、図5(b)において、eは接続電極層、sはパターニングされた分離部、tは接続電極層の端部の取出し電極を示す。接続電極層は、第1接続電極層(第3電極層)および第2接続電極層(第4電極層)からなる。
【0024】
この薄膜太陽電池は、一方の取出し電極tから集電孔h2を介して表面の透明電極層uに電気的に接続され、次に接続孔h1を介して裏面の接続電極層eに接続され、再度表面の透明電極層u,裏面の接続電極層eと接続を繰り返し、最後に他方の取出し電極tに接続されて、光電変換素子の直列接続を完成するように構成されている。
【0025】
【発明が解決しようとする課題】
ところで、上記従来の薄膜太陽電池の製造方法においては、下記のような問題があった。
【0026】
成膜過程において、基板上に付着しているゴミ等によりピンホールが発生し、第1電極(下電極)と透明電極が電気的に短絡する問題が発生する。その理由は、透明電極層の形成時点でピンホール内にも透明電極が延長して形成されるためと推定されるが、通常は、このピンホールによる局所短絡部は、ユニットセルへの数ボルトの逆バイアスの電圧印加処理により、電気的に分離することができる。その理由は、逆バイアスの電圧印加処理によるジュール熱の発生により、ピンホール内の透明電極が焼却除去されるものと推定される。通常、上記電圧印加処理により、ユニットセル特性は改善するが、あまりピンホ−ルの数が多い場合や大きなピンホールが存在すると、電圧印加処理を行っても回復できないことがある。特に大電流型の薄膜太陽電池の場合には、ユニットセル面積が大きくなるため(発電電流はユニットセル面積に比例するので)、面積に比例してピンホールの数が増大し、ユニットセル内にこのような回復できないピンホ−ルが残存する確率が高くなる。また、大きなピンホールがユニットセル内に存在すると、電圧印加処理時に流れる電流が大きなピンホール部に集中するために、その他の小さなピンホ−ルも電圧印加処理で回復できなくなる。従って、ユニットセル面積が大きくなると、上記理由により、薄膜太陽電池の性能が低下する問題が発生していた。
【0027】
この発明は、上記のような問題点を解消するためになされたもので、この発明の課題は、ユニットセル内の局所的短絡に伴う薄膜太陽電池の性能低下の防止を図った薄膜太陽電池の製造方法を提供することにある。
【0028】
【課題を解決するための手段】
前述の課題を解決するため、請求項1の発明は、電気絶縁性を有する基板の表面に下電極層としての第1電極層,光電変換層,透明電極層(第2電極層)を順次積層してなる光電変換部と、前記基板の裏面に形成した接続電極層としての第3電極層および第4電極層とを備え、前記光電変換部および接続電極層を互いに位置をずらして単位部分にパターニングしてなり、前記透明電極層形成領域外に形成した電気的直列接続用の接続孔および前記透明電極層形成領域内に形成した集電孔を介して、前記表面上の互いにパターニングされて隣合う単位光電変換部分(ユニットセル)を電気的に直列に接続してなる薄膜太陽電池の製造方法であって、以下の1)ないし3)の工程を含むこととする。
1)前記薄膜太陽電池の光電変換部および接続電極層を、電気的に直列接続する方向に対し直交する方向に複数個に電気的に分割する工程。
2)薄膜太陽電池のユニットセル内の局所的短絡を回復するために、各ユニットセルに電圧印加処理を行う工程。
3)前記電気的に分割された複数個の薄膜太陽電池を電気的に並列に接続するために、取り出し電極を電気的に接続する工程。
【0029】
前述のように、ユニットセル面積が大きくなると、ピンホ−ルが原因のセル性能低下が発生するので、この発明では、1つの基板上に作製した薄膜太陽電池装置を複数個に分割し、分割したそれぞれの薄膜太陽電池装置に電圧印加処理を行った後に再度並列に接続するようにした。これにより、セル性能低下の問題が解消できる。
【0030】
また、前記請求項1記載の製造方法において、1)ないし3)の工程に代えて、以下の1)ないし2)の工程を含むこととする(請求項2の発明)。
1)前記ユニットセルを直列接続した両端の接続電極層以外の光電変換部および接続電極層を、電気的に直列接続する方向に対し直交する方向に複数個に電気的に分割し、前記両端の接続電極層は、前記電気的に分割された複数個の薄膜太陽電池を電気的に並列に接続するための取り出し電極とする工程。
2)薄膜太陽電池のユニットセル内の局所的短絡を回復するために、各ユニットセルに電圧印加処理を行う工程。
【0031】
前記請求項2の発明により、取り出し電極の接続工程を省くことができ、請求項1の発明と比較して、工程が簡略化される。
【0032】
さらに、前記請求項1記載の製造方法において、前記1)の工程に代えて、以下の1)の工程とする(請求項3の発明)。
1)前記薄膜太陽電池の光電変換部,接続電極層および基板を、電気的に直列接続する方向に対し直交する方向に複数個に電気的に分割する工程。
【0033】
前記請求項3の発明により、基板の両面の薄膜太陽電池セル領域の分割が1プロセスで行えるとともに、マイグレーション等による薄膜太陽電池セル領域間に発生する短絡事故を防止することができる。
【0034】
さらにまた、ガラス基板型のような太陽電池の場合には、ピンホ−ルが原因のセル性能低下防止の観点から、請求項4の発明が好適である。即ち、電気絶縁性を有する基板の表面に、第1電極層、光電変換層、透明電極層の順に、または、透明電極層、光電変換層、第1電極層の順に薄膜を積層した単位薄膜太陽電池(ユニットセル)を複数個形成し、このユニットセル相互を直列に接続してなる薄膜太陽電池の製造方法であって、以下の1)ないし3)の工程を含むこととする。
1)前記薄膜太陽電池の第1電極層、光電変換層、透明電極層を、電気的に直列接続する方向に対し直交する方向に複数個に電気的に分割する工程。
2)薄膜太陽電池のユニットセル内の局所的短絡を回復するために、各ユニットセルに電圧印加処理を行う工程。
3)前記電気的に分割された複数個の薄膜太陽電池を電気的に並列に接続するために、取り出し電極を電気的に接続する工程。
【0035】
【発明の実施の形態】
図面に基づき、本発明の実施の形態について以下に述べる。
【0036】
(実施例1)
図1は、請求項1の発明に関わり、耐熱性高分子基板上に7直列の薄膜太陽電池を3つ並列に形成した薄膜太陽電池の平面図である。図1(a)は、光電変換部が形成された表面、図1(b)は、接続電極層が形成された裏面を示す。図1において、前記図5と同一部材または同一機能部分には、同一の記号を付して説明を省略する。
【0037】
図1(a)に示すように、第1電極層の上に形成された光電変換層aは、分離部sにより3つの領域に分けられ、また透明電極層uは、前記光電変換層a上に3つの領域に分けて形成されており、この点が、図5(a)とは異なる。この3つの透明電極形成領域が発電領域である。また裏面は、図1(b)に示すように、接続電極層eが分離部sにより3つの領域に分けられ、取出し電極tが、両端部の接続電極層にそれぞれ接続されている。
【0038】
この薄膜太陽電池の製造工程は、以下のとおりである。前記従来技術の項において説明したように、まず、電気絶縁性基板としてのアラミド基板1にパンチを用いて、直列接続孔h1を形成した。その上に、銀等の高反射金属からなる第1電極層を、これと反対側の主面には第1接続電極層(第3電極層)をスパッタ法により形成した。本工程の結果、直列接続孔h1を介して第1電極層と第1接続電極層を電気的に接続した。
【0039】
次に、この第1電極層をYAGレ−ザの第2高調波を用いてパターニングし、複数個のユニットに分割した。
【0040】
その後、パンチを用いて集電孔h2を形成し、第1電極層上に、a−Si層から成る光電変換層aをプラズマCVD法で成膜し、光入射側の透明電極層u及びこれとは反対側の主面には第2接続電極層(第4電極層)をスパッタ法を用いて順次形成した。本工程の結果、集電孔h2を介して透明電極層と第2接続電極層が電気的に接続された。
【0041】
続いて、第1電極層パターニングライン内の透明電極層と光電変換層、これと反対側の第1接続電極層および第2接続電極層からなる接続電極層をYAGレーザの第2高調波を用いてパターニングした。この接続電極層加工時に、取出し電極に接続される接続電極層も同時に分離し、複数個の光電変換部が直列に接続された薄膜太陽電池を形成した。
【0042】
こうして作製した薄膜太陽電池の各ユニット間に10V程度の逆バイアスの直流電圧を印加し、ユニット内に存在するピンホール等が原因の短絡を回復する電圧印加処理を行った。最後に、複数個の薄膜太陽電池の取出し電極を共通電極にするために、取出し電極に導電性テープを貼った。なお、電圧印加処理工程は、取出し電極接続工程の後に行うこともできる。
【0043】
上記のように、薄膜太陽電池セル領域を複数個に分割することにより、回復しないピンホールの影響領域をできるだけ少なくし、回復可能なピンホールを電圧印加処理で回復させた後に、3つの取り出し電極を共通にして3並列の薄膜太陽電池を有する薄膜太陽電池として使用することにより、回復できないピンホールによるユニットセル性能低下を最小限にすることができた。
【0044】
上記実施例では、1つの基板上の並列数を3分割にしたが、実際上は、薄膜太陽電池セル領域間の有効面積ロスと回復できないピンホールが原因の薄膜太陽電池性能低下がトレードオフになるので、並列数の最適値はユニットセル面積やピンホールの発生頻度等により異なる。
【0045】
(実施例2)
図2は、請求項2の発明に関わり、取り出し電極tだけを分離せずに共通化した薄膜太陽電池の平面図である。図1と異なる点は、図2(b)に示すように、裏面の取り出し電極tが分離されていないことである。
【0046】
この薄膜太陽電池の製造工程としては、まず、アラミド基板1にパンチを用いて直列接続孔h1を形成した。その上に、銀等の高反射金属からなる第1電極層を、これと反対側の主面には第1接続電極層をスパッタ法により形成した。本工程の結果、直列接続孔h1を介して第1電極層と第1接続電極層を電気的に接続した。
【0047】
この第1電極層をYAGレーザの第2高調波を用いてパターニングし、複数個のユニットに分割した。
【0048】
その後、パンチを用いて集電孔h2を形成し、第1電極層上に、a−Si層から成る光電変換層をプラズマCVD法で、光入射側の透明電極層及びこれとは反対側の主面には第2接続電極層をスパッタ法を用いて順次形成した。本工程の結果、集電孔h2を介して透明電極層と第2接続電極層とが電気的に接続された。
【0049】
そして、第1電極層パターニングライン内の透明電極層と光電変換層、これと反対側の第1接続電極層および第2接続電極層からなる接続電極層をYAGレーザの第2高調波を用いてパターニングした。この接続電極層加工時には、取出し電極以外の接続電極層を、直列接続方向に対し直交する方向に複数個に分割した。
【0050】
こうして作製した薄膜太陽電池の各ユニット間に10V程度の直流電圧を印加し、ユニット内に存在するピンホール等が原因の短絡を回復する電圧印加処理を行った。取出し電極を共通にしても、取出し電極以外のセルの接続電極層は分離されているので、電圧印加処理が隣の列のピンホールに影響されることはない。
【0051】
上記実施例により、電圧印加処理の後の取り出し電極の共通化工程が省けた。
【0052】
(実施例3)
図3は、請求項3の発明に関わり、セル面および裏面の薄膜太陽電池セル領域の分割を基板除去と同時に行う実施例を示す。
【0053】
この薄膜太陽電池の製造工程としては、まず、ポリイミド基板1にパンチを用いて直列接続孔h1を形成した。その上に、銀等の高反射金属からなる第1電極層を、これと反対側の主面には第1接続電極層をスパッタ法により形成した。本工程の結果、直列接続孔h1を介して第1電極層と第1接続電極層を電気的に接続した。
【0054】
この第1電極層をYAGレーザの第2高調波を用いてパターニングし、複数個のユニットに分割した。
【0055】
その後、パンチを用いて集電孔h2を形成し、第1電極層上に、a−Si層から成る光電変換層をプラズマCVD法で、光入射側の透明電極層及びこれとは反対側の主面には第2接続電極層をスパッタ法を用いて順次形成した。本工程の結果、集電孔h2を介して透明電極層と第2接続電極層が電気的に接続された。
【0056】
続いて、第1電極層パターニングライン内の透明電極層と光電変換層、これと反対側の第1接続電極層および第2接続電極層からなる接続電極層をYAGレーザの第2高調波を用いてパターニングし、直列接続方向に対し直交する方向にカッターを用いて光電変換部、接続電極層および基板を同時に除去分割した。
【0057】
こうして作製した薄膜太陽電池の各ユニット間に10V程度の直流電圧を印加し、ユニット内に存在するピンホール等が原因の短絡を回復する電圧印加処理を行った。そして最後に、複数個の薄膜太陽電池の取出し電極を共通電極にするために、取出し電極に導電性テープを形成した。
【0058】
この実施例によれば、基板の両面の薄膜太陽電池セル領域の分割が1プロセスで行えるとともに、マイグレーション等による薄膜太陽電池セル領域間に発生する短絡事故を防げた。
【0059】
(実施例4)
図4は、請求項4の発明に関わり、基板Gにガラスを用い、基板Gの片側主面上に、透明電極層u、光電変換層a、第1電極層lを積層形成して構成される薄膜太陽電池を、3つ並列に作製した実施例である。図4(a)は平面図、図4(b)は図4(a)におけるA−A断面図、図4(c)は図4(a)におけるB−B断面図を示す。
【0060】
ユニットセル発電領域は、図4(b)に示す直列接続方向の断面図の領域cと、図4(c)に示す直列接続方向とは直交する方向の断面図の領域dに囲われた領域である。図4においては、ユニットセルが7つ直列に接続されている。
【0061】
本実施例の薄膜太陽電池の製造工程は、以下のとおりである。ガラス基板上に熱CVD法を用いて透明電極層uを形成し、YAGレーザの基本波を用いて前記透明電極層uをパターニングする。
【0062】
続いて、その上に光電変換層aをプラズマCVD法で形成し、さらに電池特性向上のため図示しない酸化亜鉛層をスパッタ法で形成し、YAGレーザの第2高調波を用いて光電変換層aと酸化亜鉛層を同時にパターニングした。
【0063】
その後、第1電極層lとしての銀電極層をスパッタ法により形成し、YAG第2高調波を用いてパターニングした。
【0064】
こうして作製した複数個の薄膜太陽電池の各ユニット間に電圧印加処理を行った。最後に、各取出し電極tを半田テープで半田付けし共通化した。
【0065】
本実施例によれば、ガラス基板を用いる薄膜太陽電池においても、ユニットセル面積を少なくし、電圧印加処理で回復できないことによる薄膜太陽電池性能の低下を少なくすることができた。
【0066】
【発明の効果】
この発明によれば前述のように、電気絶縁性を有する基板の表面に下電極層としての第1電極層,光電変換層,透明電極層(第2電極層)を順次積層してなる光電変換部と、前記基板の裏面に形成した接続電極層としての第3電極層および第4電極層とを備え、前記光電変換部および接続電極層を互いに位置をずらして単位部分にパターニングしてなり、前記透明電極層形成領域外に形成した電気的直列接続用の接続孔および前記透明電極層形成領域内に形成した集電孔を介して、前記表面上の互いにパターニングされて隣合う単位光電変換部分(ユニットセル)を電気的に直列に接続してなる薄膜太陽電池の製造方法において、1)前記薄膜太陽電池の光電変換部および接続電極層を、電気的に直列接続する方向に対し直交する方向に複数個に電気的に分割する工程と、2)薄膜太陽電池のユニットセル内の局所的短絡を回復するために、各ユニットセルに電圧印加処理を行う工程と、3)前記電気的に分割された複数個の薄膜太陽電池を電気的に並列に接続するために、取り出し電極を電気的に接続するもしくは構成する工程とを含むこととしたことにより、ユニットセル内の局所的短絡に伴う薄膜太陽電池の性能低下の発生を防止できる。
【図面の簡単な説明】
【図1】この発明の実施例に関わる薄膜太陽電池の平面図
【図2】この発明の異なる実施例に関わる薄膜太陽電池の平面図
【図3】この発明のさらに異なる実施例に関わる薄膜太陽電池の平面図
【図4】この発明のガラス基板を用いる実施例に関わる薄膜太陽電池の平面図および断面図
【図5】従来の薄膜太陽電池の平面図
【図6】薄膜太陽電池の構成の一例を示す図
【図7】薄膜太陽電池の概略構成を示す斜視図
【図8】従来の薄膜太陽電池の製造工程の概略を示す図
【符号の説明】
a:光電変換層、e:接続電極層、h1:接続孔、h2:集電孔、l:第1電極層、s:分離部、t:取出し電極、u:透明電極層。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method of manufacturing a thin film solar cell in which a plurality of unit cells are connected in series.
[0002]
[Prior art]
Currently, clean energy research and development is underway from the standpoint of environmental protection. Among them, solar cells are attracting attention because their resources (sunlight) are infinite and pollution-free. A typical example of a solar cell (photoelectric conversion device) in which a plurality of solar cell elements formed on the same substrate are connected in series is a thin film solar cell.
[0003]
Thin-film solar cells are expected to become the mainstream of solar cells in the future because they are thin and lightweight, inexpensive to manufacture, and easy to increase in area, and are attached to roofs and windows of buildings in addition to power supply. Demand is also expanding for commercial and general residential use.
[0004]
Conventional thin film solar cells generally use a glass substrate. In recent years, research and development of flexible solar cells using plastic films has been promoted and put into practical use in terms of weight reduction, workability, and mass productivity. Furthermore, the thing using the film substrate which carried out the insulation coating to the flexible metal material is also developed. Taking advantage of this flexibility, mass production became possible by a roll-to-roll method or a stepping roll method.
[0005]
In the above thin film solar cell, a first electrode (hereinafter also referred to as a lower electrode), a photoelectric conversion layer composed of a thin film semiconductor layer, and a second electrode (hereinafter also referred to as a transparent electrode) are laminated on an electrically insulating film substrate. A plurality of photoelectric conversion elements (or cells) are formed. By repeating electrically connecting the first electrode of a certain photoelectric conversion element and the second electrode of the adjacent photoelectric conversion element, the first electrode of the first photoelectric conversion element and the second electrode of the last photoelectric conversion element Can output the voltage required for For example, in order to obtain an alternating current of 100 V as a commercial power source by alternating current with an inverter, the output voltage of the thin-film solar cell is desirably 100 V or higher, and actually several tens or more elements are connected in series.
[0006]
Such a photoelectric conversion element and its series connection are formed by forming an electrode layer and a photoelectric conversion layer, patterning each layer, and a combination procedure thereof. An example of the configuration and manufacturing method of the solar cell is described in, for example, Japanese Patent Application Laid-Open No. 10-233517 and Japanese Patent Application No. 11-19306.
[0007]
FIG. 6 shows an example of the thin film solar cell described in the above-mentioned Japanese Patent Laid-Open No. 10-233517, (a) is a plan view, and (b) is a sectional view taken along lines ABCD and BQC in (a). Yes, (c) shows an EE cross-sectional view in (a).
[0008]
A first electrode layer, a photoelectric conversion layer, and a second electrode layer are sequentially laminated on a long film substrate made of an electrically insulating and flexible resin, and a third electrode layer is formed on the opposite side (back surface) of the film substrate. The fourth electrode layer is laminated to form a back electrode. The photoelectric conversion layer is, for example, an amorphous silicon pin junction. As the film substrate material, a polyimide film, for example, a film having a thickness of 50 μm is used.
[0009]
As the material for the film, polyethylene naphthalate (PEN), polyethersulfone (PES), polyethylene terephthalate (PET), or an aramid film can be used.
[0010]
Next, the outline of the manufacturing process will be described below.
[0011]
First, using a punch in the film substrate, a connection hole h1 is opened, and silver is formed to a thickness of, for example, 100 nm by sputtering as a first electrode layer on one side (front side) of the substrate. Similarly, a silver electrode is formed on the surface (the back side) as the third electrode layer. The first electrode layer and the third electrode layer overlap with each other on the inner wall of the connection hole h1, and are electrically connected.
[0012]
As the electrode layer, in addition to silver (Ag), a metal such as Al, Cu, or Ti may be formed by sputtering or electron beam evaporation, or a metal oxide film and a metal multilayer film may be used as the electrode layer. After the film formation, on the front side, the first electrode layer is laser processed into a predetermined shape, and the lower electrodes 11 to 16 are patterned. Adjacent portions of the lower electrodes l1 to l6 form one separation line g2, and two separation lines g2 are formed for separation between the two series-connected photoelectric conversion elements and the peripheral conductive portion f. The electrodes l1 to l6 are surrounded by a separation line. After using the punch again to open the current collecting hole h2, an a-Si layer as a photoelectric conversion layer p is formed on the front side by plasma CVD. A film having a width W2 is formed using a mask, and the same separation line as that of the first electrode layer is formed only between the two-row elements by laser processing. The width W2 may extend over the connection hole h1.
[0013]
Further, a transparent electrode layer (ITO layer) is formed on the front side as the second electrode layer. However, a mask is applied between the two element rows and on both side edges of the substrate parallel to the element row so as not to form the film in the connection hole h1, and the film is formed only on the element part. As the transparent electrode layer, in addition to ITO (indium tin oxide), an oxide conductive layer such as SnO 2 or ZnO can be used.
[0014]
Next, a layer made of a low-resistance conductive film such as a metal film is formed as a fourth electrode layer on the entire back surface. By forming the fourth electrode, the second electrode and the fourth electrode overlap with each other on the inner wall of the current collecting hole h2, and are brought into conduction. On the front side, separation lines having the same pattern as the lower electrode are formed by laser processing to form individual second electrodes u1 to u6, and on the back side, the third electrode and the fourth electrode are laser processed at the same time, and connection electrodes e12 to e56 are formed. In addition, the power extraction electrodes o1 and o2 are individualized, the separation line g2 is formed so as to overlap the front-side separation line g3 at the periphery of the substrate, and a single separation line is formed between the adjacent electrodes.
[0015]
There is a separation line g3 at the periphery that encloses all the thin-film solar cell elements in a lump and the adjacent boundary between the two rows of series-connected solar cell elements (inside the peripheral conductive part f). There are no layers in the separation line g3. On the back side, there is a separation line g2 (inside the peripheral conductive portion f) at the peripheral edge that encloses all the electrodes together and at the adjacent boundary of the two rows of series connection electrodes. There are no layers in the separation line g2.
[0016]
In this way, power extraction electrode o1-collection hole h2-upper electrode u1, photoelectric conversion layer, lower electrode l1-connection hole h1-connection electrode e12-upper electrode u2, photoelectric conversion layer, lower electrode l2-connection electrode e23- -The series connection of the photoelectric conversion elements in the order of the upper electrode u6, the photoelectric conversion layer, the lower electrode l6-the connection hole h1-the power extraction electrode o2 is completed.
[0017]
Since the third electrode layer and the fourth electrode layer are electrically at the same potential, in the following description, for convenience of explanation, they may be treated as a single connection electrode layer.
[0018]
FIG. 7 shows a simplified perspective view of the structure of the thin-film solar cell for easy understanding of the structure. In FIG. 7, the unit photoelectric conversion element 62 formed on the front surface of the substrate 61 and the connection electrode layer 63 formed on the back surface of the substrate 61 are completely separated into a plurality of unit units, and are formed by shifting the separation positions. ing. For this reason, the current generated in the photoelectric conversion layer 65 which is an amorphous semiconductor portion of the element 62 is first collected in the transparent electrode layer 66 and then through the current collecting holes 67 (h2) formed in the transparent electrode layer region. And transparent to the element adjacent to the element through a connection hole 68 (h1) for series connection formed in the connection electrode layer 63 and outside the transparent electrode layer area of the element. The lower electrode layer 64 extending to the outside of the electrode layer region is reached, and both elements are connected in series.
[0019]
A simplified manufacturing process of the thin film solar cell is shown in FIGS. Using the plastic film 71 as a substrate (step (a)), a connection hole 78 is formed in this (step (b)), and a first electrode layer (lower electrode) 74 and a third electrode layer (connection electrode) are formed on both sides of the substrate. After (part) 73 is formed (step (c)), a current collecting hole 77 is formed at a position away from the connection hole 78 by a predetermined distance (step (d)). There is a step of patterning the lower electrode by laser processing the first electrode layer (lower electrode) 74 into a predetermined shape between the step (c) and the step (d). Omitted.
[0020]
Next, the semiconductor layer 75 to be a photoelectric conversion layer and the transparent electrode layer 76 to be the second electrode layer are sequentially formed on the first electrode layer 74 (step (e) and step (f)), and the third A fourth electrode layer (connection electrode layer) 79 is formed on the electrode layer 73 (step (g)). Thereafter, the thin film on both sides of the substrate 71 is separated using a laser beam to form a series connection structure as shown in FIG.
[0021]
In FIG. 8, the connection between the transparent electrode layer 76 and the fourth electrode layer 79 in the current collection hole h2 is shown in two layers by overlapping each other, but in FIG. Are shown as one layer.
[0022]
FIG. 5 is a plan view schematically showing the configuration of the thin-film solar cell shown in the perspective view of FIG. 7 for convenience of explanation of the present invention. FIG. 5A is a plan view of the surface on which the photoelectric conversion unit is formed. FIG. 5B is a plan view of the back side on which the connection electrode layer is formed.
[0023]
In FIG. 5A, u is a transparent electrode layer, a is a photoelectric conversion layer, s is a patterned separation part, h1 is a connection hole, and h2 is a current collection hole. In FIG. 5B, e is a connection electrode layer, s is a patterned separation portion, and t is an extraction electrode at the end of the connection electrode layer. The connection electrode layer includes a first connection electrode layer (third electrode layer) and a second connection electrode layer (fourth electrode layer).
[0024]
This thin-film solar cell is electrically connected from one extraction electrode t to the transparent electrode layer u on the front surface through the current collecting hole h2, and then connected to the connection electrode layer e on the back surface through the connection hole h1, The connection with the transparent electrode layer u on the front surface and the connection electrode layer e on the back surface is repeated again, and finally connected to the other extraction electrode t to complete the series connection of the photoelectric conversion elements.
[0025]
[Problems to be solved by the invention]
By the way, in the manufacturing method of the said conventional thin film solar cell, there existed the following problems.
[0026]
In the film formation process, pinholes are generated due to dust or the like adhering to the substrate, causing a problem that the first electrode (lower electrode) and the transparent electrode are electrically short-circuited. The reason is presumed that the transparent electrode is also formed in the pinhole at the time of forming the transparent electrode layer. Usually, the local short-circuited portion by this pinhole is several volts to the unit cell. These can be electrically separated by applying a reverse bias voltage. The reason is presumed that the transparent electrode in the pinhole is incinerated and removed by the generation of Joule heat due to the reverse bias voltage application process. Normally, the unit cell characteristics are improved by the voltage application process. However, if the number of pinholes is too large or a large pinhole exists, the voltage application process may not be recovered. In particular, in the case of a large current type thin film solar cell, the unit cell area becomes large (since the generated current is proportional to the unit cell area), the number of pinholes increases in proportion to the area, The probability that such a pinhole that cannot be recovered remains high. If a large pinhole is present in the unit cell, the current flowing during the voltage application process is concentrated in the large pinhole portion, and other small pinholes cannot be recovered by the voltage application process. Therefore, when the unit cell area is increased, there has been a problem that the performance of the thin-film solar cell is lowered due to the above-described reason.
[0027]
The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a thin film solar cell that prevents the performance of the thin film solar cell from being deteriorated due to a local short circuit in the unit cell. It is to provide a manufacturing method.
[0028]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the invention of claim 1 is to sequentially laminate a first electrode layer as a lower electrode layer, a photoelectric conversion layer, and a transparent electrode layer (second electrode layer) on the surface of an electrically insulating substrate. And a third electrode layer and a fourth electrode layer as connection electrode layers formed on the back surface of the substrate, wherein the photoelectric conversion unit and the connection electrode layer are displaced from each other in a unit portion. Patterned and connected to each other on the surface through a connection hole for electrical series connection formed outside the transparent electrode layer formation region and a current collection hole formed in the transparent electrode layer formation region. A method for manufacturing a thin-film solar cell in which unit photoelectric conversion portions (unit cells) are electrically connected in series, and includes the following steps 1) to 3).
1) A step of electrically dividing the photoelectric conversion part and the connection electrode layer of the thin-film solar cell into a plurality of pieces in a direction orthogonal to a direction in which the thin film solar cell is electrically connected in series.
2) A step of applying a voltage application process to each unit cell in order to recover a local short circuit in the unit cell of the thin film solar cell.
3) A step of electrically connecting take-out electrodes in order to electrically connect the plurality of electrically divided thin film solar cells in parallel.
[0029]
As described above, when the unit cell area is increased, the cell performance is deteriorated due to the pinhole. Therefore, in the present invention, the thin-film solar cell device fabricated on one substrate is divided into a plurality of parts. Each thin-film solar cell device was connected in parallel again after performing a voltage application process. Thereby, the problem of cell performance degradation can be solved.
[0030]
The manufacturing method according to claim 1 includes the following steps 1) to 2) instead of the steps 1) to 3) (the invention of claim 2).
1) The photoelectric conversion unit and the connection electrode layer other than the connection electrode layers at both ends where the unit cells are connected in series are electrically divided into a plurality of directions in a direction orthogonal to the direction in which the unit cells are electrically connected in series. The connection electrode layer is a step of forming a take-out electrode for electrically connecting the plurality of electrically divided thin film solar cells in parallel.
2) A step of applying a voltage application process to each unit cell in order to recover a local short circuit in the unit cell of the thin film solar cell.
[0031]
According to the second aspect of the invention, the connecting step of the extraction electrode can be omitted, and the process is simplified as compared with the first aspect of the invention.
[0032]
Furthermore, in the manufacturing method according to claim 1, the following step 1) is used instead of the step 1) (the invention of claim 3).
1) A step of electrically dividing the photoelectric conversion part, the connection electrode layer, and the substrate of the thin film solar cell into a plurality of pieces in a direction orthogonal to the direction in which the thin film solar cell is electrically connected in series.
[0033]
According to the third aspect of the present invention, the thin film solar cell regions on both sides of the substrate can be divided in one process, and a short circuit accident occurring between the thin film solar cell regions due to migration or the like can be prevented.
[0034]
Furthermore, in the case of a solar cell such as a glass substrate type, the invention of claim 4 is preferred from the viewpoint of preventing cell performance deterioration due to pinholes. That is, a unit thin film solar in which thin films are laminated on the surface of a substrate having electrical insulation in the order of the first electrode layer, the photoelectric conversion layer, and the transparent electrode layer, or in the order of the transparent electrode layer, the photoelectric conversion layer, and the first electrode layer. A method of manufacturing a thin-film solar battery in which a plurality of batteries (unit cells) are formed and the unit cells are connected in series, and includes the following steps 1) to 3).
1) A step of electrically dividing the first electrode layer, the photoelectric conversion layer, and the transparent electrode layer of the thin film solar cell into a plurality of pieces in a direction orthogonal to a direction in which the thin film solar cells are electrically connected in series.
2) A step of applying a voltage application process to each unit cell in order to recover a local short circuit in the unit cell of the thin film solar cell.
3) A step of electrically connecting take-out electrodes in order to electrically connect the plurality of electrically divided thin film solar cells in parallel.
[0035]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
[0036]
(Example 1)
FIG. 1 is a plan view of a thin-film solar cell according to the first aspect of the present invention, in which three 7-series thin-film solar cells are formed in parallel on a heat-resistant polymer substrate. FIG. 1A shows the front surface on which the photoelectric conversion portion is formed, and FIG. 1B shows the back surface on which the connection electrode layer is formed. In FIG. 1, the same members or the same function parts as those in FIG.
[0037]
As shown in FIG. 1A, the photoelectric conversion layer a formed on the first electrode layer is divided into three regions by the separation part s, and the transparent electrode layer u is on the photoelectric conversion layer a. This is different from FIG. 5 (a). These three transparent electrode formation regions are power generation regions. 1B, the connection electrode layer e is divided into three regions by the separation part s, and the extraction electrodes t are connected to the connection electrode layers at both ends, respectively.
[0038]
The manufacturing process of this thin film solar cell is as follows. As explained in the section of the prior art, first, the series connection hole h1 was formed using a punch on the aramid substrate 1 as an electrically insulating substrate. A first electrode layer made of a highly reflective metal such as silver was formed thereon, and a first connection electrode layer (third electrode layer) was formed on the opposite main surface by sputtering. As a result of this step, the first electrode layer and the first connection electrode layer were electrically connected through the series connection hole h1.
[0039]
Next, this first electrode layer was patterned using the second harmonic of a YAG laser and divided into a plurality of units.
[0040]
Thereafter, a current collecting hole h2 is formed using a punch, and a photoelectric conversion layer a composed of an a-Si layer is formed on the first electrode layer by a plasma CVD method. A second connection electrode layer (fourth electrode layer) was sequentially formed on the main surface on the opposite side by using a sputtering method. As a result of this step, the transparent electrode layer and the second connection electrode layer were electrically connected through the current collecting hole h2.
[0041]
Subsequently, the transparent electrode layer and the photoelectric conversion layer in the first electrode layer patterning line, and the connection electrode layer composed of the first connection electrode layer and the second connection electrode layer on the opposite side are used as the second harmonic of the YAG laser. And patterned. At the time of processing this connection electrode layer, the connection electrode layer connected to the extraction electrode was also separated at the same time to form a thin film solar cell in which a plurality of photoelectric conversion units were connected in series.
[0042]
A reverse bias DC voltage of about 10 V was applied between the units of the thin film solar cell thus fabricated, and a voltage application process was performed to recover the short circuit caused by pinholes and the like existing in the unit. Finally, in order to make the extraction electrodes of a plurality of thin film solar cells common electrodes, a conductive tape was attached to the extraction electrodes. The voltage application process step can also be performed after the extraction electrode connection step.
[0043]
As described above, by dividing the thin-film solar cell region into a plurality of regions, the influence region of the pinhole that does not recover is reduced as much as possible, and after recovering the recoverable pinhole by the voltage application process, the three extraction electrodes By using as a thin film solar cell having three parallel thin film solar cells in common, it was possible to minimize the unit cell performance degradation due to pinholes that could not be recovered.
[0044]
In the above embodiment, the parallel number on one substrate is divided into three, but in practice, the effective area loss between the thin film solar cell regions and the thin film solar cell performance degradation caused by unrecoverable pinholes are a trade-off. Therefore, the optimum value of the parallel number varies depending on the unit cell area, the frequency of occurrence of pinholes, and the like.
[0045]
(Example 2)
FIG. 2 is a plan view of a thin-film solar cell that is related to the invention of claim 2 and that uses only the extraction electrode t without separation. The difference from FIG. 1 is that, as shown in FIG. 2B, the extraction electrode t on the back surface is not separated.
[0046]
As a manufacturing process of this thin film solar cell, first, the serial connection hole h1 was formed in the aramid substrate 1 using a punch. A first electrode layer made of a highly reflective metal such as silver was formed thereon, and a first connection electrode layer was formed on the opposite main surface by sputtering. As a result of this step, the first electrode layer and the first connection electrode layer were electrically connected through the series connection hole h1.
[0047]
The first electrode layer was patterned using the second harmonic of a YAG laser and divided into a plurality of units.
[0048]
Thereafter, a current collecting hole h2 is formed by using a punch, and a photoelectric conversion layer made of an a-Si layer is formed on the first electrode layer by a plasma CVD method to form a transparent electrode layer on the light incident side and an opposite side thereof. A second connection electrode layer was sequentially formed on the main surface by sputtering. As a result of this step, the transparent electrode layer and the second connection electrode layer were electrically connected through the current collecting hole h2.
[0049]
Then, the transparent electrode layer and the photoelectric conversion layer in the first electrode layer patterning line, and the connection electrode layer composed of the first connection electrode layer and the second connection electrode layer on the opposite side are formed using the second harmonic of the YAG laser. Patterned. At the time of processing the connection electrode layer, the connection electrode layers other than the extraction electrode were divided into a plurality in the direction orthogonal to the series connection direction.
[0050]
A DC voltage of about 10 V was applied between the units of the thin film solar cell thus fabricated, and a voltage application process for recovering the short circuit caused by pinholes and the like existing in the unit was performed. Even if the extraction electrode is shared, the connection electrode layers of the cells other than the extraction electrode are separated, so that the voltage application process is not affected by the pinhole in the adjacent column.
[0051]
According to the above embodiment, the common step of taking out the electrode after the voltage application process can be omitted.
[0052]
(Example 3)
FIG. 3 relates to the invention of claim 3 and shows an embodiment in which the division of the thin-film solar cell region on the cell surface and the back surface is performed simultaneously with the substrate removal.
[0053]
As a manufacturing process of this thin film solar cell, first, the serial connection hole h1 was formed in the polyimide substrate 1 using a punch. A first electrode layer made of a highly reflective metal such as silver was formed thereon, and a first connection electrode layer was formed on the opposite main surface by sputtering. As a result of this step, the first electrode layer and the first connection electrode layer were electrically connected through the series connection hole h1.
[0054]
The first electrode layer was patterned using the second harmonic of a YAG laser and divided into a plurality of units.
[0055]
Thereafter, a current collecting hole h2 is formed by using a punch, and a photoelectric conversion layer made of an a-Si layer is formed on the first electrode layer by a plasma CVD method to form a transparent electrode layer on the light incident side and an opposite side thereof. A second connection electrode layer was sequentially formed on the main surface by sputtering. As a result of this step, the transparent electrode layer and the second connection electrode layer were electrically connected through the current collecting hole h2.
[0056]
Subsequently, the transparent electrode layer and the photoelectric conversion layer in the first electrode layer patterning line, and the connection electrode layer composed of the first connection electrode layer and the second connection electrode layer on the opposite side are used as the second harmonic of the YAG laser. The photoelectric conversion part, the connection electrode layer, and the substrate were simultaneously removed and divided using a cutter in a direction orthogonal to the series connection direction.
[0057]
A DC voltage of about 10 V was applied between the units of the thin film solar cell thus fabricated, and a voltage application process for recovering the short circuit caused by pinholes and the like existing in the unit was performed. Finally, a conductive tape was formed on the extraction electrodes in order to make the extraction electrodes of the plurality of thin film solar cells common.
[0058]
According to this embodiment, the thin film solar cell regions on both sides of the substrate can be divided in one process, and a short circuit accident that occurs between the thin film solar cell regions due to migration or the like can be prevented.
[0059]
Example 4
FIG. 4 relates to the invention of claim 4 and is configured by using glass for the substrate G and laminating the transparent electrode layer u, the photoelectric conversion layer a, and the first electrode layer 1 on one main surface of the substrate G. This is an example in which three thin-film solar cells are manufactured in parallel. 4A is a plan view, FIG. 4B is a sectional view taken along line AA in FIG. 4A, and FIG. 4C is a sectional view taken along line BB in FIG.
[0060]
The unit cell power generation region is a region surrounded by a region c in the cross-sectional view in the series connection direction shown in FIG. 4B and a region d in the cross-sectional view in the direction orthogonal to the series connection direction shown in FIG. It is. In FIG. 4, seven unit cells are connected in series.
[0061]
The manufacturing process of the thin film solar cell of a present Example is as follows. A transparent electrode layer u is formed on a glass substrate using a thermal CVD method, and the transparent electrode layer u is patterned using a fundamental wave of a YAG laser.
[0062]
Subsequently, a photoelectric conversion layer a is formed thereon by a plasma CVD method, a zinc oxide layer (not shown) is formed by a sputtering method for improving battery characteristics, and the photoelectric conversion layer a is formed using a second harmonic of a YAG laser. And the zinc oxide layer were simultaneously patterned.
[0063]
Thereafter, a silver electrode layer as the first electrode layer 1 was formed by sputtering and patterned using YAG second harmonic.
[0064]
A voltage application process was performed between the units of the plurality of thin film solar cells thus manufactured. Finally, each extraction electrode t was soldered with a solder tape and used in common.
[0065]
According to the present Example, also in the thin film solar cell using a glass substrate, the unit cell area was reduced, and the deterioration of the thin film solar cell performance due to the failure to recover by the voltage application process could be reduced.
[0066]
【The invention's effect】
According to the present invention, as described above, the photoelectric conversion obtained by sequentially laminating the first electrode layer, the photoelectric conversion layer, and the transparent electrode layer (second electrode layer) as the lower electrode layer on the surface of the electrically insulating substrate. And a third electrode layer and a fourth electrode layer as connection electrode layers formed on the back surface of the substrate, the photoelectric conversion unit and the connection electrode layer are shifted to each other and patterned into unit parts, Unit photoelectric conversion portions that are patterned and adjacent to each other on the surface through a connection hole for electrical series connection formed outside the transparent electrode layer formation region and a current collection hole formed in the transparent electrode layer formation region In the manufacturing method of the thin film solar cell which connects (unit cell) electrically in series, 1) The direction orthogonal to the direction which electrically connects the photoelectric conversion part and connection electrode layer of the said thin film solar cell in series Multiple to 2) a step of applying a voltage to each unit cell in order to recover a local short circuit in the unit cell of the thin film solar cell, and 3) a plurality of the electrically divided plural In order to electrically connect the thin film solar cells in parallel, the step of electrically connecting or configuring the take-out electrode is included, so that the thin film solar cell associated with the local short circuit in the unit cell is included. The occurrence of performance degradation can be prevented.
[Brief description of the drawings]
FIG. 1 is a plan view of a thin film solar cell according to an embodiment of the present invention. FIG. 2 is a plan view of a thin film solar cell according to a different embodiment of the present invention. FIG. 4 is a plan view and a cross-sectional view of a thin film solar cell according to an embodiment using the glass substrate of the present invention. FIG. 5 is a plan view of a conventional thin film solar cell. FIG. 7 is a perspective view showing a schematic configuration of a thin film solar cell. FIG. 8 is a schematic diagram showing a manufacturing process of a conventional thin film solar cell.
a: photoelectric conversion layer, e: connection electrode layer, h1: connection hole, h2: current collection hole, l: first electrode layer, s: separation part, t: extraction electrode, u: transparent electrode layer.

Claims (4)

電気絶縁性を有する基板の表面に下電極層としての第1電極層,光電変換層,透明電極層(第2電極層)を順次積層してなる光電変換部と、前記基板の裏面に形成した接続電極層としての第3電極層および第4電極層とを備え、前記光電変換部および接続電極層を互いに位置をずらして単位部分にパターニングしてなり、前記透明電極層形成領域外に形成した電気的直列接続用の接続孔および前記透明電極層形成領域内に形成した集電孔を介して、前記表面上の互いにパターニングされて隣合う単位光電変換部分(ユニットセル)を電気的に直列に接続してなる薄膜太陽電池の製造方法であって、以下の1)ないし3)の工程を含むことを特徴とする薄膜太陽電池の製造方法。
1)前記薄膜太陽電池の光電変換部および接続電極層を、電気的に直列接続する方向に対し直交する方向に複数個に電気的に分割する工程。
2)薄膜太陽電池のユニットセル内の局所的短絡を回復するために、各ユニットセルに電圧印加処理を行う工程。
3)前記電気的に分割された複数個の薄膜太陽電池を電気的に並列に接続するために、取り出し電極を電気的に接続する工程。
A photoelectric conversion portion formed by sequentially laminating a first electrode layer, a photoelectric conversion layer, and a transparent electrode layer (second electrode layer) as a lower electrode layer on the surface of an electrically insulating substrate, and formed on the back surface of the substrate A third electrode layer and a fourth electrode layer as connection electrode layers are provided, and the photoelectric conversion portion and the connection electrode layer are patterned into unit parts while being shifted from each other, and formed outside the transparent electrode layer formation region The unit photoelectric conversion portions (unit cells) that are patterned and adjacent to each other on the surface are electrically connected in series through a connection hole for electrical series connection and a current collection hole formed in the transparent electrode layer forming region. A method for manufacturing a thin film solar cell, comprising the following steps 1) to 3).
1) A step of electrically dividing the photoelectric conversion portion and the connection electrode layer of the thin-film solar cell into a plurality of portions in a direction orthogonal to a direction in which the thin film solar cell is electrically connected in series.
2) A step of applying a voltage application process to each unit cell in order to recover a local short circuit in the unit cell of the thin film solar cell.
3) A step of electrically connecting take-out electrodes in order to electrically connect the plurality of electrically divided thin film solar cells in parallel.
請求項1記載の製造方法において、1)ないし3)の工程に代えて、以下の1)ないし2)の工程を含むことを特徴とする薄膜太陽電池の製造方法。
1)前記ユニットセルを直列接続した両端の接続電極層以外の光電変換部および接続電極層を、電気的に直列接続する方向に対し直交する方向に複数個に電気的に分割し、前記両端の接続電極層は、前記電気的に分割された複数個の薄膜太陽電池を電気的に並列に接続するための取り出し電極とする工程。
2)薄膜太陽電池のユニットセル内の局所的短絡を回復するために、各ユニットセルに電圧印加処理を行う工程。
2. The method of manufacturing a thin-film solar cell according to claim 1, comprising the following steps 1) to 2) instead of the steps 1) to 3).
1) The photoelectric conversion unit and the connection electrode layer other than the connection electrode layers at both ends where the unit cells are connected in series are electrically divided into a plurality in a direction orthogonal to the direction in which the unit cells are electrically connected in series, The connection electrode layer is a step of forming a take-out electrode for electrically connecting the plurality of electrically divided thin film solar cells in parallel.
2) A step of applying a voltage application process to each unit cell in order to recover a local short circuit in the unit cell of the thin film solar cell.
請求項1記載の製造方法において、前記1)の工程に代えて、以下の1)の工程とすることを特徴とする薄膜太陽電池の製造方法。
1)前記薄膜太陽電池の光電変換部,接続電極層および基板を、電気的に直列接続する方向に対し直交する方向に複数個に電気的に分割する工程。
2. The method of manufacturing a thin-film solar cell according to claim 1, wherein the step 1) is used instead of the step 1).
1) A step of electrically dividing the photoelectric conversion unit, the connection electrode layer, and the substrate of the thin-film solar cell into a plurality of pieces in a direction orthogonal to a direction in which the thin film solar cell is electrically connected in series.
電気絶縁性を有する基板の表面に、第1電極層、光電変換層、透明電極層の順に、または、透明電極層、光電変換層、第1電極層の順に薄膜を積層した単位薄膜太陽電池(ユニットセル)を複数個形成し、このユニットセル相互を直列に接続してなる薄膜太陽電池の製造方法であって、以下の1)ないし3)の工程を含むことを特徴とする薄膜太陽電池の製造方法。
1)前記薄膜太陽電池の第1電極層、光電変換層、透明電極層を、電気的に直列接続する方向に対し直交する方向に複数個に電気的に分割する工程。
2)薄膜太陽電池のユニットセル内の局所的短絡を回復するために、各ユニットセルに電圧印加処理を行う工程。
3)前記電気的に分割された複数個の薄膜太陽電池を電気的に並列に接続するために、取り出し電極を電気的に接続する工程。
A unit thin film solar cell in which thin films are stacked in the order of the first electrode layer, the photoelectric conversion layer, and the transparent electrode layer or the transparent electrode layer, the photoelectric conversion layer, and the first electrode layer on the surface of the substrate having electrical insulation ( A thin-film solar cell manufacturing method in which a plurality of unit cells) are formed and the unit cells are connected in series, and includes the following steps 1) to 3): Production method.
1) A step of electrically dividing the first electrode layer, the photoelectric conversion layer, and the transparent electrode layer of the thin film solar cell into a plurality of pieces in a direction orthogonal to a direction in which the thin film solar cell is electrically connected in series.
2) A step of applying a voltage application process to each unit cell in order to recover a local short circuit in the unit cell of the thin film solar cell.
3) A step of electrically connecting take-out electrodes in order to electrically connect the plurality of electrically divided thin film solar cells in parallel.
JP2000113672A 2000-04-14 2000-04-14 Method for manufacturing thin film solar cell Expired - Fee Related JP4171959B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000113672A JP4171959B2 (en) 2000-04-14 2000-04-14 Method for manufacturing thin film solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000113672A JP4171959B2 (en) 2000-04-14 2000-04-14 Method for manufacturing thin film solar cell

Publications (2)

Publication Number Publication Date
JP2001298203A JP2001298203A (en) 2001-10-26
JP4171959B2 true JP4171959B2 (en) 2008-10-29

Family

ID=18625598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000113672A Expired - Fee Related JP4171959B2 (en) 2000-04-14 2000-04-14 Method for manufacturing thin film solar cell

Country Status (1)

Country Link
JP (1) JP4171959B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1739070B (en) * 2003-01-23 2010-05-05 西铁城控股株式会社 Electronic timepiece with solar cell
US8349623B2 (en) 2007-08-06 2013-01-08 Sharp Kabushiki Kaisha Method and apparatus for manufacturing thin film photoelectric conversion module
CN102005503A (en) * 2010-10-15 2011-04-06 河南新能光伏有限公司 Method and device for repairing laser etching defect
CN102792459A (en) 2011-01-31 2012-11-21 富士电机株式会社 Thin film photovoltaic cell and method of producing same
JP2012164919A (en) 2011-02-09 2012-08-30 Fuji Electric Co Ltd Thin film solar cell and manufacturing method of the same
JP2013004772A (en) 2011-06-17 2013-01-07 Fuji Electric Co Ltd Thin film solar cell and manufacturing method of the same
WO2013179898A1 (en) * 2012-05-29 2013-12-05 三菱電機株式会社 Solar battery module, method for producing same, and device for managing production of solar battery module
CN106489211A (en) * 2014-05-27 2017-03-08 太阳能公司 Imbrication formula solar module
CN112216755B (en) * 2020-08-25 2022-07-29 宣城开盛新能源科技有限公司 Series connection process of flexible solar sub-cells

Also Published As

Publication number Publication date
JP2001298203A (en) 2001-10-26

Similar Documents

Publication Publication Date Title
JP3449155B2 (en) Photoelectric conversion device and method of manufacturing the same
WO2006087951A1 (en) Solar cell and method for producing same
JP2002057357A (en) Thin-film solar battery and its manufacturing method
JP4171959B2 (en) Method for manufacturing thin film solar cell
JP4379560B2 (en) Thin film solar cell and manufacturing method thereof
WO2014057697A1 (en) Integrated thin-film solar battery module
JP2000223727A (en) Thin film solar battery and its manufacture
JP4403654B2 (en) Thin film solar cell
JP3237621B2 (en) Photoelectric conversion device and method of manufacturing the same
JP4534331B2 (en) Method for manufacturing thin film solar cell
JP4082651B2 (en) Manufacturing method of solar cell module
JP3111805B2 (en) Thin film solar cell and method of manufacturing the same
JP4000502B2 (en) Thin film solar cell module
JP3972233B2 (en) Solar cell module
JP4432236B2 (en) Thin film solar cell
JPH0779004A (en) Thin film solar cell
JP4061525B2 (en) Manufacturing method of solar cell module
JP2000323732A (en) Thin film solar cell and its manufacture
JP4075254B2 (en) Method for manufacturing thin film solar cell
JP4379557B2 (en) Thin film solar cell manufacturing method and manufacturing apparatus
JPH06268241A (en) Thin-film solar cell and manufacture thereof
JP2000208794A (en) Method of laser patterning pattern-shaped thin film of thin-film solar cell or the like
JP2002252360A (en) Method for manufacturing thin-film solar battery
JP2003060219A (en) Thin film solar cell and manufacturing method therefor
JP2011243938A (en) Thin film solar cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080717

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080730

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110822

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110822

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110822

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110822

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110822

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110822

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120822

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120822

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130822

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees