WO2013179898A1 - Solar battery module, method for producing same, and device for managing production of solar battery module - Google Patents

Solar battery module, method for producing same, and device for managing production of solar battery module Download PDF

Info

Publication number
WO2013179898A1
WO2013179898A1 PCT/JP2013/063599 JP2013063599W WO2013179898A1 WO 2013179898 A1 WO2013179898 A1 WO 2013179898A1 JP 2013063599 W JP2013063599 W JP 2013063599W WO 2013179898 A1 WO2013179898 A1 WO 2013179898A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode layer
solar cell
removal
cell module
photoelectric conversion
Prior art date
Application number
PCT/JP2013/063599
Other languages
French (fr)
Japanese (ja)
Inventor
知弘 池田
細野 彰彦
本並 薫
伸吾 友久
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2014518378A priority Critical patent/JPWO2013179898A1/en
Publication of WO2013179898A1 publication Critical patent/WO2013179898A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • H01L31/046PV modules composed of a plurality of thin film solar cells deposited on the same substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • H01L31/02366Special surface textures of the substrate or of a layer on the substrate, e.g. textured ITO/glass substrate or superstrate, textured polymer layer on glass substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • H01L31/046PV modules composed of a plurality of thin film solar cells deposited on the same substrate
    • H01L31/0465PV modules composed of a plurality of thin film solar cells deposited on the same substrate comprising particular structures for the electrical interconnection of adjacent PV cells in the module
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S50/00Monitoring or testing of PV systems, e.g. load balancing or fault identification
    • H02S50/10Testing of PV devices, e.g. of PV modules or single PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • FIG. 1 is a cross-sectional view schematically showing the configuration of a thin film solar cell.
  • the thin film solar cell includes a photoelectric conversion cell 120 in which a surface electrode layer 111, a p-type semiconductor film 121, an i-type semiconductor film 122 and an n-type semiconductor film 123 are stacked on a glass substrate 101, and a transparent back surface.
  • the back electrode layer 130 in which the conductive film 131 and the back electrode film 132 are stacked has a structure in which the conductive film 131 and the back electrode film 132 are stacked in order.
  • the surface electrode layer 111 is made of, for example, a transparent conductive film having a concavo-convex shape on the upper surface (the surface opposite to the surface in contact with the glass substrate 101).
  • FIG. 2 is a diagram showing an example of the configuration of an integrated thin film solar cell module in a dark state
  • (a) is a plan view seen from the back side of the integrated thin film solar cell module
  • (b) is a cross-sectional view taken along the line AA in (a)
  • (c) is a diagram showing an equivalent circuit.
  • the X axis and the Y axis perpendicular to each other in the substrate surface are taken, and the direction perpendicular to the substrate surface is taken as the Z axis.
  • the integrated thin film solar cell module 100 has a structure in which a plurality of rectangular subcells 140 extending in the X direction are arranged on the glass substrate 101 at predetermined intervals in the Y direction. Specifically, on the glass substrate 101 on which the rectangular surface electrode layer 111 extending in the X direction and arranged at a predetermined interval in the Y direction is formed, a photoelectric having substantially the same size as the surface electrode layer 111 is formed. A stacked body composed of the conversion cell 120 and the back electrode layer 130 has a structure arranged at a predetermined interval in the Y direction so as to straddle the two surface electrode layers 111 adjacent in the Y direction. Then, the front electrode layer 111 and the back electrode layer 130 are connected in the photoelectric conversion cell 120.
  • the groove that separates the surface electrode layer 111 in the Y direction is referred to as a first scribe line 141
  • the groove provided in the photoelectric conversion cell 120 that connects the surface electrode layer 111 and the back electrode layer 130 is the second scribe line.
  • the groove for separating the stacked body in the Y direction is called a third scribe line 143.
  • a region formed by the set of the first to third scribe lines 141 to 143 is referred to as a first separation groove 146.
  • the subcell 140 is formed in a region partitioned between two adjacent first separation grooves 146.
  • the surface electrode layer 111 of the subcell 140 is connected to the back electrode layer 130 of one adjacent subcell 140, and the back electrode layer 130 is connected to the surface electrode layer 111 of the other adjacent subcell 140, on the glass substrate 101.
  • a plurality of subcells 140 are connected in series.
  • the film removal process corresponding to the first to third scribe lines 141 to 143 is performed three times to separate the subcell 140 within the surface of the glass substrate 101. / Connect and adjust module voltage and current.
  • Such a process in the thin film solar cell module 100 is called integration.
  • Three film removal processes, that is, processes for forming the first scribe line 141, the second scribe line 142, and the third scribe line 143 will be referred to as P1, P2, and P3 scribe processes, respectively.
  • FIG. 3 is a diagram showing types of films removed by a film removal process performed in the manufacturing process of the thin film solar cell module
  • (a) is a diagram schematically showing a cross-sectional structure of the thin film solar cell module.
  • (B) is a figure which shows the film
  • the surface electrode layer 111 is removed, and the removed groove portion becomes the first scribe line 141.
  • the semiconductor film (photoelectric conversion cell 120) or the backside transparent conductive film 131 added thereto is removed, and the removed groove portion becomes the second scribe line 142.
  • a test circuit group (hereinafter referred to as TEG) pattern, which is a minicell group that also operates as a power generation region, is provided in the thin-film solar cell module 100.
  • TEG test circuit group
  • a TEG pattern layout and a probing method are described. explain.
  • the TEG is provided for the purpose of acquiring the electrical characteristics of each element of the equivalent circuit shown in FIG.
  • FIG. 4 is a diagram schematically illustrating an example of a method for measuring the diode characteristics of the subcell according to the embodiment. Since the subcell 140 is represented by an equivalent circuit as shown in FIG. 2C, as shown in FIG. 4A, the probe pins 201a and 201b are formed on the back electrode layer 130 of the subcell 140 adjacent in the Y-axis direction. The diode characteristics can be measured by lowering 201b and measuring with a measuring device 200 such as an IV meter.
  • a measuring device 200 such as an IV meter.
  • a voltage is applied to the guard pins 203a and 203b and the guard pins 203a and 203b as shown in FIG. 4B. It is desirable to prepare the guard pin driver 202 and lower the guard pins 203a and 203b on the back electrode layer 130 of the two subcells 140a adjacent to the subcell 140 where the probe pins 201a and 201b are lowered as necessary. At this time, a voltage is applied from the guard pin driver 202 to the guard pins 203a and 203b so that the guard pin 203a has the same voltage as the probe pin 201a and the guard pin 203b has the same voltage as the probe pin 201b.
  • FIG. 5 is an equivalent circuit diagram in a state where the diode characteristics of the subcell are measured using the guard pin.
  • the voltage of the guard pin 203a is made equal to the voltage of the probe pin 201a
  • the voltage of the guard pin 203b is made equal to the voltage of the probe pin 201b so that no current flows in the adjacent subcell 140. Therefore, it is possible to accurately measure the current-voltage characteristics of the diode in units of subcells 140.
  • any of two-terminal and four-terminal methods may be used.
  • FIG. 6 is a diagram schematically showing another example of a method for measuring a diode characteristic of a subcell using a guard pin.
  • all the probe pins 201a and 201b and the guard pins 203a and 203b are measured on the back electrode layer 130 of the subcell 140, but as shown in FIG. 6, the probe pins 201a and the guard pins 203b are measured. (Or the probe pin 201b and the guard pin 203a) may be brought into direct contact with the surface electrode layer 111 exposed at the bottom of the third scribe line 143 provided in the thin film solar cell module 100.
  • FIG. 9A and 9B are diagrams showing an example of patterning of a minicell, where FIG. 9A is a plan view, FIG. 9B is a sectional view taken along line BB in FIG. 9A, and FIG. It is C sectional drawing.
  • FIG. 10 is an equivalent circuit diagram of the thin film solar cell module shown in FIG.
  • the rectangular subcells 140-1 to 140-3 extending in the X direction are separated in the Y direction by the first separation groove 146, but the minicells 170a and 170b are formed. Requires three or more subcells 140-1 to 140-3 to be arranged in series.
  • the second separation grooves 145 are formed continuously in the two subcells 140-1 and 140-2 adjacent in the Y direction, so that the minicells 170a and 170b are separated from the subcells 140-1 and 140-2, respectively.
  • the second separation groove 145 that separates the minicells 170a and 170b is a first separation groove 146 extending in the X direction that separates the subcells 140-1 to 140-3, that is, the first to third scribe lines 141 to 143. Cross against the pair.
  • the subcells 140-1 to 140-3 are separated by first separation grooves 146 extending in the parallel X direction at substantially constant intervals.
  • Minicells 170a and 170b are formed by providing a second separation groove 145 extending in the vertical Y direction.
  • the second separation groove 145 can be constituted by, for example, a fourth scribe line that removes the back electrode layer 130, the photoelectric conversion cell 120, and the front electrode layer 111.
  • the second separation groove 145 is also configured by a first / third / first scribe line that is a combination of the first scribe line 145a, the third scribe line 145b, and the first scribe line 145a extending in the Y direction. be able to.
  • FIG. 9 described above shows a case where the second separation groove 145 is configured by the first / third / first scribe lines.
  • a pair of first scribe lines 145a are formed on the surface electrode layers 111 at both ends in the X-axis direction of the minicell formation region so as to cross two subcells 140-1 and 140-2 adjacent in the Y direction.
  • the pair of first scribe lines 145a is formed in the same process as the process of forming the first scribe lines 141 of the subcell 140.
  • one third scribe line 145b is crossed between the photoelectric conversion cell 120 and the back surface so as to cross the two subcells 140-1 and 140-2 adjacent in the Y direction.
  • FIG. 1 It forms in the laminated body of the electrode layer 130.
  • FIG. 1 The one third scribe line 145b is formed in the same process as the process of forming the third scribe line 143 of the subcell 140. As a result, a second separation groove 145 composed of the first / third / first scribe lines is formed.
  • a leakage current flows through the semiconductor layer (particularly the p layer) on the first scribe line 141 to the adjacent subcell 140.
  • a leakage current originally flows even when the subcells 140 are connected in series at the time of integration, and is not so great as to have a significant adverse effect on the cell characteristics. It is desirable to use it separately from the scribe line.
  • the second separation groove 145 that separates the minicell 170 is not formed in the adjacent subcell 140, and the electrode of the minicell 170 is connected to the subcell 140 in series. Therefore, the minicell 170 and the subcell 140 portion excluding the minicell 170 are connected in parallel. As a result, during power generation, the power generated by the minicell 170 can also be used effectively.
  • the TEG pattern formed by the minicell 170 according to this embodiment can be used for evaluating the characteristics of the thin-film solar battery module 100, and can also be used as a power generation layer thereafter.
  • the ratio of the area occupied by the scribe line itself to the area of one subcell 140 is preferably at least 5% or less from the viewpoint of current matching.
  • the patterning process for the first to third scribe lines 141 to 143 includes various methods such as laser scribe, blast, mechanical scribe, photolithography, mask lithography using ink jet / screen printing, etc. An explanation will be given by taking the case of using a process as an example.
  • FIG. 11 is a diagram schematically showing an example of a TEG pattern.
  • one TEG pattern is formed by a plurality (four in this case) of minicells 170a to 170d having different sizes (areas).
  • the purpose of this pattern is to acquire scribe damage and bulk pn junction characteristics.
  • Laser scribing itself is a rough technique that removes the film by ablation. By creating burrs around the removal region, film damage due to local heating, formation of a leak path due to exposure of the pn junction end face after film removal, etc.
  • the vicinity of the scribe line has a leaky characteristic as compared with the cell bulk.
  • I1 S1 ⁇ Is + L1 ⁇ IL (1-1)
  • the measurement result (measured value) can be divided into scribe damage and bulk pn junction characteristics. Then, a diode characteristic evaluation is performed for each of the obtained Is and IL to determine whether or not it has a standard characteristic value, and which characteristic has a strong influence on the measurement result (measured value). And quantify the degree of its impact. More specifically, the measurement result (measurement value) deviates from the standard value because of the scribe process or the pn junction characteristics, that is, the film formation (CVD) process of the photoelectric conversion cell 120. Can be carved out.
  • CVD film formation
  • FIG. 12 is a diagram schematically illustrating an example of a TEG pattern. This pattern aims to acquire scribe damage. As shown in FIG. 12, n minicells 170a and 170b having the same area are prepared, and n1 to nn third scribe lines 171 are intentionally provided in the minicells 170a and 170b. Apply.
  • the direction of the third scribe line 171 to be formed is not particularly limited. In this example, the third scribe line 171 extends in the Y direction, for example, and is formed so as not to be connected to the first separation groove 146 extending in the X direction that partitions the subcell 140.
  • the vicinity of the third scribe line 171 provided in the minicells 170a and 170b by the scribe process has a leaky characteristic. Therefore, assuming that the current component of the cell bulk is ID and the leak current component due to damage is Ileak, the current flowing in this pattern is obtained by the following equations (2-1) to (2-n). Then, ID and Ileak that minimize the error of the simultaneous equations (2-1) to (2-n) are obtained.
  • I1 ID-n1 ⁇ Ileak (2-1)
  • I2 ID-n2 ⁇ Ileak (2-2) &
  • In ID-nn ⁇ Ileak (2-n)
  • the measurement result (measured value) can be divided into scribe damage and bulk pn junction characteristics. Then, diode characteristics evaluation is performed for each of the obtained ID and Ileak to determine whether or not it has a standard characteristic value, and which characteristic has a strong influence on the measurement result (measurement value)? And quantify the degree of its impact.
  • a linear pattern is formed, but a pattern may be formed by arranging linear, rectangular, or circular patterns on a straight line.
  • FIG. 13 is a diagram schematically showing an example of a TEG pattern.
  • the purpose of this pattern is to obtain the surface electrode layer resistance Rs_TCO_F and the contact resistance Rs_CON at the second scribe line 142.
  • a second separation groove 145 (first / third / first scribe line) that intersects at an angle that is not perpendicular to the X direction is inserted into the subcell 140 to produce n parallelogram-shaped minicells 170a to 170c.
  • the lengths in the hypotenuse direction between the n minicells 170a to 170c are LI1 to LIn.
  • the measurement result (measured value) can be divided into the surface electrode layer resistance and the contact resistance. Then, a characteristic evaluation is performed for each of the obtained Rs_TCO_F and Rs_CON to determine whether or not it has a standard characteristic value, and which characteristic has a strong influence on the measurement result (measured value). Judge and quantify the degree of the impact.
  • FIG. 14 is a diagram schematically illustrating an example of a TEG pattern.
  • the purpose of this pattern is to obtain the surface electrode layer resistance Rs_TCO_F and the contact resistance Rs_CON at the second scribe line 142.
  • the second separation grooves 145 (first / third / first scribe lines) are inserted into the minicells 170a and 170b, and n mini-cells 170a and 170b having a meander shape (a zigzag shape) are produced.
  • the number of folds between the n minicells 170a and 170b is n1 to nn.
  • the measurement result (measured value) can be divided into the surface electrode layer resistance and the contact resistance. Then, a characteristic evaluation is performed for each of the obtained Rs_TCO_F and Rs_CON to determine whether or not it has a standard characteristic value, and which characteristic has a strong influence on the measurement result (measured value). Judge and quantify the degree of the impact.
  • FIG. 15 is a diagram schematically showing an example of a TEG pattern, where (a) is a plan view and (b) is a DD cross-sectional view of (a). The purpose of this pattern is to obtain the contact resistance Rs_CON of the front electrode layer 111 / back electrode layer 130.
  • n minicells 170a and 170b having the same area are prepared, and n1 to nn second scribe lines 172 are intentionally provided in each minicell 170a and 170b.
  • the scribe direction is not particularly limited in the above-described core 2 (third scribe line 171), but the second scribe line 172 applied with this TEG pattern is perpendicular to the direction (Y direction) in which the subcells 140 are connected in series. In other words, it is parallel to the long side direction (X direction) of the elongated subcell 140. Since the series resistance decreases in accordance with the number of second scribe lines 172 formed in the minicells 170a and 170b, the error of the simultaneous equations of the following equations (5-1) to (5-n) is minimized. Rs and Rs_CON are obtained.
  • FIG. 16 is a diagram schematically showing an example of a TEG pattern, where (a) is a plan view, (b) is a cross-sectional view taken along line FF in (a), and (c) is another example.
  • FIG. This pattern is intended to be divided into a resistance Rs_TCO_F of the surface electrode layer 111 and a contact resistance Rs_CON_TCO-Cell between the surface electrode layer 111 and the photoelectric conversion cell 120.
  • second separation grooves 145A and 145B are formed across three adjacent subcells 140-1 to 140-3.
  • the first separation grooves 146A and 146B and the second separation grooves 145A and 145B that separate the minicells 170f to 170i have different depths depending on the location.
  • the first separation groove 146A is constituted by a third scribe line 146a
  • the first separation groove 146B is constituted by a third scribe line 146a and a fourth scribe line 146b.
  • the second separation groove 145A is constituted by a fourth scribe line 145c
  • the second separation groove 145B is constituted by a third scribe line 145b and a fourth scribe line 145c.
  • the second separation groove 145B is disposed between each of the three second separation grooves 145A.
  • two sets of minicells adjacent on the left and right sides across the second separation groove 145B are set as one set, and n sets (n is set so that only the width of the left region is different without changing the width of the right region). 2 or more natural numbers).
  • the dimensions in the X direction of the minicells 170g and 170i arranged on the right side are equal, and the dimensions in the X direction of the minicells 170f and 170h arranged on the left side are different.
  • the measurement result (measured value) can be divided into the surface electrode layer resistance and the contact resistance. Then, each of the obtained Rs_TCO_F and Rs_CON_TCO-Cell is evaluated for characteristics to determine whether or not it has a standard characteristic value, and the measurement result (measured value) is strongly influenced by which characteristic. And quantify the degree of the impact.
  • a hole 147 is formed by a plurality of third scribe lines in the photoelectric conversion cell 120 of the left minicell 170h of one set, and a measurement terminal is directly connected from the hole 147. It may be dropped on the surface electrode layer 111.
  • FIG. 17 is a diagram schematically showing an example of a TEG pattern
  • (a) is a plan view
  • (b) is a diagram schematically showing a potential distribution in a minicell under measurement
  • (C) is a plan view schematically showing the state of measurement of the minicell.
  • the purpose of this pattern is to acquire the temperature characteristics of the photoelectric conversion cell 120.
  • two second separation grooves 145A are formed across three adjacent subcells 140-1 to 140-3, and are separated by the two second separation grooves 145A of the subcells 140-1 and 140-3.
  • One second separation groove 145C is formed in the center of the region.
  • These second separation grooves 145A and 145C are constituted by a fourth scribe line 145c.
  • the first separation groove 146A is constituted by a third scribe line 146a
  • the first separation groove 146B is constituted by a third scribe line 146a and a fourth scribe line 146b.
  • the minicell 170j in the figure is used, and the temperature is raised by Joule heat by flowing a temperature-raising bias current through the front electrode layer 111 and the back electrode layer 130.
  • the measurement terminal 201A (IV source meter 200A) of the back bias current / photoelectric conversion cell 120 is dropped at the right end and the left end of the minicell 170j.
  • the measurement terminal 201B (IV source meter 200B) of the surface bias current / photoelectric conversion cell 120 is dropped at the right end and the left end of the subcell below the minicell 170j.
  • the temperature-dependent current-voltage characteristics of the photoelectric conversion cell 120 can be obtained from the current value difference between the IV source meters 200A and 200B. Can be acquired.
  • the temperature itself may be separately measured using a thermocouple, a radiation thermometer, a thermography, or the like.
  • the temperature characteristics of the resistance values of the front electrode layer 111 and the back electrode layer 130 can be acquired.
  • the measurement result (measured value) can be divided into the temperature characteristics of the front and back electrode layers and the temperature characteristics of the photoelectric conversion cell. Then, perform a characteristic evaluation for each temperature characteristic, determine whether or not it has a standard characteristic value, determine which characteristic the measurement result (measurement value) is strongly influenced by, Quantify the degree of impact.
  • FIG. 18 is a diagram schematically illustrating an example of a TEG layout.
  • the purpose of this layout is to obtain in-plane uniformity of TEG inspection results. Therefore, the arrangement is such that the minicells (TEG patterns) are uniformly distributed in the substrate surface.
  • minicells 170a to 170e (TEG patterns) are provided in a total of five regions including the center and four corners of the thin film solar cell module 100.
  • a total of 25 TEG patterns of 5 ⁇ 5 in the X direction and the Y direction may be provided.
  • the arrangement of the TEG pattern can be determined according to the distribution characteristics of a target process (for example, a conductive film formation process, a semiconductor film formation process, a scribe process, etc.).
  • a CVD method in which film formation is often performed in one chamber often has an elliptical distribution from the center to the outer periphery
  • a PVD method in which film formation is often performed in-line is only one-dimensional in a direction perpendicular to the moving direction.
  • the TEG pattern is arranged according to such distribution characteristics.
  • FIG. 19 is a diagram schematically illustrating an example of a TEG layout.
  • the purpose of this layout is to acquire damage caused by the fourth scribe line applied before the tab line is pasted. Therefore, the minicell 170 (TEG pattern) is provided along the outer periphery of the glass substrate (thin film solar cell module 100).
  • the TEG pattern may be provided entirely along the outer periphery of the glass substrate, or the TEG pattern may be provided at predetermined intervals along the outer periphery of the glass substrate.
  • FIG. 20 is a cross-sectional view schematically showing an example of a TEG layout.
  • the purpose of this layout is to manage the quality of the texture according to the shift amount of the TEG measurement result when texture glass is used for the glass substrate 101.
  • a TEG pattern is arranged in each of the regions 101a and 101b of the surface roughness 102 of the glass substrate 101 having a plurality of surface roughnesses 102 by a texturing process.
  • FIG. 21 is a block diagram schematically showing an example of the configuration of the solar cell module manufacturing management apparatus according to this embodiment.
  • the solar cell module production management apparatus 10 includes a surface electrode layer film forming apparatus 21, a semiconductor film film forming apparatus 22, a back surface transparent conductive film forming apparatus 23, a back electrode film forming apparatus 24, and a scribe that manufacture the thin film solar cell module 100. It is connected to the line forming device 25, and it is necessary to discard the thin-film solar cell module 100 manufactured using information obtained from the measurement result of the TEG pattern, and to correct the process conditions in each of the connected devices. Device.
  • the electrical property measuring unit 12 measures electrical properties of a thin-film solar cell configured by attaching a plurality of thin-film solar cell modules 100 with tabs. For example, conversion efficiency, short-circuit current, open-circuit voltage, curvature factor, and the like are measured as primary characteristic information by a solar simulator.
  • the error of the simultaneous equations expressed by the equations (1-1) to (1-n) is minimized from the measured current value flowing through the minicell.
  • a current component Is caused by a pn junction of a large cell bulk and a leaky current component IL around the scribe line are obtained.
  • the expressions (1-1) to (1-n) are the characteristic value calculation conditions necessary for acquiring the secondary characteristic information
  • Is and IL are the secondary characteristic information. The same applies to other TEG patterns.
  • the recombination leakage component J02 can be obtained by performing the junction characteristic evaluation by the two-diode model shown in the following formula (7) on the current component Is caused by the cell bulk pn junction obtained above.
  • Is J01 (exp (q (V ⁇ Is ⁇ Rs) / kT) ⁇ 1) + J02 (exp (q (V ⁇ Is ⁇ Rs) / 2kT) ⁇ 1) (7)
  • V is the applied voltage
  • Rs is the total series resistance
  • J01 and J02 are diode saturation currents
  • q is the elementary charge
  • k is the Boltzmann constant
  • T room temperature
  • equation (7) is a characteristic value calculation condition necessary for acquiring the third characteristic information
  • J02 is the third characteristic information.
  • the characteristic value calculation unit 14 performs a process of calculating secondary characteristic information from the measurement value obtained by the TEG measurement unit 11 using the characteristic value calculation condition in the characteristic value calculation condition storage unit 13. In addition, a process for calculating the third characteristic information from the first characteristic information and the calculated second characteristic information using the characteristic value calculation condition in the characteristic value calculation condition storage unit 13 is performed.
  • the reference value storage unit 15 stores values (or ranges) of characteristic information necessary for the thin film solar cell module 100 and the thin film solar cell as products.
  • the reference value is held corresponding to the secondary characteristic information and the primary characteristic information which is a measurement result measured by the electrical characteristic measurement unit 12.
  • the discard determination unit 16 compares the secondary characteristic information obtained from the characteristic value calculation unit 14 or the measurement value obtained by the electrical characteristic measurement unit 12 with a reference value stored in the reference value storage unit 15, It is determined whether the produced thin film solar cell module 100 or the thin film solar cell is to be discarded. Specifically, if the secondary characteristic information or measurement value does not satisfy the reference value, the target is discarded. If the secondary characteristic information or measurement value satisfies the reference value, the target is discarded. Must not. Since one thin-film solar cell module 100 is provided with a plurality of TEGs, the average value of the secondary characteristic information in the plurality of TEGs is used to determine whether or not to be discarded. If there is any TEG that does not satisfy the reference value, it can be determined to be discarded.
  • the process management information storage unit 17 stores process management information in which characteristic information (secondary characteristic information or tertiary characteristic information) is associated with a process condition for setting the characteristic information to a desired value.
  • characteristic information secondary characteristic information or tertiary characteristic information
  • the process condition is the film formation condition of the photoelectric conversion cell 120 (semiconductor film) formed by the CVD method, for example, the gas flow rate, the pressure, the substrate temperature, and the RF power film thickness direction.
  • Conditional profiling and other conditions are included in the process management information.
  • process management information for example, process conditions for obtaining a desired recombination leakage current value are determined and stored for each recombination leakage current value. The process conditions for each recombination leakage current are obtained in advance by experiments.
  • the process condition correction unit 18 acquires a process condition corresponding to the characteristic information obtained by the characteristic value calculation unit 14 from the process management information storage unit 17, and sets a correction condition for correcting the current process condition based on the process condition. Then, the correction condition is reflected on the apparatus for manufacturing the thin-film solar cell module 100.
  • FIGS. 22 to 23 are flowcharts showing an example of the procedure of the method for manufacturing the solar cell module according to this embodiment.
  • FIGS. 24-1 to 24-6 are diagrams schematically showing an example of the procedure of the manufacturing method of the solar cell module according to this embodiment, and (a) in each drawing is a top view, b) is a sectional view taken along line EE of FIG.
  • a semiconductor film (photoelectric conversion cell 120) is formed on the surface electrode layer 111 separated by the first scribe lines 141 and 145a by a film forming method such as a CVD method (step S14).
  • a film forming method such as a CVD method
  • the semiconductor film for example, a laminated film of a p-type amorphous silicon film, an i-type amorphous silicon film, and an n-type amorphous silicon film can be exemplified.
  • the back transparent conductive film 131 is formed on the semiconductor film by a film forming method such as sputtering (step S15, FIG. 24-3).
  • a back electrode film 132 is formed on the back transparent conductive film 131 on which the second scribe line 142 is formed by a method such as sputtering (step S17, FIG. 24-5).
  • the back electrode film 132 is also formed in the second scribe line 142 (groove), and the front electrode layer 111 and the back electrode film 132 are connected.
  • third scribe lines 143 extending in the X direction at different positions from the first and second scribe lines 141 and 142 are formed at predetermined intervals in the Y direction by a P3 scribe process using a laser scribe method ( Step S18, FIG. 24-6).
  • the characteristic value calculation unit 14 calculates the third characteristic information using the characteristic value calculation condition, the measured value, and the second characteristic information in the characteristic value calculation condition storage unit 13 (step S32). For example, information to be calculated (third characteristic information) is calculated using the above-described equation (7). Thus, the characteristic value calculation process ends.
  • the calculation up to the third characteristic information is performed here, the purpose is to obtain the electric characteristics of the desired element among the elements as shown in FIG. 5, so that the electric characteristics of the desired element can be obtained.
  • the process may be completed until the calculation of the secondary characteristic information, or the calculation process after the fourth characteristic information may be performed.
  • the discard determination unit 16 determines whether or not to discard the thin film solar cell module 100 to be measured (step S21). Specifically, the discard determination unit 16 determines whether the measured value or the calculated characteristic information (secondary characteristic information or third characteristic information) satisfies a reference value that is a standard value as a product. . Here, when the reference value is satisfied, the product is used without being discarded, and when the reference value is not satisfied, the product is discarded.
  • the discard determination can be performed using, for example, photoelectric conversion efficiency, short-circuit current, open-circuit voltage, curvature factor, and the like.
  • FIG. 23B is a flowchart illustrating an example of a specific processing procedure of the process condition correction processing.
  • the process condition correction unit 18 includes certain elements (for example, the resistance of the front electrode layer 111, the resistance of the back electrode layer 130, the contact resistance between the back electrode layer 130 / the front electrode layers 111, and the shunt, which constitute the TEG shown in FIG.
  • the electrical characteristics of the diode, shunt resistor, etc. are acquired (step S51).
  • the electrical characteristics are acquired from the characteristic information calculated in the characteristic value calculation process in step S20.
  • the process condition correction unit 18 determines whether the electrical characteristics of the acquired element are within an appropriate range (step S52). Specifically, a reference value corresponding to the electrical characteristic of the acquired element is acquired from the reference value storage unit 15, and the two are compared to determine whether the electrical characteristic of the acquired element is an appropriate value. If the acquired electrical characteristics of the element are not within the appropriate range (No in step S52), the process condition correction unit 18 sets the process condition in which the electrical characteristics of the element have a desired value as the process management information. Obtained from the process management information in the storage unit 17 (step S53). Then, the process condition correction unit 18 corrects the process condition of the process related to the element (any one of the process steps S12 to S18) with the acquired process condition (step S54), and the process condition correction process ends. Then, the process returns to FIG.
  • step S52 when the electrical characteristics of the acquired element are within a desired range (Yes in step S52), the process condition correction unit 18 corrects the processing condition (process condition) of the process related to the element. If not performed (step S55), the process condition correction process ends, and the process returns to FIG.
  • condition correction process a plurality of correlated characteristic conditions (electrical characteristics) are separated from the measured values, and among the separated characteristic conditions, a characteristic condition deviating from a desired value (proper value) is extracted.
  • a characteristic condition deviating from a desired value proper value
  • the manufacturing processes of the thin-film solar cell module 100 processes that are not performed under appropriate conditions can be extracted.
  • the performance of the thin film solar cell module manufactured after that can be prevented from further deteriorating by changing the process condition of the manufacturing process. That is, by extracting parameters (characteristic information) indicating the suitability of processing in each processing step, it is possible to determine the suitability of the processing conditions in each processing step, and to correct the processing conditions based on the parameters. Can do.
  • step S23 tab wires are attached to the thin film solar cell modules 100 that are not to be discarded (step S23), and the plurality of thin film solar cell modules 100 are connected in series or in parallel. Subsequently, the plurality of thin film solar cell modules 100 connected by tab wires are sealed (step S24), and a thin film solar cell is manufactured. Next, the electrical property measuring unit 12 measures electrical properties of the manufactured thin film solar cell (step S25).
  • the discard determination unit 16 determines whether or not to discard the manufactured thin-film solar cell (step S26). Specifically, the discard determination unit 16 compares the measured value, which is the primary characteristic information obtained by the electrical characteristic evaluation, with the reference value indicating the standard as the product in the reference value storage unit 15, It is determined whether or not desired electrical characteristics are obtained for the thin film solar cell. When the desired electrical characteristics are obtained (No in step S26), the thin film solar cell is sorted as a product. If the desired electrical characteristics are not obtained (Yes in step S26), the thin film solar cell is discarded (step S27). Thus, the manufacturing process of the thin film solar cell is completed.
  • the subcell 140 is divided so as to operate as an integrated solar cell module.
  • various films are removed in an appropriate pattern so that the subcells 140 are connected in series.
  • a TEG pattern is newly added in the scribe processes S13, S16, and S18 so that the subcell 140 and the minicell 170 can be simultaneously formed. No additional process is necessary.
  • the addition of the process does not limit the effect of the present invention, and it is also possible to newly add steps such as lead electrode formation and insulating film formation according to the required TEG pattern. .
  • FIG. 25 is a diagram showing an example of the state of the characteristic parameters before and after correcting the CVD process conditions from the TEG measurement results.
  • the values of the recombination leak component, the power generation efficiency, and the curvature factor are normalized with the corrected value as 100%. Further, the film formation temperature and the power profile indicate process conditions changed from the TEG measurement results.
  • both the power generation efficiency and the curvature factor are degraded as compared with the corrected value (appropriate value). Further, since the recombination leak component is considerably different from that after correction (appropriate value), the deterioration of the power generation efficiency and the curvature factor is the recombination leak component, that is, the formation of the semiconductor film (photoelectric conversion cell 120) in step S14. It can be estimated that the membrane treatment is the cause.
  • the conditions for feedback correction from the TEG evaluation result include gas flow rate, pressure, substrate temperature, RF power, and condition profiling in the film thickness direction.
  • the pressure is 1200 Pa
  • the H 2 flow rate is 15 SLM
  • the SiH 4 flow rate is 0.3 SLM
  • the electrode / stage interval is 13.2 mm
  • the film forming temperature is 180 ° C.
  • the RF power profile in the film thickness direction It is assumed that the semiconductor film is formed with the initial 6 kW and the latter 6 kW.
  • the film formation temperature is changed from 180 ° C. to 160 ° C., and the process condition is corrected so that the profile in the film thickness direction of the RF power is changed from the initial 6 kW to the late 6 kW to the initial 6 kW.
  • the recombination leak component returns from 163% by changing the process conditions.
  • the power generation efficiency and the curvature factor also return from 90.6% and 97.5%, respectively. From the above, it can be confirmed that the use of the TEG evaluation results for process management is also useful in the production of thin film solar cells.
  • the process condition feedback control is performed so that the thin film solar cell module 100 can obtain desired characteristics from the measurement result using the TEG. It has the effect that it can be executed.
  • the TEG pattern is arranged in the substrate surface so as to be connected in series with the adjacent subcells, the TEG region itself also operates as a subcell (power generation region) in the module, and suppresses a decrease in characteristics due to the introduction of TEG. Has the effect of being able to.
  • the measurement result can be separated into the characteristics of the elements constituting the thin film solar cell module 100, the manufacturing process of the thin film solar cell module 100 related to the characteristics of the elements is obtained, and the thin film Even in the manufacture of the solar cell module 100, the process management can be executed.
  • a plurality of TEGs can be provided on the substrate surface, and the correlation between the measurement results makes it easier to determine the amount of correction across multiple processes, which is difficult with a single layout, allowing more complex process management. it can.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)

Abstract

Disclosed is a solar battery module in which sub-cells (140-1 to 140-3) are formed by separating, by first separation grooves (146), a layered film including a first electrode layer (111), a photoelectric conversion cell (120), and a second electrode layer (130), said sub-cells (140-1 to 140-3) being connected in series in a second direction that intersects with a first direction. The solar battery module comprises a mini-cell group including a plurality of mini-cells (170) formed within the sub-cells (140-1 to 140-3) by forming a plurality of second separation grooves (145) extending in the second direction and spanning at least two of said sub-cells (140-1 to 140-3). Each first separation groove (146) electrically connects, in series, the sub-cells (140-1 to 140-3) that are adjacent to one another in the first direction. Each second separation groove (145) electrically insulates the layered film between regions that are adjacent to one another across the second separation groove (145).

Description

太陽電池モジュールとその製造方法および太陽電池モジュール製造管理装置SOLAR CELL MODULE, ITS MANUFACTURING METHOD, AND SOLAR CELL MODULE MANUFACTURING MANAGEMENT DEVICE
 この発明は、太陽電池モジュールとその製造方法および太陽電池モジュール製造管理装置に関するものである。 The present invention relates to a solar cell module, a manufacturing method thereof, and a solar cell module manufacturing management device.
 太陽光発電は、化石燃料による火力発電の代替エネルギとして期待されており、太陽光発電システムの生産量は年々増加している。しかし、シリコン基板を原材料に用いるバルク型太陽電池ではシリコンウエハが不足するという事態が発生し、シリコン基板の価格高騰による製造コストの増大が懸念されている。そこで、ガラス基板上にシリコン膜を形成する薄膜シリコン系太陽電池が注目されている。通常、このような薄膜シリコン系太陽電池やCIS系などのカルコパイライト系薄膜化合物太陽電池などでは、光電変換の要となるシリコン膜や半導体膜、およびキャリア取り出しに用いる透明導電膜や金属電極膜、さらに反射防止コーティング等に用いられる各種の機能性膜は、化学気相蒸着(Chemical Vapor Deposition;以下、CVDという)法や物理気相蒸着(Physical Vapor Deposition;以下、PVDという)法などの半導体プロセスを用いて作製することが多い。したがってプロセス条件が適切に設定されないと、太陽電池としての効率、基板面内の均一性など製品の特性に著しい悪影響を及ぼすため、なにがしかのプロセス管理手法が必要とされている。 Solar power generation is expected as an alternative energy to thermal power generation using fossil fuel, and the production amount of solar power generation system is increasing year by year. However, a bulk type solar cell using a silicon substrate as a raw material has a shortage of silicon wafers, and there is concern about an increase in manufacturing cost due to a rise in the price of the silicon substrate. Therefore, a thin film silicon solar cell that forms a silicon film on a glass substrate has attracted attention. Usually, in such a thin film silicon solar cell or a chalcopyrite thin film compound solar cell such as CIS, a silicon film or a semiconductor film, which is necessary for photoelectric conversion, a transparent conductive film or a metal electrode film used for carrier extraction, Furthermore, various functional films used for antireflection coatings are semiconductor processes such as chemical vapor deposition (hereinafter referred to as CVD) and physical vapor deposition (hereinafter referred to as PVD). It is often produced using Therefore, if the process conditions are not set appropriately, the product characteristics such as the efficiency as a solar cell and the uniformity within the substrate surface are significantly adversely affected. Therefore, some process management method is required.
 たとえば太陽電池ではないが、同様に半導体プロセスを用いて成膜、エッチングを行うLSI(Large Scale Integrated circuit)などの半導体装置の製造において、プロセスばらつきによる製品特性のばらつきを補正する技術が知られている(たとえば、特許文献1参照)。ここでは、テストエレメントグループ(Test Element Group;以下、TEGという)と呼ばれるテスト回路群をインラインで測定し、その結果を基にフィードバック/フィードフォワード制御などの手法を用いて当該プロセスや次プロセスへの条件補正を行っている。 For example, in the manufacture of semiconductor devices such as LSI (Large Scale Integrated Circuit), which is not a solar cell, but also performs film formation and etching using a semiconductor process, there is a known technique for correcting product characteristic variations due to process variations. (For example, see Patent Document 1). Here, a test circuit group called a test element group (hereinafter referred to as TEG) is measured in-line, and based on the result, a method such as feedback / feedforward control is used to apply to the process or the next process. Condition correction is performed.
特開2001-332723号公報JP 2001-332723 A
 しかしながら、従来の太陽電池の製造においては、TEGなどのテスト回路群を用いたプロセス管理は提案されておらず、全プロセス終了後のソーラーシミュレータによる最終検査結果によってプロセス管理を行うのが一般的であった。その理由の1つが、太陽電池の光電変換特性は発電可能面積に比例するというものである。つまり、受光面積にほぼ比例して発電量が増減するため、通常、発電に寄与しない無効領域となるTEGが製品に組み込まれることはなかった。また、このように従来の太陽電池にはTEGが組み込まれていないので、プロセス管理基準もソーラーシミュレータの電気特性評価結果(変換効率、短絡電流、開放電圧、曲率因子など)に基づいており、プロセス条件へのフィードバックという点で情報が不足していた。 However, in the manufacture of conventional solar cells, process management using a test circuit group such as TEG has not been proposed, and process management is generally performed based on a final inspection result by a solar simulator after the completion of all processes. there were. One of the reasons is that the photoelectric conversion characteristic of the solar cell is proportional to the power generation possible area. In other words, since the amount of power generation increases or decreases in proportion to the light receiving area, a TEG that is normally an invalid region that does not contribute to power generation has not been incorporated into the product. In addition, since the TEG is not incorporated in the conventional solar cell in this way, the process management standard is also based on the solar simulator electrical characteristic evaluation results (conversion efficiency, short-circuit current, open-circuit voltage, curvature factor, etc.) There was a lack of information in terms of feedback to the conditions.
 この発明は、上記に鑑みてなされたもので、TEGなどのテスト回路群を有する太陽電池モジュールを用いてプロセス管理を行う太陽電池モジュールの製造方法および太陽電池モジュール製造管理装置を得ることを目的とする。また、通常の太陽電池に比して発電に寄与しない無効領域を増大させないようにしたテスト回路群を有する太陽電池モジュールを得ることも目的とする。 The present invention has been made in view of the above, and an object thereof is to obtain a solar cell module manufacturing method and a solar cell module manufacturing management device that perform process management using a solar cell module having a test circuit group such as a TEG. To do. Another object of the present invention is to obtain a solar cell module having a test circuit group in which an ineffective region that does not contribute to power generation is not increased as compared with a normal solar cell.
 上記目的を達成するため、この発明にかかる太陽電池モジュールは、第1電極層、光電変換セルおよび第2電極層を有する積層膜が第1方向に延在する第1分離溝によって分離されたサブセルが、前記第1方向に交差する第2方向に直列に接続されるように基板上に配置された太陽電池モジュールであって、前記第2方向に隣接する2以上の前記サブセルにわたって前記第2方向に延在する複数本の第2分離溝を形成することによって、前記サブセル内に形成される複数のミニセルからなるミニセル群を備え、前記第1分離溝は、前記第1方向に隣接する前記サブセル間を電気的に直列に接続するものであって、前記第2方向に隣接する前記サブセル間で分離するように前記第1電極層の一部を除去する第1除去部と、前記第1電極層と隣接する前記サブセルの前記第2電極層とを電気的に接続するように前記光電変換セルの一部を除去する第2除去部と、隣接する前記サブセル間を電気的に絶縁するように前記第2電極層と前記光電変換セルの一部を除去する第3除去部と、によって構成され、前記第2分離溝は、該第2分離溝を挟んで隣接する領域の前記積層膜間を電気的に絶縁するものであって、前記第1電極層の一部を除去する第4除去部と、前記光電変換セルの一部を除去する第5除去部と、前記第2電極層と前記光電変換セルの一部を除去する第6除去部と、前記第2電極層と前記光電変換セルと前記第1電極層の一部を除去する第7除去部と、の少なくとも1つ以上によって構成されることを特徴とする。 In order to achieve the above object, a solar cell module according to the present invention is a subcell in which a laminated film having a first electrode layer, a photoelectric conversion cell, and a second electrode layer is separated by a first separation groove extending in a first direction. Is a solar cell module disposed on a substrate so as to be connected in series in a second direction intersecting the first direction, the second direction across two or more subcells adjacent to the second direction By forming a plurality of second separation grooves extending in the subcell, a group of minicells composed of a plurality of minicells formed in the subcell is provided, and the first separation groove is adjacent to the subcell in the first direction. A first removal section for electrically connecting the first electrode layers to each other so as to separate the subcells adjacent to each other in the second direction; and the first electrode Layer and next door A second removal unit for removing a part of the photoelectric conversion cell so as to electrically connect the second electrode layer of the subcell, and the second removal unit so as to electrically insulate between the adjacent subcells. An electrode layer and a third removal portion for removing a part of the photoelectric conversion cell, and the second separation groove is electrically connected between the stacked films in the adjacent regions with the second separation groove interposed therebetween. A fourth removing unit for removing a part of the first electrode layer; a fifth removing unit for removing a part of the photoelectric conversion cell; the second electrode layer; and the photoelectric conversion cell. At least one of a sixth removal portion that removes a part of the second electrode layer, a seventh removal portion that removes a part of the second electrode layer, the photoelectric conversion cell, and the first electrode layer. It is characterized by.
 この発明によれば、薄膜太陽電池モジュール内にミニセル群を設けたので、従来のソーラーシミュレータでの一括測定によるプロセス管理では不可能な、各プロセスで独立した条件補正を行うためのデータを取得することができるという効果を有する。また、複数プロセス間にまたがる補正量決定が行いやすくなり、太陽電池の製造プロセス管理をより容易にすることができるという効果も有する。 According to the present invention, since the minicell group is provided in the thin film solar cell module, data for performing independent condition correction in each process, which is impossible by the process management by the batch measurement with the conventional solar simulator, is acquired. It has the effect of being able to. In addition, it is easy to determine a correction amount across a plurality of processes, and it is possible to more easily manage the manufacturing process of the solar cell.
図1は、薄膜太陽電池の構成を模式的に示す断面図である。FIG. 1 is a cross-sectional view schematically showing the configuration of a thin film solar cell. 図2は、暗状態での集積化された薄膜太陽電池モジュールの構成の一例を示す図である。FIG. 2 is a diagram illustrating an example of a configuration of an integrated thin film solar cell module in a dark state. 図3は、薄膜太陽電池モジュールの製造プロセスで行われる膜除去プロセスによって除去される膜の種類を示す図である。FIG. 3 is a diagram showing types of films removed by a film removal process performed in the manufacturing process of the thin film solar cell module. 図4は、実施の形態によるサブセルのダイオード特性の計測手法の一例を模式的に示す図である。FIG. 4 is a diagram schematically illustrating an example of a method for measuring the diode characteristics of the subcell according to the embodiment. 図5は、ガードピンを用いてサブセルのダイオード特性を計測している状態の等価回路図である。FIG. 5 is an equivalent circuit diagram in a state where the diode characteristics of the subcell are measured using the guard pins. 図6は、ガードピンを用いたサブセルのダイオード特性の計測手法の他の例を模式的に示す図である。FIG. 6 is a diagram schematically illustrating another example of a method for measuring a diode characteristic of a subcell using a guard pin. 図7は、薄膜太陽電池モジュールにおけるTEGパターンの一例を模式的に示す平面図である。FIG. 7 is a plan view schematically showing an example of a TEG pattern in the thin film solar cell module. 図8は、薄膜太陽電池モジュール内のサブセルの構造を模式的に示す図である。FIG. 8 is a diagram schematically showing the structure of the subcell in the thin film solar cell module. 図9は、ミニセルのパターニングの一例を示す図である。FIG. 9 is a diagram showing an example of minicell patterning. 図10は、図9に示される薄膜太陽電池モジュールにおける等価回路図である。FIG. 10 is an equivalent circuit diagram of the thin film solar cell module shown in FIG. 図11は、TEGパターンの一例を模式的に示す図である。FIG. 11 is a diagram schematically illustrating an example of a TEG pattern. 図12は、TEGパターンの一例を模式的に示す図である。FIG. 12 is a diagram schematically illustrating an example of a TEG pattern. 図13は、TEGパターンの一例を模式的に示す図である。FIG. 13 is a diagram schematically illustrating an example of a TEG pattern. 図14は、TEGパターンの一例を模式的に示す図である。FIG. 14 is a diagram schematically illustrating an example of a TEG pattern. 図15は、TEGパターンの一例を模式的に示す図である。FIG. 15 is a diagram schematically illustrating an example of a TEG pattern. 図16は、TEGパターンの一例を模式的に示す図である。FIG. 16 is a diagram schematically illustrating an example of a TEG pattern. 図17は、TEGパターンの一例を模式的に示す図である。FIG. 17 is a diagram schematically illustrating an example of a TEG pattern. 図18は、TEGのレイアウトの一例を模式的に示す図である。FIG. 18 is a diagram schematically illustrating an example of a TEG layout. 図19は、TEGのレイアウトの一例を模式的に示す図である。FIG. 19 is a diagram schematically illustrating an example of a TEG layout. 図20は、TEGのレイアウトの一例を模式的に示す断面図である。FIG. 20 is a cross-sectional view schematically showing an example of a TEG layout. 図21は、この実施の形態による太陽電池モジュール製造管理装置の構成の一例を模式的に示すブロック図である。FIG. 21 is a block diagram schematically showing an example of the configuration of the solar cell module manufacturing management apparatus according to this embodiment. 図22は、この実施の形態による太陽電池モジュールの製造方法の手順の一例を示すフローチャートである。FIG. 22 is a flowchart showing an example of the procedure of the method for manufacturing the solar cell module according to this embodiment. 図23は、この実施の形態による太陽電池モジュールの製造方法の手順の一例を示すフローチャートである。FIG. 23 is a flowchart showing an example of the procedure of the method for manufacturing the solar cell module according to this embodiment. 図24-1は、この実施の形態による太陽電池モジュールの製造方法の手順の一例を模式的に示す図である(その1)。FIG. 24-1 is a diagram schematically showing an example of a procedure of a manufacturing method of the solar cell module according to this embodiment (part 1). 図24-2は、この実施の形態による太陽電池モジュールの製造方法の手順の一例を模式的に示す図である(その2)。FIG. 24-2 is a diagram schematically showing an example of a procedure of the manufacturing method of the solar cell module according to this embodiment (No. 2). 図24-3は、この実施の形態による太陽電池モジュールの製造方法の手順の一例を模式的に示す図である(その3)。FIG. 24-3 is a diagram schematically showing an example of a procedure of the manufacturing method of the solar cell module according to this embodiment (No. 3). 図24-4は、この実施の形態による太陽電池モジュールの製造方法の手順の一例を模式的に示す図である(その4)。FIG. 24-4 is a diagram schematically showing an example of a procedure of the manufacturing method of the solar cell module according to this embodiment (No. 4). 図24-5は、この実施の形態による太陽電池モジュールの製造方法の手順の一例を模式的に示す図である(その5)。FIG. 24-5 is a diagram schematically showing an example of a procedure of the manufacturing method of the solar cell module according to this embodiment (No. 5). 図24-6は、この実施の形態による太陽電池モジュールの製造方法の手順の一例を模式的に示す図である(その6)。FIG. 24-6 is a diagram schematically showing an example of a procedure of the manufacturing method of the solar cell module according to this embodiment (No. 6). 図25は、TEGの測定結果からCVDプロセスの条件を補正する前後の特性パラメータの状態の一例を示す図である。FIG. 25 is a diagram illustrating an example of the state of the characteristic parameter before and after correcting the CVD process condition from the TEG measurement result.
 以下に添付図面を参照して、この発明の実施の形態にかかる太陽電池モジュールとその製造方法および太陽電池モジュール製造管理装置を詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。また、以下の実施の形態で用いられる太陽電池の断面図は模式的なものであり、層の厚みと幅との関係や各層の厚みの比率などは現実のものとは異なる場合がある。 Hereinafter, a solar cell module, a manufacturing method thereof, and a solar cell module manufacturing management device according to an embodiment of the present invention will be described in detail with reference to the accompanying drawings. Note that the present invention is not limited to the embodiments. In addition, the cross-sectional views of the solar cell used in the following embodiments are schematic, and the relationship between the thickness and width of the layers, the ratio of the thickness of each layer, and the like may differ from the actual ones.
 図1は、薄膜太陽電池の構成を模式的に示す断面図である。薄膜太陽電池は、ガラス基板101上に、表面電極層111と、p型半導体膜121、発電層であるi型半導体膜122およびn型半導体膜123が積層された光電変換セル120と、裏面透明導電膜131および裏面電極膜132が積層された裏面電極層130と、が順に積層された構造を有する。表面電極層111は、たとえば上面(ガラス基板101に接触する面とは反対側の面)に凹凸形状を有する透明導電膜によって構成される。光電変換セル120は、アモルファスシリコン膜や微結晶シリコン膜、CIS系などのカルコパイライト系薄膜などの光電変換を行うことができる半導体膜によって構成される。なお、この実施の形態において、薄膜太陽電池の太陽光が入射する側(ガラス基板101が配置される側)を表面(受光面)といい、それに対向する側を裏面という。 FIG. 1 is a cross-sectional view schematically showing the configuration of a thin film solar cell. The thin film solar cell includes a photoelectric conversion cell 120 in which a surface electrode layer 111, a p-type semiconductor film 121, an i-type semiconductor film 122 and an n-type semiconductor film 123 are stacked on a glass substrate 101, and a transparent back surface. The back electrode layer 130 in which the conductive film 131 and the back electrode film 132 are stacked has a structure in which the conductive film 131 and the back electrode film 132 are stacked in order. The surface electrode layer 111 is made of, for example, a transparent conductive film having a concavo-convex shape on the upper surface (the surface opposite to the surface in contact with the glass substrate 101). The photoelectric conversion cell 120 is configured by a semiconductor film capable of performing photoelectric conversion, such as an amorphous silicon film, a microcrystalline silicon film, or a chalcopyrite thin film such as a CIS system. In this embodiment, the side of the thin-film solar cell on which sunlight is incident (the side on which the glass substrate 101 is disposed) is referred to as the front surface (light receiving surface), and the side facing it is referred to as the back surface.
 図1に示されるように、薄膜太陽電池は大面積のガラス基板101上に透明導電膜や半導体膜などの各種機能性膜を堆積させることによって作製される。このため結晶シリコン系太陽電池モジュールのようにセルを直列および/または並列で接続してモジュールの出力電圧や出力電流の調整を行うことが難しい。そこで、薄膜太陽電池モジュールでは、基板上に透明導電膜や半導体膜などを形成する際に加工を行って、セルが直列に接続されるようにする。 As shown in FIG. 1, a thin film solar cell is manufactured by depositing various functional films such as a transparent conductive film and a semiconductor film on a glass substrate 101 having a large area. For this reason, it is difficult to adjust the output voltage and output current of a module by connecting cells in series and / or in parallel as in a crystalline silicon solar cell module. Therefore, in a thin film solar cell module, processing is performed when forming a transparent conductive film, a semiconductor film, or the like on a substrate so that cells are connected in series.
 図2は、暗状態での集積化された薄膜太陽電池モジュールの構成の一例を示す図であり、(a)は集積化された薄膜太陽電池モジュールの裏面側から見た平面図であり、(b)は(a)のA-A断面図であり、(c)は等価回路を示す図である。なお、図2において、基板面内に互いに垂直なX軸とY軸を取り、基板面に垂直な方向をZ軸としている。 FIG. 2 is a diagram showing an example of the configuration of an integrated thin film solar cell module in a dark state, (a) is a plan view seen from the back side of the integrated thin film solar cell module, (b) is a cross-sectional view taken along the line AA in (a), and (c) is a diagram showing an equivalent circuit. In FIG. 2, the X axis and the Y axis perpendicular to each other in the substrate surface are taken, and the direction perpendicular to the substrate surface is taken as the Z axis.
 集積化された薄膜太陽電池モジュール100は、ガラス基板101上にX方向に延在する矩形状の複数のサブセル140が、Y方向に所定の間隔で配置された構造を有する。具体的には、X方向に延在し、Y方向に所定の間隔で配置される矩形状の表面電極層111が形成されたガラス基板101上に、表面電極層111と略同じ大きさの光電変換セル120と裏面電極層130からなる積層体が、Y方向に隣接する2つの表面電極層111をまたがるようにY方向に所定の間隔で配置された構造を有する。そして、光電変換セル120内で表面電極層111と裏面電極層130とが接続される。ここで、表面電極層111をY方向に分離する溝を第1スクライブライン141といい、表面電極層111と裏面電極層130とを接続する光電変換セル120内に設けられる溝を第2スクライブライン142といい、積層体をY方向に分離する溝を第3スクライブライン143という。Y方向に第1スクライブライン141、第2スクライブライン142、第3スクライブライン143の順に形成することで、隣接する領域の表面電極層111、光電変換セル120、裏面電極層130同士が電気的に絶縁され、かつ裏面電極層130と表面電極層111とが電気的に導通される。これにより隣接領域のサブセル同士が直列に接続される。以降、この第1~第3スクライブライン141~143の組によって作製された領域を第1分離溝146という。そして、たとえば2つの隣接する第1分離溝146間で区画される領域にサブセル140が形成される。サブセル140の表面電極層111は、隣接する一方のサブセル140の裏面電極層130と接続され、裏面電極層130は、隣接する他方のサブセル140の表面電極層111と接続され、ガラス基板101上で複数のサブセル140が直列に接続される構造となる。 The integrated thin film solar cell module 100 has a structure in which a plurality of rectangular subcells 140 extending in the X direction are arranged on the glass substrate 101 at predetermined intervals in the Y direction. Specifically, on the glass substrate 101 on which the rectangular surface electrode layer 111 extending in the X direction and arranged at a predetermined interval in the Y direction is formed, a photoelectric having substantially the same size as the surface electrode layer 111 is formed. A stacked body composed of the conversion cell 120 and the back electrode layer 130 has a structure arranged at a predetermined interval in the Y direction so as to straddle the two surface electrode layers 111 adjacent in the Y direction. Then, the front electrode layer 111 and the back electrode layer 130 are connected in the photoelectric conversion cell 120. Here, the groove that separates the surface electrode layer 111 in the Y direction is referred to as a first scribe line 141, and the groove provided in the photoelectric conversion cell 120 that connects the surface electrode layer 111 and the back electrode layer 130 is the second scribe line. The groove for separating the stacked body in the Y direction is called a third scribe line 143. By forming the first scribe line 141, the second scribe line 142, and the third scribe line 143 in this order in the Y direction, the surface electrode layer 111, the photoelectric conversion cell 120, and the back electrode layer 130 in the adjacent regions are electrically connected to each other. The back electrode layer 130 and the front electrode layer 111 are electrically insulated from each other. Thereby, the subcells of adjacent regions are connected in series. Hereinafter, a region formed by the set of the first to third scribe lines 141 to 143 is referred to as a first separation groove 146. For example, the subcell 140 is formed in a region partitioned between two adjacent first separation grooves 146. The surface electrode layer 111 of the subcell 140 is connected to the back electrode layer 130 of one adjacent subcell 140, and the back electrode layer 130 is connected to the surface electrode layer 111 of the other adjacent subcell 140, on the glass substrate 101. A plurality of subcells 140 are connected in series.
 このように、通常、薄膜太陽電池モジュール100はその製造プロセスにおいて、第1~第3スクライブライン141~143に対応する3回の膜除去処理を行って、ガラス基板101面内でサブセル140の分離/接続を行い、モジュールの電圧、電流調整を行う。また、薄膜太陽電池モジュール100におけるこのようなプロセスを集積化と呼ぶ。3回の膜除去プロセス、すなわち第1スクライブライン141、第2スクライブライン142および第3スクライブライン143を形成するプロセスを、以下ではそれぞれP1,P2,P3スクライブプロセスと呼ぶことにする。 As described above, normally, in the manufacturing process of the thin film solar cell module 100, the film removal process corresponding to the first to third scribe lines 141 to 143 is performed three times to separate the subcell 140 within the surface of the glass substrate 101. / Connect and adjust module voltage and current. Such a process in the thin film solar cell module 100 is called integration. Three film removal processes, that is, processes for forming the first scribe line 141, the second scribe line 142, and the third scribe line 143 will be referred to as P1, P2, and P3 scribe processes, respectively.
 図3は、薄膜太陽電池モジュールの製造プロセスで行われる膜除去プロセスによって除去される膜の種類を示す図であり、(a)は薄膜太陽電池モジュールの断面構造を模式的に示す図であり、(b)は各スクライブプロセスで除去される膜を示す図である。P1スクライブプロセスでは、表面電極層111が除去され、除去された溝部分が第1スクライブライン141となる。P2スクライブプロセスでは、半導体膜(光電変換セル120)またはこれに裏面透明導電膜131を加えたものが除去され、除去された溝部分が第2スクライブライン142となる。P2スクライブプロセスで除去する膜として裏面透明導電膜131を含むかどうかは構造によるが、一般的には含む場合が多い。P3スクライブプロセスでは、半導体膜(光電変換セル120)と裏面透明導電膜131と裏面電極膜132が除去され、除去された溝部分が第3スクライブライン143となる。なお、このほかにも、ガラス基板101上の膜すべて(表面電極層111、半導体膜(光電変換セル120)、裏面透明導電膜131、裏面電極膜132)を除去し、絶縁を取るために用いられるP4スクライブプロセスと呼ばれるプロセスもあり、これによって第4スクライブライン144が形成される。ただし、一般的に外周部においてフレームと絶縁するために用いられることが多く、集積化の際のプロセスには用いないことが多い。 FIG. 3 is a diagram showing types of films removed by a film removal process performed in the manufacturing process of the thin film solar cell module, and (a) is a diagram schematically showing a cross-sectional structure of the thin film solar cell module. (B) is a figure which shows the film | membrane removed by each scribe process. In the P1 scribe process, the surface electrode layer 111 is removed, and the removed groove portion becomes the first scribe line 141. In the P2 scribe process, the semiconductor film (photoelectric conversion cell 120) or the backside transparent conductive film 131 added thereto is removed, and the removed groove portion becomes the second scribe line 142. Whether or not the back transparent conductive film 131 is included as a film to be removed by the P2 scribe process depends on the structure, but is generally included in many cases. In the P3 scribe process, the semiconductor film (photoelectric conversion cell 120), the back surface transparent conductive film 131, and the back surface electrode film 132 are removed, and the removed groove portion becomes the third scribe line 143. In addition, all the films on the glass substrate 101 (surface electrode layer 111, semiconductor film (photoelectric conversion cell 120), back transparent conductive film 131, back electrode film 132) are removed and used for insulation. There is also a process called a P4 scribe process, which forms a fourth scribe line 144. However, in general, it is often used to insulate from the frame at the outer peripheral portion, and is often not used in the process for integration.
 集積化された薄膜太陽電池モジュール100は、通常、細長いサブセル140を直列に複数、たとえば100本ほど接続して構成される。その際の等価回路は図2(c)の通りであり、表面電極層111の抵抗(Rs_TCO_F)154、裏面電極膜132の抵抗(Rs_BK)151、裏面電極膜132/表面電極層111同士の接触抵抗(Rs_CON)155、シャントダイオード(D)153、シャント抵抗(Rsh_D)152の直並列回路として表現される。 The integrated thin-film solar cell module 100 is generally configured by connecting a plurality of, for example, about 100 elongated subcells 140 in series. The equivalent circuit at that time is as shown in FIG. 2C, where the resistance (Rs_TCO_F) 154 of the surface electrode layer 111, the resistance (Rs_BK) 151 of the back electrode film 132, and the contact between the back electrode film 132 / the front electrode layer 111 It is expressed as a series-parallel circuit of a resistor (Rs_CON) 155, a shunt diode (D) 153, and a shunt resistor (Rsh_D) 152.
 この実施の形態では、薄膜太陽電池モジュール100に発電領域としても動作するミニセル群であるテスト回路群(以下、TEGという)パターンを設けるものであるが、ここで、TEGのパターンレイアウトとプロービング手法について説明する。TEGは、図2(c)に示される等価回路の各要素の電気特性を取得することを目的として設けられるものである。 In this embodiment, a test circuit group (hereinafter referred to as TEG) pattern, which is a minicell group that also operates as a power generation region, is provided in the thin-film solar cell module 100. Here, a TEG pattern layout and a probing method are described. explain. The TEG is provided for the purpose of acquiring the electrical characteristics of each element of the equivalent circuit shown in FIG.
 まず、1つのサブセル140のダイオード特性を計測する手法について説明する。図4は、実施の形態によるサブセルのダイオード特性の計測手法の一例を模式的に示す図である。サブセル140は、図2(c)のような等価回路によって表現されるため、図4(a)に示されるように、Y軸方向に隣接するサブセル140の裏面電極層130上にプローブピン201a,201bを下ろし、IVメータなどの測定装置200で測定することでダイオード特性の測定が可能である。なお、その際もう1つ先のダイオードが電気的に浮いてしまい測定に悪影響を及ぼす可能性があるため、図4(b)のようにガードピン203a,203bとガードピン203a,203bに電圧を印加するガードピンドライバ202を用意し、必要に応じてガードピン203a,203bをプローブピン201a,201bを下ろしたサブセル140に隣接する2つのサブセル140aの裏面電極層130上に下ろすことが望ましい。このときガードピン203aはプローブピン201aと同じ電圧となるように、またガードピン203bはプローブピン201bと同じ電圧となるように、ガードピン203a,203bにはそれぞれガードピンドライバ202から電圧が印加される。 First, a method for measuring the diode characteristics of one subcell 140 will be described. FIG. 4 is a diagram schematically illustrating an example of a method for measuring the diode characteristics of the subcell according to the embodiment. Since the subcell 140 is represented by an equivalent circuit as shown in FIG. 2C, as shown in FIG. 4A, the probe pins 201a and 201b are formed on the back electrode layer 130 of the subcell 140 adjacent in the Y-axis direction. The diode characteristics can be measured by lowering 201b and measuring with a measuring device 200 such as an IV meter. In this case, since the other diode is electrically floated and may adversely affect the measurement, a voltage is applied to the guard pins 203a and 203b and the guard pins 203a and 203b as shown in FIG. 4B. It is desirable to prepare the guard pin driver 202 and lower the guard pins 203a and 203b on the back electrode layer 130 of the two subcells 140a adjacent to the subcell 140 where the probe pins 201a and 201b are lowered as necessary. At this time, a voltage is applied from the guard pin driver 202 to the guard pins 203a and 203b so that the guard pin 203a has the same voltage as the probe pin 201a and the guard pin 203b has the same voltage as the probe pin 201b.
 図5は、ガードピンを用いてサブセルのダイオード特性を計測している状態の等価回路図である。図5に示されるように、ガードピン203aの電圧をプローブピン201aの電圧と等しくし、ガードピン203bの電圧をプローブピン201bの電圧と等しくすることで隣接するサブセル140に電流が流れないようにすることができるため、ダイオードの電流-電圧特性をサブセル140単位で正確に測定することが可能である。プロービング、ガーディングには2端子、4端子いずれの手法を用いてもよい。 FIG. 5 is an equivalent circuit diagram in a state where the diode characteristics of the subcell are measured using the guard pin. As shown in FIG. 5, the voltage of the guard pin 203a is made equal to the voltage of the probe pin 201a, and the voltage of the guard pin 203b is made equal to the voltage of the probe pin 201b so that no current flows in the adjacent subcell 140. Therefore, it is possible to accurately measure the current-voltage characteristics of the diode in units of subcells 140. For probing and guarding, any of two-terminal and four-terminal methods may be used.
 図6は、ガードピンを用いたサブセルのダイオード特性の計測手法の他の例を模式的に示す図である。図4の例では、全てのプローブピン201a,201bとガードピン203a,203bはサブセル140の裏面電極層130に下ろして測定を行っているが、図6に示されるように、プローブピン201aとガードピン203b(またはプローブピン201bとガードピン203a)を薄膜太陽電池モジュール100に設けられた第3スクライブライン143の底部に露出した表面電極層111に直接接触させるようにしてもよい。すなわち、プローブピン201aを測定対象となるサブセル140の第3スクライブライン143の底部に露出した表面電極層111に下ろし、プローブピン201bを測定対象となるサブセル140の裏面電極層130上に下ろし、ガードピン203aを隣接するサブセル140-1の裏面電極層130上に下ろし、ガードピン203bを隣接するサブセル140-2の第3スクライブライン143の底部に露出した表面電極層111上に下ろしてもよい。図4(b)と図6のどちらを用いるかは測定対象に応じて決定することができる。 FIG. 6 is a diagram schematically showing another example of a method for measuring a diode characteristic of a subcell using a guard pin. In the example of FIG. 4, all the probe pins 201a and 201b and the guard pins 203a and 203b are measured on the back electrode layer 130 of the subcell 140, but as shown in FIG. 6, the probe pins 201a and the guard pins 203b are measured. (Or the probe pin 201b and the guard pin 203a) may be brought into direct contact with the surface electrode layer 111 exposed at the bottom of the third scribe line 143 provided in the thin film solar cell module 100. That is, the probe pin 201a is lowered onto the surface electrode layer 111 exposed at the bottom of the third scribe line 143 of the subcell 140 to be measured, the probe pin 201b is lowered onto the back electrode layer 130 of the subcell 140 to be measured, and the guard pin 203a may be lowered onto the back electrode layer 130 of the adjacent subcell 140-1, and the guard pin 203b may be lowered onto the surface electrode layer 111 exposed at the bottom of the third scribe line 143 of the adjacent subcell 140-2. Whether to use FIG. 4B or FIG. 6 can be determined according to the measurement object.
 つぎに、TEGをサブセル140から分離して個別評価するためのパターニングについて説明する。図7は、薄膜太陽電池モジュールにおけるTEGパターンの一例を模式的に示す平面図であり、(a)は全体平面図であり、(b)は(a)のTEGパターン形成位置付近の拡大平面図である。この実施の形態では、図7に示されるように、サブセル140内の一部分をTEGパターンの形成領域であるミニセル170として分離してパターニングを行うようにしている。なお、図7に示されるミニセル170のパターニングは一例であり、その他の種々のTEGパターンについては後述するようにミニセル170作製のパターニングを応用することで作製することができる。 Next, patterning for separating the TEG from the subcell 140 and performing individual evaluation will be described. FIG. 7 is a plan view schematically showing an example of a TEG pattern in a thin film solar cell module, (a) is an overall plan view, and (b) is an enlarged plan view in the vicinity of a TEG pattern formation position in (a). It is. In this embodiment, as shown in FIG. 7, a part of the subcell 140 is separated as a minicell 170, which is a TEG pattern formation region, and patterning is performed. The patterning of the minicell 170 shown in FIG. 7 is an example, and other various TEG patterns can be manufactured by applying the patterning for manufacturing the minicell 170 as described later.
 図8は、薄膜太陽電池モジュール内のサブセルの構造を模式的に示す図であり、(a)はサブセルの上面と側面とを展開した図であり、(b)はサブセル1つを取り出したときの上から見た分布等価回路図である。サブセル140を分布定数回路として見た場合には、図8(b)に示されるように、微小領域のシャントダイオード153とシャント抵抗152が表面電極層111と裏面電極層130を介して並列に接続しているものとして表現することができる。このことを利用して、図7のようにサブセル140が直列に連なっている方向(Y方向)と平行にパターンカット/プロービングすることで、特定領域内で平均化されたダイオード特性を測定することができる。 FIG. 8 is a diagram schematically showing the structure of the subcell in the thin film solar cell module, where (a) is a developed view of the upper surface and the side surface of the subcell, and (b) is when one subcell is taken out. It is the distribution equivalent circuit diagram seen from above. When the subcell 140 is viewed as a distributed constant circuit, as shown in FIG. 8B, a shunt diode 153 and a shunt resistor 152 in a minute region are connected in parallel via the front electrode layer 111 and the back electrode layer 130. Can be expressed as Utilizing this fact, the diode characteristics averaged in a specific region are measured by pattern cutting / probing parallel to the direction (Y direction) in which the subcells 140 are connected in series as shown in FIG. Can do.
 図9は、ミニセルのパターニングの一例を示す図であり、(a)は平面図であり、(b)は(a)のB-B断面図であり、(c)は(a)のC-C断面図である。また、図10は、図9に示される薄膜太陽電池モジュールにおける等価回路図である。 9A and 9B are diagrams showing an example of patterning of a minicell, where FIG. 9A is a plan view, FIG. 9B is a sectional view taken along line BB in FIG. 9A, and FIG. It is C sectional drawing. FIG. 10 is an equivalent circuit diagram of the thin film solar cell module shown in FIG.
 図9に示されるように、X方向に延在する矩形状のサブセル140-1~140-3が、第1分離溝146によってY方向に分離されているが、ミニセル170a,170bを形成する場合には、3つ以上のサブセル140-1~140-3が直列に配列されている必要がある。そのうちのY方向に隣接する2つのサブセル140-1,140-2に連続して第2分離溝145が形成されることによって、ミニセル170a,170bがそれぞれサブセル140-1,140-2から分離される。ミニセル170a,170bを分離する第2分離溝145は、サブセル140-1~140-3同士を分離するX方向に延在する第1分離溝146、つまり第1~第3スクライブライン141~143の組に対して交差している。一般的には、図9に示されるように、サブセル140-1~140-3はほぼ一定間隔の平行なX方向に延在する第1分離溝146で分離されており、これらの溝に対して垂直なY方向に延在する第2分離溝145を設けてミニセル170a,170bが形成される。この第2分離溝145は、たとえば裏面電極層130、光電変換セル120および表面電極層111を除去する第4スクライブラインによって構成することができる。また、第2分離溝145は、それぞれY方向に延在する第1スクライブライン145a、第3スクライブライン145bおよび第1スクライブライン145aを組み合わせた第1/第3/第1スクライブラインによっても構成することができる。 As shown in FIG. 9, the rectangular subcells 140-1 to 140-3 extending in the X direction are separated in the Y direction by the first separation groove 146, but the minicells 170a and 170b are formed. Requires three or more subcells 140-1 to 140-3 to be arranged in series. The second separation grooves 145 are formed continuously in the two subcells 140-1 and 140-2 adjacent in the Y direction, so that the minicells 170a and 170b are separated from the subcells 140-1 and 140-2, respectively. The The second separation groove 145 that separates the minicells 170a and 170b is a first separation groove 146 extending in the X direction that separates the subcells 140-1 to 140-3, that is, the first to third scribe lines 141 to 143. Cross against the pair. In general, as shown in FIG. 9, the subcells 140-1 to 140-3 are separated by first separation grooves 146 extending in the parallel X direction at substantially constant intervals. Minicells 170a and 170b are formed by providing a second separation groove 145 extending in the vertical Y direction. The second separation groove 145 can be constituted by, for example, a fourth scribe line that removes the back electrode layer 130, the photoelectric conversion cell 120, and the front electrode layer 111. The second separation groove 145 is also configured by a first / third / first scribe line that is a combination of the first scribe line 145a, the third scribe line 145b, and the first scribe line 145a extending in the Y direction. be able to.
 上記した図9は、第2分離溝145を第1/第3/第1スクライブラインで構成した場合を示している。Y方向に隣接する2つのサブセル140-1,140-2を横切るように一対の第1スクライブライン145aをミニセル形成領域のX軸方向両端部の表面電極層111に形成する。この一対の第1スクライブライン145aは、サブセル140の第1スクライブライン141の形成工程と同じ工程で形成される。そして、一対の第1スクライブライン145aに挟まれた領域に、Y方向に隣接する2つのサブセル140-1,140-2を横切るように1本の第3スクライブライン145bを光電変換セル120と裏面電極層130の積層体に形成する。この1本の第3スクライブライン145bは、サブセル140の第3スクライブライン143の形成工程と同じ工程で形成される。これによって、第1/第3/第1スクライブラインからなる第2分離溝145が形成される。 FIG. 9 described above shows a case where the second separation groove 145 is configured by the first / third / first scribe lines. A pair of first scribe lines 145a are formed on the surface electrode layers 111 at both ends in the X-axis direction of the minicell formation region so as to cross two subcells 140-1 and 140-2 adjacent in the Y direction. The pair of first scribe lines 145a is formed in the same process as the process of forming the first scribe lines 141 of the subcell 140. Then, in the region sandwiched between the pair of first scribe lines 145a, one third scribe line 145b is crossed between the photoelectric conversion cell 120 and the back surface so as to cross the two subcells 140-1 and 140-2 adjacent in the Y direction. It forms in the laminated body of the electrode layer 130. FIG. The one third scribe line 145b is formed in the same process as the process of forming the third scribe line 143 of the subcell 140. As a result, a second separation groove 145 composed of the first / third / first scribe lines is formed.
 第1/第3/第1スクライブラインで構成した場合には、隣接するサブセル140に第1スクライブライン141上の半導体層(特にp層)を介してリーク電流が流れるが、第4スクライブラインに比べて膜ダメージが少なくなるという利点がある。このようなリーク電流は集積化の際にサブセル140同士が直列接続する際にもそもそも流れているものであり、セル特性に顕著な悪影響を及ぼすほど大きくはないが、測定対象に応じて第4スクライブラインと使い分けることが望ましい。 In the case of the first / third / first scribe line, a leakage current flows through the semiconductor layer (particularly the p layer) on the first scribe line 141 to the adjacent subcell 140. Compared to this, there is an advantage that film damage is reduced. Such a leakage current originally flows even when the subcells 140 are connected in series at the time of integration, and is not so great as to have a significant adverse effect on the cell characteristics. It is desirable to use it separately from the scribe line.
 また、図9や図10に示されるように、ミニセル170を分離する第2分離溝145は、さらに隣接するサブセル140には形成されておらず、ミニセル170の電極がこのサブセル140に直列に接続されるため、ミニセル170とミニセル170を除くサブセル140部分とが並列接続された形となる。その結果、発電時においては、ミニセル170で発電した電力も有効に利用することができる。このように、この実施の形態によるミニセル170によって形成されるTEGパターンは、薄膜太陽電池モジュール100の特性評価に使用することができるとともに、その後には発電層としても使用することが可能である。 Further, as shown in FIGS. 9 and 10, the second separation groove 145 that separates the minicell 170 is not formed in the adjacent subcell 140, and the electrode of the minicell 170 is connected to the subcell 140 in series. Therefore, the minicell 170 and the subcell 140 portion excluding the minicell 170 are connected in parallel. As a result, during power generation, the power generated by the minicell 170 can also be used effectively. As described above, the TEG pattern formed by the minicell 170 according to this embodiment can be used for evaluating the characteristics of the thin-film solar battery module 100, and can also be used as a power generation layer thereafter.
 なお、パターン形成のためにサブセル140内に描き込むスクライブライン自体は最終的に無効領域となるため、その面積は最小限度に抑えることが望ましい。サブセル140同士が直列接続であるため、電流マッチングの観点から1つのサブセル140の面積に対してスクライブライン自体が占める面積の比率は少なくとも5%以下にすることが望ましい。 In addition, since the scribe line itself drawn in the subcell 140 for pattern formation finally becomes an invalid region, it is desirable to suppress the area to the minimum. Since the subcells 140 are connected in series, the ratio of the area occupied by the scribe line itself to the area of one subcell 140 is preferably at least 5% or less from the viewpoint of current matching.
 つぎに、薄膜太陽電池モジュール100に設けられるTEGパターンと、そのTEGパターンの薄膜太陽電池モジュール100内での配列であるTEGレイアウトと、薄膜太陽電池モジュール100に設けられるTEGパターンを用いたTEG検査手法と、を順に説明する。なお、第1~第3スクライブライン141~143のパターニングプロセスとしては、レーザスクライブ、ブラスト、メカニカルスクライブ、フォトリソグラフィ、インクジェット/スクリーン印刷などによるマスクリソグラフィなど種々の方法があるが、以下では、レーザスクライブプロセスを用いる場合を例に挙げて説明を行う。 Next, a TEG pattern provided in the thin film solar cell module 100, a TEG layout that is an arrangement of the TEG pattern in the thin film solar cell module 100, and a TEG inspection method using the TEG pattern provided in the thin film solar cell module 100 And will be described in order. The patterning process for the first to third scribe lines 141 to 143 includes various methods such as laser scribe, blast, mechanical scribe, photolithography, mask lithography using ink jet / screen printing, etc. An explanation will be given by taking the case of using a process as an example.
<TEGパターン>
1.異サイズセル
 図11は、TEGパターンの一例を模式的に示す図である。この図11に示されるように、サイズ(面積)の異なる複数個(ここでは4個)のミニセル170a~170dによって1つのTEGパターンが形成されている。このパターンはスクライブダメージとバルクのpn接合特性の取得を目的とする。レーザスクライブ自体はアブレーションによって膜を除去するといういわば荒っぽい手法であり、除去領域周辺でのバリの生成や、局所的な加熱による膜ダメージ、膜除去後のpn接合端面の露出によるリークパス形成などによって、スクライブライン近辺はセルバルクに比べリーキーな特性になる。
<TEG pattern>
1. Different Size Cell FIG. 11 is a diagram schematically showing an example of a TEG pattern. As shown in FIG. 11, one TEG pattern is formed by a plurality (four in this case) of minicells 170a to 170d having different sizes (areas). The purpose of this pattern is to acquire scribe damage and bulk pn junction characteristics. Laser scribing itself is a rough technique that removes the film by ablation. By creating burrs around the removal region, film damage due to local heating, formation of a leak path due to exposure of the pn junction end face after film removal, etc. The vicinity of the scribe line has a leaky characteristic as compared with the cell bulk.
 そこで、このパターンに流れる電流について、セルバルクのpn接合による電流成分Isはセル面積に比例し、スクライブライン周辺のリーキーな電流成分ILはスクライブライン長に比例すると仮定する。その上で、サイズ(面積/周長比)の異なるミニセル170をn個(nは2以上の自然数)作製し、ミニセル170の面積Siとスクライブライン長Liの組み合わせに対する測定値である電流値Iiを測定する(i=1~n)。そして、上記仮定にしたがって、次式(1-1)~(1-n)の連立方程式を作成し、この連立方程式の誤差を最小にするような測定値から2次的に導かれる特性値であるIsとILを求める。 Therefore, for the current flowing in this pattern, it is assumed that the current component Is due to the cell bulk pn junction is proportional to the cell area, and the leaky current component IL around the scribe line is proportional to the scribe line length. In addition, n minicells 170 (n is a natural number of 2 or more) having different sizes (area / periphery ratio) are manufactured, and a current value Ii that is a measurement value for a combination of the area Si of the minicell 170 and the scribe line length Li. Are measured (i = 1 to n). Then, in accordance with the above assumptions, simultaneous equations of the following equations (1-1) to (1-n) are created, and characteristic values that are secondarily derived from measured values that minimize the error of the simultaneous equations. Find a certain Is and IL.
 I1=S1・Is+L1・IL ・・・(1-1)
 I2=S2・Is+L2・IL ・・・(1-2)
  ……
 In=Sn・Is+Ln・IL ・・・(1-n)
I1 = S1 · Is + L1 · IL (1-1)
I2 = S2 · Is + L2 · IL (1-2)
......
In = Sn · Is + Ln · IL (1-n)
 これによって、測定結果(測定値)を、スクライブダメージとバルクpn接合特性とに切り分けることができる。そして、求めたIs,ILのそれぞれについてダイオード特性評価を行い、標準的な特性値を有しているか否かを判定し、測定結果(測定値)がどちらの特性により強い影響を受けているのかを判定し、その影響の度合いなどの定量化を行う。より具体的には、測定結果(測定値)が標準的な値からずれているのは、スクライブプロセスが原因なのか、pn接合特性、すなわち光電変換セル120の成膜(CVD)プロセスが原因なのか、を切り分けることができる。 Thus, the measurement result (measured value) can be divided into scribe damage and bulk pn junction characteristics. Then, a diode characteristic evaluation is performed for each of the obtained Is and IL to determine whether or not it has a standard characteristic value, and which characteristic has a strong influence on the measurement result (measured value). And quantify the degree of its impact. More specifically, the measurement result (measurement value) deviates from the standard value because of the scribe process or the pn junction characteristics, that is, the film formation (CVD) process of the photoelectric conversion cell 120. Can be carved out.
2.中子(第3スクライブライン)
 図12は、TEGパターンの一例を模式的に示す図である。このパターンはスクライブダメージを取得することを目的とする。この図12に示されるように、面積の等しいミニセル170a,170bをn個用意し、それぞれのミニセル170a,170bに、n1~nn本の第3スクライブライン171をミニセル170a,170b内に意図的に施す。形成される第3スクライブライン171の方向は特に限定されない。この例では、第3スクライブライン171は、たとえばY方向に延在し、サブセル140を区画するX方向に延在する第1分離溝146には接続されないように形成される。
2. Nakako (third scribe line)
FIG. 12 is a diagram schematically illustrating an example of a TEG pattern. This pattern aims to acquire scribe damage. As shown in FIG. 12, n minicells 170a and 170b having the same area are prepared, and n1 to nn third scribe lines 171 are intentionally provided in the minicells 170a and 170b. Apply. The direction of the third scribe line 171 to be formed is not particularly limited. In this example, the third scribe line 171 extends in the Y direction, for example, and is formed so as not to be connected to the first separation groove 146 extending in the X direction that partitions the subcell 140.
 前述の通りスクライブプロセスによってミニセル170a,170b内に施した第3スクライブライン171近辺はリーキーな特性になる。そこで、セルバルクの電流成分をIDとし、ダメージによるリーク電流成分をIleakとすると、このパターンに流れる電流は次式(2-1)~(2-n)のように求められる。そして、(2-1)~(2-n)式の連立方程式の誤差を最小にするようなIDとIleakを求める。 As described above, the vicinity of the third scribe line 171 provided in the minicells 170a and 170b by the scribe process has a leaky characteristic. Therefore, assuming that the current component of the cell bulk is ID and the leak current component due to damage is Ileak, the current flowing in this pattern is obtained by the following equations (2-1) to (2-n). Then, ID and Ileak that minimize the error of the simultaneous equations (2-1) to (2-n) are obtained.
 I1=ID-n1・Ileak ・・・(2-1)
 I2=ID-n2・Ileak ・・・(2-2)
  ……
 In=ID-nn・Ileak ・・・(2-n)
I1 = ID-n1 · Ileak (2-1)
I2 = ID-n2 · Ileak (2-2)
......
In = ID-nn · Ileak (2-n)
 これによって、測定結果(測定値)を、スクライブダメージとバルクpn接合特性とに切り分けることができる。そして、求めたID,Ileakのそれぞれについてダイオード特性評価を行い、標準的な特性値を有しているか否かを判定し、測定結果(測定値)がどちらの特性により強い影響を受けているのかを判定し、その影響の度合いなどの定量化を行う。なお、図の例では、直線状のパターンを形成しているが、直線状、長方形状、または円状のパターンを直線上に並べてパターンを形成してもよい。 Thus, the measurement result (measured value) can be divided into scribe damage and bulk pn junction characteristics. Then, diode characteristics evaluation is performed for each of the obtained ID and Ileak to determine whether or not it has a standard characteristic value, and which characteristic has a strong influence on the measurement result (measurement value)? And quantify the degree of its impact. In the example shown in the figure, a linear pattern is formed, but a pattern may be formed by arranging linear, rectangular, or circular patterns on a straight line.
3.斜行ライン
 図13は、TEGパターンの一例を模式的に示す図である。このパターンは表面電極層抵抗Rs_TCO_Fと第2スクライブライン142での接触抵抗Rs_CONを取得することを目的とする。X方向に対して垂直でない角度で交わる第2分離溝145(第1/第3/第1スクライブライン)をサブセル140内に挿入し、平行四辺形形状のミニセル170a~170cをn個作製する。n個のミニセル170a~170c間での斜辺方向の長さをLI1~LInとする。ここで、ミニセル170a~170cは分布定数回路とみなせるため、補正係数αを用いて次式(3-1)~(3-n)の連立方程式の誤差を最小にするようなRs_TCO_FとRs_CONを求める。
3. Skew Line FIG. 13 is a diagram schematically showing an example of a TEG pattern. The purpose of this pattern is to obtain the surface electrode layer resistance Rs_TCO_F and the contact resistance Rs_CON at the second scribe line 142. A second separation groove 145 (first / third / first scribe line) that intersects at an angle that is not perpendicular to the X direction is inserted into the subcell 140 to produce n parallelogram-shaped minicells 170a to 170c. The lengths in the hypotenuse direction between the n minicells 170a to 170c are LI1 to LIn. Here, since the minicells 170a to 170c can be regarded as distributed constant circuits, Rs_TCO_F and Rs_CON are calculated using the correction coefficient α so as to minimize the error of the simultaneous equations of the following equations (3-1) to (3-n). .
 Rs1=Rs_CON+α・LI1・Rs_TCO_F ・・・(3-1)
 Rs2=Rs_CON+α・LI2・Rs_TCO_F ・・・(3-2)
  ……
 Rsn=Rs_CON+α・LIn・Rs_TCO_F ・・・(3-n)
Rs1 = Rs_CON + α · LI1 · Rs_TCO_F (3-1)
Rs2 = Rs_CON + α · LI2 · Rs_TCO_F (3-2)
......
Rsn = Rs_CON + α · LIn · Rs_TCO_F (3-n)
 これによって、測定結果(測定値)を、表面電極層抵抗と接触抵抗とに切り分けることができる。そして、求めたRs_TCO_F,Rs_CONのそれぞれについて特性評価を行い、標準的な特性値を有しているか否かを判定し、測定結果(測定値)がどちらの特性により強い影響を受けているのかを判定し、その影響の度合いなどの定量化を行う。 Thereby, the measurement result (measured value) can be divided into the surface electrode layer resistance and the contact resistance. Then, a characteristic evaluation is performed for each of the obtained Rs_TCO_F and Rs_CON to determine whether or not it has a standard characteristic value, and which characteristic has a strong influence on the measurement result (measured value). Judge and quantify the degree of the impact.
4.ミアンダライン
 図14は、TEGパターンの一例を模式的に示す図である。このパターンは表面電極層抵抗Rs_TCO_Fと第2スクライブライン142での接触抵抗Rs_CONを取得することを目的とする。第2分離溝145(第1/第3/第1スクライブライン)をミニセル170a,170b内に挿入し、ミアンダ形状(つづら折り形状)のミニセル170a,170bをn個作製する。n個のミニセル170a,170b間での折り返し数をn1~nnとする。ここで、ミニセル170a,170bは分布定数回路とみなせるため、補正係数αを用いて次式(4-1)~(4-n)の連立方程式の誤差を最小にするようRs_TCO_FとRs_CONを求める。
4). FIG. 14 is a diagram schematically illustrating an example of a TEG pattern. The purpose of this pattern is to obtain the surface electrode layer resistance Rs_TCO_F and the contact resistance Rs_CON at the second scribe line 142. The second separation grooves 145 (first / third / first scribe lines) are inserted into the minicells 170a and 170b, and n mini-cells 170a and 170b having a meander shape (a zigzag shape) are produced. The number of folds between the n minicells 170a and 170b is n1 to nn. Here, since the minicells 170a and 170b can be regarded as distributed constant circuits, Rs_TCO_F and Rs_CON are obtained using the correction coefficient α so as to minimize the error of the simultaneous equations of the following equations (4-1) to (4-n).
 Rs1=Rs_CON+α・n1・Rs_TCO_F ・・・(4-1)
 Rs2=Rs_CON+α・n2・Rs_TCO_F ・・・(4-2)
  ……
 Rsn=Rs_CON+α・nn・Rs_TCO_F ・・・(4-n)
Rs1 = Rs_CON + α · n1 · Rs_TCO_F (4-1)
Rs2 = Rs_CON + α · n2 · Rs_TCO_F (4-2)
......
Rsn = Rs_CON + α · nn · Rs_TCO_F (4-n)
 これによって、測定結果(測定値)を、表面電極層抵抗と接触抵抗とに切り分けることができる。そして、求めたRs_TCO_F,Rs_CONのそれぞれについて特性評価を行い、標準的な特性値を有しているか否かを判定し、測定結果(測定値)がどちらの特性により強い影響を受けているのかを判定し、その影響の度合いなどの定量化を行う。 Thereby, the measurement result (measured value) can be divided into the surface electrode layer resistance and the contact resistance. Then, a characteristic evaluation is performed for each of the obtained Rs_TCO_F and Rs_CON to determine whether or not it has a standard characteristic value, and which characteristic has a strong influence on the measurement result (measured value). Judge and quantify the degree of the impact.
5.中子(第2スクライブライン)
 図15は、TEGパターンの一例を模式的に示す図であり、(a)は平面図であり、(b)は(a)のD-D断面図である。このパターンは表面電極層111/裏面電極層130の接触抵抗Rs_CONを取得することを目的とする。ここでは、面積の等しいミニセル170a,170bをn個用意し、各ミニセル170a,170b内にn1~nn本の第2スクライブライン172を意図的に施す。上記2の中子(第3スクライブライン171)ではスクライブ方向は特に問わなかったが、このTEGパターンで施す第2スクライブライン172は、サブセル140を直列に連ねる方向(Y方向)に対して垂直、言い換えれば細長いサブセル140の長辺方向(X方向)に平行とする。ミニセル170a,170b内に形成される第2スクライブライン172の本数に応じてシリーズ抵抗が減少するため、次式(5-1)~(5-n)の連立方程式の誤差を最小にするようなRsとRs_CONを求める。
5. Nakako (second scribe line)
FIG. 15 is a diagram schematically showing an example of a TEG pattern, where (a) is a plan view and (b) is a DD cross-sectional view of (a). The purpose of this pattern is to obtain the contact resistance Rs_CON of the front electrode layer 111 / back electrode layer 130. Here, n minicells 170a and 170b having the same area are prepared, and n1 to nn second scribe lines 172 are intentionally provided in each minicell 170a and 170b. The scribe direction is not particularly limited in the above-described core 2 (third scribe line 171), but the second scribe line 172 applied with this TEG pattern is perpendicular to the direction (Y direction) in which the subcells 140 are connected in series. In other words, it is parallel to the long side direction (X direction) of the elongated subcell 140. Since the series resistance decreases in accordance with the number of second scribe lines 172 formed in the minicells 170a and 170b, the error of the simultaneous equations of the following equations (5-1) to (5-n) is minimized. Rs and Rs_CON are obtained.
 Rs1=Rs+Rs_CON/n1 ・・・(5-1)
 Rs2=Rs+Rs_CON/n2 ・・・(5-2)
  ……
 Rsn=Rs+Rs_CON/nn ・・・(5-n)
Rs1 = Rs + Rs_CON / n1 (5-1)
Rs2 = Rs + Rs_CON / n2 (5-2)
......
Rsn = Rs + Rs_CON / nn (5-n)
 これによって、測定結果(測定値)を、シリーズ抵抗と接触抵抗とに切り分けることができる。そして、求めたRs,Rs_CONのそれぞれについて特性評価を行い、標準的な特性値を有しているか否かを判定し、測定結果(測定値)がどちらの特性により強い影響を受けているのかを判定し、その影響の度合いなどの定量化を行う。 This allows the measurement result (measured value) to be divided into series resistance and contact resistance. Then, the characteristics of each of the obtained Rs and Rs_CON are evaluated to determine whether or not they have standard characteristic values, and which characteristic is strongly influenced by the measurement result (measured value). Judge and quantify the degree of the impact.
6.表面TCO/a-Siコンタクト(TLM)
 図16は、TEGパターンの一例を模式的に示す図であり、(a)は平面図であり、(b)は(a)のF-F断面図であり、(c)は他の例を示す平面図である。このパターンは表面電極層111の抵抗Rs_TCO_Fと表面電極層111と光電変換セル120とのコンタクト抵抗Rs_CON_TCO-Cellとに切り分けることを目的とする。このパターンでは、隣接する3つのサブセル140-1~140-3にわたって第2分離溝145A,145Bを形成する。
6). Surface TCO / a-Si contact (TLM)
FIG. 16 is a diagram schematically showing an example of a TEG pattern, where (a) is a plan view, (b) is a cross-sectional view taken along line FF in (a), and (c) is another example. FIG. This pattern is intended to be divided into a resistance Rs_TCO_F of the surface electrode layer 111 and a contact resistance Rs_CON_TCO-Cell between the surface electrode layer 111 and the photoelectric conversion cell 120. In this pattern, second separation grooves 145A and 145B are formed across three adjacent subcells 140-1 to 140-3.
 ミニセル170f~170iを分離する第1分離溝146A,146Bと第2分離溝145A,145Bは、場所によって深さが異なる。第1分離溝146Aは、第3スクライブライン146aによって構成されるが、第1分離溝146Bは、第3スクライブライン146aと第4スクライブライン146bとによって構成される。また、第2分離溝145Aは、第4スクライブライン145cによって構成され、第2分離溝145Bは、第3スクライブライン145bと第4スクライブライン145cによって構成される。 The first separation grooves 146A and 146B and the second separation grooves 145A and 145B that separate the minicells 170f to 170i have different depths depending on the location. The first separation groove 146A is constituted by a third scribe line 146a, while the first separation groove 146B is constituted by a third scribe line 146a and a fourth scribe line 146b. Further, the second separation groove 145A is constituted by a fourth scribe line 145c, and the second separation groove 145B is constituted by a third scribe line 145b and a fourth scribe line 145c.
 図16の例では、3本の第2分離溝145Aのそれぞれの間に第2分離溝145Bが配置される構成となっている。このように第2分離溝145Bを挟んで左側と右側で隣接する2つのミニセルを1セットとして、右側の領域の幅は変えずに、左側の領域の幅のみが異なるようにnセット(nは2以上の自然数)作製する。ここでは、第2分離溝145Bを挟んだミニセル170f、170gが1セットとなり、第2分離溝145Bを挟んだミニセル170h,170iが1セットとなる。それぞれのセットで、右側に配置されるミニセル170g,170iのX方向の寸法は等しく、左側に配置されるミニセル170f,170hのX方向の寸法は異なっている。 In the example of FIG. 16, the second separation groove 145B is disposed between each of the three second separation grooves 145A. In this way, two sets of minicells adjacent on the left and right sides across the second separation groove 145B are set as one set, and n sets (n is set so that only the width of the left region is different without changing the width of the right region). 2 or more natural numbers). Here, one set of minicells 170f and 170g sandwiching the second separation groove 145B, and one set of minicells 170h and 170i sandwiching the second separation groove 145B. In each set, the dimensions in the X direction of the minicells 170g and 170i arranged on the right side are equal, and the dimensions in the X direction of the minicells 170f and 170h arranged on the left side are different.
 測定時は図中の第2分離溝145B(第3スクライブライン145b)によって分離されたミニセルの右側の領域を用い、シリーズ抵抗Rs1~Rsnを測定する。このとき、左側の領域のX方向の幅をL1~Lnとすると、Lに比例してRs_TCO_Fが増大するため、次式(6-1)~(6-n)の連立方程式の誤差を最小にするようなRs_TCO_FとRS_CON_TCO-Cellを求める。 At the time of measurement, series resistances Rs1 to Rsn are measured using the region on the right side of the minicell separated by the second separation groove 145B (third scribe line 145b) in the drawing. At this time, if the width in the X direction of the left region is L1 to Ln, Rs_TCO_F increases in proportion to L, so that the errors in the simultaneous equations of the following equations (6-1) to (6-n) are minimized. Rs_TCO_F and RS_CON_TCO-Cell are calculated.
 Rs1=Rs_TCO_F・L1+RS_CON_TCO-Cell ・・・(6-1)
 Rs2=Rs_TCO_F・L2+RS_CON_TCO-Cell ・・・(6-2)
  ……
 Rsn=Rs_TCO_F・Ln+RS_CON_TCO-Cell ・・・(6-n)
Rs1 = Rs_TCO_F · L1 + RS_CON_TCO−Cell (6-1)
Rs2 = Rs_TCO_F · L2 + RS_CON_TCO−Cell (6-2)
......
Rsn = Rs_TCO_F · Ln + RS_CON_TCO-Cell (6-n)
 これによって、測定結果(測定値)を、表面電極層抵抗と接触抵抗とに切り分けることができる。そして、求めたRs_TCO_F,Rs_CON_TCO-Cellのそれぞれについて特性評価を行い、標準的な特性値を有しているか否かを判定し、測定結果(測定値)がどちらの特性により強い影響を受けているのかを判定し、その影響の度合いなどの定量化を行う。 Thereby, the measurement result (measured value) can be divided into the surface electrode layer resistance and the contact resistance. Then, each of the obtained Rs_TCO_F and Rs_CON_TCO-Cell is evaluated for characteristics to determine whether or not it has a standard characteristic value, and the measurement result (measured value) is strongly influenced by which characteristic. And quantify the degree of the impact.
 あるいは図16(c)のように、1セットを構成するうちの左側のミニセル170hの光電変換セル120に複数の第3スクライブラインによって孔147をあけ、この孔147から測定用の端子を直接、表面電極層111に落としてもよい。 Alternatively, as shown in FIG. 16 (c), a hole 147 is formed by a plurality of third scribe lines in the photoelectric conversion cell 120 of the left minicell 170h of one set, and a measurement terminal is directly connected from the hole 147. It may be dropped on the surface electrode layer 111.
7.温特パターン
 図17は、TEGパターンの一例を模式的に示す図であり、(a)は平面図であり、(b)は測定中のミニセル内での電位分布の様子を模式的に示す図であり、(c)はミニセルの測定の様子を模式的に示す平面図である。このパターンは光電変換セル120の温度特性を取得することを目的とする。このパターンでは、3つの隣接するサブセル140-1~140-3にわたって2本の第2分離溝145Aを形成し、サブセル140-1,140-3の2本の第2分離溝145Aで区切られた領域の中央に、1本の第2分離溝145Cを形成する。これらの第2分離溝145A,145Cは、第4スクライブライン145cによって構成される。
7). FIG. 17 is a diagram schematically showing an example of a TEG pattern, (a) is a plan view, and (b) is a diagram schematically showing a potential distribution in a minicell under measurement. (C) is a plan view schematically showing the state of measurement of the minicell. The purpose of this pattern is to acquire the temperature characteristics of the photoelectric conversion cell 120. In this pattern, two second separation grooves 145A are formed across three adjacent subcells 140-1 to 140-3, and are separated by the two second separation grooves 145A of the subcells 140-1 and 140-3. One second separation groove 145C is formed in the center of the region. These second separation grooves 145A and 145C are constituted by a fourth scribe line 145c.
 また、サブセル140-1~140-3を分離する第1分離溝146A,146Bは、場所によって深さが異なる。第1分離溝146Aは、第3スクライブライン146aによって構成されるが、第1分離溝146Bは、第3スクライブライン146aと第4スクライブライン146bとによって構成される。 Also, the depths of the first separation grooves 146A and 146B separating the subcells 140-1 to 140-3 differ depending on the location. The first separation groove 146A is constituted by a third scribe line 146a, while the first separation groove 146B is constituted by a third scribe line 146a and a fourth scribe line 146b.
 図17(b)に示されるように、測定時は図中のミニセル170jを用い、表面電極層111、裏面電極層130に昇温用バイアス電流を流すことによるジュール熱で昇温を行う。図17(c)のように、ミニセル170j右端、左端に裏面バイアス電流用兼光電変換セル120の測定用端子201A(IVソースメータ200A)を落とす。また、ミニセル170jの下のサブセルの右端、左端に表面バイアス電流用兼光電変換セル120の測定用端子201B(IVソースメータ200B)を落とす。この時、IVソースメータ200A,200Bの測定用端子201A,201Bの電位差を測定用バイアス電圧とすることで、IVソースメータ200A,200Bの電流値差から光電変換セル120の温度依存電流電圧特性を取得することが出来る。なお、温度自体は熱電対、放射温度計またはサーモグラフィなどを用いて別途測定してもよい。 As shown in FIG. 17B, during measurement, the minicell 170j in the figure is used, and the temperature is raised by Joule heat by flowing a temperature-raising bias current through the front electrode layer 111 and the back electrode layer 130. As shown in FIG. 17C, the measurement terminal 201A (IV source meter 200A) of the back bias current / photoelectric conversion cell 120 is dropped at the right end and the left end of the minicell 170j. Further, the measurement terminal 201B (IV source meter 200B) of the surface bias current / photoelectric conversion cell 120 is dropped at the right end and the left end of the subcell below the minicell 170j. At this time, by using the potential difference between the measurement terminals 201A and 201B of the IV source meters 200A and 200B as the measurement bias voltage, the temperature-dependent current-voltage characteristics of the photoelectric conversion cell 120 can be obtained from the current value difference between the IV source meters 200A and 200B. Can be acquired. The temperature itself may be separately measured using a thermocouple, a radiation thermometer, a thermography, or the like.
 また測定用バイアス電圧を0とすることで表面電極層111、裏面電極層130それぞれの抵抗値の温度特性を取得することもできる。 Also, by setting the measurement bias voltage to 0, the temperature characteristics of the resistance values of the front electrode layer 111 and the back electrode layer 130 can be acquired.
 これによって、測定結果(測定値)を、表面・裏面電極層の温度特性と光電変換セルの温度特性とに切り分けることができる。そして、温度特性のそれぞれについて特性評価を行い、標準的な特性値を有しているか否かを判定し、測定結果(測定値)がどちらの特性により強い影響を受けているのかを判定し、その影響の度合いなどの定量化を行う。 Thus, the measurement result (measured value) can be divided into the temperature characteristics of the front and back electrode layers and the temperature characteristics of the photoelectric conversion cell. Then, perform a characteristic evaluation for each temperature characteristic, determine whether or not it has a standard characteristic value, determine which characteristic the measurement result (measurement value) is strongly influenced by, Quantify the degree of impact.
<TEGレイアウト>
 以下では、薄膜太陽電池モジュール100に配置するTEGパターンのレイアウトについて説明する。これらのレイアウトに配置されるTEGパターンは、上記したTEGパターン1~7のいずれかである。
<TEG layout>
Below, the layout of the TEG pattern arrange | positioned at the thin film solar cell module 100 is demonstrated. The TEG pattern arranged in these layouts is any one of the TEG patterns 1 to 7 described above.
1.面均
 図18は、TEGのレイアウトの一例を模式的に示す図である。このレイアウトはTEG検査結果の基板面内均一性を取得することを目的とする。そのため、ミニセル(TEGパターン)が基板面内で均一に分布するような配置がなされる。図では例として、薄膜太陽電池モジュール100の中心と4隅の計5個の領域にミニセル170a~170e(TEGパターン)を設けている。このほかにも、X方向とY方向に均等に5個×5個の計25個のTEGパターンを設けるようにしてもよい。TEGパターンの配置は、対象とするプロセス(たとえば導電膜形成プロセス、半導体膜形成プロセス、スクライブプロセスなど)の分布特性に応じて決定することができる。たとえば1チャンバで成膜を行うことの多いCVD法では中央から外周に楕円形の分布を持つことが多く、一方インラインで成膜を行うことの多いPVD法では移動方向に垂直方向のみの1次元的な分布を持つことが多いことが知られているので、このような分布特性に応じてTEGパターンが配置される。
1. FIG. 18 is a diagram schematically illustrating an example of a TEG layout. The purpose of this layout is to obtain in-plane uniformity of TEG inspection results. Therefore, the arrangement is such that the minicells (TEG patterns) are uniformly distributed in the substrate surface. In the figure, as an example, minicells 170a to 170e (TEG patterns) are provided in a total of five regions including the center and four corners of the thin film solar cell module 100. In addition, a total of 25 TEG patterns of 5 × 5 in the X direction and the Y direction may be provided. The arrangement of the TEG pattern can be determined according to the distribution characteristics of a target process (for example, a conductive film formation process, a semiconductor film formation process, a scribe process, etc.). For example, a CVD method in which film formation is often performed in one chamber often has an elliptical distribution from the center to the outer periphery, whereas a PVD method in which film formation is often performed in-line is only one-dimensional in a direction perpendicular to the moving direction. The TEG pattern is arranged according to such distribution characteristics.
2.エッジ
 図19は、TEGのレイアウトの一例を模式的に示す図である。このレイアウトはタブ線の貼り付け前に施す第4スクライブラインによるダメージを取得することを目的とする。そのため、ガラス基板(薄膜太陽電池モジュール100)の外周部に沿ってミニセル170(TEGパターン)が設けられる。ガラス基板の外周部に沿って全体的にTEGパターンを設けるようにしてもよいし、ガラス基板の外周部に沿って所定の間隔でTEGパターンを設けるようにしてもよい。
2. Edge FIG. 19 is a diagram schematically illustrating an example of a TEG layout. The purpose of this layout is to acquire damage caused by the fourth scribe line applied before the tab line is pasted. Therefore, the minicell 170 (TEG pattern) is provided along the outer periphery of the glass substrate (thin film solar cell module 100). The TEG pattern may be provided entirely along the outer periphery of the glass substrate, or the TEG pattern may be provided at predetermined intervals along the outer periphery of the glass substrate.
3.下地依存性
 図20は、TEGのレイアウトの一例を模式的に示す断面図である。このレイアウトはガラス基板101にテクスチャガラスを用いた際のTEG測定結果のシフト量によって、テクスチャのできばえを管理することを目的とする。テクスチャリングプロセスで複数の表面粗さ102を有するようなガラス基板101のそれぞれの表面粗さ102の領域101a,101bにTEGパターンを配置する。
3. FIG. 20 is a cross-sectional view schematically showing an example of a TEG layout. The purpose of this layout is to manage the quality of the texture according to the shift amount of the TEG measurement result when texture glass is used for the glass substrate 101. A TEG pattern is arranged in each of the regions 101a and 101b of the surface roughness 102 of the glass substrate 101 having a plurality of surface roughnesses 102 by a texturing process.
<TEG検査手法>
 薄膜太陽電池モジュール100に上記で説明したTEGレイアウトで配置したTEGパターンを検査するが、取得する情報に応じて、各TEGパターンの検査手法は異なる。以下では、TEG検査手法について説明する。
<TEG inspection method>
The TEG pattern arranged in the TEG layout described above on the thin film solar cell module 100 is inspected, but the inspection method of each TEG pattern is different depending on the information to be acquired. Hereinafter, the TEG inspection method will be described.
1.IV-Dark
 暗状態または光バイアス下での電流-電圧特性評価を行う。逆方向の電流-電圧特性からシャント抵抗Rsh_Dが、順方向の電流-電圧特性からシャントダイオードDの特性(再結合電流成分、拡散電流成分)とシリーズ抵抗(Rs_TCO_F、Rs_BK、Rs_CON)に関する情報を得ることができる。
1. IV-Dark
Evaluate current-voltage characteristics in dark state or under light bias. The shunt resistor Rsh_D is obtained from the reverse current-voltage characteristics, and the shunt diode D characteristics (recombination current component, diffusion current component) and series resistance (Rs_TCO_F, Rs_BK, Rs_CON) are obtained from the forward current-voltage characteristics. be able to.
2.IV-Photo
 明状態または光バイアス下での光電流-電圧特性評価を行う。通常の太陽電池特性(変換効率、短絡電流、開放電圧、曲率因子など)だけではなく、照射光の強度、スペクトルを変えることで種々の情報を得ることができる。
2. IV-Photo
Photocurrent-voltage characteristics are evaluated in a bright state or under an optical bias. Various information can be obtained by changing not only the normal solar cell characteristics (conversion efficiency, short-circuit current, open-circuit voltage, curvature factor, etc.) but also the intensity and spectrum of irradiation light.
3.ZV-Dark
 暗状態または光バイアス下でのインピーダンス-電圧特性評価を行う。ダイオードのビルトインポテンシャル、ドープ濃度、欠陥濃度、pin積層の等価膜厚、膜厚方向のシャント成分などの情報を取得することができる。
3. ZV-Dark
Impedance-voltage characteristics are evaluated in the dark state or under light bias. Information such as the built-in potential of the diode, the doping concentration, the defect concentration, the equivalent film thickness of the pin stack, and the shunt component in the film thickness direction can be acquired.
 なお、上記したTEGパターン、TEGレイアウトおよびTEG検査手法は相互依存を持つ場合もあるが、各々独立に組み合わせて用いることができる。 Note that the TEG pattern, TEG layout, and TEG inspection method described above may be interdependent, but can be used in combination independently.
 つぎに、TEGを有する薄膜太陽電池モジュール100を用いた太陽電池モジュール製造管理装置と太陽電池モジュールの製造方法について説明する。図21は、この実施の形態による太陽電池モジュール製造管理装置の構成の一例を模式的に示すブロック図である。太陽電池モジュール製造管理装置10は、薄膜太陽電池モジュール100を製造する表面電極層成膜装置21、半導体膜成膜装置22、裏面透明導電膜成膜装置23、裏面電極膜成膜装置24およびスクライブライン形成装置25に接続されており、TEGパターンの計測結果から得られた情報を用いて作製した薄膜太陽電池モジュール100の廃棄の要否や、接続される上記各装置におけるプロセス条件の補正などを行う装置である。 Next, a solar cell module manufacturing management apparatus using the thin-film solar cell module 100 having a TEG and a solar cell module manufacturing method will be described. FIG. 21 is a block diagram schematically showing an example of the configuration of the solar cell module manufacturing management apparatus according to this embodiment. The solar cell module production management apparatus 10 includes a surface electrode layer film forming apparatus 21, a semiconductor film film forming apparatus 22, a back surface transparent conductive film forming apparatus 23, a back electrode film forming apparatus 24, and a scribe that manufacture the thin film solar cell module 100. It is connected to the line forming device 25, and it is necessary to discard the thin-film solar cell module 100 manufactured using information obtained from the measurement result of the TEG pattern, and to correct the process conditions in each of the connected devices. Device.
 太陽電池モジュール製造管理装置10は、TEG測定部11と、電気特性測定部12と、特性値算出条件格納部13と、特性値算出部14と、リファレンス値格納部15と、廃棄判定部16と、プロセス管理情報格納部17と、プロセス条件補正部18と、を有する。 The solar cell module manufacturing management device 10 includes a TEG measurement unit 11, an electrical property measurement unit 12, a property value calculation condition storage unit 13, a property value calculation unit 14, a reference value storage unit 15, and a discard determination unit 16. A process management information storage unit 17 and a process condition correction unit 18.
 TEG測定部11は、作製された薄膜太陽電池モジュール100のTEGを用いて、所定のTEG検査手法によって第1次特性情報を得るための測定を行う。TEG測定部11は、取得する第1次特性情報に応じて構成が異なり、上記したTEG検査手法の1~3で示した方法を実行する装置によって構成される。TEG測定部11によるTEG検査手法に応じた測定によって第1次特性情報の測定値が得られる。この第1次特性情報は、TEGパターンが形成されるミニセルに関する特性情報であり、後述するプロセス条件に直接的に結びつく情報もあるが、大抵は複数のプロセス条件に間接的に結びつく情報である。このような第1次特性情報として、ミニセルに流れる電流値、ミニセルのシリーズ抵抗値などを挙げることができる。 The TEG measurement unit 11 uses the TEG of the manufactured thin-film solar cell module 100 to perform measurement for obtaining primary characteristic information by a predetermined TEG inspection method. The TEG measurement unit 11 has a different configuration depending on the acquired primary characteristic information, and is configured by a device that executes the methods indicated by the TEG inspection methods 1 to 3 described above. The measurement value of the primary characteristic information is obtained by the measurement according to the TEG inspection method by the TEG measurement unit 11. The primary characteristic information is characteristic information related to the minicell in which the TEG pattern is formed, and there is information directly related to the process conditions described later, but is usually information indirectly related to a plurality of process conditions. Examples of such primary characteristic information include a current value flowing through the minicell, a series resistance value of the minicell, and the like.
 電気特性測定部12は、複数の薄膜太陽電池モジュール100がタブ付けされて構成される薄膜太陽電池の電気特性を測定する。たとえばソーラーシミュレータによって、変換効率や短絡電流、開放電圧、曲率因子などが第1次特性情報として測定される。 The electrical property measuring unit 12 measures electrical properties of a thin-film solar cell configured by attaching a plurality of thin-film solar cell modules 100 with tabs. For example, conversion efficiency, short-circuit current, open-circuit voltage, curvature factor, and the like are measured as primary characteristic information by a solar simulator.
 特性値算出条件格納部13は、TEG測定部11や電気特性測定部12で得られた第1次特性情報である測定値から、2次的な特性情報である第2次特性情報を取得したり、第2次特性情報からさらに3次的な特性情報である第3次特性情報を取得したりする際に使用する特性値算出条件を格納する。 The characteristic value calculation condition storage unit 13 acquires secondary characteristic information that is secondary characteristic information from measurement values that are primary characteristic information obtained by the TEG measurement unit 11 and the electrical characteristic measurement unit 12. Or the characteristic value calculation conditions used when acquiring the third characteristic information, which is the third characteristic information, from the second characteristic information.
 たとえば、上記したTEGパターンの1の異サイズセルの場合には、測定したミニセルに流れる電流値から、(1-1)~(1-n)式で示した連立方程式の誤差を最小にするようなセルバルクのpn接合による電流成分Isとスクライブライン周辺のリーキーな電流成分ILとを求めている。ここで、(1-1)式~(1-n)式が第2次特性情報を取得するのに必要な特性値算出条件となり、IsとILが第2次特性情報となる。他のTEGパターンの場合も同様である。 For example, in the case of one different size cell of the above TEG pattern, the error of the simultaneous equations expressed by the equations (1-1) to (1-n) is minimized from the measured current value flowing through the minicell. A current component Is caused by a pn junction of a large cell bulk and a leaky current component IL around the scribe line are obtained. Here, the expressions (1-1) to (1-n) are the characteristic value calculation conditions necessary for acquiring the secondary characteristic information, and Is and IL are the secondary characteristic information. The same applies to other TEG patterns.
 また、上記で求めたセルバルクのpn接合による電流成分Isに対して、次式(7)に示す2ダイオードモデルによる接合特性評価を行って、再結合リーク成分J02を求めることができる。
 Is=J01(exp(q(V-Is・Rs)/kT)-1)
   +J02(exp(q(V-Is・Rs)/2kT)-1) ・・・(7)
In addition, the recombination leakage component J02 can be obtained by performing the junction characteristic evaluation by the two-diode model shown in the following formula (7) on the current component Is caused by the cell bulk pn junction obtained above.
Is = J01 (exp (q (V−Is · Rs) / kT) −1)
+ J02 (exp (q (V−Is · Rs) / 2kT) −1) (7)
 ここで、Vは印加電圧であり、Rsは全シリーズ抵抗であり、J01,J02はダイオード飽和電流であり、qは素電荷であり、kはボルツマン定数であり、Tは室温である。また、説明は省略するが、印加電圧Vと全シリーズ抵抗Rsは、Isを用いて算出することができることが知られている。 Where V is the applied voltage, Rs is the total series resistance, J01 and J02 are diode saturation currents, q is the elementary charge, k is the Boltzmann constant, and T is room temperature. Although not described, it is known that the applied voltage V and the total series resistance Rs can be calculated using Is.
 この場合、(7)式が第3次特性情報を取得するのに必要な特性値算出条件となり、J02が第3次特性情報となる。 In this case, equation (7) is a characteristic value calculation condition necessary for acquiring the third characteristic information, and J02 is the third characteristic information.
 特性値算出部14は、特性値算出条件格納部13中の特性値算出条件を用いてTEG測定部11で得られた測定値から第2次特性情報を算出する処理を行う。また、特性値算出条件格納部13中の特性値算出条件を用いて第1次特性情報や算出した第2次特性情報から第3次特性情報を算出する処理を行う。 The characteristic value calculation unit 14 performs a process of calculating secondary characteristic information from the measurement value obtained by the TEG measurement unit 11 using the characteristic value calculation condition in the characteristic value calculation condition storage unit 13. In addition, a process for calculating the third characteristic information from the first characteristic information and the calculated second characteristic information using the characteristic value calculation condition in the characteristic value calculation condition storage unit 13 is performed.
 リファレンス値格納部15は、薄膜太陽電池モジュール100と薄膜太陽電池が製品として必要な特性情報の値(またはその範囲)を格納している。リファレンス値は、第2次特性情報や、電気特性測定部12によって測定された測定結果である第1次特性情報に対応して保持される。 The reference value storage unit 15 stores values (or ranges) of characteristic information necessary for the thin film solar cell module 100 and the thin film solar cell as products. The reference value is held corresponding to the secondary characteristic information and the primary characteristic information which is a measurement result measured by the electrical characteristic measurement unit 12.
 廃棄判定部16は、特性値算出部14から得られた第2次特性情報または電気特性測定部12で得られた測定値を、リファレンス値格納部15に格納されているリファレンス値と比較し、作製された薄膜太陽電池モジュール100または薄膜太陽電池が廃棄対象となるか否かを判断する。具体的には、第2次特性情報または測定値がリファレンス値を満たしていない場合には、廃棄対象となり、第2次特性情報または測定値がリファレンス値を満たしている場合には、廃棄対象とはならない。なお、1枚の薄膜太陽電池モジュール100には複数のTEGが設けられているので、複数のTEGでの第2次特性情報の平均値を用いて廃棄対象となるかの判定を行ったり、1つでもリファレンス値を満たしていないTEGがあれば廃棄対象と判定したりすることができる。 The discard determination unit 16 compares the secondary characteristic information obtained from the characteristic value calculation unit 14 or the measurement value obtained by the electrical characteristic measurement unit 12 with a reference value stored in the reference value storage unit 15, It is determined whether the produced thin film solar cell module 100 or the thin film solar cell is to be discarded. Specifically, if the secondary characteristic information or measurement value does not satisfy the reference value, the target is discarded. If the secondary characteristic information or measurement value satisfies the reference value, the target is discarded. Must not. Since one thin-film solar cell module 100 is provided with a plurality of TEGs, the average value of the secondary characteristic information in the plurality of TEGs is used to determine whether or not to be discarded. If there is any TEG that does not satisfy the reference value, it can be determined to be discarded.
 プロセス管理情報格納部17は、特性情報(第2次特性情報または第3次特性情報)と、その特性情報を所望の値にするプロセス条件と、を対応付けたプロセス管理情報を格納する。たとえば特性情報が再結合リーク電流である場合には、プロセス条件はCVD法で作成する光電変換セル120(半導体膜)の成膜条件、たとえばガス流量、圧力、基板温度、RF電力の膜厚方向での条件プロファイリングなどの条件となる。プロセス管理情報としては、たとえば、再結合リーク電流値ごとに所望の再結合リーク電流値とするためのプロセス条件が定められ、格納されている。再結合リーク電流ごとのプロセス条件は、予め実験によって求められるものである。 The process management information storage unit 17 stores process management information in which characteristic information (secondary characteristic information or tertiary characteristic information) is associated with a process condition for setting the characteristic information to a desired value. For example, when the characteristic information is recombination leakage current, the process condition is the film formation condition of the photoelectric conversion cell 120 (semiconductor film) formed by the CVD method, for example, the gas flow rate, the pressure, the substrate temperature, and the RF power film thickness direction. Conditional profiling and other conditions. As the process management information, for example, process conditions for obtaining a desired recombination leakage current value are determined and stored for each recombination leakage current value. The process conditions for each recombination leakage current are obtained in advance by experiments.
 プロセス条件補正部18は、特性値算出部14によって得られた特性情報に対応するプロセス条件をプロセス管理情報格納部17から取得し、そのプロセス条件に基づいて現在のプロセス条件を補正する補正条件を決定し、その補正条件を薄膜太陽電池モジュール100の製造装置に対して反映させる。 The process condition correction unit 18 acquires a process condition corresponding to the characteristic information obtained by the characteristic value calculation unit 14 from the process management information storage unit 17, and sets a correction condition for correcting the current process condition based on the process condition. Then, the correction condition is reflected on the apparatus for manufacturing the thin-film solar cell module 100.
 図22~図23は、この実施の形態による太陽電池モジュールの製造方法の手順の一例を示すフローチャートである。また、図24-1~図24-6は、この実施の形態による太陽電池モジュールの製造方法の手順の一例を模式的に示す図であり、各図の(a)は上面図であり、(b)は(a)のE-E断面図である。 22 to 23 are flowcharts showing an example of the procedure of the method for manufacturing the solar cell module according to this embodiment. FIGS. 24-1 to 24-6 are diagrams schematically showing an example of the procedure of the manufacturing method of the solar cell module according to this embodiment, and (a) in each drawing is a top view, b) is a sectional view taken along line EE of FIG.
 まず、ガラス基板101の表面に付着したコンタミネーションなどを除去するガラス基板101の洗浄処理を行う(ステップS11)。ついで、ガラス基板101上に表面電極層111をスパッタリング法などの成膜方法によって形成し(ステップS12、図24-1)、レーザスクライブ法を用いたP1スクライブプロセスによってX方向に延在する第1スクライブライン141をY方向に所定の間隔で形成する(ステップS13、図24-2)。またこのとき、ミニセルの端部となる位置に、X方向に交差する方向にも第2分離溝を構成する一対の第1スクライブライン145aを形成する。 First, a cleaning process is performed on the glass substrate 101 to remove contamination attached to the surface of the glass substrate 101 (step S11). Next, a surface electrode layer 111 is formed on the glass substrate 101 by a film forming method such as a sputtering method (step S12, FIG. 24-1), and a first extending in the X direction by a P1 scribe process using a laser scribe method. Scribe lines 141 are formed at predetermined intervals in the Y direction (step S13, FIG. 24-2). Further, at this time, a pair of first scribe lines 145a constituting the second separation grooves are also formed in a direction intersecting the X direction at a position to be an end portion of the minicell.
 その後、第1スクライブライン141,145aによって分離された表面電極層111上に半導体膜(光電変換セル120)をCVD法などの成膜方法によって形成する(ステップS14)。半導体膜として、たとえばp型アモルファスシリコン膜、i型アモルファスシリコン膜、n型アモルファスシリコン膜の積層膜を例示することができる。続けて、裏面透明導電膜131を半導体膜上にスパッタ法などの成膜方法によって形成する(ステップS15、図24-3)。 Thereafter, a semiconductor film (photoelectric conversion cell 120) is formed on the surface electrode layer 111 separated by the first scribe lines 141 and 145a by a film forming method such as a CVD method (step S14). As the semiconductor film, for example, a laminated film of a p-type amorphous silicon film, an i-type amorphous silicon film, and an n-type amorphous silicon film can be exemplified. Subsequently, the back transparent conductive film 131 is formed on the semiconductor film by a film forming method such as sputtering (step S15, FIG. 24-3).
 ついで、レーザスクライブ法を用いたP2スクライブプロセスによって、第1スクライブライン141とは異なる位置にX方向に延在する第2スクライブライン142をY方向に所定の間隔で形成する(ステップS16、図24-4)。この第2スクライブライン142は、上記したように、裏面透明導電膜131と半導体膜とを同時に加工して溝を形成するものである。またこのとき、ミニセルを形成する領域内にも第2スクライブライン142を形成してもよい。この形成の有無は、どのようなミニセルを作製するのかによる。 Next, a second scribe line 142 extending in the X direction is formed at a predetermined interval in the Y direction at a position different from the first scribe line 141 by a P2 scribe process using a laser scribe method (step S16, FIG. 24). -4). As described above, the second scribe line 142 forms the groove by processing the back transparent conductive film 131 and the semiconductor film at the same time. At this time, the second scribe line 142 may also be formed in the region where the minicell is formed. The presence or absence of this formation depends on what kind of minicell is produced.
 その後、第2スクライブライン142が形成された裏面透明導電膜131上に裏面電極膜132をスパッタ法などの方法で形成する(ステップS17、図24-5)。このとき第2スクライブライン142(溝)内にも裏面電極膜132が形成され、表面電極層111と裏面電極膜132とが接続される。ついで、レーザスクライブ法を用いたP3スクライブプロセスによって、第1および第2スクライブライン141,142とは異なる位置にX方向に延在する第3スクライブライン143をY方向に所定の間隔で形成する(ステップS18、図24-6)。この第3スクライブライン143は、上記したように、裏面電極膜132と裏面透明導電膜131と光電変換セル120(半導体膜)とを同時に加工して溝を形成するものである。またこのとき、ステップS13で作製したミニセルを区画するX方向に交差する一対の第1スクライブライン145a間に位置するように、一対の第1スクライブライン145aの延在方向と同じ方向に第2分離溝を構成する第3スクライブライン145bを形成する。以上によって、サブセル140が直列に接続され、一部にミニセル170によって構成されるTEGパターンを有する薄膜太陽電池モジュール100が形成される。 Thereafter, a back electrode film 132 is formed on the back transparent conductive film 131 on which the second scribe line 142 is formed by a method such as sputtering (step S17, FIG. 24-5). At this time, the back electrode film 132 is also formed in the second scribe line 142 (groove), and the front electrode layer 111 and the back electrode film 132 are connected. Next, third scribe lines 143 extending in the X direction at different positions from the first and second scribe lines 141 and 142 are formed at predetermined intervals in the Y direction by a P3 scribe process using a laser scribe method ( Step S18, FIG. 24-6). As described above, the third scribe line 143 forms a groove by simultaneously processing the back electrode film 132, the back transparent conductive film 131, and the photoelectric conversion cell 120 (semiconductor film). At this time, the second separation is performed in the same direction as the extension direction of the pair of first scribe lines 145a so as to be positioned between the pair of first scribe lines 145a intersecting the X direction that defines the minicell produced in step S13. A third scribe line 145b constituting the groove is formed. As described above, the thin-film solar battery module 100 having the TEG pattern in which the subcells 140 are connected in series and partially constituted by the minicells 170 is formed.
 その後、薄膜太陽電池モジュール100内のTEGを用いてTEG測定部11によってTEG測定が実行される(ステップS19)。TEG測定によって得られた第1次特性情報である測定値を用いて、特性値算出部14は、特性値算出処理を行う(ステップS20)。特性値算出処理は、ステップS12~S18の各処理工程での影響を特定できるように、各処理工程に関連した特性情報を得るものである。 Then, TEG measurement is performed by the TEG measurement part 11 using TEG in the thin film solar cell module 100 (step S19). Using the measurement value that is the primary characteristic information obtained by the TEG measurement, the characteristic value calculation unit 14 performs a characteristic value calculation process (step S20). The characteristic value calculation process is to obtain characteristic information related to each process so that the influence of each process in steps S12 to S18 can be specified.
 図23(a)は、特性値算出処理の具体的な処理手順の一例を示すフローチャートである。まず、特性値算出部14は特性値算出条件格納部13中の特性値算出条件と測定値とを用いて第2次特性情報を算出する(ステップS31)。たとえば、上記した<TEGパターン>の(1-1)式~(6-n)式で示した式などを用いて算出したい情報(第2次特性情報)を算出する。 FIG. 23A is a flowchart showing an example of a specific processing procedure of the characteristic value calculation processing. First, the characteristic value calculation unit 14 calculates secondary characteristic information using the characteristic value calculation condition and the measured value in the characteristic value calculation condition storage unit 13 (step S31). For example, the information (secondary characteristic information) to be calculated is calculated using the formulas (1-1) to (6-n) of <TEG pattern> described above.
 ついで、特性値算出部14は、特性値算出条件格納部13中の特性値算出条件と測定値と第2次特性情報とを用いて第3次特性情報を算出する(ステップS32)。たとえば、上記した(7)式などを用いて算出したい情報(第3次特性情報)を算出する。以上によって、特性値算出処理が終了する。ここでは第3次特性情報の算出まで行っているが、図5に示されるような各要素のうち所望の要素の電気特性を得ることが目的であるので、所望の要素の電気特性が得られれば第2次特性情報の算出までで処理を終了してもよいし、第4次特性情報以降の算出処理を行うようにしてもよい。 Next, the characteristic value calculation unit 14 calculates the third characteristic information using the characteristic value calculation condition, the measured value, and the second characteristic information in the characteristic value calculation condition storage unit 13 (step S32). For example, information to be calculated (third characteristic information) is calculated using the above-described equation (7). Thus, the characteristic value calculation process ends. Although the calculation up to the third characteristic information is performed here, the purpose is to obtain the electric characteristics of the desired element among the elements as shown in FIG. 5, so that the electric characteristics of the desired element can be obtained. For example, the process may be completed until the calculation of the secondary characteristic information, or the calculation process after the fourth characteristic information may be performed.
 その後、図22に戻り、廃棄判定部16は、測定対象の薄膜太陽電池モジュール100を廃棄するか否かの判定を行う(ステップS21)。具体的には、廃棄判定部16は、測定値または算出した特性情報(第2次特性情報または第3次特性情報)が、製品としての規格値であるリファレンス値を満たすか否かを判定する。ここで、リファレンス値を満たす場合には、廃棄せずに製品として使用し、リファレンス値を満たさない場合には、廃棄するものとする。廃棄判定は、たとえば光電変換効率や短絡電流、開放電圧、曲率因子などを用いて行うことができる。 Then, returning to FIG. 22, the discard determination unit 16 determines whether or not to discard the thin film solar cell module 100 to be measured (step S21). Specifically, the discard determination unit 16 determines whether the measured value or the calculated characteristic information (secondary characteristic information or third characteristic information) satisfies a reference value that is a standard value as a product. . Here, when the reference value is satisfied, the product is used without being discarded, and when the reference value is not satisfied, the product is discarded. The discard determination can be performed using, for example, photoelectric conversion efficiency, short-circuit current, open-circuit voltage, curvature factor, and the like.
 廃棄と判定された場合(ステップS21でYesの場合)には、作製された薄膜太陽電池モジュール100は、廃棄される(ステップS27)。 When it is determined to be discarded (Yes in step S21), the manufactured thin-film solar cell module 100 is discarded (step S27).
 一方、廃棄と判定されなかった場合(ステップS21でNoの場合)には、その薄膜太陽電池モジュール100のたとえば図5に示されるような各要素の電気特性(特性情報)を取得し、その要素の電気特性が適正な範囲にあるかを判定し、適正な範囲にない場合に以降の薄膜太陽電池モジュールの製造におけるプロセス条件を補正するプロセス条件補正処理を行う(ステップS22)。 On the other hand, when it is not determined to be discarded (in the case of No in step S21), for example, the electrical characteristics (characteristic information) of each element as shown in FIG. It is determined whether or not the electrical characteristics are within an appropriate range, and when the electrical characteristics are not within the appropriate range, a process condition correction process for correcting the process conditions in the subsequent manufacture of the thin film solar cell module is performed (step S22).
 図23(b)は、プロセス条件補正処理の具体的な処理手順の一例を示すフローチャートである。プロセス条件補正部18は、図5に示されるTEGを構成するある要素(たとえば、表面電極層111の抵抗、裏面電極層130の抵抗、裏面電極層130/表面電極層111同士の接触抵抗、シャントダイオード、シャント抵抗など)の電気特性を取得する(ステップS51)。電気特性は、ステップS20の特性値算出処理で算出された特性情報から取得される。 FIG. 23B is a flowchart illustrating an example of a specific processing procedure of the process condition correction processing. The process condition correction unit 18 includes certain elements (for example, the resistance of the front electrode layer 111, the resistance of the back electrode layer 130, the contact resistance between the back electrode layer 130 / the front electrode layers 111, and the shunt, which constitute the TEG shown in FIG. The electrical characteristics of the diode, shunt resistor, etc. are acquired (step S51). The electrical characteristics are acquired from the characteristic information calculated in the characteristic value calculation process in step S20.
 ついで、プロセス条件補正部18は、取得した要素の電気特性が適正な範囲内にあるかを判定する(ステップS52)。具体的には、取得した要素の電気特性に対応するリファレンス値をリファレンス値格納部15から取得し、両者を比較することによって、取得した要素の電気特性が適正値であるかを判定する。取得した要素の電気特性が適正な範囲内にない場合(ステップS52でNoの場合)には、プロセス条件補正部18は、その要素の電気特性が所望の値となるプロセス条件を、プロセス管理情報格納部17内のプロセス管理情報から取得する(ステップS53)。そして、プロセス条件補正部18は、取得したプロセス条件で、その要素に関連する工程(ステップS12~S18のいずれかの処理工程)の処理条件を補正し(ステップS54)、プロセス条件補正処理が終了し、図22に処理が戻る。 Next, the process condition correction unit 18 determines whether the electrical characteristics of the acquired element are within an appropriate range (step S52). Specifically, a reference value corresponding to the electrical characteristic of the acquired element is acquired from the reference value storage unit 15, and the two are compared to determine whether the electrical characteristic of the acquired element is an appropriate value. If the acquired electrical characteristics of the element are not within the appropriate range (No in step S52), the process condition correction unit 18 sets the process condition in which the electrical characteristics of the element have a desired value as the process management information. Obtained from the process management information in the storage unit 17 (step S53). Then, the process condition correction unit 18 corrects the process condition of the process related to the element (any one of the process steps S12 to S18) with the acquired process condition (step S54), and the process condition correction process ends. Then, the process returns to FIG.
 一方、取得した要素の電気特性が所望の範囲内にある場合(ステップS52でYesの場合)には、プロセス条件補正部18は、その要素に関連する工程の処理条件(プロセス条件)の補正を行わず(ステップS55)、プロセス条件補正処理が終了し、図22に処理が戻る。 On the other hand, when the electrical characteristics of the acquired element are within a desired range (Yes in step S52), the process condition correction unit 18 corrects the processing condition (process condition) of the process related to the element. If not performed (step S55), the process condition correction process ends, and the process returns to FIG.
 このプロセス条件補正処理では、測定値から相関する複数の特性条件(電気特性)を分離し、分離した特性条件のうち、所望の値(適正値)から外れている特性条件を抽出することで、薄膜太陽電池モジュール100の製造工程のうち適正な条件で行われていない工程を抽出することができる。そして、その製造工程のプロセス条件を変更することで、それ以降に製造される薄膜太陽電池モジュールの性能をさらに劣化させないようにすることができる。すなわち、各処理工程での処理の適否を示すパラメータ(特性情報)を抽出することで各処理工程での処理条件の適否を判断することができるとともに、そのパラメータに基づいて処理条件を補正することができる。 In this process condition correction process, a plurality of correlated characteristic conditions (electrical characteristics) are separated from the measured values, and among the separated characteristic conditions, a characteristic condition deviating from a desired value (proper value) is extracted. Of the manufacturing processes of the thin-film solar cell module 100, processes that are not performed under appropriate conditions can be extracted. And the performance of the thin film solar cell module manufactured after that can be prevented from further deteriorating by changing the process condition of the manufacturing process. That is, by extracting parameters (characteristic information) indicating the suitability of processing in each processing step, it is possible to determine the suitability of the processing conditions in each processing step, and to correct the processing conditions based on the parameters. Can do.
 その後、図22に戻り、廃棄対象とならない薄膜太陽電池モジュール100について、タブ線を貼付し(ステップS23)、複数の薄膜太陽電池モジュール100を直列または並列に接続する。続けて、タブ線で接続された複数の薄膜太陽電池モジュール100を封止し(ステップS24)、薄膜太陽電池を作製する。ついで、電気特性測定部12は、作製した薄膜太陽電池の電気特性の測定を行う(ステップS25)。 Then, returning to FIG. 22, tab wires are attached to the thin film solar cell modules 100 that are not to be discarded (step S23), and the plurality of thin film solar cell modules 100 are connected in series or in parallel. Subsequently, the plurality of thin film solar cell modules 100 connected by tab wires are sealed (step S24), and a thin film solar cell is manufactured. Next, the electrical property measuring unit 12 measures electrical properties of the manufactured thin film solar cell (step S25).
 その後、廃棄判定部16は、作製した薄膜太陽電池について、廃棄するか否かを判定する(ステップS26)。具体的には、廃棄判定部16は、電気特性評価によって得られた第1次特性情報である測定値と、リファレンス値格納部15中の製品としての規格を示すリファレンス値とを比較して、薄膜太陽電池について所望の電気特性が得られているかを判断する。そして、所望の電気特性が得られている場合(ステップS26でNoの場合)には、薄膜太陽電池を製品として仕分けする。また所望の電気特性が得られていない場合(ステップS26でYesの場合)には、薄膜太陽電池を廃棄する(ステップS27)。以上によって、薄膜太陽電池の製造処理が終了する。 Thereafter, the discard determination unit 16 determines whether or not to discard the manufactured thin-film solar cell (step S26). Specifically, the discard determination unit 16 compares the measured value, which is the primary characteristic information obtained by the electrical characteristic evaluation, with the reference value indicating the standard as the product in the reference value storage unit 15, It is determined whether or not desired electrical characteristics are obtained for the thin film solar cell. When the desired electrical characteristics are obtained (No in step S26), the thin film solar cell is sorted as a product. If the desired electrical characteristics are not obtained (Yes in step S26), the thin film solar cell is discarded (step S27). Thus, the manufacturing process of the thin film solar cell is completed.
 従来は、ステップS13のP1スクライブプロセス、ステップS16のP2スクライブプロセス、およびステップS18のP3スクライブプロセスにおいて、集積化太陽電池モジュールとして動作するようにサブセル140の分割を行っていた。この際、各スクライブプロセスS13,S16,S18ではサブセル140同士が直列接続されるよう適切なパターンで各種膜の除去が行われる。この実施の形態ではこれらのスクライブプロセスS13,S16,S18でTEGのパターンを新たに追加することでサブセル140の形成とミニセル170の形成を同時に行えるようにしており、ミニセル170の分割のための新規な工程の追加は必要ではない。ただし、プロセスの追加を行うことによって、この発明の効果が制限されるわけではなく、必要とするTEGのパターンに応じて、引き出し電極形成、絶縁膜形成などの工程を新たに追加することもできる。 Conventionally, in the P1 scribe process in step S13, the P2 scribe process in step S16, and the P3 scribe process in step S18, the subcell 140 is divided so as to operate as an integrated solar cell module. At this time, in each of the scribe processes S13, S16, and S18, various films are removed in an appropriate pattern so that the subcells 140 are connected in series. In this embodiment, a TEG pattern is newly added in the scribe processes S13, S16, and S18 so that the subcell 140 and the minicell 170 can be simultaneously formed. No additional process is necessary. However, the addition of the process does not limit the effect of the present invention, and it is also possible to newly add steps such as lead electrode formation and insulating film formation according to the required TEG pattern. .
 なお、上記した説明ではTEGパターンの電気特性評価のプロセスで各種パラメータ抽出を行い、プロセス管理情報を参照して条件補正量を決定する場合を説明したが、適宜インライン検査でパラメータ抽出が行えるようにしてもよい。 In the above description, the case where various parameters are extracted in the process of evaluating the electrical characteristics of the TEG pattern and the condition correction amount is determined with reference to the process management information has been described. However, the parameters can be appropriately extracted by in-line inspection. May be.
 ここで、プロセス管理処理の具体例を説明する。TEGパターンの1にあたる異サイズセルパターンを組み込んだセルを用いて、TEG検査手法の1のIV-Dark測定を行い、全電流からセルバルク電流成分Isを抽出する。抽出したセルバルク電流成分Isに対して、(7)式による2ダイオードモデルによる接合特性評価を行う。ここでは、再結合リーク成分、発電効率および曲率因子を算出する。 Here, a specific example of process management processing will be described. Using a cell incorporating a different size cell pattern corresponding to TEG pattern 1, IV-Dark measurement of TEG inspection method 1 is performed, and cell bulk current component Is is extracted from the total current. Junction characteristics evaluation is performed on the extracted cell bulk current component Is using a two-diode model according to equation (7). Here, the recombination leak component, power generation efficiency, and curvature factor are calculated.
 図25は、TEGの測定結果からCVDプロセスの条件を補正する前後の特性パラメータの状態の一例を示す図である。この図で、再結合リーク成分、発電効率および曲率因子の値は補正後を100%として規格化している。また、成膜温度と電力プロファイルは、TEGの測定結果から変更したプロセス条件を示している。 FIG. 25 is a diagram showing an example of the state of the characteristic parameters before and after correcting the CVD process conditions from the TEG measurement results. In this figure, the values of the recombination leak component, the power generation efficiency, and the curvature factor are normalized with the corrected value as 100%. Further, the film formation temperature and the power profile indicate process conditions changed from the TEG measurement results.
 図25に示されるように、条件補正前では、発電効率と曲率因子がともに補正後(適正値)に比して劣化している。また、再結合リーク成分が補正後(適正値)に比してかなり乖離しているので、発電効率と曲率因子の悪化は再結合リーク成分、すなわちステップS14の半導体膜(光電変換セル120)成膜処理が原因であると推定することができる。 As shown in FIG. 25, before the condition correction, both the power generation efficiency and the curvature factor are degraded as compared with the corrected value (appropriate value). Further, since the recombination leak component is considerably different from that after correction (appropriate value), the deterioration of the power generation efficiency and the curvature factor is the recombination leak component, that is, the formation of the semiconductor film (photoelectric conversion cell 120) in step S14. It can be estimated that the membrane treatment is the cause.
 半導体膜として微結晶シリコンを用いるものとすると、TEG評価結果からフィードバックして補正する条件としてはガス流量、圧力、基板温度、RF電力、膜厚方向での条件プロファイリングなどが挙げられる。今回、圧力を1200Paとし、H2流量を15SLMとし、SiH4流量を0.3SLMとし、電極/ステージ間隔を13.2mmとし、成膜温度を180℃とし、RF電力の膜厚方向でのプロファイルを初期6kWで後期6kWとして、半導体膜の成膜を行っているものとする。 Assuming that microcrystalline silicon is used as the semiconductor film, the conditions for feedback correction from the TEG evaluation result include gas flow rate, pressure, substrate temperature, RF power, and condition profiling in the film thickness direction. This time, the pressure is 1200 Pa, the H 2 flow rate is 15 SLM, the SiH 4 flow rate is 0.3 SLM, the electrode / stage interval is 13.2 mm, the film forming temperature is 180 ° C., and the RF power profile in the film thickness direction. It is assumed that the semiconductor film is formed with the initial 6 kW and the latter 6 kW.
 この中で、成膜温度を180℃から160℃に変更し、RF電力の膜厚方向でのプロファイルを初期6kWで後期6kWから初期6kWで後期5kWに変更するようにプロセス条件を補正する。このようにプロセス条件を変更することで、再結合リーク成分が163%から元に戻ることが確認された。この変化に伴い、発電効率と曲率因子もそれぞれ90.6%、97.5%から元に戻ることが確認できる。以上により、TEG評価結果をプロセス管理に用いることが薄膜太陽電池の製造においても有用であることが確認できる。 Among these, the film formation temperature is changed from 180 ° C. to 160 ° C., and the process condition is corrected so that the profile in the film thickness direction of the RF power is changed from the initial 6 kW to the late 6 kW to the initial 6 kW. In this way, it was confirmed that the recombination leak component returns from 163% by changing the process conditions. Along with this change, it can be confirmed that the power generation efficiency and the curvature factor also return from 90.6% and 97.5%, respectively. From the above, it can be confirmed that the use of the TEG evaluation results for process management is also useful in the production of thin film solar cells.
 この実施の形態によれば、薄膜太陽電池モジュール100にTEGを設けるようにしたので、TEGを用いた計測結果から薄膜太陽電池モジュール100が所望の特性を得られるように、プロセス条件のフィードバック制御を実行することができるという効果を有する。また、基板面内にTEGパターンを隣接するサブセルと直列に接続するように配置しているので、TEG領域そのものもモジュール内のサブセル(発電領域)として動作し、TEG導入による特性減少を抑制することができるという効果を有する。 According to this embodiment, since the thin film solar cell module 100 is provided with the TEG, the process condition feedback control is performed so that the thin film solar cell module 100 can obtain desired characteristics from the measurement result using the TEG. It has the effect that it can be executed. In addition, since the TEG pattern is arranged in the substrate surface so as to be connected in series with the adjacent subcells, the TEG region itself also operates as a subcell (power generation region) in the module, and suppresses a decrease in characteristics due to the introduction of TEG. Has the effect of being able to.
 さらに、TEGを用いることで、その測定結果を薄膜太陽電池モジュール100を構成する要素の特性に分離することができ、その要素の特性と関連する薄膜太陽電池モジュール100の製造プロセスを取得し、薄膜太陽電池モジュール100の製造においてもプロセス管理を実行することができるという効果を有する。また、複数のTEGを基板面内に有することができ、それぞれの測定結果の相関により、単一レイアウトでは難しい複数プロセス間にまたがる補正量決定が行いやすくなり、より複雑なプロセス管理を行うこともできる。 Further, by using the TEG, the measurement result can be separated into the characteristics of the elements constituting the thin film solar cell module 100, the manufacturing process of the thin film solar cell module 100 related to the characteristics of the elements is obtained, and the thin film Even in the manufacture of the solar cell module 100, the process management can be executed. In addition, a plurality of TEGs can be provided on the substrate surface, and the correlation between the measurement results makes it easier to determine the amount of correction across multiple processes, which is difficult with a single layout, allowing more complex process management. it can.
 10 太陽電池モジュール製造管理装置、11 TEG測定部、12 電気特性測定部、13 特性値算出条件格納部、14 特性値算出部、15 リファレンス値格納部、16 廃棄判定部、17 プロセス管理情報格納部、18 プロセス条件補正部、21 表面電極層成膜装置、22 半導体膜成膜装置、23 裏面透明導電膜成膜装置、24 裏面電極膜成膜装置、25 スクライブライン形成装置、100 薄膜太陽電池モジュール、101 ガラス基板、111 表面電極層、120 光電変換セル、121 p型半導体膜、122 i型半導体膜、123 n型半導体膜、130 裏面電極層、131 裏面透明導電膜、132 裏面電極膜、140,140-1~140-3,140a サブセル、141,145a 第1スクライブライン、142,172 第2スクライブライン、143,145b,146a,171 第3スクライブライン、145,145A~145C 第2分離溝、145c 第4スクライブライン、146,146A,146B 第1分離溝、170,170a~170j ミニセル、200 測定装置、201a,201b プローブピン、202 ガードピンドライバ、203a,203b ガードピン。 10 solar cell module manufacturing management device, 11 TEG measurement unit, 12 electrical property measurement unit, 13 property value calculation condition storage unit, 14 property value calculation unit, 15 reference value storage unit, 16 disposal determination unit, 17 process management information storage unit , 18 process condition correction unit, 21 surface electrode layer deposition apparatus, 22 semiconductor film deposition apparatus, 23 back transparent conductive film deposition apparatus, 24 back electrode film deposition apparatus, 25 scribe line formation apparatus, 100 thin film solar cell module , 101 glass substrate, 111 surface electrode layer, 120 photoelectric conversion cell, 121 p-type semiconductor film, 122 i-type semiconductor film, 123 n-type semiconductor film, 130 back electrode layer, 131 back transparent conductive film, 132 back electrode film, 140 , 140-1 to 140-3, 140a subcell, 141, 145a Scribe line, 142, 172, second scribe line, 143, 145b, 146a, 171, third scribe line, 145, 145A to 145C, second separation groove, 145c, fourth scribe line, 146, 146A, 146B, first separation groove, 170 , 170a to 170j, minicell, 200 measuring device, 201a, 201b probe pin, 202 guard pin driver, 203a, 203b guard pin.

Claims (12)

  1.  第1電極層、光電変換セルおよび第2電極層を有する積層膜が第1方向に延在する第1分離溝によって分離されたサブセルが、前記第1方向に交差する第2方向に直列に接続されるように基板上に配置された太陽電池モジュールであって、
     前記第2方向に隣接する2以上の前記サブセルにわたって前記第2方向に延在する複数本の第2分離溝を形成することによって、前記サブセル内に形成される複数のミニセルからなるミニセル群を備え、
     前記第1分離溝は、前記第1方向に隣接する前記サブセル間を電気的に直列に接続するものであって、前記第2方向に隣接する前記サブセル間で分離するように前記第1電極層の一部を除去する第1除去部と、前記第1電極層と隣接する前記サブセルの前記第2電極層とを電気的に接続するように前記光電変換セルの一部を除去する第2除去部と、隣接する前記サブセル間を電気的に絶縁するように前記第2電極層と前記光電変換セルの一部を除去する第3除去部と、によって構成され、
     前記第2分離溝は、該第2分離溝を挟んで隣接する領域の前記積層膜間を電気的に絶縁するものであって、前記第1電極層の一部を除去する第4除去部と、前記光電変換セルの一部を除去する第5除去部と、前記第2電極層と前記光電変換セルの一部を除去する第6除去部と、前記第2電極層と前記光電変換セルと前記第1電極層の一部を除去する第7除去部と、の少なくとも1つ以上によって構成されることを特徴とする太陽電池モジュール。
    Subcells in which a laminated film having a first electrode layer, a photoelectric conversion cell, and a second electrode layer are separated by a first separation groove extending in the first direction are connected in series in a second direction intersecting the first direction. A solar cell module disposed on a substrate as in
    A minicell group including a plurality of minicells formed in the subcell by forming a plurality of second separation grooves extending in the second direction across two or more subcells adjacent in the second direction. ,
    The first separation groove electrically connects the subcells adjacent in the first direction in series, and the first electrode layer is configured to separate the subcells adjacent in the second direction. A second removal part for removing a part of the photoelectric conversion cell so as to electrically connect a first removal part for removing a part of the first electrode layer and the second electrode layer of the subcell adjacent to the first electrode layer. And a third removal unit for removing a part of the photoelectric conversion cell and the second electrode layer so as to electrically insulate between the adjacent subcells,
    The second separation groove electrically insulates between the stacked films in the adjacent regions across the second separation groove, and includes a fourth removal unit that removes a part of the first electrode layer. A fifth removal unit for removing a part of the photoelectric conversion cell, a sixth removal unit for removing a part of the second electrode layer and the photoelectric conversion cell, the second electrode layer, and the photoelectric conversion cell, A solar cell module comprising: at least one of a seventh removal section that removes a part of the first electrode layer.
  2.  前記ミニセル群は、前記基板面内に複数配置されていることを特徴とする請求項1に記載の太陽電池モジュール。 The solar cell module according to claim 1, wherein a plurality of the minicell groups are arranged in the substrate surface.
  3.  前記ミニセル群は、それぞれ異なる面積/周長比を有する前記ミニセルを複数備えることを特徴とする請求項1または2に記載の太陽電池モジュール。 The solar cell module according to claim 1 or 2, wherein the minicell group includes a plurality of the minicells each having a different area / circumference ratio.
  4.  前記ミニセルの領域内部に、前記第4除去部から前記第7除去部のうち少なくとも1つの種類の除去部を備えることを特徴とする請求項1から3のいずれか1つに記載の太陽電池モジュール。 The solar cell module according to any one of claims 1 to 3, further comprising at least one type of removing portion among the fourth removing portion to the seventh removing portion inside the region of the minicell. .
  5.  前記第2分離溝は、前記第2方向に延在するように形成されることを特徴とする請求項1から4のいずれか1つに記載の太陽電池モジュール。 The solar cell module according to any one of claims 1 to 4, wherein the second separation groove is formed to extend in the second direction.
  6.  前記ミニセル群を他の領域と分離する前記第1方向の両端に位置する前記第2分離溝は、前記第1方向に対して垂直な方向に延在し、
     前記ミニセル群内に形成される前記第2分離溝は、前記第1方向に対して垂直ではない角度で交差する方向に延在することを特徴とする請求項1から4のいずれか1つに記載の太陽電池モジュール。
    The second separation grooves located at both ends of the first direction separating the minicell group from other regions extend in a direction perpendicular to the first direction;
    5. The method according to claim 1, wherein the second separation groove formed in the minicell group extends in a direction intersecting at an angle that is not perpendicular to the first direction. The solar cell module described.
  7.  前記ミニセル群は、領域内部に前記第2分離溝によってミアンダ形状が形成された前記ミニセルを複数有し、
     前記ミニセルは、前記ミアンダ形状の折り返し数が異なることを特徴とする請求項1から4のいずれか1つに記載の太陽電池モジュール。
    The minicell group has a plurality of the minicells in which a meander shape is formed by the second separation groove inside the region,
    The solar cell module according to any one of claims 1 to 4, wherein the minicells have different meander-shaped folding numbers.
  8.  前記基板は、異なる表面粗さの複数の領域を有しており、
     表面粗さの異なる領域のそれぞれに、形状が同等の複数の前記ミニセルを備えることを特徴とする請求項1から7のいずれか1つに記載の太陽電池モジュール。
    The substrate has a plurality of regions of different surface roughness;
    The solar cell module according to any one of claims 1 to 7, further comprising a plurality of the minicells having the same shape in each of the regions having different surface roughnesses.
  9.  前記第1除去部から前記第4除去部が直線、長方形または円を直線上に並べた形状であることを特徴とする請求項1から8のいずれか1つに記載の太陽電池モジュール。 The solar cell module according to any one of claims 1 to 8, wherein the first removal unit to the fourth removal unit have a shape in which straight lines, rectangles, or circles are arranged on a straight line.
  10.  基板上に第1電極層を形成する第1電極層形成工程と、
     前記第1電極層の一部を除去して第1除去部を形成する第1除去工程と、
     除去された前記第1電極層が形成された前記基板上に光電変換セルを形成する光電変換セル形成工程と、
     前記光電変換セルの一部を除去して第2除去部を形成する第2除去工程と、
     前記第1電極層と前記光電変換セルが形成された前記基板上に第2電極層を形成する第2電極層形成工程と、
     前記光電変換セルと前記第2電極層の一部を除去して第3除去部を形成する第3除去工程と、
     前記第1電極層と前記光電変換セルと前記第2電極層の一部を除去して第4除去部を形成する第4除去工程と、
     を含む太陽電池モジュールの製造方法であって、
     前記第1除去工程と、前記第2除去工程と、前記第3除去工程とを用いて、第1方向に沿った前記第1除去部、前記第2除去部および前記第3除去部からなる第1分離溝を複数形成して、前記第1方向に交差する第2方向に隣接する複数のサブセルを形成するサブセル形成工程と、
     前記第1除去工程、前記第2除去工程、前記第3除去工程および前記第4除去工程のうち少なくとも1つの工程を用いて、前記第2方向に沿った前記第1除去部、前記第2除去部、前記第3除去部および前記第4除去部のうちのいずれかからなる第2分離溝を、少なくとも2つ以上の隣接した前記サブセルにわたって形成して複数個の前記ミニセルからなるミニセル群を作製するミニセル群形成工程と、
     前記ミニセルを電気的に測定する測定工程と、
     前記測定工程での測定結果から、前記第1電極層形成工程、前記光電変換セル形成工程および前記第2電極層形成工程と前記第1から第4の除去工程に対応する特性情報を算出する特性情報算出工程と、
     算出した前記特性情報から前記膜形成工程または前記第1から第4の除去工程の条件を補正する条件補正工程と、
     を含むことを特徴とする太陽電池モジュールの製造方法。
    A first electrode layer forming step of forming a first electrode layer on the substrate;
    A first removal step of removing a part of the first electrode layer to form a first removal portion;
    A photoelectric conversion cell forming step of forming a photoelectric conversion cell on the substrate on which the removed first electrode layer is formed;
    A second removal step of removing a part of the photoelectric conversion cell to form a second removal portion;
    A second electrode layer forming step of forming a second electrode layer on the substrate on which the first electrode layer and the photoelectric conversion cell are formed;
    A third removal step of forming a third removal portion by removing a part of the photoelectric conversion cell and the second electrode layer;
    A fourth removal step of removing a part of the first electrode layer, the photoelectric conversion cell, and the second electrode layer to form a fourth removal portion;
    A method for producing a solar cell module comprising:
    Using the first removal step, the second removal step, and the third removal step, a first removal portion, a second removal portion, and a third removal portion that are formed along the first direction. Forming a plurality of 1 separation grooves and forming a plurality of subcells adjacent to each other in a second direction intersecting the first direction;
    Using at least one of the first removal step, the second removal step, the third removal step, and the fourth removal step, the first removal unit and the second removal along the second direction Forming a plurality of minicells by forming at least two or more adjacent subcells by forming a second separation groove composed of any one of the first removal portion, the third removal portion, and the fourth removal portion. A minicell group forming process,
    A measurement step of electrically measuring the minicell;
    A characteristic for calculating characteristic information corresponding to the first electrode layer forming process, the photoelectric conversion cell forming process, the second electrode layer forming process, and the first to fourth removing processes from the measurement result in the measuring process. Information calculation process;
    A condition correction step for correcting the conditions of the film formation step or the first to fourth removal steps from the calculated characteristic information;
    The manufacturing method of the solar cell module characterized by including.
  11.  前記測定工程では、前記基板面内に配置された複数の前記ミニセル群を電気的に測定し、
     前記特性情報算出工程では、複数の箇所の前記ミニセル群の測定結果同士の相関を基に特性情報を算出することを特徴とする請求項10に記載の太陽電池モジュールの製造方法。
    In the measuring step, electrically measure a plurality of the minicell groups arranged in the substrate surface,
    The method for manufacturing a solar cell module according to claim 10, wherein in the characteristic information calculation step, characteristic information is calculated based on correlations between measurement results of the minicell groups at a plurality of locations.
  12.  基板上に第1電極層を形成する第1電極層形成装置と、前記基板上に光電変換セルを形成する光電変換セル形成装置と、前記基板上に第2電極層を形成する第2電極層形成装置と、前記第1電極層、前記光電変換セルおよび前記第2電極層のうちの一部を除去するスクライブライン形成装置と、前記の一連の装置に接続され、これらの装置における処理条件を管理する太陽電池モジュール製造管理装置において、
     前記太陽電池モジュールに形成されるミニセルを用いて測定を行うミニセル測定手段と、
     前記ミニセル測定手段による測定結果から、前記各装置での処理内容に対応する前記太陽電池モジュールを構成する複数の要素の特性情報を算出する特性値算出手段と、
     前記要素の特性情報を所望の範囲内にするように前記要素の加工に対応する処理条件を、前記要素の特性情報の値ごとに管理するプロセス管理情報を格納するプロセス管理情報格納手段と、
     算出した前記特性情報が所望の範囲内に存在するかを判定し、所望の範囲内に存在しない場合に、算出した前記特性情報を前記所望の範囲内とする処理条件を前記プロセス管理情報から取得し、取得した前記処理条件を対応する装置に設定するプロセス条件補正手段と、
     を備えることを特徴とする太陽電池モジュール製造管理装置。
    A first electrode layer forming device that forms a first electrode layer on a substrate, a photoelectric conversion cell forming device that forms a photoelectric conversion cell on the substrate, and a second electrode layer that forms a second electrode layer on the substrate Connected to the forming apparatus, the scribe line forming apparatus for removing a part of the first electrode layer, the photoelectric conversion cell and the second electrode layer, and the series of apparatuses. In the solar cell module manufacturing management device to manage,
    Minicell measuring means for measuring using minicells formed in the solar cell module;
    From the measurement result by the minicell measurement means, characteristic value calculation means for calculating characteristic information of a plurality of elements constituting the solar cell module corresponding to the processing content in each device,
    Process management information storage means for storing process management information for managing processing conditions corresponding to processing of the element for each value of the characteristic information of the element so that the characteristic information of the element falls within a desired range;
    It is determined whether or not the calculated characteristic information exists within a desired range, and when the calculated characteristic information does not exist within the desired range, a processing condition for making the calculated characteristic information within the desired range is acquired from the process management information And process condition correction means for setting the acquired processing condition in a corresponding device;
    A solar cell module production management device comprising:
PCT/JP2013/063599 2012-05-29 2013-05-15 Solar battery module, method for producing same, and device for managing production of solar battery module WO2013179898A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014518378A JPWO2013179898A1 (en) 2012-05-29 2013-05-15 SOLAR CELL MODULE, ITS MANUFACTURING METHOD, AND SOLAR CELL MODULE MANUFACTURING MANAGEMENT DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-122287 2012-05-29
JP2012122287 2012-05-29

Publications (1)

Publication Number Publication Date
WO2013179898A1 true WO2013179898A1 (en) 2013-12-05

Family

ID=49673101

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/063599 WO2013179898A1 (en) 2012-05-29 2013-05-15 Solar battery module, method for producing same, and device for managing production of solar battery module

Country Status (2)

Country Link
JP (1) JPWO2013179898A1 (en)
WO (1) WO2013179898A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016169595A1 (en) * 2015-04-22 2016-10-27 Fundación Tekniker Method for manufacturing a photovoltaic panel comprising a plurality of thin film photovoltaic cells connected in series
EP3346243A1 (en) * 2017-01-10 2018-07-11 STMicroelectronics (Research & Development) Limited Zero power sensors
JP2019087735A (en) * 2017-11-07 2019-06-06 君泰創新(北京)科技有限公司Beijing Juntai Innovation Technology Co.,Ltd Process editing and acquisition method for solar cell manufacturing device, and protection method and apparatus
CN110635051A (en) * 2019-09-23 2019-12-31 中国科学技术大学 Solar cell module and manufacturing method thereof
WO2020254742A1 (en) * 2019-06-20 2020-12-24 Commissariat A L'energie Atomique Et Aux Energies Alternatives Method for electrically characterising a cut photovoltaic cell

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001298203A (en) * 2000-04-14 2001-10-26 Fuji Electric Co Ltd Method for manufacturing thin-film solar cell
JP2002231983A (en) * 2001-01-31 2002-08-16 Canon Inc Method for estimating characteristic of semiconductor film and method for manufacturing photovoltaic element and solar battery module by using the same
JP2006228876A (en) * 2005-02-16 2006-08-31 Sharp Corp Solar cell and manufacturing method thereof
WO2009020073A1 (en) * 2007-08-06 2009-02-12 Sharp Kabushiki Kaisha Method and apparatus for manufacturing thin film photoelectric conversion module
JP2010073990A (en) * 2008-09-19 2010-04-02 Mitsubishi Heavy Ind Ltd Inspecting apparatus of photoelectric conversion device module
JP2010519731A (en) * 2007-02-16 2010-06-03 ナノグラム・コーポレイション Solar cell structure, photovoltaic module and methods corresponding thereto
JP2010279952A (en) * 2009-06-02 2010-12-16 Hitachi High-Technologies Corp Laser beam machining condition inspecting device, laser beam machining apparatus and method of manufacturing solar panel
WO2012036197A1 (en) * 2010-09-17 2012-03-22 株式会社アルバック Device for evaluating and method for evaluating solar cell

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001068714A (en) * 1999-08-25 2001-03-16 Kanegafuchi Chem Ind Co Ltd Silicon thin film photoelectric conversion module and manufacture thereof
CN101933154B (en) * 2008-03-31 2012-06-20 株式会社爱发科 Solar cell manufacturing method, solar cell manufacturing device, and solar cell
US8298852B2 (en) * 2008-12-29 2012-10-30 Jusung Engineering Co., Ltd. Thin film type solar cell and method for manufacturing the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001298203A (en) * 2000-04-14 2001-10-26 Fuji Electric Co Ltd Method for manufacturing thin-film solar cell
JP2002231983A (en) * 2001-01-31 2002-08-16 Canon Inc Method for estimating characteristic of semiconductor film and method for manufacturing photovoltaic element and solar battery module by using the same
JP2006228876A (en) * 2005-02-16 2006-08-31 Sharp Corp Solar cell and manufacturing method thereof
JP2010519731A (en) * 2007-02-16 2010-06-03 ナノグラム・コーポレイション Solar cell structure, photovoltaic module and methods corresponding thereto
WO2009020073A1 (en) * 2007-08-06 2009-02-12 Sharp Kabushiki Kaisha Method and apparatus for manufacturing thin film photoelectric conversion module
JP2010073990A (en) * 2008-09-19 2010-04-02 Mitsubishi Heavy Ind Ltd Inspecting apparatus of photoelectric conversion device module
JP2010279952A (en) * 2009-06-02 2010-12-16 Hitachi High-Technologies Corp Laser beam machining condition inspecting device, laser beam machining apparatus and method of manufacturing solar panel
WO2012036197A1 (en) * 2010-09-17 2012-03-22 株式会社アルバック Device for evaluating and method for evaluating solar cell

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016169595A1 (en) * 2015-04-22 2016-10-27 Fundación Tekniker Method for manufacturing a photovoltaic panel comprising a plurality of thin film photovoltaic cells connected in series
CN107636843A (en) * 2015-04-22 2018-01-26 泰克尼克基金会 For the method for the photovoltaic panel for manufacturing the multiple film photovoltaic cells for including being connected in series
EP3346243A1 (en) * 2017-01-10 2018-07-11 STMicroelectronics (Research & Development) Limited Zero power sensors
CN108288622A (en) * 2017-01-10 2018-07-17 意法半导体(R&D)有限公司 Zero power sensor
US10670456B2 (en) 2017-01-10 2020-06-02 Stmicroelectronics (Research & Development) Limited Zero power sensors
CN108288622B (en) * 2017-01-10 2023-06-06 意法半导体(R&D)有限公司 Zero power sensor
JP2019087735A (en) * 2017-11-07 2019-06-06 君泰創新(北京)科技有限公司Beijing Juntai Innovation Technology Co.,Ltd Process editing and acquisition method for solar cell manufacturing device, and protection method and apparatus
WO2020254742A1 (en) * 2019-06-20 2020-12-24 Commissariat A L'energie Atomique Et Aux Energies Alternatives Method for electrically characterising a cut photovoltaic cell
FR3097705A1 (en) * 2019-06-20 2020-12-25 Commissariat A L'energie Atomique Et Aux Energies Alternatives ELECTRICAL CHARACTERIZATION PROCESS OF A CUT PHOTOVOLTAIC CELL
CN110635051A (en) * 2019-09-23 2019-12-31 中国科学技术大学 Solar cell module and manufacturing method thereof

Also Published As

Publication number Publication date
JPWO2013179898A1 (en) 2016-01-18

Similar Documents

Publication Publication Date Title
JP6665166B2 (en) Solar cell module and method of manufacturing the same
WO2013179898A1 (en) Solar battery module, method for producing same, and device for managing production of solar battery module
US20090102502A1 (en) Process testers and testing methodology for thin-film photovoltaic devices
US20090104342A1 (en) Photovoltaic fabrication process monitoring and control using diagnostic devices
US9461582B2 (en) Electrical parametric testing for back contact semiconductor solar cells
US20140224313A1 (en) Silicon solar cell structure
US20120057439A1 (en) Photovoltaic panel, wristwatch, and method of manufacturing photovoltaic panel
US20110100412A1 (en) Method of manufacturing photovoltaic modules
Lombardero et al. Manufacturing process for III–V multijunction solar cells on germanium substrates with a total thickness below 60 microns
JP2013247165A (en) Thin-film solar battery module and manufacturing method therefor
US20140162383A1 (en) Manufacturing method for solar cell and solar cell manufacturing system
WO2013179387A1 (en) Solar cell manufacturing method, solar cell module manufacturing method, and solar cell module
KR20090080171A (en) Photoelectric Conversion Module Structure for Increasing the Effective Area of Lihgt Electromotive Force in Intergrated Thin Solar Cell and Manufacturing Method Thereof
WO2011024750A1 (en) Method and device for evaluating solar cells
US8963270B2 (en) Fabrication of interconnected thin-film concentrator cells using shadow masks
Rudolph et al. Cell design optimization for shingled modules
WO2016183589A1 (en) Metal micro-grid electrode for highly efficient si microwire solar cells with over 80% fill factor
WO2016169595A1 (en) Method for manufacturing a photovoltaic panel comprising a plurality of thin film photovoltaic cells connected in series
TW201944608A (en) Data processing device, data processing method and manufacturing method for solar battery cell
Bokalič et al. Module Level Electroluminescence Imaging
JP5622937B2 (en) Solar cell manufacturing method and solar cell manufacturing system
TW201511306A (en) Passivated emitter rear contact solar cell and method of manufacturing the same
KR20100025962A (en) Manufacturing method of thin film solar cells
KR20110012955A (en) Method of inspecting a solar cell module and method of manufacturing the solar cell module by using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13797284

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014518378

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13797284

Country of ref document: EP

Kind code of ref document: A1