JP4432236B2 - Thin film solar cell - Google Patents

Thin film solar cell Download PDF

Info

Publication number
JP4432236B2
JP4432236B2 JP2000263296A JP2000263296A JP4432236B2 JP 4432236 B2 JP4432236 B2 JP 4432236B2 JP 2000263296 A JP2000263296 A JP 2000263296A JP 2000263296 A JP2000263296 A JP 2000263296A JP 4432236 B2 JP4432236 B2 JP 4432236B2
Authority
JP
Japan
Prior art keywords
electrode layer
substrate
photoelectric conversion
solar cell
connection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000263296A
Other languages
Japanese (ja)
Other versions
JP2002076406A (en
Inventor
清雄 ▲斎▼藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Systems Co Ltd filed Critical Fuji Electric Systems Co Ltd
Priority to JP2000263296A priority Critical patent/JP4432236B2/en
Publication of JP2002076406A publication Critical patent/JP2002076406A/en
Application granted granted Critical
Publication of JP4432236B2 publication Critical patent/JP4432236B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)
  • Laser Beam Processing (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、薄膜太陽電池に関する。
【0002】
【従来の技術】
現在、環境保護の立場から、クリーンなエネルギーの研究開発が進められている。中でも、太陽電池はその資源(太陽光)が無限であること、無公害であることから注目を集めている。同一基板上に形成された複数の太陽電池素子が、直列接続されてなる太陽電池(光電変換装置)の代表例は、薄膜太陽電池である。
【0003】
薄膜太陽電池は、薄型で軽量、製造コストの安さ、大面積化が容易であることなどから、今後の太陽電池の主流となると考えられ、電力供給用以外に、建物の屋根や窓などにとりつけて利用される業務用,一般住宅用にも需要が広がってきている。
【0004】
従来の薄膜太陽電池はガラス基板を用いていたが、軽量化、施工性、量産性においてプラスチックフィルムを用いたフレキシブルタイプの太陽電池の研究開発が進められている。さらに、フレキシブルな金属材料に絶縁被覆したフィルム基板を用いたものも開発されている。このフレキシブル性を生かし、ロールツーロール方式やステッピングロール方式の製造方法により大量生産が可能となった。
【0005】
上記の薄膜太陽電池は、フレキシブルな電気絶縁性フィルム基板上に第1電極(以下、下電極ともいう)、薄膜半導体層からなる光電変換層および第2電極(以下、透明電極ともいう)が積層されてなる光電変換素子(またはセル)が複数形成されている。ある光電変換素子の第1電極と隣接する光電変換素子の第2電極を電気的に接続することを繰り返すことにより、最初の光電変換素子の第1電極と最後の光電変換素子の第2電極とに必要な電圧を出力させることができる。例えば、インバータにより交流化し商用電力源として交流100Vを得るためには、薄膜太陽電池の出力電圧は100V以上が望ましく、実際には数10個以上の素子が直列接続される。
【0006】
このような光電変換素子とその直列接続は、電極層と光電変換層の成膜と各層のパターニングおよびそれらの組み合わせ手順により形成される。上記太陽電池の構成および製造方法の一例は、例えば特開平10−233517号公報や特願平11−19306号に記載されている。
【0007】
図4は、上記特開平10−233517号公報に記載された薄膜太陽電池の一例を示し、(a)は平面図、(b)は(a)における線ABCDおよびBQCに沿っての断面図であり、(c)は(a)におけるEE断面図を示す。
【0008】
電気絶縁性でフレキシブルな樹脂からなる長尺のフィルム基板上に、順次、第1電極層、光電変換層、第2電極層が積層され、フィルム基板の反対側(裏面)には第3電極層、第4電極層が積層され、裏面電極が形成されている。光電変換層は例えばアモルファスシリコンのpin接合である。フィルム基板用材料としては、ポリイミドのフィルム、例えば厚さ50μmのフィルムが用いられている。
【0009】
フィルムの材質としては、他に、ポリエチレンナフタレート(PEN)、ポリエーテルサルフォン(PES)、ポリエチレンテレフタレート(PET)、またはアラミド系のフィルムなどを用いることができる。
【0010】
次に、製造工程の概要につき以下に説明する。
【0011】
先ず、フィルム基板にパンチを用いて、接続孔h1を開け、基板の片側(表側とする)に第1電極層として、スパッタにより銀を、例えば100nmの厚さに成膜し、これと反対の面(裏側とする)には、第3電極層として、同じく銀電極を成膜する。接続孔h1の内壁で第1電極層と第3電極層とは重なり、導通する。
【0012】
電極層としては、銀(Ag)以外に、Al,Cu,Ti等の金属をスパッタまたは電子ビーム蒸着等により製膜しても良く、金属酸化膜と金属の多層膜を電極層としても良い。
【0013】
成膜後、表側では、第1電極層を所定の形状にレーザ加工して、下電極l1〜l6をパターニングする。下電極l1〜l6の隣接部は一本の分離線g2を、二列の直列接続の光電変換素子間および周縁導電部fとの分離のためには二本の分離線g2を形成し、下電極l1〜l6は分離線により囲まれるようにする。再度パンチを用いて、集電孔h2を開けた後、表側に、光電変換層pとしてa-Si層をプラズマCVDにより成膜する。マスクを用いて幅W2の成膜とし、レーザ加工により二列素子の間だけに第1電極層と同じ分離線を形成する。
【0014】
さらに第2電極層として表側に透明電極層(ITO層)を成膜する。但し、二つの素子列の間とこれに平行な基板の両側端部にはマスクを掛け接続孔h1には成膜しないようにし、素子部のみに成膜する。透明電極層としては、ITO(インシ゛ウムスス゛オキサイト゛)以外に、SnO2、ZnOなどの酸化物導電層を用いることができる。
【0015】
次いで裏面全面に第4電極層として銀電極を成膜する。第4電極の成膜により、集電孔h2の内壁で第2電極と第4電極とが重なり、導通する。表側では、レーザ加工により下電極と同じパターンの分離線を入れ、個別の第2電極u1〜u6を形成し、裏側では第3電極と第4電極とを同時にレーザ加工し、接続電極e12〜e56、および電力取り出し電極o1,o2を個別化し、基板の周縁部では表側の分離線g3と重なるように分離線g2を形成し、隣接電極間には一本の分離線を形成する。
【0016】
なお、裏面の接続電極を低出力のレーザで加工するために、第4電極の材料を、比較的低反射率の材料とすることも、しばしば行われる。低反射率の材料としては、Ni,ITO,Cuなどが用いられる。
【0017】
全ての薄膜太陽電池素子を一括して囲う周縁、および二列の直列接続太陽電池素子の隣接する境界には(周縁導電部fの内側)分離線g3がある。分離線g3の中にはどの層も無い。裏側では、全ての電極を一括して囲う周縁、および二列の直列接続電極の隣接する境界には(周縁導電部fの内側)分離線g2がある。分離線g2の中にはどの層も無い。
【0018】
こうして、電力取り出し電極o1−集電孔h2−上電極u1、光電変換層、下電極l1−接続孔h1−接続電極e12−上電極u2、光電変換層、下電極l2−接続電極e23−・・・−上電極u6、光電変換層、下電極l6−接続孔h1−電力取出し電極o2の順の光電変換素子の直列接続が完成する。
【0019】
なお、第3電極層と第4電極層は電気的には同一の電位であるので、以下の説明においては説明の便宜上、併せて一層の接続電極層として扱うこともある。
【0020】
図5は、構造の理解の容易化のために、薄膜太陽電池の構成を簡略化して斜視図で示したものである。図5において、基板61の表面に形成した単位光電変換素子62および基板61の裏面に形成した接続電極層63は、それぞれ複数の単位ユニットに完全に分離され、それぞれの分離位置をずらして形成されている。このため、素子62のアモルファス半導体部分である光電変換層65で発生した電流は、まず透明電極層66に集められ、次に該透明電極層領域に形成された集電孔67(h2)を介して背面の接続電極層63に通じ、さらに該接続電極層領域で素子の透明電極層領域の外側に形成された直列接続用の接続孔68(h1)を介して上記素子と隣り合う素子の透明電極層領域の外側に延びている下電極層64に達し、両素子の直列接続が行われている。
【0021】
上記薄膜太陽電池の簡略化した製造工程を図6(a)から(g)に示す。プラスチックフィルム71を基板として(工程(a))、これに接続孔78を形成し(工程(b))、基板の両面に第1電極層(下電極)74および第3電極層(接続電極の一部)73を形成(工程(c))した後、接続孔78と所定の距離離れた位置に集電孔77を形成する(工程(d))。次に、第1電極層74の上に、光電変換層となる半導体層75および第2電極層である透明電極層76を順次形成するとともに(工程(e)および工程(f))、第3電極層73の上に第4電極層(接続電極層)79を形成する(工程(g))。この後、レーザビームを用いて、基板71の両側の薄膜を分離加工して図5に示すような直列接続構造を形成する。
【0022】
なお、図6においては、集電孔h2内における透明電極層76と第4電極層79との接続をそれぞれの層を重ねて2層で図示しているが、前記図4および図5においては、電気的に一層として扱い、1層で図示している。
【0023】
前記薄膜太陽電池の製造工程において、接続孔78を形成する工程(b)および集電孔77を形成する工程(d)は、パンチを用いる打抜き加工によっている(特開平8−139352号公報参照)。パンチを用いた打抜き加工に関して、本件出願人は、量産性に富む連続開孔加工装置を提案した(特開平8−139352号公報参照)。この連続開孔加工装置は、基板搬送手段と貫通孔加工手段と加工位置検出孔加工手段とを備え、巻出しロールから送り出された基板は、順次、加工位置検出用の孔開孔部、集電孔開孔部、および接続孔開孔部により、所定位置に所定数の加工位置検出孔、集電孔および接続孔が開けられ、洗浄装置で洗浄された後、巻取りロールに巻き取られる。各種の孔位置に対応して、加工位置検出用の孔を基準として、基板の搬送方向および搬送距離が制御される。
【0024】
図7は、基板の位置検出用孔h3と接続孔h1及び集電孔h2の配置の一例を示す平面図である。基板1aに設けた位置検出孔h3は、太陽電池の所定のユニットパターンの長さ間隔に開けられ、基板の搬送の位置決めに用いられる。
【0025】
ところで、上記においては、基板に樹脂フィルムを用いた例について主に説明したが、400℃以上で半導体層が形成可能な耐熱性を備えた薄膜太陽電池とその製造方法を提供することを目的として、金属等の導電性基材を用いたものが提案されている(特願平11−133647号参照)。
【0026】
上記薄膜太陽電池は、導電性基材に接続孔を形成し、基材主面と接続孔内周面に耐熱性高分子樹脂の電気絶縁層を形成し、この電気絶縁性基板表面及び接続孔内周面に薄膜太陽電池の第1電極層を形成し、さらに基板の裏面及び接続孔内周面に第3電極層を形成することにより、接続孔を介して第1電極層と第3電極層とを電気的に接続する。その後、集電孔を形成し、第1電極層が形成された基板表面側および集電孔内周面に、光電変換層,透明電極層を順次形成する。その後、前記第3電極層が形成された基板裏面側および透明電極層が形成された集電孔内周面に第4接続電極を形成することにより、集電孔を介して透明電極層と第4接続電極層とを電気的に接続するものであるが、製造方法の基本的な部分は、前記の方法と同様である。
【0027】
【発明が解決しようとする課題】
ところで、上記従来の薄膜太陽電池とその製造方法においては、下記のような問題があった。
【0028】
レーザ光を透過する基板を用いた薄膜太陽電池では、接続電極層パターニング時に、基板を透過したレーザ光が接続電極層とは反対側の面の光電変換部に熱影響を与え、膜剥がれや薄膜太陽電池の短絡が発生するといった問題があった。
【0029】
上記問題を解消するために、基板に着色剤を添加してレーザ光の透過率を下げ、レーザ光を吸収する基板を用いることもあるが、このような薄膜太陽電池においても、接続電極層パターニング時に、レーザ光を吸収した基板材料の着色剤が蒸発して、接続電極層とは反対側の面の光電変換部にダメージを与える問題が生じていた。
【0030】
さらに、基板と第1電極層または第3電極層との付着力向上のために、その表面および裏面の両面を凹凸化処理して接触面積を増大させた基板を用いることもあるが、この場合にも、しばしば、光電変換部にダメージを与える問題が生じていた。
【0031】
さらにまた、マイグレーションによる短絡を防止し、薄膜太陽電池の信頼性を高めるために、接続電極層の加工ライン幅、即ちパターニング分離溝の幅を広くすることも行なわれる。この場合、レーザ加工ラインを複数本重ねる必要があるが、レーザ加工ラインを重ねると、その重なりあった部分の光電変換部がダメージを受ける問題があった。
【0032】
この発明は、前述の基板に前記凹凸化処理をした基板を用いた薄膜太陽電池に関し、上記のような問題点を解消するためになされたもので、この発明の課題は、レーザパターニングの際に発生する薄膜の損傷防止を図り、良好な太陽電池特性を有する薄膜太陽電池を提供することにある。
【0033】
【課題を解決するための手段】
前述の課題を解決するため、この発明においては、樹脂材料からなるフィルム基板の表面に下電極層としての第1電極層、光電変換層、透明電極層(第2電極層)を順次積層してなる光電変換部と、前記基板の裏面に形成した接続電極層としての第3電極層および第4電極層とを備え、前記光電変換部および接続電極層を互いに位置をずらして単位部分にレーザ加工法によりパターニングしてなり、前記透明電極層形成領域外に形成した電気的直列接続用の接続孔および前記透明電極層形成領域内に形成した集電孔を介して、前記表面上の互いにパターニングされて隣合う単位光電変換部分を電気的に直列に接続してなる薄膜太陽電池において、前記基板は、基板と前記第1電極層または第3電極層との付着力向上のために、その表面および裏面の両面を凹凸化処理して接触面積を増大させたものとし、かつ前記表面または裏面の内、形成された凹凸が大きく接触面積が多い側の面に、前記光電変換部を形成する。
【0034】
上記凹凸化処理は、高周波プラズマエッチングにより行なうが、基板表面と裏面とで凹凸化の程度が異なり、高周波電極に対向する面程、凹凸が大きくなる。形成された凹凸が小さく接触面積が少ない面は、基板と薄膜電極層との付着力が弱いので、膜剥離が生じ易いためと考えられ、そのため、上記発明の構成を採用することにより、ダメージが生ずる問題が抑制できると考えられる。
【0035】
なお、上記発明に関わる参考的な解決手段として、前述の[発明が解決しようとする課題]の項に記載した問題点を解決するための諸手段(参考手段1〜4)を以下に述べ、これらの実施態様に関しても参考例として後述する。まず、参考手段1としては、透光性樹脂材料からなるフィルム基板の表面に下電極層としての第1電極層、光電変換層、透明電極層(第2電極層)を順次積層してなる光電変換部と、前記基板の裏面に形成した接続電極層としての第3電極層および第4電極層とを備え、前記光電変換部および接続電極層を互いに位置をずらして単位部分にレーザ加工法によりパターニングしてなり、前記透明電極層形成領域外に形成した電気的直列接続用の接続孔および前記透明電極層形成領域内に形成した集電孔を介して、前記表面上の互いにパターニングされて隣合う単位光電変換部分を電気的に直列に接続してなる薄膜太陽電池において、前記第1電極層および第3電極層の材料は、銀またはアルミニウムの単一金属もしくは合金等の少なくとも前記第4電極層よりは高い反射率を有する材料とし、前記第4電極層の材料は、ニッケル,ITO(インジウム錫オキサイド),銅等の少なくとも前記第3電極層よりは低い反射率を有する材料とし、かつ前記第1電極層の膜厚は、前記第3電極層の膜厚と同等もしくはそれ以上とする(参考手段1)。また、前記参考手段1に記載の薄膜太陽電池において、前記透光性樹脂材料からなるフィルム基板の前記レーザ波長に対する光の透過率は、60%以上とする(参考手段2)。
【0036】
上記参考手段1によれば、第4電極層を低い反射率を有する材料としてレーザ光の投入効率を向上し、さらに第1電極層の膜厚を、第3電極層よりも厚くすることにより、接続電極層の加工に必要なレーザ出力を第1電極層に比べて低出力とすることができ、接続電極層のレーザ加工時に第1電極層がレーザで加工されないようにすることができる。これにより、光電変換部への熱影響を抑制することができ、膜剥がれや薄膜太陽電池の短絡が発生する問題が解消する。これは、参考手段2において特に有効である。
【0037】
さらに、基板に着色剤を添加した基板を用いた薄膜太陽電池においては、下記の参考手段3が好適である。即ち、パターニングに用いるレーザ光の透過を防止するために樹脂材料に着色剤を添加したフィルム基板の表面に下電極層としての第1電極層、光電変換層、透明電極層(第2電極層)を順次積層してなる光電変換部と、前記基板の裏面に形成した接続電極層としての第3電極層および第4電極層とを備え、前記光電変換部および接続電極層を互いに位置をずらして単位部分にレーザ加工法によりパターニングしてなり、前記透明電極層形成領域外に形成した電気的直列接続用の接続孔および前記透明電極層形成領域内に形成した集電孔を介して、前記表面上の互いにパターニングされて隣合う単位光電変換部分を電気的に直列に接続してなる薄膜太陽電池において、前記基板における着色剤濃度が低い側の面に、前記光電変換部を形成する。
【0038】
前記参考手段3が有効である理由は、下記による。着色剤を基板樹脂に添加する場合に、着色剤を樹脂の厚さ方向に均一に添加することは難しく、基板の厚さ方向に着色剤の濃度差ができる。前述のように、光電変換部にダメージが生ずるのは、レーザ光を吸収した基板材料の着色剤が蒸発することに起因するが、着色剤の濃度が高い面に第1電極層を形成すると、着色剤の蒸気により基板上に形成された第1電極層が比較的吹き飛ばされやすくなる。そこで、基板の両面を比較して、着色剤の濃度が低い面に、第1電極層を含む光電変換部を形成することにより、ダメージが生ずる問題が抑制できる。
【0039】
さらに、前述のように、パターニング分離溝の幅を広くした薄膜太陽電池の製造方法としては、下記参考手段4が好適である。即ち、樹脂材料または電気絶縁被覆された金属材料からなるフィルム基板の表面に、下電極層としての第1電極層、光電変換層、透明電極層(第2電極層)を順次積層してなる光電変換部と、前記基板の裏面に形成した接続電極層としての第3電極層および第4電極層とを備え、前記光電変換部および接続電極層を互いに位置をずらして単位部分にレーザ加工法によりパターニングしてなり、前記透明電極層形成領域外に形成した電気的直列接続用の接続孔および前記透明電極層形成領域内に形成した集電孔を介して、前記表面上の互いにパターニングされて隣合う単位光電変換部分を電気的に直列に接続してなる薄膜太陽電池の製造方法において、前記パターニングは、レーザ加工ラインを複数本重ねてパターニング分離溝を形成するパターニング方法とし、前記レーザ加工ラインにおけるレーザパルスの重複幅寸法は、このレーザパルスのスポット径寸法の半分以下とする。
【0040】
前記参考手段4により、後に詳述するように、レーザパルスの照射回数を4パルス以下に限定することができ、光電変換部のダメージが解消できる。
【0041】
【発明の実施の形態】
図面に基づき、この発明の実施の形態について以下に述べる。また、参考手段1〜4の実施の形態に関しても参考例として述べる。
【0042】
参考例1:参考手段1,2の形態
表1は、基板に板厚25μmの耐熱性高分子のアラミド樹脂を用い、その上に第1電極層として銀を300℃の製膜温度でスパッタ形成したサンプルを作製し、基板側からYAGレーザの第2高調波を入射したときのレーザ加工出力と第1電極層ダメージの関係を示したものである。このときのレーザ波長に対する基板の透過率は60%であり、第1電極層膜厚は、0.1〜0.3μmとした。
【0043】
【表1】
【0044】
表1から、第1電極層ダメ−ジが発生するレーザ加工出力は、第1電極膜厚が厚いほど高出力になるのがわかる。後述するように、第3電極層(銀0.2μm)と第4電極層(Ni 300〜500nm)からなる接続電極層を加工除去するためには、0.8mJ/pulse以上必要なので、この場合、第1電極層膜厚は0.2μm以上であることが望ましいことがわかる。
【0045】
図1は、上記結果を踏まえて作製した薄膜太陽電池の製造工程を示す図である。以下に、図1により、参考手段1に関わる薄膜太陽電池の製造方法を説明する。
【0046】
まず、板厚38μmアラミド基板10にパンチを用いて接続孔h1を形成した。その上に、銀等の高反射金属からなる第1電極層Lを0.2μm、これと反対側の主面には第1電極層と同材質の第3電極層bを0.2μmの膜厚でスパッタ法により形成した。このときの電極形成温度は共に300℃であった。本工程の結果、直列接続孔h1を介して第1電極層Lと第3電極層bとを電気的に接続した。
【0047】
この第1電極層LをYAGレーザの第2高調波を用いてパターニングし、複数個のユニットに分割した。
【0048】
その後、パンチを用いて集電孔h2を形成し、第1電極層上に、a−Si層から成る光電変換層aをプラズマCVD法で、光入射側の透明電極層u及びこれとは反対側の主面には、光反射率の低いニッケルからなる第4電極層eをスパッタ法を用いて順次形成した。本工程の結果、集電孔h2を介して透明電極層uと第4電極層eが電気的に接続された。第4電極層eの厚さは300〜500nmである。
【0049】
そして最後に、第1電極層パターニングライン内の透明電極層uと光電変換層a、これと反対側の第3電極層bおよび第4電極層eからなる接続電極層をYAGレーザの第2高調波を用いてパターニングし、複数個の薄膜太陽電池素子が直列に接続された薄膜太陽電池を形成した。
【0050】
この参考例によれば、第1電極層膜厚を0.2μmにすることにより、接続電極層加工時の光電変換部ダメージを無くすことができた。
【0051】
参考例2:参考手段3の形態、および本発明の実施例
表2は、厚さ50μmの耐熱性高分子のポリイミド樹脂に着色剤を添加した基板を用い、その上に第1電極層として銀を300℃の製膜温度で0.2μmスパッタ形成したサンプルを作製し、基板側からYAGレ−ザの第2高調波を入射したときのレーザ加工出力と第1電極層ダメージの関係を示したものである。このときのレーザ波長に対する基板の透過率は20%以下であり、ほとんどのレーザ光が基板に吸収される。
【0052】
【表2】
【0053】
表2から、第1電極層ダメージが発生するレーザ加工出力は、基板の表裏で異なることがわかる。これは、着色剤を樹脂に厚さ方向に均一に添加することは難しく、着色剤の濃度が高い面に第1電極層を形成すると、レーザ光の照射により着色剤が蒸発し、その蒸気で基板上に形成された第1電極層が吹き飛ぶからと考えられる。
【0054】
上記結果を踏まえ、着色剤を添加した板厚38μmのポリイミド基板を用いて、図1と同様の手順により、薄膜太陽電池を製作した。但し、この場合、参考例1のように、第1電極層の膜厚を第3電極層の膜厚と同等以上にする必要はない。
【0055】
これにより、接続電極層加工時の光電変換部ダメージを無くすことができた。
【0056】
参考(参考手段3)では、基板厚さ方向の着色剤の濃度差に関わる基板表裏の使い分けについて記載したが、基板表裏面の表面凹凸化処理の程度差に関わる基板表裏の使い分けによっても同様に、ダメ−ジを受けづらい面に光電変換部を形成することにより、本参考例と同じ効果が得られる。
【0057】
参考例3:参考手段4の形態
図2は、参考手段4に関わる薄膜太陽電池平面図を示し、図3は、接続電極層レーザ加工ラインの重ね合わせイメージを模式的に示す。
【0058】
図2は、耐熱性高分子基板上に7直列の薄膜太陽電池を3つ並列に形成した薄膜太陽電池の平面図である。図2(a)は、光電変換部が形成された表面、図2(b)は、接続電極層が形成された裏面を示す。図2において、前記図1と同一部材または同一機能部分には、同一の記号を付して説明を省略する。
【0059】
図2(a)に示すように、この薄膜太陽電池においては、第1電極層の上に形成された光電変換層aは、分離部sにより3つの領域に分けられ、また透明電極層uは、前記光電変換層a上に3つの領域に分けて形成されている。この3つの透明電極形成領域が発電領域である。また裏面は、図2(b)に示すように、接続電極層eが分離部sにより3つの領域に分けられ、取出し電極tが、両端部の接続電極層にそれぞれ接続されている。図2において、分離部sは、幅広いパターニング分離溝としており、レーザ加工ラインを複数本重ねてパターニング分離溝を形成するパターニング方法を採用している。
【0060】
参考手段4では、図3に示すように、マイグレーションなどによる接続電極の短絡を防ぐため、幅0.2μmのレーザ加工ラインを3本重ね合わせて幅0.4μmの接続電極層パターニング幅にしている。このときのレーザ加工ラインを構成するレーザパルスの重複幅はレーザスポット径の半分の0.1μmであり、レーザ加工ラインの重複幅と同じである。
【0061】
このように、レーザパルスの重複幅やレーザ加工ラインの重複幅がレーザスポット径の半分以下であると、接続電極層レーザ加工部に照射されるレーザパルスを4パルス以下にすることができる。
【0062】
次に、参考手段4の薄膜太陽電池の製造工程について説明する。本参考手段4では、基板に膜厚20μmのアラミド樹脂を用い、前記アラミド基板1にパンチを用いて接続孔h1を形成した。その上に、銀等の高反射金属からなる第1電極層を0.2μm、これと反対側の主面には第3電極層を0.2μmの膜厚でスパッタ法により形成した。このときの電極形成温度は共に300℃であった。本工程の結果、直列接続孔h1を介して第1電極層と第3電極層を電気的に接続した。
【0063】
この第1電極層をYAGレーザの第2高調波を用いてパターニングし、複数個のユニットに分割した。
【0064】
その後、パンチを用いて集電孔h2を形成し、第1電極層上に、a−Si層から成る光電変換層をプラズマCVD法で、光入射側の透明電極層及びこれとは反対側の主面には、光反射率の低い酸化インジウムからなる第4電極層をスパッタ法を用いて順次形成した。本工程の結果、集電孔h2を介して透明電極層と第4電極層が電気的に接続された。
【0065】
そして最後に、第1電極層パターニングライン内の透明電極層と光電変換層、これと反対側の第3電極層および第4電極層からなる接続電極層のパターニングに前述の方法を適用し、複数個の薄膜太陽電池素子が直列に接続された薄膜太陽電池を形成した。
【0066】
上記のように、レーザパルスの照射回数を4パルス以下にすることにより、接続電極層のレーザパターニング時に発生する光電変換部ダメージを低減することができた。
【0067】
【発明の効果】
この発明によれば前述のように、樹脂材料からなるフィルム基板の表面に下電極層としての第1電極層、光電変換層、透明電極層(第2電極層)を順次積層してなる光電変換部と、前記基板の裏面に形成した接続電極層としての第3電極層および第4電極層とを備え、前記光電変換部および接続電極層を互いに位置をずらして単位部分にレーザ加工法によりパターニングしてなり、前記透明電極層形成領域外に形成した電気的直列接続用の接続孔および前記透明電極層形成領域内に形成した集電孔を介して、前記表面上の互いにパターニングされて隣合う単位光電変換部分を電気的に直列に接続してなる薄膜太陽電池において、前記基板は、基板と前記第1電極層または第3電極層との付着力向上のために、その表面および裏面の両面を凹凸化処理して接触面積を増大させたものとし、かつ前記表面または裏面の内、形成された凹凸が大きく接触面積が多い側の面に、前記光電変換部を形成することにより、レーザパターニングの際に発生する薄膜の損傷を防止して、良好な太陽電池特性を有する薄膜太陽電池が提供できる。
【図面の簡単な説明】
【図1】 この発明の実施例および参考例に関わる薄膜太陽電池の製造方法の一例を示す図
【図2】 この発明の異なる参考例に関わる薄膜太陽電池の製造方法の一例を示す図
【図3】 この発明の異なる参考例に関わるレーザ加工ラインの重ね合わせイメージの模式図
【図4】 従来の薄膜太陽電池の構成および製造方法の詳細の一例を示す図
【図5】 従来の薄膜太陽電池の概略構成を示す斜視図
【図6】 従来の薄膜太陽電池の製造工程の概略を示す図
【図7】 従来の基板の位置検出用孔,接続孔及び集電孔の配置の一例を示す平面図
【符号の説明】
10:基板、a:光電変換層、b:第3電極層、e:第4電極層、h1:接続孔、h2:集電孔、L:第1電極層、t:取出し電極、u:透明電極層。
[0001]
BACKGROUND OF THE INVENTION
This invention relates to thin film solar cells.
[0002]
[Prior art]
Currently, clean energy research and development is underway from the standpoint of environmental protection. Among them, solar cells are attracting attention because their resources (sunlight) are infinite and pollution-free. A typical example of a solar cell (photoelectric conversion device) in which a plurality of solar cell elements formed on the same substrate are connected in series is a thin film solar cell.
[0003]
Thin-film solar cells are expected to become the mainstream of solar cells in the future because they are thin and lightweight, inexpensive to manufacture, and easy to increase in area, and are attached to roofs and windows of buildings in addition to power supply. Demand is also expanding for commercial and general residential use.
[0004]
Conventional thin-film solar cells have used glass substrates, but research and development of flexible solar cells using plastic films are being promoted in terms of weight reduction, workability, and mass productivity. Furthermore, the thing using the film substrate which carried out the insulation coating to the flexible metal material is also developed. Taking advantage of this flexibility, mass production became possible by a roll-to-roll method or a stepping roll method.
[0005]
In the above thin film solar cell, a first electrode (hereinafter also referred to as a lower electrode), a photoelectric conversion layer comprising a thin film semiconductor layer, and a second electrode (hereinafter also referred to as a transparent electrode) are laminated on a flexible electrically insulating film substrate. A plurality of photoelectric conversion elements (or cells) thus formed are formed. By repeating electrically connecting the first electrode of a certain photoelectric conversion element and the second electrode of the adjacent photoelectric conversion element, the first electrode of the first photoelectric conversion element and the second electrode of the last photoelectric conversion element Can output the voltage required for For example, in order to obtain an alternating current of 100 V as a commercial power source by alternating current with an inverter, the output voltage of the thin-film solar cell is desirably 100 V or higher, and actually several tens or more elements are connected in series.
[0006]
Such a photoelectric conversion element and its series connection are formed by forming an electrode layer and a photoelectric conversion layer, patterning each layer, and a combination procedure thereof. An example of the configuration and manufacturing method of the solar cell is described in, for example, Japanese Patent Application Laid-Open No. 10-233517 and Japanese Patent Application No. 11-19306.
[0007]
FIG. 4 shows an example of the thin film solar cell described in the above-mentioned Japanese Patent Application Laid-Open No. 10-233517, wherein (a) is a plan view, and (b) is a sectional view taken along lines ABCD and BQC in (a). Yes, (c) shows an EE cross-sectional view in (a).
[0008]
A first electrode layer, a photoelectric conversion layer, and a second electrode layer are sequentially laminated on a long film substrate made of an electrically insulating and flexible resin, and a third electrode layer is formed on the opposite side (back surface) of the film substrate. The fourth electrode layer is laminated to form a back electrode. The photoelectric conversion layer is, for example, an amorphous silicon pin junction. As the film substrate material, a polyimide film, for example, a film having a thickness of 50 μm is used.
[0009]
As the material for the film, polyethylene naphthalate (PEN), polyethersulfone (PES), polyethylene terephthalate (PET), or an aramid film can be used.
[0010]
Next, the outline of the manufacturing process will be described below.
[0011]
First, using a punch in the film substrate, a connection hole h1 is opened, and silver is formed to a thickness of, for example, 100 nm by sputtering as a first electrode layer on one side (front side) of the substrate. Similarly, a silver electrode is formed on the surface (the back side) as the third electrode layer. The first electrode layer and the third electrode layer overlap with each other on the inner wall of the connection hole h1, and are electrically connected.
[0012]
As the electrode layer, in addition to silver (Ag), a metal such as Al, Cu, Ti or the like may be formed by sputtering or electron beam evaporation, or a metal oxide film and a metal multilayer film may be used as the electrode layer.
[0013]
After the film formation, on the front side, the first electrode layer is laser processed into a predetermined shape, and the lower electrodes 11 to 16 are patterned. Adjacent portions of the lower electrodes l1 to l6 form one separation line g2, and two separation lines g2 are formed for separation between the two series-connected photoelectric conversion elements and the peripheral conductive portion f. The electrodes l1 to l6 are surrounded by a separation line. After using the punch again to open the current collecting hole h2, an a-Si layer as a photoelectric conversion layer p is formed on the front side by plasma CVD. A film having a width W2 is formed using a mask, and the same separation line as that of the first electrode layer is formed only between the two-row elements by laser processing.
[0014]
Further, a transparent electrode layer (ITO layer) is formed on the front side as the second electrode layer. However, a mask is applied between the two element rows and on both side edges of the substrate parallel to the element row so as not to form the film in the connection hole h1, and the film is formed only on the element part. As the transparent electrode layer, in addition to ITO (Indium Sulfoxide), an oxide conductive layer such as SnO 2 or ZnO can be used.
[0015]
Next, a silver electrode is formed as a fourth electrode layer on the entire back surface. By forming the fourth electrode, the second electrode and the fourth electrode overlap with each other on the inner wall of the current collecting hole h2, and are brought into conduction. On the front side, separation lines having the same pattern as the lower electrode are formed by laser processing to form individual second electrodes u1 to u6, and on the back side, the third electrode and the fourth electrode are simultaneously laser processed to provide connection electrodes e12 to e56. In addition, the power extraction electrodes o1 and o2 are individualized, the separation line g2 is formed so as to overlap the front-side separation line g3 at the periphery of the substrate, and a single separation line is formed between the adjacent electrodes.
[0016]
In addition, in order to process the connection electrode on the back surface with a low-power laser, the material of the fourth electrode is often made a material having a relatively low reflectance. Ni, ITO, Cu, or the like is used as a low reflectance material.
[0017]
There is a separation line g3 at the periphery that encloses all the thin-film solar cell elements in a lump and the adjacent boundary between the two rows of series-connected solar cell elements (inside the peripheral conductive part f). There are no layers in the separation line g3. On the back side, there is a separation line g2 (inside the peripheral conductive portion f) at the peripheral edge that encloses all the electrodes together and at the adjacent boundary of the two rows of series connection electrodes. There are no layers in the separation line g2.
[0018]
In this way, power extraction electrode o1-collection hole h2-upper electrode u1, photoelectric conversion layer, lower electrode l1-connection hole h1-connection electrode e12-upper electrode u2, photoelectric conversion layer, lower electrode l2-connection electrode e23- -The series connection of the photoelectric conversion elements in the order of the upper electrode u6, the photoelectric conversion layer, the lower electrode l6-the connection hole h1-the power extraction electrode o2 is completed.
[0019]
Since the third electrode layer and the fourth electrode layer are electrically at the same potential, in the following description, for convenience of explanation, they may be treated as a single connection electrode layer.
[0020]
FIG. 5 is a perspective view showing a simplified configuration of a thin-film solar cell for easy understanding of the structure. In FIG. 5, the unit photoelectric conversion element 62 formed on the surface of the substrate 61 and the connection electrode layer 63 formed on the back surface of the substrate 61 are completely separated into a plurality of unit units, and are formed by shifting the separation positions. ing. For this reason, the current generated in the photoelectric conversion layer 65 which is an amorphous semiconductor portion of the element 62 is first collected in the transparent electrode layer 66 and then through the current collecting hole 67 (h2) formed in the transparent electrode layer region. And transparent to the element adjacent to the element through a connection hole 68 (h1) for series connection formed in the connection electrode layer 63 and outside the transparent electrode layer area of the element. The lower electrode layer 64 extending to the outside of the electrode layer region is reached, and both elements are connected in series.
[0021]
6 (a) to 6 (g) show a simplified manufacturing process of the thin film solar cell. Using the plastic film 71 as a substrate (step (a)), a connection hole 78 is formed in this (step (b)), and a first electrode layer (lower electrode) 74 and a third electrode layer (connection electrode) are formed on both sides of the substrate. After (part) 73 is formed (step (c)), a current collecting hole 77 is formed at a position away from the connection hole 78 by a predetermined distance (step (d)). Next, the semiconductor layer 75 to be a photoelectric conversion layer and the transparent electrode layer 76 to be the second electrode layer are sequentially formed on the first electrode layer 74 (step (e) and step (f)), and the third A fourth electrode layer (connection electrode layer) 79 is formed on the electrode layer 73 (step (g)). Thereafter, a thin film on both sides of the substrate 71 is separated using a laser beam to form a series connection structure as shown in FIG.
[0022]
In FIG. 6, the connection between the transparent electrode layer 76 and the fourth electrode layer 79 in the current collecting hole h2 is shown in two layers by overlapping each other, but in FIG. 4 and FIG. , Electrically treated as one layer, illustrated as one layer.
[0023]
In the manufacturing process of the thin-film solar cell, the step (b) for forming the connection hole 78 and the step (d) for forming the current collecting hole 77 are performed by punching using a punch (see JP-A-8-139352). . Regarding punching using a punch, the applicant of the present application has proposed a continuous hole forming apparatus with high productivity (see Japanese Patent Application Laid-Open No. 8-139352). The continuous hole processing apparatus includes a substrate transport unit, a through-hole processing unit, and a processing position detection hole processing unit, and the substrate fed from the unwinding roll is sequentially provided with a hole opening unit for detecting a processing position, and a collecting hole. A predetermined number of processing position detection holes, current collecting holes, and connection holes are opened at predetermined positions by the electric hole opening part and the connection hole opening part, cleaned by a cleaning device, and then wound around a winding roll. . Corresponding to the various hole positions, the transport direction and transport distance of the substrate are controlled using the processing position detection hole as a reference.
[0024]
FIG. 7 is a plan view showing an example of the arrangement of the substrate position detection holes h3, the connection holes h1, and the current collecting holes h2. The position detection holes h3 provided in the substrate 1a are opened at predetermined intervals of the predetermined unit pattern of the solar cell and used for positioning the substrate.
[0025]
By the way, in the above, although the example which used the resin film for the board | substrate was mainly demonstrated, it aims at providing the thin film solar cell provided with the heat resistance which can form a semiconductor layer at 400 degreeC or more, and its manufacturing method. A material using a conductive substrate such as metal has been proposed (see Japanese Patent Application No. 11-133647).
[0026]
In the thin film solar cell, a connection hole is formed in a conductive base material, and an electrically insulating layer of a heat-resistant polymer resin is formed on the main surface of the base material and the inner peripheral surface of the connection hole. The first electrode layer of the thin film solar cell is formed on the inner peripheral surface, and the third electrode layer is formed on the back surface of the substrate and the inner peripheral surface of the connection hole, whereby the first electrode layer and the third electrode are connected via the connection hole. Electrically connect the layers. Thereafter, a current collecting hole is formed, and a photoelectric conversion layer and a transparent electrode layer are sequentially formed on the surface side of the substrate on which the first electrode layer is formed and the inner peripheral surface of the current collecting hole. Thereafter, a fourth connection electrode is formed on the back side of the substrate on which the third electrode layer is formed and on the inner peripheral surface of the current collecting hole on which the transparent electrode layer is formed. The four connection electrode layers are electrically connected, but the basic part of the manufacturing method is the same as that described above.
[0027]
[Problems to be solved by the invention]
However, the conventional thin film solar cell and the manufacturing method thereof have the following problems.
[0028]
In a thin-film solar cell using a substrate that transmits laser light, the laser light transmitted through the substrate has a thermal effect on the photoelectric conversion portion on the surface opposite to the connection electrode layer during patterning of the connection electrode layer. There was a problem that a short circuit of a solar cell occurred.
[0029]
In order to solve the above problem, a coloring agent may be added to the substrate to reduce the transmittance of the laser beam and a substrate that absorbs the laser beam may be used. In such a thin film solar cell, the connection electrode layer patterning is also used. In some cases, the colorant of the substrate material that has absorbed the laser beam evaporates, causing a problem of damaging the photoelectric conversion portion on the surface opposite to the connection electrode layer.
[0030]
Furthermore, in order to improve the adhesion between the substrate and the first electrode layer or the third electrode layer, a substrate having a contact area increased by roughening both the front and back surfaces may be used. In many cases, however, there has been a problem of damaging the photoelectric conversion portion.
[0031]
Furthermore, in order to prevent a short circuit due to migration and increase the reliability of the thin film solar cell, the processing line width of the connection electrode layer, that is, the width of the patterning separation groove is increased. In this case, it is necessary to overlap a plurality of laser processing lines. However, when the laser processing lines are overlapped, there is a problem that the photoelectric conversion portion of the overlapped portion is damaged.
[0032]
The present invention relates to a thin-film solar cell using a substrate having the above-described unevenness treatment on the substrate described above, and has been made in order to solve the above-mentioned problems. aims to prevent damage to the thin film to be generated is to provide a thin film solar cell having good solar cell characteristics.
[0033]
[Means for Solving the Problems]
To attain the above object, in the present invention, the first electrode layer serving as a lower electrode layer on a surface of a film substrate made of a tree fat material, a photoelectric conversion layer, sequentially laminated a transparent electrode layer (second electrode layer) And a third electrode layer and a fourth electrode layer as connection electrode layers formed on the back surface of the substrate, wherein the photoelectric conversion unit and the connection electrode layer are shifted in position from each other and a laser is applied to a unit portion. Patterned by a processing method, patterning each other on the surface via a connection hole for electrical series connection formed outside the transparent electrode layer formation region and a current collection hole formed in the transparent electrode layer formation region In the thin film solar cell in which adjacent unit photoelectric conversion portions are electrically connected in series, the substrate has a surface for improving adhesion between the substrate and the first electrode layer or the third electrode layer. and Both sides of the surface treated roughening and that increased contact area, and of the surface or back surface, formed irregularities large contact area larger side face, to form the photoelectric conversion unit.
[0034]
The unevenness treatment is performed by high-frequency plasma etching, but the degree of unevenness differs between the front surface and the back surface of the substrate, and the unevenness increases as the surface faces the high-frequency electrode. Surface contact area is less formed unevenness is small, since the adhesion between the substrate and the thin film electrode layer is weak, probably because easily occurs film peeling, therefore, by adopting the above Symbol onset Ming configuration, It is considered that the problem of causing damage can be suppressed.
[0035]
In addition, as a reference solution relating to the above invention, various means (reference means 1 to 4) for solving the problems described in the above-mentioned section [Problems to be solved by the invention] are described below. These embodiments will be described later as reference examples. First, as a reference means 1 , a photoelectric device in which a first electrode layer as a lower electrode layer, a photoelectric conversion layer, and a transparent electrode layer (second electrode layer) are sequentially laminated on the surface of a film substrate made of a translucent resin material. A conversion unit, and a third electrode layer and a fourth electrode layer as connection electrode layers formed on the back surface of the substrate, wherein the photoelectric conversion unit and the connection electrode layer are displaced from each other by a laser processing method in a unit portion. Patterned and connected to each other on the surface through a connection hole for electrical series connection formed outside the transparent electrode layer formation region and a current collection hole formed in the transparent electrode layer formation region. In the thin film solar cell in which the unit photoelectric conversion portions are connected in series electrically, the material of the first electrode layer and the third electrode layer is at least the single metal or alloy of silver or aluminum, etc. A material having a higher reflectance than the four-electrode layer, and the material of the fourth electrode layer is a material having a reflectance lower than at least the third electrode layer, such as nickel, ITO (indium tin oxide), copper, or the like; The film thickness of the first electrode layer is equal to or greater than the film thickness of the third electrode layer ( reference means 1 ). Further, in the thin film solar cell according to the reference means 1 , the light transmittance with respect to the laser wavelength of the film substrate made of the translucent resin material is set to 60% or more ( reference means 2 ).
[0036]
According to the reference means 1 described above, the fourth electrode layer is made of a material having a low reflectance to improve the laser beam input efficiency, and the film thickness of the first electrode layer is made thicker than that of the third electrode layer. The laser output required for processing of the connection electrode layer can be made lower than that of the first electrode layer, and the first electrode layer can be prevented from being processed by a laser during laser processing of the connection electrode layer. Thereby, the heat influence to a photoelectric conversion part can be suppressed and the problem that film | membrane peeling and the short circuit of a thin film solar cell generate | occur | produce is solved. This is particularly effective in the reference means 2 .
[0037]
Furthermore, in the thin film solar cell using the board | substrate which added the coloring agent to the board | substrate, the following reference means 3 are suitable. That is, a first electrode layer as a lower electrode layer, a photoelectric conversion layer, a transparent electrode layer (second electrode layer) on the surface of a film substrate in which a colorant is added to a resin material to prevent transmission of laser light used for patterning And a third electrode layer and a fourth electrode layer as connection electrode layers formed on the back surface of the substrate, the photoelectric conversion unit and the connection electrode layer being shifted from each other The unit portion is patterned by a laser processing method, and the surface is connected via a connection hole for electrical series connection formed outside the transparent electrode layer formation region and a current collection hole formed in the transparent electrode layer formation region. In the thin-film solar cell in which the unit photoelectric conversion portions that are patterned and adjacent to each other are electrically connected in series, the photoelectric conversion portion is formed on the surface of the substrate on the side having a low colorant concentration.
[0038]
The reason why the reference means 3 is effective is as follows. When adding the colorant to the substrate resin, it is difficult to add the colorant uniformly in the thickness direction of the resin, and the concentration difference of the colorant can be made in the thickness direction of the substrate. As described above, damage to the photoelectric conversion part is caused by evaporation of the colorant of the substrate material that has absorbed the laser light. However, when the first electrode layer is formed on the surface having a high colorant concentration, The first electrode layer formed on the substrate is relatively easily blown off by the vapor of the colorant. Then, the problem which a damage produces can be suppressed by comparing the both surfaces of a board | substrate and forming the photoelectric conversion part containing a 1st electrode layer in the surface where the density | concentration of a coloring agent is low.
[0039]
Further, as described above, the following reference means 4 is suitable as a method for manufacturing a thin film solar cell in which the width of the patterning separation groove is widened. That is, a photoelectric film formed by sequentially laminating a first electrode layer as a lower electrode layer, a photoelectric conversion layer, and a transparent electrode layer (second electrode layer) on the surface of a film substrate made of a resin material or an electrically insulating metal material. A conversion unit, and a third electrode layer and a fourth electrode layer as connection electrode layers formed on the back surface of the substrate, wherein the photoelectric conversion unit and the connection electrode layer are displaced from each other by a laser processing method in a unit portion. Patterned and connected to each other on the surface through a connection hole for electrical series connection formed outside the transparent electrode layer formation region and a current collection hole formed in the transparent electrode layer formation region. In the method of manufacturing a thin film solar cell in which unit photoelectric conversion portions are connected in series, the patterning is a pattern in which a plurality of laser processing lines are stacked to form a patterning separation groove. And training method, the overlapping width dimension of the laser pulse in the laser processing line is less than half the spot diameter of the laser pulse.
[0040]
As will be described later in detail, the reference means 4 can limit the number of times of laser pulse irradiation to 4 pulses or less, and can eliminate damage to the photoelectric conversion unit.
[0041]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the present invention will be described below with reference to the drawings. Reference embodiments 1 to 4 will also be described as reference examples.
[0042]
( Reference Example 1 : Form of reference means 1 and 2 )
Table 1 shows a sample in which a heat-resistant polymer aramid resin having a plate thickness of 25 μm is used for the substrate, and silver is sputter-formed on the substrate as a first electrode layer at a film forming temperature of 300 ° C. This shows the relationship between the laser processing output and the first electrode layer damage when the second harmonic is incident. At this time, the transmittance of the substrate with respect to the laser wavelength was 60%, and the thickness of the first electrode layer was 0.1 to 0.3 μm.
[0043]
[Table 1]
[0044]
From Table 1, it can be seen that the laser processing output at which the first electrode layer damage is generated increases as the first electrode film thickness increases. As will be described later, in order to process and remove the connection electrode layer composed of the third electrode layer (silver 0.2 μm) and the fourth electrode layer (Ni 300 to 500 nm), 0.8 mJ / pulse or more is required. It can be seen that the thickness of one electrode layer is preferably 0.2 μm or more.
[0045]
FIG. 1 is a diagram showing a manufacturing process of a thin film solar cell manufactured based on the above results. Below, the manufacturing method of the thin film solar cell in connection with the reference means 1 is demonstrated using FIG.
[0046]
First, a connection hole h1 was formed in the aramid substrate 10 having a thickness of 38 μm using a punch. On top of that, the first electrode layer L made of a highly reflective metal such as silver is 0.2 μm, and on the opposite main surface, a third electrode layer b of the same material as the first electrode layer is formed with a thickness of 0.2 μm. It formed by the sputtering method. The electrode formation temperature at this time was 300 ° C. As a result of this step, the first electrode layer L and the third electrode layer b were electrically connected through the series connection hole h1.
[0047]
The first electrode layer L was patterned using a second harmonic of a YAG laser and divided into a plurality of units.
[0048]
Thereafter, a current collecting hole h2 is formed by using a punch, and the photoelectric conversion layer a composed of an a-Si layer is formed on the first electrode layer by plasma CVD to be opposite to the transparent electrode layer u on the light incident side and this. A fourth electrode layer e made of nickel having a low light reflectance was sequentially formed on the main surface on the side using a sputtering method. As a result of this step, the transparent electrode layer u and the fourth electrode layer e were electrically connected through the current collection hole h2. The thickness of the fourth electrode layer e is 300 to 500 nm.
[0049]
Finally, the transparent electrode layer u and the photoelectric conversion layer a in the first electrode layer patterning line, and the connection electrode layer composed of the third electrode layer b and the fourth electrode layer e on the opposite side are connected to the second harmonic of the YAG laser. Patterning was performed using waves to form a thin film solar cell in which a plurality of thin film solar cell elements were connected in series.
[0050]
According to this reference example, by setting the first electrode layer thickness to 0.2 μm, it was possible to eliminate the photoelectric conversion portion damage during the connection electrode layer processing.
[0051]
( Reference Example 2 : Form of reference means 3 and examples of the present invention )
Table 2 shows a sample in which 0.2 μm of sputtered silver is formed at a film forming temperature of 300 ° C. as a first electrode layer on a substrate obtained by adding a colorant to a heat-resistant polymer polyimide resin having a thickness of 50 μm. The relationship between the laser machining output and the first electrode layer damage when the second harmonic of the YAG laser is incident from the substrate side is shown. At this time, the transmittance of the substrate with respect to the laser wavelength is 20% or less, and most of the laser light is absorbed by the substrate.
[0052]
[Table 2]
[0053]
From Table 2, it can be seen that the laser processing output at which the first electrode layer damage occurs differs between the front and back of the substrate. This is because it is difficult to uniformly add the colorant to the resin in the thickness direction. When the first electrode layer is formed on the surface where the concentration of the colorant is high, the colorant evaporates due to laser irradiation, and the vapor This is probably because the first electrode layer formed on the substrate blows away.
[0054]
Based on the above results, a thin-film solar cell was manufactured in the same procedure as in FIG. 1 using a 38 μm thick polyimide substrate to which a colorant was added. However, in this case, unlike the first reference example, the film thickness of the first electrode layer need not be equal to or greater than the film thickness of the third electrode layer.
[0055]
Thereby, the photoelectric conversion part damage at the time of a connection electrode layer process was able to be eliminated.
[0056]
In this reference example (reference means 3) , the use of the front and back of the substrate related to the colorant concentration difference in the substrate thickness direction has been described. Similarly, the same effect as this reference example can be obtained by forming the photoelectric conversion portion on the surface which is difficult to receive damage.
[0057]
( Reference Example 3 : Form of reference means 4 )
FIG. 2 shows a plan view of a thin film solar cell related to the reference means 4 , and FIG. 3 schematically shows an overlay image of connection electrode layer laser processing lines.
[0058]
FIG. 2 is a plan view of a thin film solar cell in which three 7 series thin film solar cells are formed in parallel on a heat resistant polymer substrate. FIG. 2A shows the surface on which the photoelectric conversion portion is formed, and FIG. 2B shows the back surface on which the connection electrode layer is formed. 2, the same members or the same functional parts as those in FIG.
[0059]
As shown in FIG. 2A, in this thin film solar cell, the photoelectric conversion layer a formed on the first electrode layer is divided into three regions by the separation part s, and the transparent electrode layer u is , Are formed in three regions on the photoelectric conversion layer a. These three transparent electrode formation regions are power generation regions. 2B, the connection electrode layer e is divided into three regions by the separation portion s, and the extraction electrodes t are connected to the connection electrode layers at both ends, respectively. In FIG. 2, the separation portion s has a wide patterning separation groove, and employs a patterning method in which a plurality of laser processing lines are stacked to form a patterning separation groove.
[0060]
In reference means 4 , as shown in FIG. 3, in order to prevent a short circuit of the connection electrode due to migration or the like, three laser processing lines having a width of 0.2 μm are overlapped to form a connection electrode layer patterning width of 0.4 μm. The overlapping width of the laser pulses constituting the laser processing line at this time is 0.1 μm, which is half of the laser spot diameter, and is the same as the overlapping width of the laser processing lines.
[0061]
Thus, when the overlapping width of the laser pulses and the overlapping width of the laser processing lines is less than or equal to half of the laser spot diameter, the laser pulse irradiated to the connection electrode layer laser processing portion can be reduced to four pulses or less.
[0062]
Next, the manufacturing process of the thin film solar cell of the reference means 4 is demonstrated. In this reference means 4 , an aramid resin having a film thickness of 20 μm was used for the substrate, and the connection hole h1 was formed on the aramid substrate 1 using a punch. On top of that, a first electrode layer made of a highly reflective metal such as silver was formed with a thickness of 0.2 μm, and a third electrode layer was formed with a thickness of 0.2 μm on the opposite main surface by sputtering. The electrode formation temperature at this time was 300 ° C. As a result of this step, the first electrode layer and the third electrode layer were electrically connected through the series connection hole h1.
[0063]
The first electrode layer was patterned using the second harmonic of a YAG laser and divided into a plurality of units.
[0064]
Thereafter, a current collecting hole h2 is formed by using a punch, and a photoelectric conversion layer made of an a-Si layer is formed on the first electrode layer by a plasma CVD method to form a transparent electrode layer on the light incident side and an opposite side thereof. A fourth electrode layer made of indium oxide having a low light reflectivity was sequentially formed on the main surface by sputtering. As a result of this step, the transparent electrode layer and the fourth electrode layer were electrically connected through the current collecting hole h2.
[0065]
Finally, the above-described method is applied to patterning the connection electrode layer composed of the transparent electrode layer and the photoelectric conversion layer in the first electrode layer patterning line, and the third electrode layer and the fourth electrode layer on the opposite side. A thin film solar cell in which a plurality of thin film solar cell elements were connected in series was formed.
[0066]
As described above, by reducing the number of times of laser pulse irradiation to 4 pulses or less, it was possible to reduce damage to the photoelectric conversion portion that occurred during laser patterning of the connection electrode layer.
[0067]
【The invention's effect】
According to the present invention, as described above, the photoelectric conversion formed by sequentially laminating the first electrode layer, the photoelectric conversion layer, and the transparent electrode layer (second electrode layer) as the lower electrode layer on the surface of the film substrate made of the resin material. And a third electrode layer and a fourth electrode layer as connection electrode layers formed on the back surface of the substrate, and the photoelectric conversion portion and the connection electrode layer are shifted from each other and patterned into a unit portion by a laser processing method. And adjacent to each other by patterning on the surface through a connection hole for electrical series connection formed outside the transparent electrode layer formation region and a current collection hole formed in the transparent electrode layer formation region. In the thin-film solar cell in which unit photoelectric conversion portions are electrically connected in series, the substrate has both front and back surfaces for improving adhesion between the substrate and the first electrode layer or the third electrode layer. Uneven Processing is assumed that increased the contact area, and of the surface or back surface, the surface of the formed irregularities larger contact area is large side, by forming the photoelectric conversion unit, when the laser patterning The thin film solar cell which has the favorable solar cell characteristic can be provided by preventing damage to the generated thin film.
[Brief description of the drawings]
FIG. 1 is a diagram showing an example of a method for manufacturing a thin film solar cell according to an embodiment and a reference example of the present invention. FIG. 2 is a diagram showing an example of a method for manufacturing a thin film solar cell according to a different reference example of the present invention. 3] Schematic diagram of superposition image of laser processing lines according to different reference examples of the present invention. [FIG. 4] A diagram showing an example of the configuration and manufacturing method of a conventional thin film solar cell. [FIG. FIG. 6 is a perspective view showing a schematic configuration of a conventional thin film solar cell. FIG. 7 is a plan view showing an example of the arrangement of position detection holes, connection holes, and current collecting holes in a conventional substrate. Figure [Explanation of symbols]
10: substrate, a: photoelectric conversion layer, b: third electrode layer, e: fourth electrode layer, h1: connection hole, h2: current collecting hole, L: first electrode layer, t: extraction electrode, u: transparent Electrode layer.

Claims (1)

樹脂材料からなるフィルム基板の表面に下電極層としての第1電極層、光電変換層、透明電極層(第2電極層)を順次積層してなる光電変換部と、前記基板の裏面に形成した接続電極層としての第3電極層および第4電極層とを備え、前記光電変換部および接続電極層を互いに位置をずらして単位部分にレーザ加工法によりパターニングしてなり、前記透明電極層形成領域外に形成した電気的直列接続用の接続孔および前記透明電極層形成領域内に形成した集電孔を介して、前記表面上の互いにパターニングされて隣合う単位光電変換部分を電気的に直列に接続してなる薄膜太陽電池において、前記基板は、基板と前記第1電極層または第3電極層との付着力向上のために、その表面および裏面の両面を凹凸化処理して接触面積を増大させたものとし、かつ前記表面または裏面の内、形成された凹凸が大きく接触面積が多い側の面に、前記光電変換部を形成したことを特徴とする薄膜太陽電池。  A first electrode layer as a lower electrode layer, a photoelectric conversion layer, and a transparent electrode layer (second electrode layer) are sequentially laminated on the surface of a film substrate made of a resin material, and formed on the back surface of the substrate. A transparent electrode layer forming region comprising a third electrode layer and a fourth electrode layer as connection electrode layers, wherein the photoelectric conversion portion and the connection electrode layer are shifted from each other and patterned into a unit portion by a laser processing method; The unit photoelectric conversion parts that are patterned and adjacent to each other on the surface are electrically connected in series through a connection hole for electrical series connection formed outside and a current collection hole formed in the transparent electrode layer formation region. In the thin film solar cell formed by connecting, the substrate has an uneven surface on both the front and back surfaces to increase the contact area in order to improve the adhesion between the substrate and the first electrode layer or the third electrode layer. Let City and the surface or inside of the back surface, the surface of the formed irregularities are often large contact area side, the thin-film solar cell, characterized in that the formation of the photoelectric conversion unit.
JP2000263296A 2000-08-31 2000-08-31 Thin film solar cell Expired - Fee Related JP4432236B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000263296A JP4432236B2 (en) 2000-08-31 2000-08-31 Thin film solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000263296A JP4432236B2 (en) 2000-08-31 2000-08-31 Thin film solar cell

Publications (2)

Publication Number Publication Date
JP2002076406A JP2002076406A (en) 2002-03-15
JP4432236B2 true JP4432236B2 (en) 2010-03-17

Family

ID=18750859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000263296A Expired - Fee Related JP4432236B2 (en) 2000-08-31 2000-08-31 Thin film solar cell

Country Status (1)

Country Link
JP (1) JP4432236B2 (en)

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05183178A (en) * 1991-12-26 1993-07-23 Asahi Glass Co Ltd Amorphous silicon solar cell and manufacture thereof
JP3102232B2 (en) * 1993-11-02 2000-10-23 富士電機株式会社 Thin film solar cell and method of manufacturing the same
JP3216754B2 (en) * 1994-03-16 2001-10-09 富士電機株式会社 Manufacturing method of thin film solar cell
JP3248336B2 (en) * 1994-03-23 2002-01-21 富士電機株式会社 Manufacturing method of thin film solar cell
JPH07307481A (en) * 1994-05-16 1995-11-21 Fuji Electric Co Ltd Manufacture of thin-film solar cell
JP3111820B2 (en) * 1994-08-11 2000-11-27 富士電機株式会社 Manufacturing method of thin film solar cell
JPH08139352A (en) * 1994-11-14 1996-05-31 Fuji Electric Co Ltd Manufacture of thin film solar cell
JP3365148B2 (en) * 1995-05-26 2003-01-08 富士電機株式会社 Metal layer patterning method
JPH08330612A (en) * 1995-05-29 1996-12-13 Fuji Electric Co Ltd Thin film solar cell and manufacture therof
JP3455364B2 (en) * 1996-05-20 2003-10-14 株式会社富士電機総合研究所 Thin film solar cell and method of manufacturing the same
JP3449155B2 (en) * 1997-02-21 2003-09-22 株式会社富士電機総合研究所 Photoelectric conversion device and method of manufacturing the same
JP3588997B2 (en) * 1997-12-09 2004-11-17 富士電機ホールディングス株式会社 Thin film solar cell and method for manufacturing the same
JP3237621B2 (en) * 1998-08-27 2001-12-10 富士電機株式会社 Photoelectric conversion device and method of manufacturing the same
JP2000323732A (en) * 1999-05-14 2000-11-24 Fuji Electric Co Ltd Thin film solar cell and its manufacture

Also Published As

Publication number Publication date
JP2002076406A (en) 2002-03-15

Similar Documents

Publication Publication Date Title
JP2755281B2 (en) Thin film solar cell and method of manufacturing the same
WO2004064167A1 (en) Transparent thin-film solar cell module and its manufacturing method
JP3449155B2 (en) Photoelectric conversion device and method of manufacturing the same
JP2002057357A (en) Thin-film solar battery and its manufacturing method
JP4171959B2 (en) Method for manufacturing thin film solar cell
JP4379560B2 (en) Thin film solar cell and manufacturing method thereof
JP4432236B2 (en) Thin film solar cell
JP2000223727A (en) Thin film solar battery and its manufacture
JP4403654B2 (en) Thin film solar cell
JP2000077690A (en) Photoelectric converter and its manufacture
JP4534331B2 (en) Method for manufacturing thin film solar cell
JP2000323732A (en) Thin film solar cell and its manufacture
JP4075254B2 (en) Method for manufacturing thin film solar cell
JP4379557B2 (en) Thin film solar cell manufacturing method and manufacturing apparatus
JP3170914B2 (en) Thin film solar cell and method of manufacturing the same
JPH07321355A (en) Thin film for solar cell and manufacture
JP2000208794A (en) Method of laser patterning pattern-shaped thin film of thin-film solar cell or the like
JP3685964B2 (en) Photoelectric conversion device
JP2011243938A (en) Thin film solar cell
JP2002252360A (en) Method for manufacturing thin-film solar battery
JPH04320380A (en) Manufacture of solar cell
JP2004342768A (en) Thin film solar cell module
JP3920468B2 (en) Photovoltaic device
JP2001111084A (en) Thin film solar cell module
JP2002076379A (en) Thin film solar battery and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060215

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20081016

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20081016

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20081016

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090603

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090609

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091214

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140108

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees