JP3455364B2 - Thin film solar cell and method of manufacturing the same - Google Patents

Thin film solar cell and method of manufacturing the same

Info

Publication number
JP3455364B2
JP3455364B2 JP12414396A JP12414396A JP3455364B2 JP 3455364 B2 JP3455364 B2 JP 3455364B2 JP 12414396 A JP12414396 A JP 12414396A JP 12414396 A JP12414396 A JP 12414396A JP 3455364 B2 JP3455364 B2 JP 3455364B2
Authority
JP
Japan
Prior art keywords
layer
electrode
solar cell
electrode layer
film solar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP12414396A
Other languages
Japanese (ja)
Other versions
JPH09307126A (en
Inventor
広喜 佐藤
Original Assignee
株式会社富士電機総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社富士電機総合研究所 filed Critical 株式会社富士電機総合研究所
Priority to JP12414396A priority Critical patent/JP3455364B2/en
Publication of JPH09307126A publication Critical patent/JPH09307126A/en
Application granted granted Critical
Publication of JP3455364B2 publication Critical patent/JP3455364B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【発明の属する技術分野】本発明は、基板の一面上に形
成された光電変換層とそれを挟む電極層よりなる単位太
陽電池が基板の他面上に形成された接続電極層を用いて
接続される薄膜太陽電池およびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a unit solar cell composed of a photoelectric conversion layer formed on one surface of a substrate and electrode layers sandwiching the photoelectric conversion layer, connected using a connection electrode layer formed on the other surface of the substrate. Thin film solar cell and manufacturing method thereof.

【従来の技術】太陽電池はクリーンなエネルギーとして
注目されており、その技術の進歩はめざましいものがあ
る。特に、アモルファス(非晶質)シリコンを主材料と
した光電変換層は大面積の成膜が容易で低価格であるた
め、それを用いた薄膜太陽電池に対する期待は大きい。
従来の薄膜太陽電池にはガラス基板が用いられていた
が、厚型で重く、割れやすい欠点があり、また、屋外の
屋根などへの適用時の作業性の改善等のため、薄型、軽
量化の要望が強くなっている。これらの要望に対して可
撓性のあるプラスチックフィルムあるいは箔状金属フィ
ルムを基板に用いた可撓性薄膜太陽電池の実用化が進み
つつある。薄膜太陽電池は、基板の一面上に光電変換層
が両面に電極層を備えて形成される。この電極層のう
ち、光の入射側に存在するものは、インジウム錫酸化物
(ITO)あるいは酸化亜鉛(ZnO)などの透明導電
材料よりなる透明電極層である。この透明電極層はシー
ト抵抗が大きいため、電流が透明電極層を流れることに
よる電力損失が大きくなってしまう。そのため従来は、
薄膜太陽電池を複数の幅の狭いユニットセルに分割し、
分割したユニットセルを隣接するユニットセルに電気的
に接続する直列接続構造をとっていた。これに対し、特
開平6−342924号で公知の薄膜太陽電池では、絶
縁性基板に貫通孔を開け、この貫通孔を利用して光電変
換層の反基板側にある透明電極層を基板裏面の接続電極
層と接続することにより、高シート抵抗の透明電極層を
流れる電流経路の距離を短縮できる。図7はそのような
薄膜太陽電池の断面構造図を概念的に示し、フィルム基
板1に第一貫通孔2を開けたのち、例えば金属膜からな
る第一電極層4を形成する。ついで第二貫通孔3を開け
たのち、光電変換層となるアモルファスシリコンなどの
薄膜半導体層6、ITOなど透明導電膜の第二電極層5
を積層する。この両層は、第二貫通孔3の内面を被覆
し、第二貫通孔3の下端まで達している。このあと、裏
面側を接続第三電極層7により被覆する。この第三電極
層7は、第一貫通孔2の内面の第一電極層4および第三
電極層7を介して基板1表面上の第一電極層4と接続さ
れる。また貫通孔3の内面の、第一電極層4とは半導体
層6により実質的に絶縁された第二電極層5および第三
電極層7を介して基板表面上の第二電極層6と接続され
る。このような構造で、基板表面上の第一電極層4、半
導体層6、第二電極層5を任意に分割して複数の単位太
陽電池とし、更に裏面の第三電極層7をスリット8、9
などの表面上の分割線と異なるパターンの分割線で分割
することにより、単位太陽電池の直列接続構造が出来上
がる。この場合、第一貫通孔2は単位太陽電池の集電に
役立ち、貫通孔3は各単位太陽電池内の直列構造に役立
つ。特に第三電極層7を入射光を反射させるための第三
電極内層71と、スリット8形成時のレーザ光に対する
反射率を低めるための第三電極外層72とからなる複合
層にすることが行われている。低反射率の材料を用いれ
ば、スリット8加工時等のレーザー光出力を低くでき、
基板表面側の損傷を防ぐことができる。第三電極層の組
み合わせとしては第三電極内層71、第三電極外層72
がそれぞれ銀(Ag)とクロム(Cr)の組み合わせが
知られている。
2. Description of the Related Art Solar cells have been attracting attention as clean energy, and their technological progress has been remarkable. In particular, a photoelectric conversion layer containing amorphous silicon as a main material is easy to form a large area and is inexpensive, and therefore, a thin-film solar cell using the photoelectric conversion layer has great expectations.
Glass substrates have been used for conventional thin film solar cells, but they have the drawbacks of being thick and heavy and fragile, and they are thin and lightweight to improve workability when applied to outdoor roofs. Is becoming more and more demanding. In response to these demands, a flexible thin film solar cell using a flexible plastic film or a foil metal film as a substrate is being put into practical use. A thin-film solar cell is formed by providing a photoelectric conversion layer on one surface of a substrate with electrode layers on both surfaces. Among the electrode layers, the one existing on the light incident side is a transparent electrode layer made of a transparent conductive material such as indium tin oxide (ITO) or zinc oxide (ZnO). Since this transparent electrode layer has a large sheet resistance, electric power is increased due to current flowing through the transparent electrode layer. Therefore, conventionally,
Divide the thin film solar cell into multiple narrow unit cells,
It has a series connection structure in which the divided unit cells are electrically connected to adjacent unit cells. On the other hand, in the thin film solar cell known in Japanese Patent Laid-Open No. 6-342924, a through hole is formed in the insulating substrate, and the transparent electrode layer on the opposite side of the photoelectric conversion layer is provided on the back surface of the substrate by utilizing this through hole. By connecting to the connection electrode layer, the distance of the current path flowing through the transparent electrode layer having a high sheet resistance can be shortened. FIG. 7 conceptually shows a cross-sectional structural view of such a thin film solar cell. After the first through hole 2 is opened in the film substrate 1, the first electrode layer 4 made of, for example, a metal film is formed. Then, after the second through hole 3 is opened, a thin film semiconductor layer 6 such as amorphous silicon to be a photoelectric conversion layer and a second electrode layer 5 of a transparent conductive film such as ITO.
Are stacked. Both layers cover the inner surface of the second through hole 3 and reach the lower end of the second through hole 3. Then, the back side is covered with the connecting third electrode layer 7. The third electrode layer 7 is connected to the first electrode layer 4 on the surface of the substrate 1 via the first electrode layer 4 on the inner surface of the first through hole 2 and the third electrode layer 7. Further, the inner surface of the through hole 3 is connected to the second electrode layer 6 on the substrate surface via the second electrode layer 5 and the third electrode layer 7 which are substantially insulated from the first electrode layer 4 by the semiconductor layer 6. To be done. With such a structure, the first electrode layer 4, the semiconductor layer 6, and the second electrode layer 5 on the front surface of the substrate are arbitrarily divided into a plurality of unit solar cells, and further the third electrode layer 7 on the back surface is provided with the slits 8, 9
By dividing by a dividing line having a different pattern from the dividing line on the surface such as, a series connection structure of unit solar cells is completed. In this case, the first through holes 2 are useful for collecting current of the unit solar cells, and the through holes 3 are useful for the series structure in each unit solar cell. In particular, the third electrode layer 7 may be a composite layer including a third electrode inner layer 71 for reflecting incident light and a third electrode outer layer 72 for lowering the reflectance with respect to laser light when the slit 8 is formed. It is being appreciated. If a material with low reflectance is used, the laser light output can be reduced when processing the slits 8,
It is possible to prevent damage on the front surface side of the substrate. The combination of the third electrode layer includes a third electrode inner layer 71 and a third electrode outer layer 72.
Is known to be a combination of silver (Ag) and chromium (Cr).

【発明が解決しようとする課題】しかし、銀(Ag)と
クロム(Cr)との組合わせでは、Crが厚いほど太陽
電池の特性である曲線因子(FF)がよくなるが、0.
4μm以上にするとCrが剥離するという問題があつ
た。それらの厚さが0.4μm以上ないと第一、第二貫
通孔8、9を介した抵抗が十分低くならなかった。ま
た、0.4μm以上必要なためにその膜の応力などによ
り光電変換層側の剥離などが生じやすく、歩留まりが低
かった。その対策の一つとして、発明者は第三電極内層
71、第三電極外層72がそれぞれAgと銅(Cu)と
の組み合わせを提案した(特願平7−129891
号)。この組み合わせでは、第三金属層の剥離が無く、
また太陽電池特性の一つである曲線因子(FF)の大き
い太陽電池が得られた。しかし、第三電極内層として銀
(Ag)、低反射率の第三電極外層72としてCuの組
み合わせを用いた直列接続構造の薄膜太陽電池の両面
を、透明樹脂のエチレン酢酸ビニル共重合体(EVA)
により密着封止して薄膜太陽電池パネルを製造し、信頼
性試験項目の一つとして、高温高湿(85℃、95%R
H)中に長時間放置したところ、第一、第二貫通孔2、
3より第三電極層7側に回り込んだ半導体層6および第
二貫通孔3より回り込んだ第二電極層5と、第三電極外
層72のCuとが反応し、Cu表面の一部に変色が見ら
れた。また、太陽電池の特性低下も見られた。EVAで
封止はしているが、EVA自体が樹脂であるため、水分
の侵入を完全に防ぐことは不可能であり、それ故、Ag
とCuとが直接接触している部分においては侵入した水
蒸気などの存在により電池化学反応が起こり、Agの方
がCuより標準還元電位が高いのでCuが溶出したため
と考えられる。また、第三電極内層71としてアルミニ
ウム(Al)を用いることができる。その場合は、Al
の方がCuより標準還元電位が低いので、Cuの溶出は
発生しない。しかしやはり、第二貫通孔3から回り込ん
だ半導体層6との反応が起き、第三電極外層72の表面
に変色が見られた。更に、また、第三電極内層71とし
てAg/ITOの複合層を用いた場合にもCuの溶出は
起きないが、ITOおよび貫通孔2、3から回り込んだ
半導体層5などと反応し、第三電極外層72のCuの表
面が変色し、また太陽電池特性の低下を招くことがあっ
た。この第三電極外層72として用いたCuの表面変色
および太陽電池特性の低下の問題を解決するため、発明
者は先に、特願平7−305527において、Cuある
いはその合金よりなる第三電極外層72と第三電極内層
71との間に、導電性の中間層を挿入することを提案し
た。図8にその薄膜太陽電池の断面を示す。第三電極外
層72と第三電極内層71との間に、導電性の中間層7
3が挿入されている。第三電極内層71はAg、第三電
極外層72は銅、中間層73はTiである。図8に示し
たように中間層73を挿入した薄膜太陽電池では、Cu
の表面変色および太陽電池特性の低下が防止できること
が上記出願に示されている。しかし、中間層73を入れ
ることにより信頼性は確かに向上するが、薄膜太陽電池
の製造方法としては、中間層を形成するための工程を加
えなければならず、またそのための成膜装置が必要にな
る。例えば、ステッピングロール方式の成膜装置を用い
る場合、第三電極層7が三層構成であれば、そのための
反応室が三室必要となり、製品のコストアップにつなが
る。以上の問題に鑑み本発明の目的は、高温、高湿試験
等に耐え、長期信頼性の高い、そして製造の容易な薄膜
太陽電池およびその製造方法を提供することにある。
However, in the combination of silver (Ag) and chromium (Cr), the thicker the Cr, the better the fill factor (FF) which is a characteristic of the solar cell.
When the thickness is 4 μm or more, there is a problem that Cr peels off. If their thickness is not less than 0.4 μm, the resistance through the first and second through holes 8 and 9 would not be sufficiently low. In addition, since the thickness of 0.4 μm or more is required, peeling of the photoelectric conversion layer side is likely to occur due to the stress of the film and the yield is low. As one of the countermeasures, the inventor has proposed a combination of Ag and copper (Cu) for the third electrode inner layer 71 and the third electrode outer layer 72 (Japanese Patent Application No. 7-129891).
issue). With this combination, there is no peeling of the third metal layer,
Further, a solar cell having a large fill factor (FF), which is one of solar cell characteristics, was obtained. However, both sides of a thin film solar cell having a series connection structure using a combination of silver (Ag) as the inner layer of the third electrode and Cu as the outer layer 72 of the low-reflectance third electrode are coated with a transparent resin, ethylene vinyl acetate copolymer (EVA). )
The thin film solar cell panel is manufactured by closely sealing with, and one of the reliability test items is high temperature and high humidity (85 ° C, 95% R).
H) left for a long time, the first and second through holes 2,
3, the semiconductor layer 6 that wraps around to the third electrode layer 7 side and the second electrode layer 5 that wraps around from the second through hole 3 react with Cu of the third electrode outer layer 72 to form a part of the Cu surface. Discoloration was seen. Further, the characteristics of the solar cell were also deteriorated. Although it is sealed with EVA, it is impossible to completely prevent the invasion of water because EVA itself is a resin.
It is considered that in the portion where Cu and Cu are in direct contact with each other, a chemical reaction of the battery occurs due to the presence of invading water vapor and the standard reduction potential of Ag is higher than that of Cu, so that Cu is eluted. Further, aluminum (Al) can be used as the third electrode inner layer 71. In that case, Al
Since the standard reduction potential of Cu is lower than that of Cu, elution of Cu does not occur. However, again, the reaction with the semiconductor layer 6 that wraps around the second through hole 3 occurred, and discoloration was observed on the surface of the third electrode outer layer 72. Further, when a composite layer of Ag / ITO is used as the third electrode inner layer 71, Cu does not elute, but reacts with the ITO and the semiconductor layer 5 sneaking from the through holes 2 and 3, The surface of Cu of the three-electrode outer layer 72 may be discolored and the solar cell characteristics may be deteriorated. In order to solve the problems of surface discoloration of Cu used as the third electrode outer layer 72 and deterioration of solar cell characteristics, the inventor previously described in Japanese Patent Application No. 7-305527, a third electrode outer layer made of Cu or an alloy thereof. It was proposed to insert a conductive intermediate layer between 72 and the third electrode inner layer 71. FIG. 8 shows a cross section of the thin film solar cell. The conductive intermediate layer 7 is provided between the third electrode outer layer 72 and the third electrode inner layer 71.
3 is inserted. The third electrode inner layer 71 is Ag, the third electrode outer layer 72 is copper, and the intermediate layer 73 is Ti. In the thin film solar cell in which the intermediate layer 73 is inserted as shown in FIG.
It has been shown in the above application that the surface discoloration and the deterioration of solar cell characteristics can be prevented. However, the reliability is certainly improved by including the intermediate layer 73, but as a method for manufacturing a thin film solar cell, a step for forming the intermediate layer must be added, and a film forming apparatus for that is required. become. For example, when a stepping roll type film forming apparatus is used, if the third electrode layer 7 has a three-layer structure, three reaction chambers are required for that, which leads to an increase in product cost. In view of the above problems, an object of the present invention is to provide a thin-film solar cell that can withstand high temperature and high humidity tests, has high long-term reliability, and is easy to manufacture, and a manufacturing method thereof.

【課題を解決するための手段】上記課題解決のため本発
明は、絶縁性基板の一面上に、基板側に第一電極層、反
対側に透明な第二電極層が設けられた光電変換層である
非晶質半導体層が積層され、基板の他面側に内層と外層
とからなる第三電極層が設けられ、第一電極層、光電変
換層および第二電極層よりなる積層体および第三電極層
がそれぞれスリットにより分割され、第三電極層の一領
の第三電極内層が基板に開けられた第一貫通孔を通じ
て分割された積層体の一領域の第一電極層と接続され、
また第三電極層の別の一領域の第三電極外層が基板、第
一電極層および光電変換層に開けられた第二貫通孔を通
じて前記積層体領域に隣接する積層体領域の第二電極層
と接続される薄膜太陽電池において、前記第一貫通孔の
内面に堆積された前記半導体層および前記第二貫通孔の
内側に形成された前記第二電極層と接する前記第三電極
外層がニッケル(Ni)あるいはその合金よりなるもの
とする。特に、第三電極内層がアルミニウム(Al)あ
るいはその合金よりなることがよい。そのような組み合
わせとすれば、第三電極内層と第三電極外層との間に電
池化学的な反応が起きて第三電極外層が溶出したり変色
したりすることがない。そして、第三電極内層の厚さが
0.2〜0.5μmの範囲にあることがよい。Alは従
来用いられてきた銀(Ag)に比べ比抵抗が1.7倍で
あり、Alの0.2μmがAgの0.1μmに相当す
る。第三電極層における抵抗による損失の低減のため、
Alあるいはその合金の厚さは厚い方がよいが、そのよ
うな層厚範囲とすれば、太陽電池特性も向上する。そし
て、基板との熱膨張係数の差或いは膜形成時の熱による
応力を抑える点から、0.5μm以下にする。しかし、
弾性率がCrの約1/3であるため、0.4μm以上に
しても内部応力が大きくなりすぎることがなく、光電変
換層の剥離などが生じない。また、第三電極外層の厚さ
が0.05〜0.5μmの範囲にあることがよい。その
ような層厚範囲とすれば、Niのレーザ加工に用いられ
るYAGレーザの波長0.53μmのレーザ光に対する
反射率は60%で、クロム(Cr)の40%よりは若干
高いものの、Agの94%、Alの約72%に比べれば
低く、第三電極層のパターニングのためのレーザ出力を
低くすることができ、光電変換層側の各層に損傷を与え
ることのない加工が行われる。抵抗による損失の低減の
ため、厚さは厚い方がよいが、そのような層厚範囲とす
れば、太陽電池特性も向上する。基板との熱膨張係数の
差或いは膜形成時の熱による応力を抑える点から、0.
5μm以下にする。しかし、弾性率がCrの約1/2で
あるため、0.4μm以上にしても剥離などが生じな
い。本発明にかかる薄膜太陽電池の製造方法としては、
絶縁性基板に第一貫通孔を開ける工程、前記基板の一面
上に第一電極層を成膜し、前記基板の他面上に前記第一
貫通孔を介して前記第一電極層と接続する第三電極内層
を成膜する工程、前記基板と前記第一電極層および前記
第三電極内層に第二貫通孔を開ける工程、前記第一電極
層上に光電変換層である半導体層を成膜する工程、前記
半導体層上に前記第一貫通孔部分を除いて透明第二電極
層を成膜する工程、前記第三電極内層上に第三電極外層
を成膜する工程を備えた薄膜太陽電池の製造方法におい
て、前記第三電極外層を、基板温度100〜250℃の
範囲で、ニッケルあるいはその合金により成膜するもの
とする。そのようにすれば、第三電極内層をNiあるい
はその合金の第三電極外層が覆った形の第三電極層が形
成される。250℃を越える基板温度で形成した場合、
半導体層中の不純物が拡散して初期特性の低下の原因と
なるし、また、100℃未満の基板温度にすると、太陽
電池特性の曲線因子(FF)が、若干の低下傾向を示す
が、その間の温度範囲ではそれらの問題を免れることが
できる。
In order to solve the above problems, the present invention provides a photoelectric conversion layer having a first electrode layer on the substrate side and a transparent second electrode layer on the opposite side on one surface of an insulating substrate. An amorphous semiconductor layer is laminated, and an inner layer and an outer layer are formed on the other side of the substrate.
Third electrode layer is provided comprising a first electrode layer, the laminate consisting of the photoelectric conversion layer and the second electrode layer and third electrode layer is divided by the slits, respectively, a third one region of the third electrode layer The electrode inner layer is connected to the first electrode layer in one region of the laminated body divided through the first through hole opened in the substrate,
The third electrode outer layer in another region of the third electrode layer is adjacent to the laminate region through a second through hole formed in the substrate, the first electrode layer and the photoelectric conversion layer, and the second electrode layer in the laminate region. in the thin-film solar cell to be connected to, the first through hole
Of the semiconductor layer and the second through hole deposited on the inner surface
The third electrode in contact with the second electrode layer formed inside
The outer layer is made of nickel (Ni) or its alloy. In particular, the third electrode inner layer is preferably made of aluminum (Al) or its alloy. With such a combination, a battery chemical reaction does not occur between the third electrode inner layer and the third electrode outer layer, and the third electrode outer layer does not elute or discolor. The thickness of the third electrode inner layer is preferably in the range of 0.2 to 0.5 μm. The specific resistance of Al is 1.7 times that of conventionally used silver (Ag), and 0.2 μm of Al corresponds to 0.1 μm of Ag. To reduce the loss due to resistance in the third electrode layer,
The thickness of Al or its alloy is preferably thicker, but if the thickness is within such a range, the solar cell characteristics are also improved. Then, from the viewpoint of suppressing the difference in the coefficient of thermal expansion from the substrate or the stress due to heat during film formation, the thickness is 0.5 μm or less. But,
Since the elastic modulus is about ⅓ of Cr, the internal stress does not become too large even if it is 0.4 μm or more, and peeling of the photoelectric conversion layer does not occur. Further, the thickness of the third electrode outer layer is preferably in the range of 0.05 to 0.5 μm. With such a layer thickness range, the YAG laser used for laser processing of Ni has a reflectance of 60% with respect to laser light having a wavelength of 0.53 μm, which is slightly higher than 40% of chromium (Cr), but of Ag. It is lower than 94% and about 72% of Al, the laser output for patterning the third electrode layer can be lowered, and processing is performed without damaging each layer on the photoelectric conversion layer side. In order to reduce the loss due to resistance, it is preferable that the thickness be thick, but if the layer thickness is within such a range, the solar cell characteristics will be improved. From the viewpoint of suppressing the difference in coefficient of thermal expansion from the substrate or the stress due to heat during film formation,
5 μm or less. However, since the elastic modulus is about ½ of Cr, peeling or the like does not occur even if it is 0.4 μm or more. As a method for manufacturing a thin film solar cell according to the present invention,
Step of opening the first through-hole in the insulating substrate, a first electrode layer formed on one surface of the substrate, the first on the other surface of the substrate
Third electrode inner layer connected to the first electrode layer through a through hole
A step of forming a film , the substrate, the first electrode layer, and
A step of forming a second through hole in the third electrode inner layer , a step of forming a semiconductor layer that is a photoelectric conversion layer on the first electrode layer ,
Thin film solar cell comprising a step of forming a transparent second electrode layer on the semiconductor layer except the first through hole portion, and a step of forming a third electrode outer layer on the third electrode inner layer In the manufacturing method of 1., the third electrode outer layer is formed of nickel or its alloy at a substrate temperature of 100 to 250 ° C. By doing so, a third electrode layer is formed in which the third electrode inner layer is covered with the third electrode outer layer of Ni or its alloy. When the substrate temperature is higher than 250 ° C,
Impurities in the semiconductor layer diffuse to cause deterioration of the initial characteristics, and when the substrate temperature is lower than 100 ° C., the fill factor (FF) of the solar cell characteristics shows a slight decreasing tendency. You can avoid those problems in the temperature range of.

【発明の実施の形態】絶縁性基板にはアラミド、ポリエ
ーテルサルフォン(PES)、ポリエチレンナフタレー
ト(PEN)、ポリエチレンテレフタレート(PE
T)、ポリイミドなどのプラスチックフィルムを用い
る。基板の両側の第一電極層および第三電極内層(直列
接続用電極層)は、通常同一材料を用いてスパッタ法で
成膜し、銀(Ag)、アルミニウム(Al)などの単層
膜或いはAg/透明導電膜などの多層膜を用いる。中間
層は、チタン(Ti)、クロム(Cr)、ニッケル(N
i)、モリブデン(Mo)、Al、タンタル(Ta)の
うちの一つあるいはそれらのひとつを主体とした合金、
例えばアルミニウム−シリコン(Al−Si)合金など
を用いる。以下図7、8と共通の部分に同一の符号を付
した図面を引用しながら、本発明の実施例について述べ
る。 [実施例] 図1は、本発明の実施例の薄膜太陽電池の部分断面図で
ある。絶縁性基板1上に、上下に第二電極層5、第一電
極層4をもつ光電変換層となるアモルファスシリコンの
薄膜半導体層6が形成されている。第二電極層5は透明
導電膜のITO、第一電極層4は銀である。絶縁性基板
1の下面には、第三電極内層71と第三電極層72とが
形成されている。絶縁性基板1に接する第三電極内層7
1はAl、第三電極外層72はNiである。絶縁性基板
1には、第一、第二の貫通孔2、3が開けられ、第一貫
通孔2の内側では、第一電極層4、第三電極内層71、
半導体層6、第三電極外層72とが積層されている。第
一電極層4と第三電極内層71とが直接重ねられている
ので、絶縁性基板1上の第一電極層4の電位が絶縁性基
板1の下面の第三電極外層72に取り出されている。第
二貫通孔3の内側では、半導体層6、第二電極層5、第
三電極外層72が積層されている。第二電極層5と第三
電極外層72とが直接重ねられているので、半導体層6
の電位が絶縁性基板1の下面の第三電極外層72に取り
出されている。すなわち、第一電極層4も第二電極層5
も、基板1の下面の第三電極層7として取り出すことが
できる。従って、基板1表面上の第一電極層4、半導体
層5、第二電極層6にスリット9を設け、基板1裏面の
第三電極内層、外層71、72に表面上のスリット9と
異なるパターンのスリット8を設け、分割して複数の単
位太陽電池とし、単位太陽電池を直列に接続した構造の
薄膜太陽電池が構成される。第三電極層7を第三電極内
層72と第三電極層72の二層で構成したのは、入射光
を反射させる目的の第三電極内層71と、スリット8形
成時のレーザ光に対する反射率を低める目的の第三電極
外層72とを重ねた訳である。低反射率の材料を用いれ
ば、スリット8加工時等のレーザー光出力を低くでき、
基板表面側の損傷を防ぐことができる。図2(a)ない
し(c)および図3(a)ないし(e)は図1に示した
薄膜太陽電池の主な製造工程順に示した主な製造工程ご
とに断面図である。図2(a)は、基板1の断面図であ
る。基板1の素材は、本実施例では膜厚50μmのアラミ
ドを用いた。PES、PEN、PET、ポリイミドなど
の絶縁性プラスチックフィルムを用いることも出来る。
また、膜厚は実施例では50μmのものを用いたがこの
厚さに限定されるものではない。この基板1にレーザ加
工により、直径1mmの第一貫通孔2を形成する[同図
(b)]。なお、この場合の孔の形状は必ずしも円であ
る必要はなく、むしろ太陽電池の特性を向上させるため
には第一貫通孔2の面積は出来るだけ小さく、しかも周
辺の長さが出来る限り長くなる形状が良い。基板1の表
面に第一電極層4、およびそれと反対側の面に第三電極
内層71となる金属をスパッタ法により形成する[同図
(c)]。このとき、スパッタ蒸着される金属は第一貫
通孔2の内面にも蒸着され、上面の第一電極層4と反対
側の第三電極内層71とは接続される。材料としては、
Alを用いた。他に銀(Ag)やAg/透明導電層など
の多層構造膜などを用いることができる。第一電極層
4、第三電極内層71のどちらが先でもかまわないが、
好ましくは、第一電極層4を先に形成する。この後、レ
ーザ加工により、直径1mmの第二貫通孔3を形成する
[図3(a)]。なお、この場合も孔形状は必ずしも円
である必要はなく、第二貫通孔3の面積は出来るだけ小
さく、しかも周辺の長さが出来る限り長くなる形状が良
いのは第一貫通孔と同じである。次に、光電変換層とな
る半導体層6を形成する[同図(b)]。本実施例では
通常のグロー放電分解法により堆積される水素化アモル
ファスシリコン(a−Si:H)系の材料を用いてn−
i−p接合を形成した。このときも、半導体層6は第一
貫通孔2、第二貫通孔3の内面にも堆積される。その上
に第二電極層5である透明電極層を形成する[同図
(c)]。本実施例ではスパッタ法によるITOの例を
示した。ZnOなどの酸化物導電膜を用いることもでき
る。このITO形成時に一部の第一貫通孔2の部分をマ
スクで覆うなどしてその部分にはITOが形成されない
ようにする。続いて、基板1の裏面の第三電極内層71
上に、第三電極外層72としてNiをスパッタ蒸着する
[同図(d)]。このとき、第三電極外層72のNiの
スパッタ条件としては、基板温度250℃以下で形成す
ることが望ましい。それより高い温度で形成した場合、
半導体層6にダメージが生じ、特性が低下することがあ
る。250℃以下でNiをスパッタした場合には、それ
らの現象は観測されず、安定した特性を示した。さら
に、100℃未満の温度でNiを形成すると、太陽電池
特性の曲線因子(FF)が少し低下する傾向を示した。
従って、100〜250℃の範囲内で形成するのが最も
好ましい。最後に、YAGレーザーにより第三電極層7
および第一電極層4、半導体層6、第二電極層5の積層
体にそれぞれ所定のパターンのスリツト8、9を形成し
て分割し、直列構造を作製する[同図(e)]。この実
施例で、第三電極内層71にAlを用いたが、その際の
Alの厚さが太陽電池の特性に影響することを見いだし
た。図4に、薄膜太陽電池の曲線因子(FF)のAl厚
さ依存性を示す。横軸はAl厚さ、縦軸はFFである。
比較のため、Agの場合の厚さ依存性も示した。いずれ
の場合も第三電極外層72は、厚さ0.2μmのNiと
した。図より第三電極内層71のAlは0.2μm以上
の膜厚が必要であり、好ましくは、0.3μm以上の膜
厚が良いことがわかる。但し、厚すぎると剥離などの原
因となるので0.5μm以下が望ましい。また、第三電
極外層72のNiの厚さが太陽電池の特性に影響するこ
とを見いだした。図5に、薄膜太陽電池の曲線因子(F
F)のNi厚さ依存性を示す。横軸はNi厚さ、縦軸は
FFである。比較のため、Crの場合の厚さ依存性も示
した。いずれの場合も第三電極内層71は、厚さ0.4
μmのAlとした。従来用いられてきたCrは0.4μ
m以上必要なのに対して、Niを用いた場合については
0.05μm以上、望ましくは0.2μm以上あれば良
いことがわかる。この場合も余り厚くすると、応力が大
きくなるので0.05〜0.5μmの範囲が良い。基板
の貫通孔を介した抵抗、レーザー分離加工などの点から
もこの程度の厚さで十分である。特に、0.1〜0.2
μmの厚さとすれば、太陽電池特性としては十分に機能
を果たすので、かなり薄膜化できることになる。その結
果、応力などによる剥離が減少し、歩留まりを向上させ
ることができる。また、基板1と第三電極内層71との
界面に付着力を補うZnO等の界面層を入れてもかまわ
ないことがわかった。以上述べた実施例では、直列接続
を形成する際に用いるレーザー波長(0.53μm)で
の反射率が55%程度と低く、スリット8、9を加工す
る際に加工面と反対側の面に損傷を与えることなく良好
な加工が可能であった。更に、この直列接続構造の薄膜
太陽電池を、EVA樹脂により封止したのち、85℃、
95%RHの高温高湿雰囲気中での放置試験を行った。
図6はその高温、高湿試験における太陽電池の効率の変
化を示す。横軸は時間、縦軸は初期値を1とした効率の
相対値である。比較のため、第三電極内層と外層との間
に中間層を形成した従来例の薄膜太陽電池も同時に試験
した。本実施例の薄膜太陽電池は、従来例と変わらず、
2000時間程度まで安定した特性を示している。すな
わち、集電のための第三電極内層71にAl、レーザー
加工時の低反射率膜のための第三電極外層72にNiを
用いた本実施例の薄膜太陽電池は、第三電極内層71と
第三電極外層72との間、第三電極外層72と第二電極
層5あるいは半導体層6との間に電池化学反応、合金反
応或いは接触による反応が発生せず、信頼性が高い。ま
たそのため、第三電極内層71と第三電極外層72との
間に中間層を介在させる必要がなく、例えばステッピン
グロール方式の成膜装置を用いる場合、真空室が二室で
済み、装置コスト的にも低コスト化が図れる。Agを使
用していないことも、薄膜太陽電池の低コスト化に向い
た構造といえる。また第三電極外層72が薄い層でよい
ので、従来用いられてきたCrのように、厚すぎて剥離
するというような問題も起きない。第三電極内層71
は、純Alに限らず、例えば、Siなどを含んだAl合
金でも同様な効果を得られること、第三電極外層72
は、純Niに限らず、例えばTi、Ta、Cr、Moな
どを含んだNi合金でも同様な効果を得られることがわ
かった。尚、第三電極外層72にNiを用いた場合、中
間層を入れることにより第三電極内層71としてAgを
使用することもできる。
BEST MODE FOR CARRYING OUT THE INVENTION As an insulating substrate, aramid, polyether sulfone (PES), polyethylene naphthalate (PEN), polyethylene terephthalate (PE) is used.
T), a plastic film such as polyimide is used. The first electrode layer and the third electrode inner layer (electrode layers for serial connection) on both sides of the substrate are usually formed of the same material by a sputtering method to form a single layer film of silver (Ag), aluminum (Al), or the like. A multilayer film such as Ag / transparent conductive film is used. The intermediate layer is made of titanium (Ti), chromium (Cr), nickel (N).
i), one of molybdenum (Mo), Al, and tantalum (Ta), or an alloy mainly containing one of them.
For example, an aluminum-silicon (Al-Si) alloy or the like is used. An embodiment of the present invention will be described below with reference to the drawings in which the same parts as those in FIGS. [Example] FIG. 1 is a partial cross-sectional view of a thin-film solar cell according to an example of the present invention. On the insulating substrate 1, a thin film semiconductor layer 6 of amorphous silicon, which serves as a photoelectric conversion layer having a second electrode layer 5 and a first electrode layer 4 above and below, is formed. The second electrode layer 5 is a transparent conductive film of ITO, and the first electrode layer 4 is silver. A third electrode inner layer 71 and a third electrode layer 72 are formed on the lower surface of the insulating substrate 1. Third electrode inner layer 7 in contact with the insulating substrate 1
1 is Al, and the third electrode outer layer 72 is Ni. First and second through holes 2 and 3 are opened in the insulating substrate 1, and inside the first through hole 2, the first electrode layer 4, the third electrode inner layer 71,
The semiconductor layer 6 and the third electrode outer layer 72 are laminated. Since the first electrode layer 4 and the third electrode inner layer 71 are directly laminated, the potential of the first electrode layer 4 on the insulating substrate 1 is taken out to the third electrode outer layer 72 on the lower surface of the insulating substrate 1. There is. Inside the second through hole 3, the semiconductor layer 6, the second electrode layer 5, and the third electrode outer layer 72 are laminated. Since the second electrode layer 5 and the third electrode outer layer 72 are directly laminated, the semiconductor layer 6
Potential is taken out to the third electrode outer layer 72 on the lower surface of the insulating substrate 1. That is, the first electrode layer 4 is also the second electrode layer 5
Can also be taken out as the third electrode layer 7 on the lower surface of the substrate 1. Therefore, a slit 9 is provided in the first electrode layer 4, the semiconductor layer 5, and the second electrode layer 6 on the front surface of the substrate 1, and a pattern different from the slit 9 on the front surface is formed on the third electrode inner layer and outer layers 71, 72 on the back surface of the substrate 1. The slit 8 is provided and divided into a plurality of unit solar cells, and a thin film solar cell having a structure in which the unit solar cells are connected in series is configured. The third electrode layer 7 is composed of two layers, that is, the third electrode inner layer 72 and the third electrode layer 72. The third electrode inner layer 71 is for reflecting the incident light, and the reflectance for the laser beam when the slit 8 is formed. The third electrode outer layer 72 for the purpose of lowering If a material with low reflectance is used, the laser light output can be reduced when processing the slits 8,
It is possible to prevent damage on the front surface side of the substrate. FIGS. 2A to 2C and FIGS. 3A to 3E are cross-sectional views for each main manufacturing step shown in the order of main manufacturing steps of the thin film solar cell shown in FIG. FIG. 2A is a sectional view of the substrate 1. As the material of the substrate 1, aramid having a film thickness of 50 μm was used in this embodiment. An insulating plastic film such as PES, PEN, PET, or polyimide can also be used.
Further, the film thickness used in the embodiment is 50 μm, but is not limited to this thickness. A first through hole 2 having a diameter of 1 mm is formed in the substrate 1 by laser processing [(b) of the same figure]. The shape of the hole in this case does not necessarily have to be a circle, but rather the area of the first through hole 2 is as small as possible and the peripheral length is as long as possible in order to improve the characteristics of the solar cell. Good shape. The first electrode layer 4 is formed on the surface of the substrate 1, and the metal to be the third electrode inner layer 71 is formed on the surface opposite to the first electrode layer 4 by the sputtering method [FIG. At this time, the metal to be sputter-deposited is also deposited on the inner surface of the first through hole 2, and is connected to the first electrode layer 4 on the upper surface and the third electrode inner layer 71 on the opposite side. As a material,
Al was used. In addition, a multilayer structure film such as silver (Ag) or Ag / transparent conductive layer can be used. It does not matter which of the first electrode layer 4 and the third electrode inner layer 71 is first,
Preferably, the first electrode layer 4 is formed first. Then, the second through hole 3 having a diameter of 1 mm is formed by laser processing [FIG. 3 (a)]. In this case as well, the shape of the hole does not necessarily have to be circular, and the area of the second through hole 3 is as small as possible, and the peripheral length is as long as possible. is there. Next, the semiconductor layer 6 to be the photoelectric conversion layer is formed [(b) of the same figure]. In this embodiment, a hydrogenated amorphous silicon (a-Si: H) -based material deposited by an ordinary glow discharge decomposition method is used to form n-
An ip junction was formed. At this time, the semiconductor layer 6 is also deposited on the inner surfaces of the first through hole 2 and the second through hole 3. A transparent electrode layer which is the second electrode layer 5 is formed thereon [FIG. In this embodiment, an example of ITO by the sputtering method is shown. An oxide conductive film such as ZnO can also be used. At the time of forming the ITO, a part of the first through hole 2 is covered with a mask so that the ITO is not formed on that part. Then, the third electrode inner layer 71 on the back surface of the substrate 1
Ni is sputter-deposited thereon as the third electrode outer layer 72 [(d) in the figure]. At this time, as the sputtering condition of Ni of the third electrode outer layer 72, it is desirable that the substrate temperature is 250 ° C. or less. If formed at a higher temperature,
The semiconductor layer 6 may be damaged and the characteristics may deteriorate. When Ni was sputtered at 250 ° C. or lower, these phenomena were not observed and stable characteristics were exhibited. Furthermore, when Ni was formed at a temperature lower than 100 ° C., the fill factor (FF) of the solar cell characteristics tended to be slightly lowered.
Therefore, it is most preferable to form within the range of 100 to 250 ° C. Finally, the third electrode layer 7 is formed by the YAG laser.
Then, slits 8 and 9 having a predetermined pattern are formed on the laminated body of the first electrode layer 4, the semiconductor layer 6 and the second electrode layer 5, respectively, and divided to form a serial structure [FIG. (E)]. In this example, Al was used for the third electrode inner layer 71, and it was found that the thickness of Al at that time affects the characteristics of the solar cell. FIG. 4 shows the Al thickness dependence of the fill factor (FF) of the thin film solar cell. The horizontal axis represents Al thickness, and the vertical axis represents FF.
For comparison, the thickness dependence of Ag is also shown. In either case, the third electrode outer layer 72 was Ni having a thickness of 0.2 μm. It can be seen from the figure that Al of the third electrode inner layer 71 needs to have a film thickness of 0.2 μm or more, and preferably has a film thickness of 0.3 μm or more. However, if it is too thick, it may cause peeling or the like, so 0.5 μm or less is desirable. It was also found that the Ni thickness of the third electrode outer layer 72 affects the characteristics of the solar cell. Figure 5 shows the fill factor (F
The dependence of F) on the Ni thickness is shown. The horizontal axis represents Ni thickness, and the vertical axis represents FF. For comparison, the thickness dependence of Cr is also shown. In any case, the third electrode inner layer 71 has a thickness of 0.4.
The Al was set to μm. Conventionally used Cr is 0.4μ
While it is necessary to use m or more, when Ni is used, it is clear that the thickness is 0.05 μm or more, preferably 0.2 μm or more. Also in this case, if the thickness is too thick, the stress increases, so the range of 0.05 to 0.5 μm is preferable. Such a thickness is sufficient also in terms of resistance through the through hole of the substrate and laser separation processing. In particular, 0.1-0.2
When the thickness is μm, the solar cell has a sufficient function as a characteristic, so that the thickness can be considerably reduced. As a result, peeling due to stress or the like is reduced, and the yield can be improved. It was also found that an interface layer such as ZnO that supplements the adhesive force may be provided at the interface between the substrate 1 and the third electrode inner layer 71. In the embodiments described above, the reflectance at the laser wavelength (0.53 μm) used when forming the series connection is as low as about 55%, and when the slits 8 and 9 are processed, the surface opposite to the processed surface is processed. Good processing was possible without damage. Furthermore, after sealing the thin film solar cell of this series connection structure with EVA resin,
A standing test was performed in a high temperature and high humidity atmosphere of 95% RH.
FIG. 6 shows changes in the efficiency of the solar cell in the high temperature and high humidity test. The horizontal axis is time, and the vertical axis is the relative value of efficiency with the initial value being 1. For comparison, a conventional thin film solar cell in which an intermediate layer was formed between the inner layer and the outer layer of the third electrode was also tested at the same time. The thin-film solar cell of this example is the same as the conventional example,
It shows stable characteristics up to about 2000 hours. That is, the thin film solar cell of the present embodiment using Al for the third electrode inner layer 71 for collecting current and Ni for the third electrode outer layer 72 for the low reflectance film at the time of laser processing is the third electrode inner layer 71. And the third electrode outer layer 72, and the third electrode outer layer 72 and the second electrode layer 5 or the semiconductor layer 6 do not cause a battery chemical reaction, an alloy reaction, or a reaction due to contact, so that the reliability is high. Therefore, it is not necessary to interpose an intermediate layer between the third electrode inner layer 71 and the third electrode outer layer 72. For example, when a stepping roll type film forming apparatus is used, only two vacuum chambers are required, which reduces the cost of the apparatus. Also, the cost can be reduced. The fact that Ag is not used can be said to be a structure suitable for cost reduction of the thin film solar cell. Further, since the third electrode outer layer 72 may be a thin layer, the problem of peeling due to being too thick does not occur unlike the conventionally used Cr. Third electrode inner layer 71
Is not limited to pure Al, but similar effects can be obtained with an Al alloy containing Si, for example.
It was found that the same effect can be obtained not only with pure Ni but also with a Ni alloy containing, for example, Ti, Ta, Cr, Mo. When Ni is used for the third electrode outer layer 72, Ag can be used as the third electrode inner layer 71 by inserting an intermediate layer.

【発明の効果】以上説明したように、第三電極外層にN
iあるいはその合金を用いた本発明の薄膜太陽電池は、
第三電極内層と外層との間に中間層などを介在させなく
とも、両層間或いは第二電極層、半導体層との電池化学
反応、合金反応等が発生しない。その結果、信頼性の高
い、薄膜太陽電池を低コストで製造できる。
As described above, N is formed on the outer layer of the third electrode.
The thin film solar cell of the present invention using i or its alloy is
Even if an intermediate layer or the like is not interposed between the inner layer and the outer layer of the third electrode, a battery chemical reaction, an alloy reaction or the like with both layers or the second electrode layer or the semiconductor layer does not occur. As a result, a highly reliable thin film solar cell can be manufactured at low cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の薄膜太陽電池の部分断面図FIG. 1 is a partial cross-sectional view of a thin film solar cell according to an embodiment of the present invention.

【図2】(a)ないし(c)は図1の薄膜太陽電池の製
造工程の前半を順に示す断面図
2A to 2C are cross-sectional views sequentially showing the first half of the manufacturing process of the thin-film solar cell of FIG.

【図3】(a)ないし(e)は図2(c)に続く薄膜太
陽電池の製造工程を順に示す断面図
3 (a) to 3 (e) are cross-sectional views sequentially showing a manufacturing process of the thin film solar cell following FIG. 2 (c).

【図4】第三電極内層の材料および膜厚と太陽電池の曲
線因子との関係線図
FIG. 4 is a diagram showing the relationship between the material and film thickness of the third electrode inner layer and the fill factor of the solar cell.

【図5】第三電極外層の材料および膜厚と太陽電池の曲
線因子との関係線図
FIG. 5 is a diagram showing the relationship between the material and film thickness of the third electrode outer layer and the fill factor of the solar cell.

【図6】本発明の一実施例の薄膜太陽電池および比較例
の薄膜太陽電池の高温、高湿中放置試験における効率の
劣化曲線図
FIG. 6 is a graph showing deterioration curves of efficiency of a thin film solar cell of one example of the present invention and a thin film solar cell of a comparative example in a high temperature and high humidity storage test.

【図7】従来の薄膜太陽電池の部分断面図FIG. 7 is a partial cross-sectional view of a conventional thin film solar cell.

【図8】従来の別の薄膜太陽電池の部分断面図FIG. 8 is a partial cross-sectional view of another conventional thin-film solar cell.

【符号の説明】[Explanation of symbols]

1 絶縁性基板 2 第一貫通孔 3 第二貫通孔 4 第一電極層 5 第二電極層 6 半導体層 7 第三電極層 71 第三電極内層 72 第三電極外層 73 中間層 8 スリット 9 スリット 1 Insulating substrate 2 First through hole 3 Second through hole 4 First electrode layer 5 Second electrode layer 6 semiconductor layers 7 Third electrode layer 71 Third electrode inner layer 72 Third electrode outer layer 73 Middle class 8 slits 9 slits

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平7−321355(JP,A) 特開 平7−307481(JP,A) 特開 昭59−220979(JP,A) 特開 平2−167890(JP,A) 特表 平4−504033(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01L 31/04 - 31/078 ─────────────────────────────────────────────────── ─── Continuation of the front page (56) Reference JP-A-7-321355 (JP, A) JP-A-7-307481 (JP, A) JP-A-59-220979 (JP, A) JP-A-2- 167890 (JP, A) Tokuyo Hyohei 4-504033 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) H01L 31/04-31/078

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】絶縁性基板の一面上に、基板側に第一電極
層、反対側に透明な第二電極層が設けられた光電変換層
である非晶質半導体層が積層され、基板の他面側に内層
と外層とからなる第三電極層が設けられ、第一電極層、
光電変換層および第二電極層よりなる積層体および第三
電極層がそれぞれスリットにより分割され、第三電極層
の一領域の第三電極内層が基板に開けられた第一貫通孔
を通じて分割された積層体の一領域の第一電極層と接続
され、また第三電極層の別の一領域の第三電極外層が基
板、第一電極層および光電変換層に開けられた第二貫通
孔を通じて前記積層体領域に隣接する積層体領域の第二
電極層と接続される薄膜太陽電池において、前記第一貫通孔の内面に堆積された前記半導体層および
前記第二貫通孔の内側に形成された前記第二電極層と接
する前記 第三電極外層がニッケルあるいはその合金より
なることを特徴とする薄膜太陽電池。
1. An amorphous semiconductor layer, which is a photoelectric conversion layer in which a first electrode layer is provided on the substrate side and a transparent second electrode layer is provided on the opposite side, is laminated on one surface of an insulating substrate. Inner layer on the other side
And a third electrode layer comprising an outer layer and a first electrode layer,
The laminate including the photoelectric conversion layer and the second electrode layer and the third electrode layer were each divided by the slit , and the third electrode inner layer in one region of the third electrode layer was divided through the first through hole formed in the substrate. The third electrode outer layer is connected to the first electrode layer in one region of the laminate , and the third electrode outer layer in another region of the third electrode layer is provided through the second through hole formed in the substrate, the first electrode layer and the photoelectric conversion layer. In a thin-film solar cell connected to a second electrode layer in a laminate region adjacent to the laminate region, the semiconductor layer deposited on the inner surface of the first through hole, and
Contact with the second electrode layer formed inside the second through hole
The thin film solar cell, wherein the third electrode outer layer comprises nickel or an alloy thereof.
【請求項2】前記第三電極内層がアルミニウムあるいは
その合金よりなることを特徴とする請求項1記載の薄膜
太陽電池。
2. A thin-film solar cell according to claim 1, characterized in that said third electrodes inner layer is made of aluminum or its alloys.
【請求項3】前記第三電極内層の厚さが0.2〜0.5
μmの範囲にあることを特徴とする請求項2記載の薄膜
太陽電池。
Wherein the thickness of the inner layer said third electrodes is 0.2 to 0.5
The thin film solar cell according to claim 2, wherein the thin film solar cell is in the range of μm.
【請求項4】前記第三電極外層の厚さが0.05〜0.
5μmの範囲にあることを特徴とする請求項1ないし請
求項3のいずれかに記載の薄膜太陽電池。
4. A thickness of the third conductive Gokugaiso is 0.05 to 0.
The thin film solar cell according to any one of claims 1 to 3, wherein the thin film solar cell has a thickness of 5 µm.
【請求項5】絶縁性基板に第一貫通孔を開ける工程、
基板の一面上に第一電極層を成膜し、前記基板の他面
上に前記第一貫通孔を介して前記第一電極層と接続する
第三電極内層を成膜する工程、前記基板と前記第一電極
層および前記第三電極内層に第二貫通孔を開ける工程、
前記第一電極層上に光電変換層である半導体層を成膜す
る工程、前記半導体層上に前記第一貫通孔部分を除いて
透明第二電極層を成膜する工程、前記第三電極内層上に
第三電極外層を成膜する工程を備えた薄膜太陽電池の製
造方法において、前記第三電極外層を、 基板温度100〜250℃の範囲
で、ニッケルあるいはそ の合金により成膜することを特
徴とする薄膜太陽電池の製造方法。
5. A step of forming a first through hole in an insulating substrate, before.
A first electrode layer formed on one surface of a serial board, the other surface of the substrate
And is connected to the first electrode layer via the first through hole on the top.
Forming a third electrode inner layer, the substrate and the first electrode
A step of forming a second through hole in the layer and the third electrode inner layer,
A semiconductor layer that is a photoelectric conversion layer is formed on the first electrode layer .
The step of forming a transparent second electrode layer on the semiconductor layer except the first through-hole portion, and the step of forming a transparent second electrode layer on the third electrode inner layer.
In the method for manufacturing a thin film solar cell comprising a step of forming a third electrode layer, said third electrode layer, in the range of the substrate temperature of 100 to 250 ° C., and characterized in that the deposition of an alloy of nickel or its Method for manufacturing thin film solar cell.
JP12414396A 1996-05-20 1996-05-20 Thin film solar cell and method of manufacturing the same Expired - Lifetime JP3455364B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12414396A JP3455364B2 (en) 1996-05-20 1996-05-20 Thin film solar cell and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12414396A JP3455364B2 (en) 1996-05-20 1996-05-20 Thin film solar cell and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH09307126A JPH09307126A (en) 1997-11-28
JP3455364B2 true JP3455364B2 (en) 2003-10-14

Family

ID=14878001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12414396A Expired - Lifetime JP3455364B2 (en) 1996-05-20 1996-05-20 Thin film solar cell and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3455364B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4432236B2 (en) * 2000-08-31 2010-03-17 富士電機システムズ株式会社 Thin film solar cell
JP6016083B2 (en) * 2011-08-19 2016-10-26 日立金属株式会社 Laminated wiring film for electronic parts and sputtering target material for coating layer formation

Also Published As

Publication number Publication date
JPH09307126A (en) 1997-11-28

Similar Documents

Publication Publication Date Title
EP0482511B1 (en) Integrated photovoltaic device
JP3239657B2 (en) Thin film solar cell and method of manufacturing the same
US7741558B2 (en) Solar cell module
US4543441A (en) Solar battery using amorphous silicon
EP0784348B1 (en) Solar cell module having a specific surface side cover excelling in moisture resistance and transparency
JP3352252B2 (en) Solar cell element group, solar cell module and method of manufacturing the same
US20040191422A1 (en) Method for manufacturing solar cell module having a sealing resin layer formed on a metal oxide layer
US20120006398A1 (en) Protective back contact layer for solar cells
JP2001513264A (en) Layer structure with weather and corrosion resistance
WO2009149040A2 (en) Method for the fabrication of semiconductor devices on lightweight substrates
JP3455364B2 (en) Thin film solar cell and method of manufacturing the same
JP4245135B2 (en) Thin film solar cell manufacturing method
JP3653379B2 (en) Photovoltaic element
JP3243229B2 (en) Solar cell module
JPH06104465A (en) Thin film solar battery and manufacture thereof
JP4403654B2 (en) Thin film solar cell
JP2000223728A (en) Thin film solar battery module
JP3243227B2 (en) Solar cell module
JP2006049541A (en) Solar cell module and its manufacturing method
JPH09148605A (en) Thin film solar battery and its manufacture
JP3376064B2 (en) Solar cell module
JP3486829B2 (en) Thin film solar cell
JPH06268241A (en) Thin-film solar cell and manufacture thereof
JPH08306943A (en) Thin film solar cell and its manufacture
JPH10294483A (en) Manufacture of photoelectric conversion device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080725

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080725

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090725

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090725

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100725

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100725

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100725

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 8

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120725

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120725

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130725

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term