JP2002076406A - Thin film solar battery and its manufacturing method - Google Patents

Thin film solar battery and its manufacturing method

Info

Publication number
JP2002076406A
JP2002076406A JP2000263296A JP2000263296A JP2002076406A JP 2002076406 A JP2002076406 A JP 2002076406A JP 2000263296 A JP2000263296 A JP 2000263296A JP 2000263296 A JP2000263296 A JP 2000263296A JP 2002076406 A JP2002076406 A JP 2002076406A
Authority
JP
Japan
Prior art keywords
electrode layer
photoelectric conversion
substrate
connection
film solar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000263296A
Other languages
Japanese (ja)
Other versions
JP4432236B2 (en
Inventor
清雄 ▲斎▼藤
Kiyoo Saito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2000263296A priority Critical patent/JP4432236B2/en
Publication of JP2002076406A publication Critical patent/JP2002076406A/en
Application granted granted Critical
Publication of JP4432236B2 publication Critical patent/JP4432236B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)
  • Laser Beam Processing (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a thin film solar battery having excellent characteristic by preventing damage to a thin film which is generated at laser patterning, and a method for manufacturing the thin film solar battery. SOLUTION: In a thin film solar battery using a substrate wherein a laser beam is transmitted, material of a first electrode layer L and a third electrode layer b is single metal of silver or aluminum, alloy, etc., and has reflectance higher than that of a fourth electrode layer e. Material of the fourth electrode layer e is nickel, ITO(indium tin oxide), copper, etc., and has reflectance lower than that of the third electrode layer b. The thickness of the first electrode layer L is made equivalent to or greater than that of the third electrode layer b. In a thin film solar battery using a substrate wherein a laser beam is absorbed by adding coloring agent, a photoelectric conversion part having a photoelectric conversion layer (a) is formed on the surface on the side wherein density of coloring agent in the substrate is low.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、薄膜太陽電池と
その製造方法に関する。
[0001] The present invention relates to a thin-film solar cell and a method for manufacturing the same.

【0002】[0002]

【従来の技術】現在、環境保護の立場から、クリーンな
エネルギーの研究開発が進められている。中でも、太陽
電池はその資源(太陽光)が無限であること、無公害で
あることから注目を集めている。同一基板上に形成され
た複数の太陽電池素子が、直列接続されてなる太陽電池
(光電変換装置)の代表例は、薄膜太陽電池である。
2. Description of the Related Art At present, research and development of clean energy are being promoted from the standpoint of environmental protection. Above all, solar cells are attracting attention because of their infinite resources (solar rays) and no pollution. A typical example of a solar cell (photoelectric conversion device) in which a plurality of solar cell elements formed on the same substrate are connected in series is a thin-film solar cell.

【0003】薄膜太陽電池は、薄型で軽量、製造コスト
の安さ、大面積化が容易であることなどから、今後の太
陽電池の主流となると考えられ、電力供給用以外に、建
物の屋根や窓などにとりつけて利用される業務用,一般
住宅用にも需要が広がってきている。
Thin-film solar cells are considered to be the mainstream of solar cells in the future because of their thinness, light weight, low production cost, and easy area enlargement. Demand is expanding for business use and general residential use, which are used for such purposes.

【0004】従来の薄膜太陽電池はガラス基板を用いて
いたが、軽量化、施工性、量産性においてプラスチック
フィルムを用いたフレキシブルタイプの太陽電池の研究
開発が進められている。さらに、フレキシブルな金属材
料に絶縁被覆したフィルム基板を用いたものも開発され
ている。このフレキシブル性を生かし、ロールツーロー
ル方式やステッピングロール方式の製造方法により大量
生産が可能となった。
Conventional thin-film solar cells use a glass substrate, but research and development of a flexible solar cell using a plastic film has been advanced in terms of weight reduction, workability, and mass productivity. Further, a device using a film substrate insulated from a flexible metal material has been developed. Taking advantage of this flexibility, mass production has become possible by roll-to-roll or stepping roll manufacturing methods.

【0005】上記の薄膜太陽電池は、フレキシブルな電
気絶縁性フィルム基板上に第1電極(以下、下電極とも
いう)、薄膜半導体層からなる光電変換層および第2電
極(以下、透明電極ともいう)が積層されてなる光電変
換素子(またはセル)が複数形成されている。ある光電
変換素子の第1電極と隣接する光電変換素子の第2電極
を電気的に接続することを繰り返すことにより、最初の
光電変換素子の第1電極と最後の光電変換素子の第2電
極とに必要な電圧を出力させることができる。例えば、
インバータにより交流化し商用電力源として交流100
Vを得るためには、薄膜太陽電池の出力電圧は100V
以上が望ましく、実際には数10個以上の素子が直列接
続される。
In the above-mentioned thin film solar cell, a first electrode (hereinafter, also referred to as a lower electrode), a photoelectric conversion layer comprising a thin film semiconductor layer, and a second electrode (hereinafter, also referred to as a transparent electrode) are formed on a flexible electrically insulating film substrate. ) Are formed in a plurality of photoelectric conversion elements (or cells). By repeatedly electrically connecting the first electrode of a certain photoelectric conversion element and the second electrode of the adjacent photoelectric conversion element, the first electrode of the first photoelectric conversion element and the second electrode of the last photoelectric conversion element Required voltage can be output. For example,
Alternating with an inverter, AC 100 as commercial power source
In order to obtain V, the output voltage of the thin-film solar cell must be 100 V
The above is desirable, and actually several tens or more elements are connected in series.

【0006】このような光電変換素子とその直列接続
は、電極層と光電変換層の成膜と各層のパターニングお
よびそれらの組み合わせ手順により形成される。上記太
陽電池の構成および製造方法の一例は、例えば特開平1
0−233517号公報や特願平11−19306号に
記載されている。
[0006] Such a photoelectric conversion element and its serial connection are formed by forming an electrode layer and a photoelectric conversion layer, patterning each layer, and combining them. An example of the configuration and the manufacturing method of the solar cell is disclosed in, for example,
No. 0-233517 and Japanese Patent Application No. 11-19306.

【0007】図4は、上記特開平10−233517号
公報に記載された薄膜太陽電池の一例を示し、(a)は
平面図、(b)は(a)における線ABCDおよびBQ
Cに沿っての断面図であり、(c)は(a)におけるE
E断面図を示す。
FIG. 4 shows an example of a thin-film solar cell described in the above-mentioned Japanese Patent Application Laid-Open No. Hei 10-233517. FIG. 4A is a plan view, and FIG. 4B is a line ABCD and BQ in FIG.
It is sectional drawing along C, (c) is E in (a).
E shows a sectional view.

【0008】電気絶縁性でフレキシブルな樹脂からなる
長尺のフィルム基板上に、順次、第1電極層、光電変換
層、第2電極層が積層され、フィルム基板の反対側(裏
面)には第3電極層、第4電極層が積層され、裏面電極
が形成されている。光電変換層は例えばアモルファスシ
リコンのpin接合である。フィルム基板用材料として
は、ポリイミドのフィルム、例えば厚さ50μmのフィ
ルムが用いられている。
A first electrode layer, a photoelectric conversion layer, and a second electrode layer are sequentially laminated on a long film substrate made of an electrically insulating and flexible resin. The three electrode layer and the fourth electrode layer are stacked to form a back electrode. The photoelectric conversion layer is, for example, a pin junction of amorphous silicon. As the material for the film substrate, a polyimide film, for example, a film having a thickness of 50 μm is used.

【0009】フィルムの材質としては、他に、ポリエチ
レンナフタレート(PEN)、ポリエーテルサルフォン(P
ES)、ポリエチレンテレフタレート(PET)、またはア
ラミド系のフィルムなどを用いることができる。
Other materials for the film include polyethylene naphthalate (PEN) and polyether sulfone (P
ES), polyethylene terephthalate (PET), or aramid-based films can be used.

【0010】次に、製造工程の概要につき以下に説明す
る。
Next, an outline of the manufacturing process will be described below.

【0011】先ず、フィルム基板にパンチを用いて、接
続孔h1を開け、基板の片側(表側とする)に第1電極
層として、スパッタにより銀を、例えば100nmの厚
さに成膜し、これと反対の面(裏側とする)には、第3
電極層として、同じく銀電極を成膜する。接続孔h1の
内壁で第1電極層と第3電極層とは重なり、導通する。
First, a connection hole h1 is formed in a film substrate by using a punch, and silver is formed as a first electrode layer on one side (front side) of the substrate by sputtering, for example, to a thickness of 100 nm. On the opposite side (the back side)
Similarly, a silver electrode is formed as an electrode layer. The first electrode layer and the third electrode layer overlap with each other on the inner wall of the connection hole h1 and conduct.

【0012】電極層としては、銀(Ag)以外に、Al,C
u,Ti等の金属をスパッタまたは電子ビーム蒸着等によ
り製膜しても良く、金属酸化膜と金属の多層膜を電極層
としても良い。
The electrode layer is made of not only silver (Ag) but also Al, C
A metal such as u or Ti may be formed by sputtering or electron beam evaporation, or a multilayer film of a metal oxide film and a metal may be used as the electrode layer.

【0013】成膜後、表側では、第1電極層を所定の形
状にレーザ加工して、下電極l1〜l6をパターニング
する。下電極l1〜l6の隣接部は一本の分離線g2
を、二列の直列接続の光電変換素子間および周縁導電部
fとの分離のためには二本の分離線g2を形成し、下電
極l1〜l6は分離線により囲まれるようにする。再度
パンチを用いて、集電孔h2を開けた後、表側に、光電
変換層pとしてa-Si層をプラズマCVDにより成膜す
る。マスクを用いて幅W2の成膜とし、レーザ加工によ
り二列素子の間だけに第1電極層と同じ分離線を形成す
る。
After the film formation, on the front side, the first electrode layer is laser-processed into a predetermined shape, and the lower electrodes 11 to 16 are patterned. A portion adjacent to the lower electrodes 11 to 16 is a single separation line g2.
For separation between two rows of photoelectric conversion elements connected in series and the periphery conductive portion f, two separation lines g2 are formed, and the lower electrodes 11 to 16 are surrounded by the separation lines. After the current collecting hole h2 is opened again by using a punch, an a-Si layer is formed as a photoelectric conversion layer p on the front side by plasma CVD. A film having a width W2 is formed using a mask, and the same separation line as that of the first electrode layer is formed only between the two-row elements by laser processing.

【0014】さらに第2電極層として表側に透明電極層
(ITO層)を成膜する。但し、二つの素子列の間とこ
れに平行な基板の両側端部にはマスクを掛け接続孔h1
には成膜しないようにし、素子部のみに成膜する。透明
電極層としては、ITO(インシ゛ウムスス゛オキサイト゛)以外に、SnO
2、ZnOなどの酸化物導電層を用いることができる。
Further, a transparent electrode layer (ITO layer) is formed on the front side as a second electrode layer. However, a mask is applied between the two element rows and on both side edges of the substrate parallel to the two element rows to form connection holes h1.
Is formed only on the element portion. As the transparent electrode layer, besides ITO (Indium Sulfate), SnO
2. An oxide conductive layer such as ZnO can be used.

【0015】次いで裏面全面に第4電極層として銀電極
を成膜する。第4電極の成膜により、集電孔h2の内壁
で第2電極と第4電極とが重なり、導通する。表側で
は、レーザ加工により下電極と同じパターンの分離線を
入れ、個別の第2電極u1〜u6を形成し、裏側では第
3電極と第4電極とを同時にレーザ加工し、接続電極e
12〜e56、および電力取り出し電極o1,o2を個
別化し、基板の周縁部では表側の分離線g3と重なるよ
うに分離線g2を形成し、隣接電極間には一本の分離線
を形成する。
Next, a silver electrode is formed as a fourth electrode layer on the entire back surface. Due to the formation of the fourth electrode, the second electrode and the fourth electrode are overlapped on the inner wall of the current collecting hole h2, and conduction is achieved. On the front side, a separation line having the same pattern as that of the lower electrode is formed by laser processing to form individual second electrodes u1 to u6. On the rear side, the third electrode and the fourth electrode are simultaneously laser-processed, and the connection electrode e
12 to e56 and the power extraction electrodes o1 and o2 are individualized, a separation line g2 is formed at the periphery of the substrate so as to overlap the separation line g3 on the front side, and one separation line is formed between adjacent electrodes.

【0016】なお、裏面の接続電極を低出力のレーザで
加工するために、第4電極の材料を、比較的低反射率の
材料とすることも、しばしば行われる。低反射率の材料
としては、Ni,ITO,Cuなどが用いられる。
In order to process the connection electrode on the back surface with a low-output laser, the material of the fourth electrode is often made of a material having a relatively low reflectance. Ni, ITO, Cu, or the like is used as a material having a low reflectance.

【0017】全ての薄膜太陽電池素子を一括して囲う周
縁、および二列の直列接続太陽電池素子の隣接する境界
には(周縁導電部fの内側)分離線g3がある。分離線
g3の中にはどの層も無い。裏側では、全ての電極を一
括して囲う周縁、および二列の直列接続電極の隣接する
境界には(周縁導電部fの内側)分離線g2がある。分
離線g2の中にはどの層も無い。
There is a separation line g3 (inside the peripheral conductive portion f) at the periphery surrounding all the thin-film solar cells collectively and at the adjacent boundary between the two rows of series-connected solar cells. There are no layers in the separation line g3. On the rear side, there is a separation line g2 (inside the peripheral conductive portion f) at the periphery surrounding all the electrodes collectively and at the adjacent boundary between the two rows of serially connected electrodes. There are no layers in the separation line g2.

【0018】こうして、電力取り出し電極o1−集電孔
h2−上電極u1、光電変換層、下電極l1−接続孔h
1−接続電極e12−上電極u2、光電変換層、下電極
l2−接続電極e23−・・・−上電極u6、光電変換
層、下電極l6−接続孔h1−電力取出し電極o2の順
の光電変換素子の直列接続が完成する。
In this manner, the power extraction electrode o1-current collection hole h2-upper electrode u1, photoelectric conversion layer, lower electrode l1-connection hole h
1-connection electrode e12-upper electrode u2, photoelectric conversion layer, lower electrode 12-connection electrode e23-...-upper electrode u6, photoelectric conversion layer, lower electrode 16-connection hole h1-photoelectric extraction electrode o2 in the order of: The serial connection of the conversion elements is completed.

【0019】なお、第3電極層と第4電極層は電気的に
は同一の電位であるので、以下の説明においては説明の
便宜上、併せて一層の接続電極層として扱うこともあ
る。
Since the third electrode layer and the fourth electrode layer have the same electric potential, they may be treated as a single connection electrode layer in the following description for convenience of explanation.

【0020】図5は、構造の理解の容易化のために、薄
膜太陽電池の構成を簡略化して斜視図で示したものであ
る。図5において、基板61の表面に形成した単位光電
変換素子62および基板61の裏面に形成した接続電極
層63は、それぞれ複数の単位ユニットに完全に分離さ
れ、それぞれの分離位置をずらして形成されている。こ
のため、素子62のアモルファス半導体部分である光電
変換層65で発生した電流は、まず透明電極層66に集
められ、次に該透明電極層領域に形成された集電孔67
(h2)を介して背面の接続電極層63に通じ、さらに
該接続電極層領域で素子の透明電極層領域の外側に形成
された直列接続用の接続孔68(h1)を介して上記素
子と隣り合う素子の透明電極層領域の外側に延びている
下電極層64に達し、両素子の直列接続が行われてい
る。
FIG. 5 is a simplified perspective view of the structure of a thin-film solar cell for easy understanding of the structure. In FIG. 5, the unit photoelectric conversion element 62 formed on the front surface of the substrate 61 and the connection electrode layer 63 formed on the back surface of the substrate 61 are completely separated into a plurality of unit units, respectively, and are formed with their separation positions shifted. ing. Therefore, the current generated in the photoelectric conversion layer 65, which is the amorphous semiconductor portion of the element 62, is first collected in the transparent electrode layer 66, and then the current collecting holes 67 formed in the transparent electrode layer region.
(H2) through the connection electrode layer 63 on the back surface, and further through the connection electrode 68 (h1) for series connection formed outside the transparent electrode layer region of the device in the connection electrode layer region, and connected to the device. Reaching the lower electrode layer 64 extending outside the transparent electrode layer region of the adjacent element, the two elements are connected in series.

【0021】上記薄膜太陽電池の簡略化した製造工程を
図6(a)から(g)に示す。プラスチックフィルム71
を基板として(工程(a))、これに接続孔78を形成
し(工程(b))、基板の両面に第1電極層(下電極)
74および第3電極層(接続電極の一部)73を形成
(工程(c))した後、接続孔78と所定の距離離れた
位置に集電孔77を形成する(工程(d))。次に、第
1電極層74の上に、光電変換層となる半導体層75お
よび第2電極層である透明電極層76を順次形成すると
ともに(工程(e)および工程(f))、第3電極層73
の上に第4電極層(接続電極層)79を形成する(工程
(g))。この後、レーザビームを用いて、基板71の
両側の薄膜を分離加工して図5に示すような直列接続構
造を形成する。
FIGS. 6A to 6G show a simplified manufacturing process of the above-mentioned thin film solar cell. Plastic film 71
Is used as a substrate (step (a)), connection holes 78 are formed in the substrate (step (b)), and a first electrode layer (lower electrode) is formed on both surfaces of the substrate.
After forming the first electrode layer 74 and the third electrode layer (part of the connection electrode) 73 (step (c)), a current collecting hole 77 is formed at a position separated from the connection hole 78 by a predetermined distance (step (d)). Next, a semiconductor layer 75 serving as a photoelectric conversion layer and a transparent electrode layer 76 serving as a second electrode layer are sequentially formed on the first electrode layer 74 (step (e) and step (f)). Electrode layer 73
A fourth electrode layer (connection electrode layer) 79 is formed on the substrate (step (g)). Thereafter, the thin films on both sides of the substrate 71 are separated and processed by using a laser beam to form a series connection structure as shown in FIG.

【0022】なお、図6においては、集電孔h2内にお
ける透明電極層76と第4電極層79との接続をそれぞ
れの層を重ねて2層で図示しているが、前記図4および
図5においては、電気的に一層として扱い、1層で図示
している。
In FIG. 6, the connection between the transparent electrode layer 76 and the fourth electrode layer 79 in the current collecting hole h2 is shown by two layers with each layer being superposed. In FIG. 5, it is treated as one layer electrically, and is shown in one layer.

【0023】前記薄膜太陽電池の製造工程において、接
続孔78を形成する工程(b)および集電孔77を形成
する工程(d)は、パンチを用いる打抜き加工によって
いる(特開平8−139352号公報参照)。パンチを
用いた打抜き加工に関して、本件出願人は、量産性に富
む連続開孔加工装置を提案した(特開平8−13935
2号公報参照)。この連続開孔加工装置は、基板搬送手
段と貫通孔加工手段と加工位置検出孔加工手段とを備
え、巻出しロールから送り出された基板は、順次、加工
位置検出用の孔開孔部、集電孔開孔部、および接続孔開
孔部により、所定位置に所定数の加工位置検出孔、集電
孔および接続孔が開けられ、洗浄装置で洗浄された後、
巻取りロールに巻き取られる。各種の孔位置に対応し
て、加工位置検出用の孔を基準として、基板の搬送方向
および搬送距離が制御される。
In the manufacturing process of the thin-film solar cell, the step (b) of forming the connection hole 78 and the step (d) of forming the current collecting hole 77 are performed by punching using a punch (Japanese Patent Laid-Open No. 8-139352). Gazette). Regarding the punching process using a punch, the applicant of the present application has proposed a continuous hole forming apparatus with high productivity.
No. 2). This continuous hole processing apparatus includes a substrate transporting means, a through hole processing means, and a processing position detection hole processing means, and the substrates sent out from the unwinding roll sequentially receive a hole opening for processing position detection, a collecting hole. After a predetermined number of processing position detection holes, current collection holes and connection holes are opened at predetermined positions by the electrode hole opening portion and the connection hole opening portion, and after being cleaned by the cleaning device,
It is taken up by a take-up roll. The transport direction and transport distance of the substrate are controlled based on the holes for processing position detection in correspondence with various hole positions.

【0024】図7は、基板の位置検出用孔h3と接続孔
h1及び集電孔h2の配置の一例を示す平面図である。
基板1aに設けた位置検出孔h3は、太陽電池の所定の
ユニットパターンの長さ間隔に開けられ、基板の搬送の
位置決めに用いられる。
FIG. 7 is a plan view showing an example of the arrangement of the position detecting holes h3, the connection holes h1, and the current collecting holes h2 on the substrate.
The position detection holes h3 provided in the substrate 1a are opened at predetermined intervals of a predetermined unit pattern of the solar cell, and are used for positioning the transfer of the substrate.

【0025】ところで、上記においては、基板に樹脂フ
ィルムを用いた例について主に説明したが、400℃以
上で半導体層が形成可能な耐熱性を備えた薄膜太陽電池
とその製造方法を提供することを目的として、金属等の
導電性基材を用いたものが提案されている(特願平11
−133647号参照)。
In the above description, an example in which a resin film is used as a substrate has been mainly described. However, a thin-film solar cell having heat resistance capable of forming a semiconductor layer at 400 ° C. or higher and a method of manufacturing the same are provided. For this purpose, a device using a conductive base material such as a metal has been proposed (Japanese Patent Application No. Hei 11 (1999) -207).
-133647).

【0026】上記薄膜太陽電池は、導電性基材に接続孔
を形成し、基材主面と接続孔内周面に耐熱性高分子樹脂
の電気絶縁層を形成し、この電気絶縁性基板表面及び接
続孔内周面に薄膜太陽電池の第1電極層を形成し、さら
に基板の裏面及び接続孔内周面に第3電極層を形成する
ことにより、接続孔を介して第1電極層と第3電極層と
を電気的に接続する。その後、集電孔を形成し、第1電
極層が形成された基板表面側および集電孔内周面に、光
電変換層,透明電極層を順次形成する。その後、前記第
3電極層が形成された基板裏面側および透明電極層が形
成された集電孔内周面に第4接続電極を形成することに
より、集電孔を介して透明電極層と第4接続電極層とを
電気的に接続するものであるが、製造方法の基本的な部
分は、前記の方法と同様である。
In the above-described thin-film solar cell, a connection hole is formed in a conductive base material, and an electric insulating layer of a heat-resistant polymer resin is formed on a main surface of the base material and an inner peripheral surface of the connection hole. And forming the first electrode layer of the thin-film solar cell on the inner peripheral surface of the connection hole, and forming the third electrode layer on the back surface of the substrate and the inner peripheral surface of the connection hole. The third electrode layer is electrically connected. Thereafter, a current collecting hole is formed, and a photoelectric conversion layer and a transparent electrode layer are sequentially formed on the surface of the substrate on which the first electrode layer is formed and on the inner peripheral surface of the current collecting hole. Thereafter, a fourth connection electrode is formed on the back surface side of the substrate on which the third electrode layer is formed and on the inner peripheral surface of the current collection hole on which the transparent electrode layer is formed. Although the four connection electrode layers are electrically connected, the basic part of the manufacturing method is the same as the above-described method.

【0027】[0027]

【発明が解決しようとする課題】ところで、上記従来の
薄膜太陽電池とその製造方法においては、下記のような
問題があった。
By the way, the above-mentioned conventional thin-film solar cell and its manufacturing method have the following problems.

【0028】レーザ光を透過する基板を用いた薄膜太陽
電池では、接続電極層パターニング時に、基板を透過し
たレーザ光が接続電極層とは反対側の面の光電変換部に
熱影響を与え、膜剥がれや薄膜太陽電池の短絡が発生す
るといった問題があった。
In a thin-film solar cell using a substrate that transmits laser light, at the time of patterning the connection electrode layer, the laser light transmitted through the substrate has a thermal effect on the photoelectric conversion portion on the surface opposite to the connection electrode layer. There have been problems such as peeling and short-circuiting of the thin-film solar cell.

【0029】上記問題を解消するために、基板に着色剤
を添加してレーザ光の透過率を下げ、レーザ光を吸収す
る基板を用いることもあるが、このような薄膜太陽電池
においても、接続電極層パターニング時に、レーザ光を
吸収した基板材料の着色剤が蒸発して、接続電極層とは
反対側の面の光電変換部にダメージを与える問題が生じ
ていた。
In order to solve the above problem, a substrate may be used in which a colorant is added to the substrate to reduce the transmittance of the laser beam and absorb the laser beam. During the patterning of the electrode layer, the colorant of the substrate material that has absorbed the laser beam evaporates, causing a problem of damaging the photoelectric conversion portion on the side opposite to the connection electrode layer.

【0030】さらに、基板と第1電極層または第3電極
層との付着力向上のために、その表面および裏面の両面
を凹凸化処理して接触面積を増大させた基板を用いるこ
ともあるが、この場合にも、しばしば、光電変換部にダ
メージを与える問題が生じていた。
Further, in order to improve the adhesive force between the substrate and the first or third electrode layer, a substrate having a contact area increased by making both surfaces of the front surface and the rear surface uneven is sometimes used. In this case, too, a problem often occurs that the photoelectric conversion unit is damaged.

【0031】さらにまた、マイグレーションによる短絡
を防止し、薄膜太陽電池の信頼性を高めるために、接続
電極層の加工ライン幅、即ちパターニング分離溝の幅を
広くすることも行なわれる。この場合、レーザ加工ライ
ンを複数本重ねる必要があるが、レーザ加工ラインを重
ねると、その重なりあった部分の光電変換部がダメージ
を受ける問題があった。
Further, in order to prevent short circuit due to migration and to enhance the reliability of the thin-film solar cell, the width of the processing line of the connection electrode layer, that is, the width of the patterning separation groove is increased. In this case, it is necessary to overlap a plurality of laser processing lines. However, when the laser processing lines are overlapped, there is a problem that the photoelectric conversion portion in the overlapping portion is damaged.

【0032】この発明は、上記のような問題点を解消す
るためになされたもので、この発明の課題は、レーザパ
ターニングの際に発生する薄膜の損傷防止を図り、良好
な太陽電池特性を有する薄膜太陽電池とその製造方法を
提供することにある。
The present invention has been made to solve the above problems, and an object of the present invention is to prevent a thin film from being damaged during laser patterning and to have good solar cell characteristics. An object of the present invention is to provide a thin-film solar cell and a method for manufacturing the same.

【0033】[0033]

【課題を解決するための手段】前述の課題を解決するた
め、この発明においては、透光性樹脂材料からなるフィ
ルム基板の表面に下電極層としての第1電極層、光電変
換層、透明電極層(第2電極層)を順次積層してなる光
電変換部と、前記基板の裏面に形成した接続電極層とし
ての第3電極層および第4電極層とを備え、前記光電変
換部および接続電極層を互いに位置をずらして単位部分
にレーザ加工法によりパターニングしてなり、前記透明
電極層形成領域外に形成した電気的直列接続用の接続孔
および前記透明電極層形成領域内に形成した集電孔を介
して、前記表面上の互いにパターニングされて隣合う単
位光電変換部分を電気的に直列に接続してなる薄膜太陽
電池において、前記第1電極層および第3電極層の材料
は、銀またはアルミニウムの単一金属もしくは合金等の
少なくとも前記第4電極層よりは高い反射率を有する材
料とし、前記第4電極層の材料は、ニッケル,ITO(イ
ンジウム錫オキサイド),銅等の少なくとも前記第3電
極層よりは低い反射率を有する材料とし、かつ前記第1
電極層の膜厚は、前記第3電極層の膜厚と同等もしくは
それ以上とする(請求項1の発明)。また、前記請求項
1に記載の薄膜太陽電池において、前記透光性樹脂材料
からなるフィルム基板の前記レーザ波長に対する光の透
過率は、60%以上とする(請求項2の発明)。
In order to solve the above-mentioned problems, according to the present invention, a first electrode layer as a lower electrode layer, a photoelectric conversion layer, and a transparent electrode are provided on a surface of a film substrate made of a translucent resin material. A photoelectric conversion unit formed by sequentially stacking layers (second electrode layers); and a third electrode layer and a fourth electrode layer serving as connection electrode layers formed on the back surface of the substrate. The layers are displaced from each other and patterned into unit portions by a laser processing method, connection holes for electrical series connection formed outside the transparent electrode layer formation region, and current collection formed in the transparent electrode layer formation region In a thin-film solar cell in which unit photoelectric conversion portions that are patterned and mutually adjacent on the surface and that are adjacent to each other through a hole are electrically connected in series, the material of the first electrode layer and the third electrode layer is silver or Al A material having a higher reflectivity than at least the fourth electrode layer, such as a single metal or alloy of nickel, and a material of the fourth electrode layer is at least the third material such as nickel, ITO (indium tin oxide), copper or the like. A material having a lower reflectivity than the electrode layer;
The thickness of the electrode layer is equal to or greater than the thickness of the third electrode layer (the invention of claim 1). In the thin-film solar cell according to the first aspect, the film substrate made of the translucent resin material has a light transmittance of 60% or more with respect to the laser wavelength (the invention of the second aspect).

【0034】上記請求項1の発明によれば、第4電極層
を低い反射率を有する材料としてレーザ光の投入効率を
向上し、さらに第1電極層の膜厚を、第3電極層よりも
厚くすることにより、接続電極層の加工に必要なレーザ
出力を第1電極層に比べて低出力とすることができ、接
続電極層のレーザ加工時に第1電極層がレーザで加工さ
れないようにすることができる。これにより、光電変換
部への熱影響を抑制することができ、膜剥がれや薄膜太
陽電池の短絡が発生する問題が解消する。これは、請求
項2の発明において特に有効である。
According to the first aspect of the present invention, the fourth electrode layer is made of a material having a low reflectance to improve the efficiency of inputting laser light, and the thickness of the first electrode layer is made smaller than that of the third electrode layer. By increasing the thickness, the laser output required for processing the connection electrode layer can be made lower than that of the first electrode layer, and the first electrode layer is not processed by the laser during the laser processing of the connection electrode layer. be able to. Thereby, the influence of heat on the photoelectric conversion unit can be suppressed, and the problems of film peeling and short-circuiting of the thin-film solar cell occur. This is particularly effective in the second aspect of the invention.

【0035】さらに、基板に着色剤を添加した基板を用
いた薄膜太陽電池においては、下記の請求項3の発明が
好適である。即ち、パターニングに用いるレーザ光の透
過を防止するために樹脂材料に着色剤を添加したフィル
ム基板の表面に下電極層としての第1電極層、光電変換
層、透明電極層(第2電極層)を順次積層してなる光電
変換部と、前記基板の裏面に形成した接続電極層として
の第3電極層および第4電極層とを備え、前記光電変換
部および接続電極層を互いに位置をずらして単位部分に
レーザ加工法によりパターニングしてなり、前記透明電
極層形成領域外に形成した電気的直列接続用の接続孔お
よび前記透明電極層形成領域内に形成した集電孔を介し
て、前記表面上の互いにパターニングされて隣合う単位
光電変換部分を電気的に直列に接続してなる薄膜太陽電
池において、前記基板における着色剤濃度が低い側の面
に、前記光電変換部を形成する。
Further, in a thin-film solar cell using a substrate in which a coloring agent is added to the substrate, the following invention of claim 3 is preferable. That is, a first electrode layer as a lower electrode layer, a photoelectric conversion layer, and a transparent electrode layer (second electrode layer) are formed on a surface of a film substrate obtained by adding a coloring agent to a resin material in order to prevent transmission of laser light used for patterning. And a third electrode layer and a fourth electrode layer as connection electrode layers formed on the back surface of the substrate, wherein the photoelectric conversion unit and the connection electrode layer are displaced from each other. The unit portion is patterned by a laser processing method, and the surface is formed through a connection hole for electrical series connection formed outside the transparent electrode layer forming region and a current collecting hole formed in the transparent electrode layer forming region. In the thin-film solar cell in which the adjacent unit photoelectric conversion portions are electrically connected in series to each other on the upper side, the photoelectric conversion portion is formed on a surface of the substrate on which the colorant concentration is low.

【0036】前記請求項3の発明が有効である理由は、
下記による。着色剤を基板樹脂に添加する場合に、着色
剤を樹脂の厚さ方向に均一に添加することは難しく、基
板の厚さ方向に着色剤の濃度差ができる。前述のよう
に、光電変換部にダメージが生ずるのは、レーザ光を吸
収した基板材料の着色剤が蒸発することに起因するが、
着色剤の濃度が高い面に第1電極層を形成すると、着色
剤の蒸気により基板上に形成された第1電極層が比較的
吹き飛ばされやすくなる。そこで、基板の両面を比較し
て、着色剤の濃度が低い面に、第1電極層を含む光電変
換部を形成することにより、ダメージが生ずる問題が抑
制できる。
The reason why the invention of claim 3 is effective is as follows.
According to the following. When a colorant is added to a substrate resin, it is difficult to uniformly add the colorant in the thickness direction of the resin, and a concentration difference of the colorant occurs in the thickness direction of the substrate. As described above, the damage to the photoelectric conversion unit is caused by the evaporation of the colorant of the substrate material that has absorbed the laser light,
When the first electrode layer is formed on a surface where the concentration of the coloring agent is high, the first electrode layer formed on the substrate is relatively easily blown off by the vapor of the coloring agent. Therefore, by forming the photoelectric conversion portion including the first electrode layer on the surface of the substrate where the concentration of the coloring agent is lower than that of both surfaces of the substrate, the problem of causing damage can be suppressed.

【0037】また、基板に前記凹凸化処理をした基板を
用いた薄膜太陽電池においては、下記の請求項4の発明
が好適である。即ち、樹脂材料からなるフィルム基板の
表面に下電極層としての第1電極層、光電変換層、透明
電極層(第2電極層)を順次積層してなる光電変換部
と、前記基板の裏面に形成した接続電極層としての第3
電極層および第4電極層とを備え、前記光電変換部およ
び接続電極層を互いに位置をずらして単位部分にレーザ
加工法によりパターニングしてなり、前記透明電極層形
成領域外に形成した電気的直列接続用の接続孔および前
記透明電極層形成領域内に形成した集電孔を介して、前
記表面上の互いにパターニングされて隣合う単位光電変
換部分を電気的に直列に接続してなる薄膜太陽電池にお
いて、前記基板は、基板と前記第1電極層または第3電
極層との付着力向上のために、その表面および裏面の両
面を凹凸化処理して接触面積を増大させたものとし、か
つ前記表面または裏面の内、形成された凹凸が大きく接
触面積が多い側の面に、前記光電変換部を形成する。
Further, in a thin-film solar cell using a substrate which has been subjected to the above-mentioned roughening treatment, the following invention of claim 4 is preferable. That is, a photoelectric conversion unit in which a first electrode layer as a lower electrode layer, a photoelectric conversion layer, and a transparent electrode layer (second electrode layer) are sequentially laminated on a surface of a film substrate made of a resin material, Third connection electrode layer formed
An electrode layer and a fourth electrode layer, wherein the photoelectric conversion unit and the connection electrode layer are formed by patterning a unit portion by a laser processing method while displacing the positions from each other, and an electrical series formed outside the transparent electrode layer formation region. A thin-film solar cell in which unit photoelectric conversion portions that are patterned and mutually adjacent on the surface are electrically connected in series via a connection hole for connection and a current collection hole formed in the transparent electrode layer formation region. In the above-mentioned substrate, in order to improve the adhesion between the substrate and the first electrode layer or the third electrode layer, both surfaces of the front and back surfaces thereof are made uneven to increase the contact area, and The photoelectric conversion unit is formed on the surface of the front surface or the back surface on the side where the formed unevenness is large and the contact area is large.

【0038】上記凹凸化処理は、高周波プラズマエッチ
ングにより行なうが、基板表面と裏面とで凹凸化の程度
が異なり、高周波電極に対向する面程、凹凸が大きくな
る。形成された凹凸が小さく接触面積が少ない面は、基
板と薄膜電極層との付着力が弱いので、膜剥離が生じ易
いためと考えられ、そのため、上記請求項4の発明の構
成を採用することにより、ダメージが生ずる問題が抑制
できると考えられる。
The above roughening treatment is performed by high frequency plasma etching. The degree of roughening is different between the front surface and the back surface of the substrate. It is considered that the formed surface having small unevenness and small contact area is likely to cause film peeling because the adhesive force between the substrate and the thin film electrode layer is weak, and therefore, the structure of the invention of claim 4 is adopted. Thus, it is considered that the problem of causing damage can be suppressed.

【0039】さらに、前述のように、パターニング分離
溝の幅を広くした薄膜太陽電池の製造方法としては、下
記請求項5の発明が好適である。即ち、樹脂材料または
電気絶縁被覆された金属材料からなるフィルム基板の表
面に、下電極層としての第1電極層、光電変換層、透明
電極層(第2電極層)を順次積層してなる光電変換部
と、前記基板の裏面に形成した接続電極層としての第3
電極層および第4電極層とを備え、前記光電変換部およ
び接続電極層を互いに位置をずらして単位部分にレーザ
加工法によりパターニングしてなり、前記透明電極層形
成領域外に形成した電気的直列接続用の接続孔および前
記透明電極層形成領域内に形成した集電孔を介して、前
記表面上の互いにパターニングされて隣合う単位光電変
換部分を電気的に直列に接続してなる薄膜太陽電池の製
造方法において、前記パターニングは、レーザ加工ライ
ンを複数本重ねてパターニング分離溝を形成するパター
ニング方法とし、前記レーザ加工ラインにおけるレーザ
パルスの重複幅寸法は、このレーザパルスのスポット径
寸法の半分以下とする。
Furthermore, as described above, the method of manufacturing a thin-film solar cell in which the width of the patterning separation groove is widened is preferably the following invention. That is, a photoelectric layer formed by sequentially laminating a first electrode layer as a lower electrode layer, a photoelectric conversion layer, and a transparent electrode layer (second electrode layer) on the surface of a film substrate made of a resin material or a metal material covered with an electric insulation. A conversion part, and a third electrode serving as a connection electrode layer formed on the back surface of the substrate.
An electrode layer and a fourth electrode layer, wherein the photoelectric conversion unit and the connection electrode layer are formed by patterning a unit portion by a laser processing method while displacing the positions from each other, and an electrical series formed outside the transparent electrode layer formation region. A thin-film solar cell in which unit photoelectric conversion portions that are patterned and mutually adjacent on the surface are electrically connected in series via a connection hole for connection and a current collection hole formed in the transparent electrode layer formation region. In the manufacturing method, the patterning is a patterning method in which a plurality of laser processing lines are overlapped to form a patterning separation groove, and an overlap width dimension of a laser pulse in the laser processing line is equal to or less than half of a spot diameter dimension of the laser pulse. And

【0040】前記請求項5の発明により、後に詳述する
ように、レーザパルスの照射回数を4パルス以下に限定
することができ、光電変換部のダメージが解消できる。
According to the fifth aspect of the present invention, as will be described later in detail, the number of laser pulse irradiations can be limited to four or less, and damage to the photoelectric conversion unit can be eliminated.

【0041】[0041]

【発明の実施の形態】図面に基づき、この発明の実施の
形態について以下に述べる。
Embodiments of the present invention will be described below with reference to the drawings.

【0042】(実施例1)表1は、基板に板厚25μmの
耐熱性高分子のアラミド樹脂を用い、その上に第1電極
層として銀を300℃の製膜温度でスパッタ形成したサン
プルを作製し、基板側からYAGレーザの第2高調波を入
射したときのレーザ加工出力と第1電極層ダメージの関
係を示したものである。このときのレーザ波長に対する
基板の透過率は60%であり、第1電極層膜厚は、0.1〜
0.3μmとした。
Example 1 Table 1 shows a sample obtained by using a heat-resistant polymer aramid resin having a thickness of 25 μm for a substrate, and forming silver thereon as a first electrode layer by sputtering at a film forming temperature of 300 ° C. It shows the relationship between laser processing output and damage to the first electrode layer when the second harmonic of a YAG laser is made from the substrate side. At this time, the transmittance of the substrate with respect to the laser wavelength is 60%, and the thickness of the first electrode layer is 0.1 to
0.3 μm.

【0043】[0043]

【表1】 [Table 1]

【0044】表1から、第1電極層ダメ−ジが発生する
レーザ加工出力は、第1電極膜厚が厚いほど高出力にな
るのがわかる。後述するように、第3電極層(銀0.2μ
m)と第4電極層(Ni 300〜500nm)からなる接続電
極層を加工除去するためには、0.8mJ/pulse以上必要な
ので、この場合、第1電極層膜厚は0.2μm以上である
ことが望ましいことがわかる。
From Table 1, it can be seen that the laser processing output at which the damage to the first electrode layer occurs increases as the thickness of the first electrode increases. As described later, the third electrode layer (silver 0.2 μm)
m) and the fourth electrode layer (Ni 300-500 nm) to process and remove the connection electrode layer requires 0.8 mJ / pulse or more. In this case, the thickness of the first electrode layer must be 0.2 μm or more. Is desirable.

【0045】図1は、上記結果を踏まえて作製した薄膜
太陽電池の製造工程を示す図である。以下に、図1によ
り、請求項1の発明に関わる薄膜太陽電池の製造方法を
説明する。
FIG. 1 is a diagram showing a manufacturing process of a thin-film solar cell manufactured based on the above results. Hereinafter, a method for manufacturing a thin-film solar cell according to the first aspect of the present invention will be described with reference to FIG.

【0046】まず、板厚38μmアラミド基板10にパン
チを用いて接続孔h1を形成した。その上に、銀等の高
反射金属からなる第1電極層Lを0.2μm、これと反対
側の主面には第1電極層と同材質の第3電極層bを0.2
μmの膜厚でスパッタ法により形成した。このときの電
極形成温度は共に300℃であった。本工程の結果、直列
接続孔h1を介して第1電極層Lと第3電極層bとを電
気的に接続した。
First, a connection hole h1 was formed in a 38 μm-thick aramid substrate 10 using a punch. A first electrode layer L made of a highly reflective metal such as silver is formed thereon with a thickness of 0.2 μm, and a third electrode layer b of the same material as the first electrode layer is formed on the opposite main surface with a thickness of 0.2 μm.
It was formed by a sputtering method with a film thickness of μm. The electrode forming temperature at this time was 300 ° C. As a result of this step, the first electrode layer L and the third electrode layer b were electrically connected via the series connection hole h1.

【0047】この第1電極層LをYAGレーザの第2高調
波を用いてパターニングし、複数個のユニットに分割し
た。
The first electrode layer L was patterned using the second harmonic of the YAG laser, and divided into a plurality of units.

【0048】その後、パンチを用いて集電孔h2を形成
し、第1電極層上に、a−Si層から成る光電変換層a
をプラズマCVD法で、光入射側の透明電極層u及びこ
れとは反対側の主面には、光反射率の低いニッケルから
なる第4電極層eをスパッタ法を用いて順次形成した。
本工程の結果、集電孔h2を介して透明電極層uと第4
電極層eが電気的に接続された。第4電極層eの厚さは
300〜500nmである。
Thereafter, a current collecting hole h2 is formed using a punch, and a photoelectric conversion layer a made of an a-Si layer is formed on the first electrode layer.
By plasma CVD, a fourth electrode layer e made of nickel having a low light reflectance was sequentially formed on the transparent electrode layer u on the light incident side and the main surface on the opposite side by using a sputtering method.
As a result of this step, the transparent electrode layer u and the fourth
The electrode layer e was electrically connected. The thickness of the fourth electrode layer e is
300-500 nm.

【0049】そして最後に、第1電極層パターニングラ
イン内の透明電極層uと光電変換層a、これと反対側の
第3電極層bおよび第4電極層eからなる接続電極層を
YAGレーザの第2高調波を用いてパターニングし、複数
個の薄膜太陽電池素子が直列に接続された薄膜太陽電池
を形成した。
Finally, a connection electrode layer consisting of the transparent electrode layer u and the photoelectric conversion layer a in the first electrode layer patterning line, and the third electrode layer b and the fourth electrode layer e on the opposite side are formed.
Patterning was performed using the second harmonic of a YAG laser to form a thin-film solar cell in which a plurality of thin-film solar cell elements were connected in series.

【0050】この実施例によれば、第1電極層膜厚を0.
2μmにすることにより、接続電極層加工時の光電変換
部ダメージを無くすことができた。
According to this embodiment, the thickness of the first electrode layer is set to 0.
By setting the thickness to 2 μm, it was possible to eliminate the damage of the photoelectric conversion portion at the time of processing the connection electrode layer.

【0051】(実施例2)表2は、厚さ50μmの耐熱性
高分子のポリイミド樹脂に着色剤を添加した基板を用
い、その上に第1電極層として銀を300℃の製膜温度で
0.2μmスパッタ形成したサンプルを作製し、基板側か
らYAGレ−ザの第2高調波を入射したときのレーザ加工
出力と第1電極層ダメージの関係を示したものである。
このときのレーザ波長に対する基板の透過率は20%以下
であり、ほとんどのレーザ光が基板に吸収される。
Example 2 Table 2 shows that a substrate was used in which a coloring agent was added to a heat-resistant polymer polyimide resin having a thickness of 50 μm, and silver was formed thereon as a first electrode layer at a film forming temperature of 300 ° C.
This is a graph showing the relationship between laser processing output and damage to the first electrode layer when a second harmonic of a YAG laser is incident from the substrate side after preparing a sample formed by sputtering 0.2 μm.
At this time, the transmittance of the substrate with respect to the laser wavelength is 20% or less, and most of the laser light is absorbed by the substrate.

【0052】[0052]

【表2】 [Table 2]

【0053】表2から、第1電極層ダメージが発生する
レーザ加工出力は、基板の表裏で異なることがわかる。
これは、着色剤を樹脂に厚さ方向に均一に添加すること
は難しく、着色剤の濃度が高い面に第1電極層を形成す
ると、レーザ光の照射により着色剤が蒸発し、その蒸気
で基板上に形成された第1電極層が吹き飛ぶからと考え
られる。
From Table 2, it can be seen that the laser processing output at which the first electrode layer damage occurs differs between the front and back of the substrate.
This is because it is difficult to uniformly add the colorant to the resin in the thickness direction, and when the first electrode layer is formed on the surface where the concentration of the colorant is high, the colorant evaporates by laser light irradiation, and the vapor is generated by the vapor. It is considered that the first electrode layer formed on the substrate blows away.

【0054】上記結果を踏まえ、着色剤を添加した板厚
38μmのポリイミド基板を用いて、図1と同様の手順に
より、薄膜太陽電池を製作した。但し、この場合、実施
例1のように、第1電極層の膜厚を第3電極層の膜厚と
同等以上にする必要はない。
Based on the above results, the plate thickness to which the coloring agent was added
Using a 38 μm polyimide substrate, a thin-film solar cell was manufactured in the same procedure as in FIG. However, in this case, it is not necessary to make the thickness of the first electrode layer equal to or more than the thickness of the third electrode layer as in the first embodiment.

【0055】これにより、接続電極層加工時の光電変換
部ダメージを無くすことができた。
As a result, it was possible to eliminate damage to the photoelectric conversion portion during processing of the connection electrode layer.

【0056】本実施例では、基板厚さ方向の着色剤の濃
度差に関わる基板表裏の使い分けについて記載したが、
基板表裏面の表面凹凸化処理の程度差に関わる基板表裏
の使い分けによっても同様に、ダメ−ジを受けづらい面
に光電変換部を形成することにより、本実施例と同じ効
果が得られる。
In this embodiment, the use of the front and back sides of the substrate relating to the difference in the concentration of the colorant in the thickness direction of the substrate has been described.
Similarly, the same effect as that of the present embodiment can be obtained by forming the photoelectric conversion portion on the surface which is hard to receive damage by properly using the front and back surfaces of the substrate in relation to the degree of the surface unevenness treatment on the front and back surfaces of the substrate.

【0057】(実施例3)図2は、請求項5の発明に関
わる薄膜太陽電池平面図を示し、図3は、接続電極層レ
ーザ加工ラインの重ね合わせイメージを模式的に示す。
(Embodiment 3) FIG. 2 is a plan view of a thin-film solar cell according to the fifth aspect of the present invention, and FIG. 3 schematically shows a superimposed image of a connection electrode layer laser processing line.

【0058】図2は、耐熱性高分子基板上に7直列の薄
膜太陽電池を3つ並列に形成した薄膜太陽電池の平面図
である。図2(a)は、光電変換部が形成された表面、
図2(b)は、接続電極層が形成された裏面を示す。図
2において、前記図1と同一部材または同一機能部分に
は、同一の記号を付して説明を省略する。
FIG. 2 is a plan view of a thin-film solar cell in which three thin-film solar cells in seven series are formed in parallel on a heat-resistant polymer substrate. FIG. 2A shows a surface on which a photoelectric conversion unit is formed,
FIG. 2B shows the back surface on which the connection electrode layer is formed. 2, the same members or the same functional portions as those in FIG. 1 are denoted by the same reference numerals, and description thereof will be omitted.

【0059】図2(a)に示すように、この薄膜太陽電
池においては、第1電極層の上に形成された光電変換層
aは、分離部sにより3つの領域に分けられ、また透明
電極層uは、前記光電変換層a上に3つの領域に分けて
形成されている。この3つの透明電極形成領域が発電領
域である。また裏面は、図2(b)に示すように、接続
電極層eが分離部sにより3つの領域に分けられ、取出
し電極tが、両端部の接続電極層にそれぞれ接続されて
いる。図2において、分離部sは、幅広いパターニング
分離溝としており、レーザ加工ラインを複数本重ねてパ
ターニング分離溝を形成するパターニング方法を採用し
ている。
As shown in FIG. 2A, in this thin-film solar cell, the photoelectric conversion layer a formed on the first electrode layer is divided into three regions by a separation portion s. The layer u is formed on the photoelectric conversion layer a in three regions. These three transparent electrode formation regions are power generation regions. On the back surface, as shown in FIG. 2B, the connection electrode layer e is divided into three regions by the separation portion s, and the extraction electrodes t are connected to the connection electrode layers at both ends. In FIG. 2, the separation part s has a wide patterning separation groove, and adopts a patterning method of forming a patterning separation groove by overlapping a plurality of laser processing lines.

【0060】本実施例では、図3に示すように、マイグ
レーションなどによる接続電極の短絡を防ぐため、幅0.
2μmのレーザ加工ラインを3本重ね合わせて幅0.4μm
の接続電極層パターニング幅にしている。このときのレ
ーザ加工ラインを構成するレーザパルスの重複幅はレー
ザスポット径の半分の0.1μmであり、レーザ加工ライ
ンの重複幅と同じである。
In this embodiment, as shown in FIG. 3, in order to prevent short-circuiting of the connection electrode due to migration or the like, the width of the connection electrode is set to 0.
0.4μm width by superposing 3 2μm laser processing lines
Of the connection electrode layer. At this time, the overlap width of the laser pulses constituting the laser processing line is 0.1 μm, which is half of the laser spot diameter, and is the same as the overlap width of the laser processing line.

【0061】このように、レーザパルスの重複幅やレー
ザ加工ラインの重複幅がレーザスポット径の半分以下で
あると、接続電極層レーザ加工部に照射されるレーザパ
ルスを4パルス以下にすることができる。
As described above, when the overlap width of the laser pulse and the overlap width of the laser processing line are not more than half of the laser spot diameter, the laser pulse irradiated to the connection electrode layer laser processing portion can be reduced to 4 pulses or less. it can.

【0062】次に、本実施例の薄膜太陽電池の製造工程
について説明する。本実施例では、基板に膜厚20μmの
アラミド樹脂を用い、前記アラミド基板1にパンチを用
いて接続孔h1を形成した。その上に、銀等の高反射金
属からなる第1電極層を0.2μm、これと反対側の主面
には第3電極層を0.2μmの膜厚でスパッタ法により形
成した。このときの電極形成温度は共に300℃であっ
た。本工程の結果、直列接続孔h1を介して第1電極層
と第3電極層を電気的に接続した。
Next, the manufacturing process of the thin-film solar cell of this embodiment will be described. In this embodiment, a connection hole h1 was formed in the aramid substrate 1 by using a punch by using an aramid resin having a thickness of 20 μm for the substrate. A first electrode layer made of a highly reflective metal such as silver was formed thereon by a thickness of 0.2 μm, and a third electrode layer having a thickness of 0.2 μm was formed on the opposite main surface by a sputtering method. The electrode forming temperature at this time was 300 ° C. As a result of this step, the first electrode layer and the third electrode layer were electrically connected via the series connection hole h1.

【0063】この第1電極層をYAGレーザの第2高調波
を用いてパターニングし、複数個のユニットに分割し
た。
This first electrode layer was patterned using the second harmonic of the YAG laser, and divided into a plurality of units.

【0064】その後、パンチを用いて集電孔h2を形成
し、第1電極層上に、a−Si層から成る光電変換層を
プラズマCVD法で、光入射側の透明電極層及びこれと
は反対側の主面には、光反射率の低い酸化インジウムか
らなる第4電極層をスパッタ法を用いて順次形成した。
本工程の結果、集電孔h2を介して透明電極層と第4電
極層が電気的に接続された。
Thereafter, a current collecting hole h2 is formed by using a punch, and a photoelectric conversion layer composed of an a-Si layer is formed on the first electrode layer by a plasma CVD method. On the opposite main surface, a fourth electrode layer made of indium oxide having a low light reflectance was sequentially formed by a sputtering method.
As a result of this step, the transparent electrode layer and the fourth electrode layer were electrically connected via the current collecting hole h2.

【0065】そして最後に、第1電極層パターニングラ
イン内の透明電極層と光電変換層、これと反対側の第3
電極層および第4電極層からなる接続電極層のパターニ
ングに前述の方法を適用し、複数個の薄膜太陽電池素子
が直列に接続された薄膜太陽電池を形成した。
Finally, the transparent electrode layer and the photoelectric conversion layer in the first electrode layer patterning line, and the third electrode layer
The above-mentioned method was applied to the patterning of the connection electrode layer composed of the electrode layer and the fourth electrode layer to form a thin-film solar cell in which a plurality of thin-film solar cell elements were connected in series.

【0066】上記のように、レーザパルスの照射回数を
4パルス以下にすることにより、接続電極層のレーザパ
ターニング時に発生する光電変換部ダメージを低減する
ことができた。
As described above, by setting the number of laser pulse irradiations to four or less, it was possible to reduce the damage to the photoelectric conversion portion that occurs during laser patterning of the connection electrode layer.

【0067】[0067]

【発明の効果】この発明によれば前述のように、レーザ
光を透過する基板を用いた薄膜太陽電池においては、第
1電極層および第3電極層の材料は、銀またはアルミニ
ウムの単一金属もしくは合金等の第4電極層よりは高い
反射率を有する材料とし、第4電極層の材料は、ニッケ
ル,ITO(インジウム錫オキサイド),銅等の第3電極
層よりは低い反射率を有する材料とし、かつ前記第1電
極層の膜厚は、前記第3電極層の膜厚と同等もしくはそ
れ以上とすること(請求項1の発明)により、また、着
色剤を添加してレーザ光を吸収する基板を用いた薄膜太
陽電池においては、基板における着色剤濃度が低い側の
面に、光電変換部を形成すること(請求項3の発明)に
より、さらに、凹凸化処理して接触面積を増大させた基
板を用いた薄膜太陽電池においては、形成された凹凸が
大きく接触面積が多い側の面に、光電変換部を形成する
こと(請求項4の発明)により、レーザパターニングの
際に発生する薄膜の損傷を防止して、良好な太陽電池特
性を有する薄膜太陽電池が提供できる。
According to the present invention, as described above, in a thin-film solar cell using a substrate that transmits laser light, the material of the first and third electrode layers is a single metal of silver or aluminum. Alternatively, a material having a higher reflectivity than the fourth electrode layer, such as an alloy, is used. The material of the fourth electrode layer is a material having a lower reflectivity than the third electrode layer, such as nickel, ITO (indium tin oxide), and copper. The thickness of the first electrode layer is equal to or greater than the thickness of the third electrode layer (the invention of claim 1), and a colorant is added to absorb the laser beam. In a thin-film solar cell using a substrate to be formed, a photoelectric conversion portion is formed on the surface of the substrate on the side where the concentration of colorant is low (the invention of claim 3), so that the contact area is further increased by making the surface uneven. Thin-film sun using a polished substrate In the pond, by forming a photoelectric conversion portion on the surface on the side where the formed unevenness is large and the contact area is large (invention of claim 4), it is possible to prevent the thin film from being damaged at the time of laser patterning, A thin-film solar cell having good solar cell characteristics can be provided.

【0068】さらにまた、マイグレーションによる短絡
を防止するため、パターニング分離溝の幅を広くする薄
膜太陽電池の製造方法において、レーザ加工ラインにお
けるレーザパルスの重複幅寸法を、レーザパルスのスポ
ット径寸法の半分以下とすること(請求項5の発明)に
より、レーザパルスの照射回数を4パルス以下に限定す
ることができ、光電変換部のダメージが解消できる。
Further, in the method of manufacturing a thin-film solar cell in which the width of the patterning separation groove is widened in order to prevent a short circuit due to migration, the overlap width of the laser pulse in the laser processing line is reduced to half of the spot diameter of the laser pulse. With the following (invention of claim 5), the number of laser pulse irradiations can be limited to four or less, and damage to the photoelectric conversion unit can be eliminated.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の実施例に関わる薄膜太陽電池の製造
方法の一例を示す図
FIG. 1 is a diagram showing an example of a method for manufacturing a thin-film solar cell according to an embodiment of the present invention.

【図2】この発明の異なる実施例に関わる薄膜太陽電池
の製造方法の一例を示す図
FIG. 2 is a diagram showing an example of a method of manufacturing a thin-film solar cell according to another embodiment of the present invention.

【図3】この発明に関わるレーザ加工ラインの重ね合わ
せイメージの模式図
FIG. 3 is a schematic diagram of a superimposed image of a laser processing line according to the present invention.

【図4】従来の薄膜太陽電池の構成および製造方法の詳
細の一例を示す図
FIG. 4 is a diagram showing an example of the details of a configuration and a manufacturing method of a conventional thin film solar cell.

【図5】従来の薄膜太陽電池の概略構成を示す斜視図FIG. 5 is a perspective view showing a schematic configuration of a conventional thin-film solar cell.

【図6】従来の薄膜太陽電池の製造工程の概略を示す図FIG. 6 is a view schematically showing a manufacturing process of a conventional thin-film solar cell.

【図7】従来の基板の位置検出用孔,接続孔及び集電孔
の配置の一例を示す平面図
FIG. 7 is a plan view showing an example of a conventional arrangement of position detection holes, connection holes, and current collection holes in a substrate.

【符号の説明】[Explanation of symbols]

10:基板、a:光電変換層、b:第3電極層、e:第
4電極層、h1:接続孔、h2:集電孔、L:第1電極
層、t:取出し電極、u:透明電極層。
10: substrate, a: photoelectric conversion layer, b: third electrode layer, e: fourth electrode layer, h1: connection hole, h2: current collection hole, L: first electrode layer, t: extraction electrode, u: transparent Electrode layer.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 透光性樹脂材料からなるフィルム基板の
表面に下電極層としての第1電極層、光電変換層、透明
電極層(第2電極層)を順次積層してなる光電変換部
と、前記基板の裏面に形成した接続電極層としての第3
電極層および第4電極層とを備え、前記光電変換部およ
び接続電極層を互いに位置をずらして単位部分にレーザ
加工法によりパターニングしてなり、前記透明電極層形
成領域外に形成した電気的直列接続用の接続孔および前
記透明電極層形成領域内に形成した集電孔を介して、前
記表面上の互いにパターニングされて隣合う単位光電変
換部分を電気的に直列に接続してなる薄膜太陽電池にお
いて、前記第1電極層および第3電極層の材料は、銀ま
たはアルミニウムの単一金属もしくは合金等の少なくと
も前記第4電極層よりは高い反射率を有する材料とし、
前記第4電極層の材料は、ニッケル,ITO(インジウム
錫オキサイド),銅等の少なくとも前記第3電極層より
は低い反射率を有する材料とし、かつ前記第1電極層の
膜厚は、前記第3電極層の膜厚と同等もしくはそれ以上
としたことを特徴とする薄膜太陽電池。
1. A photoelectric conversion unit comprising a film substrate made of a translucent resin material, a first electrode layer as a lower electrode layer, a photoelectric conversion layer, and a transparent electrode layer (second electrode layer) sequentially laminated on a surface of the film substrate. A third connection electrode layer formed on the back surface of the substrate;
An electrode layer and a fourth electrode layer, wherein the photoelectric conversion unit and the connection electrode layer are formed by patterning a unit portion by a laser processing method while displacing the positions from each other, and an electrical series formed outside the transparent electrode layer formation region. A thin-film solar cell in which unit photoelectric conversion portions that are patterned and mutually adjacent on the surface are electrically connected in series via a connection hole for connection and a current collection hole formed in the transparent electrode layer formation region. In the material of the first electrode layer and the third electrode layer, a material having a higher reflectance than at least the fourth electrode layer, such as a single metal or alloy of silver or aluminum,
The material of the fourth electrode layer is a material having a lower reflectance than at least the third electrode layer, such as nickel, ITO (indium tin oxide), or copper, and the film thickness of the first electrode layer is A thin-film solar cell having a thickness equal to or greater than the thickness of the three electrode layers.
【請求項2】 請求項1に記載の薄膜太陽電池におい
て、前記透光性樹脂材料からなるフィルム基板の前記レ
ーザ波長に対する光の透過率は、60%以上としたこと
を特徴とする薄膜太陽電池。
2. The thin-film solar cell according to claim 1, wherein the film substrate made of the light-transmitting resin material has a light transmittance of 60% or more with respect to the laser wavelength. .
【請求項3】 パターニングに用いるレーザ光の透過を
防止するために樹脂材料に着色剤を添加したフィルム基
板の表面に下電極層としての第1電極層、光電変換層、
透明電極層(第2電極層)を順次積層してなる光電変換
部と、前記基板の裏面に形成した接続電極層としての第
3電極層および第4電極層とを備え、前記光電変換部お
よび接続電極層を互いに位置をずらして単位部分にレー
ザ加工法によりパターニングしてなり、前記透明電極層
形成領域外に形成した電気的直列接続用の接続孔および
前記透明電極層形成領域内に形成した集電孔を介して、
前記表面上の互いにパターニングされて隣合う単位光電
変換部分を電気的に直列に接続してなる薄膜太陽電池に
おいて、前記基板における着色剤濃度が低い側の面に、
前記光電変換部を形成したことを特徴とする薄膜太陽電
池。
3. A first electrode layer as a lower electrode layer, a photoelectric conversion layer, a first electrode layer as a lower electrode layer on a surface of a film substrate obtained by adding a coloring agent to a resin material in order to prevent transmission of a laser beam used for patterning.
A photoelectric conversion unit in which transparent electrode layers (second electrode layers) are sequentially laminated; and a third electrode layer and a fourth electrode layer serving as connection electrode layers formed on the back surface of the substrate. The connection electrode layer was patterned in a unit part by shifting the position by laser processing, and formed in the connection hole for electrical series connection formed outside the transparent electrode layer formation region and in the transparent electrode layer formation region. Through the current collection hole,
In a thin-film solar cell in which unit photoelectric conversion portions that are patterned and mutually adjacent on the surface are electrically connected in series, on the surface on the side where the colorant concentration is low in the substrate,
A thin-film solar cell comprising the photoelectric conversion unit.
【請求項4】 樹脂材料からなるフィルム基板の表面に
下電極層としての第1電極層、光電変換層、透明電極層
(第2電極層)を順次積層してなる光電変換部と、前記
基板の裏面に形成した接続電極層としての第3電極層お
よび第4電極層とを備え、前記光電変換部および接続電
極層を互いに位置をずらして単位部分にレーザ加工法に
よりパターニングしてなり、前記透明電極層形成領域外
に形成した電気的直列接続用の接続孔および前記透明電
極層形成領域内に形成した集電孔を介して、前記表面上
の互いにパターニングされて隣合う単位光電変換部分を
電気的に直列に接続してなる薄膜太陽電池において、前
記基板は、基板と前記第1電極層または第3電極層との
付着力向上のために、その表面および裏面の両面を凹凸
化処理して接触面積を増大させたものとし、かつ前記表
面または裏面の内、形成された凹凸が大きく接触面積が
多い側の面に、前記光電変換部を形成したことを特徴と
する薄膜太陽電池。
4. A photoelectric conversion section comprising a film substrate made of a resin material, a first electrode layer as a lower electrode layer, a photoelectric conversion layer, and a transparent electrode layer (second electrode layer) sequentially laminated on a surface of the film substrate; A third electrode layer and a fourth electrode layer as connection electrode layers formed on the back surface of the photoelectric conversion unit and the connection electrode layer are shifted from each other and patterned into a unit portion by a laser processing method. Via a connection hole for electrical series connection formed outside the transparent electrode layer forming region and a current collecting hole formed in the transparent electrode layer forming region, the unit photoelectric conversion portions which are patterned and adjacent to each other on the surface are formed. In a thin-film solar cell electrically connected in series, the substrate is subjected to a roughening treatment on both front and rear surfaces thereof in order to improve the adhesion between the substrate and the first or third electrode layer. Contact area Wherein the photoelectric conversion portion is formed on a surface of the front or back surface, on the side having a large contact area with a large unevenness, formed.
【請求項5】 樹脂材料または電気絶縁被覆された金属
材料からなるフィルム基板の表面に、下電極層としての
第1電極層、光電変換層、透明電極層(第2電極層)を
順次積層してなる光電変換部と、前記基板の裏面に形成
した接続電極層としての第3電極層および第4電極層と
を備え、前記光電変換部および接続電極層を互いに位置
をずらして単位部分にレーザ加工法によりパターニング
してなり、前記透明電極層形成領域外に形成した電気的
直列接続用の接続孔および前記透明電極層形成領域内に
形成した集電孔を介して、前記表面上の互いにパターニ
ングされて隣合う単位光電変換部分を電気的に直列に接
続してなる薄膜太陽電池の製造方法において、前記パタ
ーニングは、レーザ加工ラインを複数本重ねてパターニ
ング分離溝を形成するパターニング方法とし、前記レー
ザ加工ラインにおけるレーザパルスの重複幅寸法は、こ
のレーザパルスのスポット径寸法の半分以下とすること
を特徴とする薄膜太陽電池の製造方法。
5. A first electrode layer as a lower electrode layer, a photoelectric conversion layer, and a transparent electrode layer (second electrode layer) are sequentially laminated on a surface of a film substrate made of a resin material or a metal material coated with an electric insulation. And a third electrode layer and a fourth electrode layer as connection electrode layers formed on the back surface of the substrate, wherein the position of the photoelectric conversion unit and the connection electrode layer is shifted from each other to form a unit laser. It is patterned by a processing method, and is patterned to each other on the surface through a connection hole for electrical series connection formed outside the transparent electrode layer forming region and a current collecting hole formed in the transparent electrode layer forming region. In the method for manufacturing a thin film solar cell in which adjacent unit photoelectric conversion portions are electrically connected in series, the patterning includes forming a patterning separation groove by overlapping a plurality of laser processing lines. A method of manufacturing a thin-film solar cell, wherein the overlapping width dimension of the laser pulse in the laser processing line is not more than half the spot diameter dimension of the laser pulse.
JP2000263296A 2000-08-31 2000-08-31 Thin film solar cell Expired - Fee Related JP4432236B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000263296A JP4432236B2 (en) 2000-08-31 2000-08-31 Thin film solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000263296A JP4432236B2 (en) 2000-08-31 2000-08-31 Thin film solar cell

Publications (2)

Publication Number Publication Date
JP2002076406A true JP2002076406A (en) 2002-03-15
JP4432236B2 JP4432236B2 (en) 2010-03-17

Family

ID=18750859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000263296A Expired - Fee Related JP4432236B2 (en) 2000-08-31 2000-08-31 Thin film solar cell

Country Status (1)

Country Link
JP (1) JP4432236B2 (en)

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05183178A (en) * 1991-12-26 1993-07-23 Asahi Glass Co Ltd Amorphous silicon solar cell and manufacture thereof
JPH07131039A (en) * 1993-11-02 1995-05-19 Fuji Electric Co Ltd Thin film solar cell and fabrication thereof
JPH07254721A (en) * 1994-03-16 1995-10-03 Fuji Electric Co Ltd Production of thin film solar cell
JPH07263726A (en) * 1994-03-23 1995-10-13 Fuji Electric Co Ltd Manufacture of thin film solar cell
JPH07307481A (en) * 1994-05-16 1995-11-21 Fuji Electric Co Ltd Manufacture of thin-film solar cell
JPH0856005A (en) * 1994-08-11 1996-02-27 Fuji Electric Co Ltd Manufacturing method for thin film solar battery
JPH08139352A (en) * 1994-11-14 1996-05-31 Fuji Electric Co Ltd Manufacture of thin film solar cell
JPH08321629A (en) * 1995-05-26 1996-12-03 Fuji Electric Co Ltd Patterning of metal layer
JPH08330612A (en) * 1995-05-29 1996-12-13 Fuji Electric Co Ltd Thin film solar cell and manufacture therof
JPH09307126A (en) * 1996-05-20 1997-11-28 Fuji Electric Corp Res & Dev Ltd Thin film solar battery and its manufacture
JPH10233517A (en) * 1997-02-21 1998-09-02 Fuji Electric Corp Res & Dev Ltd Photoelectric conversion device and its manufacturing method
JPH11177108A (en) * 1997-12-09 1999-07-02 Fuji Electric Co Ltd Thin film solar battery and its manufacture
JP2000077690A (en) * 1998-08-27 2000-03-14 Fuji Electric Co Ltd Photoelectric converter and its manufacture
JP2000323732A (en) * 1999-05-14 2000-11-24 Fuji Electric Co Ltd Thin film solar cell and its manufacture

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05183178A (en) * 1991-12-26 1993-07-23 Asahi Glass Co Ltd Amorphous silicon solar cell and manufacture thereof
JPH07131039A (en) * 1993-11-02 1995-05-19 Fuji Electric Co Ltd Thin film solar cell and fabrication thereof
JPH07254721A (en) * 1994-03-16 1995-10-03 Fuji Electric Co Ltd Production of thin film solar cell
JPH07263726A (en) * 1994-03-23 1995-10-13 Fuji Electric Co Ltd Manufacture of thin film solar cell
JPH07307481A (en) * 1994-05-16 1995-11-21 Fuji Electric Co Ltd Manufacture of thin-film solar cell
JPH0856005A (en) * 1994-08-11 1996-02-27 Fuji Electric Co Ltd Manufacturing method for thin film solar battery
JPH08139352A (en) * 1994-11-14 1996-05-31 Fuji Electric Co Ltd Manufacture of thin film solar cell
JPH08321629A (en) * 1995-05-26 1996-12-03 Fuji Electric Co Ltd Patterning of metal layer
JPH08330612A (en) * 1995-05-29 1996-12-13 Fuji Electric Co Ltd Thin film solar cell and manufacture therof
JPH09307126A (en) * 1996-05-20 1997-11-28 Fuji Electric Corp Res & Dev Ltd Thin film solar battery and its manufacture
JPH10233517A (en) * 1997-02-21 1998-09-02 Fuji Electric Corp Res & Dev Ltd Photoelectric conversion device and its manufacturing method
JPH11177108A (en) * 1997-12-09 1999-07-02 Fuji Electric Co Ltd Thin film solar battery and its manufacture
JP2000077690A (en) * 1998-08-27 2000-03-14 Fuji Electric Co Ltd Photoelectric converter and its manufacture
JP2000323732A (en) * 1999-05-14 2000-11-24 Fuji Electric Co Ltd Thin film solar cell and its manufacture

Also Published As

Publication number Publication date
JP4432236B2 (en) 2010-03-17

Similar Documents

Publication Publication Date Title
JP2755281B2 (en) Thin film solar cell and method of manufacturing the same
WO2004064167A1 (en) Transparent thin-film solar cell module and its manufacturing method
JP2002057357A (en) Thin-film solar battery and its manufacturing method
JP3449155B2 (en) Photoelectric conversion device and method of manufacturing the same
JP4379560B2 (en) Thin film solar cell and manufacturing method thereof
JP4171959B2 (en) Method for manufacturing thin film solar cell
JPS61234082A (en) Super lightweight flexible semiconductor device array and manufacture thereof
TWI495136B (en) Solar cell and method for manufacturing the same
JP2000223727A (en) Thin film solar battery and its manufacture
JP2002076406A (en) Thin film solar battery and its manufacturing method
JP2002151720A (en) Thin-film solar cell
JP4112202B2 (en) Method for manufacturing thin film solar cell
JP2000208794A (en) Method of laser patterning pattern-shaped thin film of thin-film solar cell or the like
JPH0779004A (en) Thin film solar cell
JP2000323732A (en) Thin film solar cell and its manufacture
JP4075254B2 (en) Method for manufacturing thin film solar cell
JP2001352084A (en) Thin-film solar cell and its manufacturing method
JP3170914B2 (en) Thin film solar cell and method of manufacturing the same
JP4379557B2 (en) Thin film solar cell manufacturing method and manufacturing apparatus
JP2002118272A (en) Thin film solar battery and its manufacturing method therefor
JP2002252360A (en) Method for manufacturing thin-film solar battery
JP3685964B2 (en) Photoelectric conversion device
JP2011243938A (en) Thin film solar cell
JP2000340816A (en) Manufacture of thin-film solar cell and processing device for through-hole of thin-film substrate
JP2001111084A (en) Thin film solar cell module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060215

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20081016

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20081016

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20081016

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090603

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090609

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091214

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140108

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees