JP3102232B2 - Thin film solar cell and method of manufacturing the same - Google Patents
Thin film solar cell and method of manufacturing the sameInfo
- Publication number
- JP3102232B2 JP3102232B2 JP05273921A JP27392193A JP3102232B2 JP 3102232 B2 JP3102232 B2 JP 3102232B2 JP 05273921 A JP05273921 A JP 05273921A JP 27392193 A JP27392193 A JP 27392193A JP 3102232 B2 JP3102232 B2 JP 3102232B2
- Authority
- JP
- Japan
- Prior art keywords
- electrode layer
- layer
- substrate
- solar cell
- electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/548—Amorphous silicon PV cells
Landscapes
- Photovoltaic Devices (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、シリコンなどの周期表
4族元素を主成分とするアモルファス半導体の薄膜から
なる光電変換層を有する薄膜太陽電池およびその製造方
法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thin-film solar cell having a photoelectric conversion layer composed of a thin film of an amorphous semiconductor containing a Group 4 element of the periodic table such as silicon as a main component, and a method of manufacturing the same.
【0002】[0002]
【従来の技術】薄膜太陽電池の光の入射する側の電極は
透明電極にする必要がある。しかし、透明電極を構成す
る透明導電材料薄膜はシート抵抗が高く、その透明電極
を長い距離電流が流れると、そのジュール損失が無視で
きない。そのため、一つの光電変換層を有する単位太陽
電池の幅は4〜20mmに限定され、大面積の透明電極は形
成できない。これに対し、本出願人の出願に係る平成5
年特許願第78382号明細書に記載された図2に示す
薄膜太陽電池では、一つの光電変換層を有する単位太陽
電池の面積を大きくすることができる。図において、絶
縁性のフィルム基板1には半径0.5mm程度の貫通孔21、
22が多数明けられており、表面上にはAl薄膜からなる第
一電極層3、アモルファス半導体からなる薄膜半導体層
4、ZnOからなる第二電極層5が積層され、裏面上にも
Al薄膜からなる第三電極層6が形成されている。この場
合、スパッタで形成するAl薄膜およびZnO薄膜が貫通孔
21の内面にも付着するので、貫通孔21の中で、図に示す
ように第二電極層5と第三電極層6とが重なり電気的に
接続される。端部では、薄膜半導体層4および第二電極
層5を形成しないで貫通孔22を通じて第一電極層3と第
三電極層6とが接続されるようにし、端部の第三電極層
62を中央部の第三電極層6と切り離しておけば、出力は
同一平面上の第三電極層6と第三電極層62から取り出す
ことができ、透明導電膜中を流れる電流の距離は最大、
貫通孔の間隔の半分であるため、ジュール損失が減少す
る。高い出力電圧を得るには、大面積の基板上に形成し
たこのような構造を分割して複数の単位太陽電池とし、
第三電極層間の接続により直列接続する。2. Description of the Related Art The electrode on the light incident side of a thin-film solar cell must be a transparent electrode. However, the transparent conductive material thin film constituting the transparent electrode has a high sheet resistance, and when a current flows through the transparent electrode for a long distance, the Joule loss cannot be ignored. Therefore, the width of a unit solar cell having one photoelectric conversion layer is limited to 4 to 20 mm, and a large-area transparent electrode cannot be formed. On the other hand, Heisei 5 related to the applicant's application
In the thin film solar cell shown in FIG. 2 described in Japanese Patent Application No. 78382, the area of a unit solar cell having one photoelectric conversion layer can be increased. In the figure, the insulating film substrate 1 has a through hole 21 having a radius of about 0.5 mm,
The first electrode layer 3 made of an Al thin film, the thin film semiconductor layer 4 made of an amorphous semiconductor, and the second electrode layer 5 made of ZnO are laminated on the front surface, and also on the back surface.
A third electrode layer 6 made of an Al thin film is formed. In this case, the Al thin film and ZnO thin film
The second electrode layer 5 and the third electrode layer 6 overlap and are electrically connected in the through hole 21 as shown in the figure, since they also adhere to the inner surface of 21. At the end, the first electrode layer 3 and the third electrode layer 6 are connected through the through hole 22 without forming the thin film semiconductor layer 4 and the second electrode layer 5, and the third electrode layer at the end is formed.
If the 62 is separated from the third electrode layer 6 at the center, the output can be taken out from the third electrode layer 6 and the third electrode layer 62 on the same plane, and the distance of the current flowing through the transparent conductive film is maximum. ,
Since it is half of the distance between through holes, Joule loss is reduced. In order to obtain a high output voltage, such a structure formed on a large-area substrate is divided into a plurality of unit solar cells,
The connection is made in series by the connection between the third electrode layers.
【0003】[0003]
【発明が解決しようとする課題】図2に示す薄膜太陽電
池の基板1には加工容易なフィルムが用いられ、貫通孔
2を明けるには、従来は、第一電極層3を基板1上に全
面に形成したのち、パンチを用いた機械的な方法あるい
はYAGレーザなどのエネルギービームを用いる方法に
よっていた。しかし、パンチを用いて機械的に基板貫通
孔2を明ける方法は、加工裏面にばりなどが発生しやす
く、また加工部周辺の第一電極層3に機械的歪みが発生
し、絶縁性基板1と第一電極層3が加工部周辺で剥離し
やすくなってピンホールなどの発生原因となっていた。
また、レーザを用いた場合には、熱による損傷が生じて
しまう。そのため、基板1と第一電極層3が加工部周辺
の熱損傷部分で剥離しやすくなり、やはりピンホールな
どの発生原因となって歩留まりが低下してしまう。An easy-to-process film is used for the substrate 1 of the thin-film solar cell shown in FIG. 2, and the first electrode layer 3 is conventionally formed on the substrate 1 to form the through hole 2. After forming the entire surface, a mechanical method using a punch or a method using an energy beam such as a YAG laser has been used. However, the method of mechanically drilling the substrate through hole 2 using a punch tends to cause burrs and the like on the processed back surface, and mechanical distortion occurs on the first electrode layer 3 around the processed portion, and the insulating substrate 1 And the first electrode layer 3 is easily peeled around the processed portion, which causes pinholes and the like.
When a laser is used, heat damage occurs. For this reason, the substrate 1 and the first electrode layer 3 are easily peeled off at the heat-damaged portion in the vicinity of the processed portion, which also causes a pinhole or the like, which lowers the yield.
【0004】別の製造方法として、最初に基板に貫通孔
を明けたのち、表面上の積層構造、裏面上の第三電極層
を形成するやり方もある。この場合は、第一電極層形成
後、貫通孔内面および周辺部の第一電極層を除去する必
要がある。しかし、貫通孔周辺部に貫通孔加工時の機械
的あるいは熱的歪みが残ったり、レーザ加工の際の飛散
物が付着していたりすると、基板と第一電極層とが剥離
しやすく、第一電極層の除去部の形状が不正確とり、あ
るいは上層のピンホールの原因となる。以上の剥離の問
題は第三電極層と基板の間にも存在する。As another manufacturing method, there is a method of first forming a through hole in a substrate, and then forming a laminated structure on the front surface and a third electrode layer on the back surface. In this case, after forming the first electrode layer, it is necessary to remove the first electrode layer on the inner surface of the through hole and the peripheral portion. However, if mechanical or thermal distortion during processing of the through-hole remains in the periphery of the through-hole or scattered matter adheres during laser processing, the substrate and the first electrode layer are likely to peel off, and The shape of the removed portion of the electrode layer may be incorrect or cause a pinhole in the upper layer. The above-described problem of separation also exists between the third electrode layer and the substrate.
【0005】本発明の目的は、上述の問題を解決し、基
板とその上に形成した電極層との加工部周辺での剥離が
発生しない薄膜太陽電池およびその製造方法を提供する
ことにある。An object of the present invention is to solve the above-mentioned problems and to provide a thin-film solar cell in which separation between a substrate and an electrode layer formed thereon does not occur around a processed portion, and a method of manufacturing the same.
【0006】[0006]
【課題を解決するための手段】上述の目的を達成するた
めに、本発明は、絶縁基板の一面上に第一電極層、半導
体層および第二電極層の積層体、他面上に第三電極層を
備え、第二電極層が透明であり、第二電極層と第三電極
層とが、半導体層、第一電極層および絶縁性基板に実質
的に等間隔で分散して明けられた貫通孔を通じて接続さ
れる薄膜太陽電池において、第一電極層および第三電極
層と基板との間に基板との付着力を向上させる中間層が
介在するものとする。絶縁性基板がプラスチックフィル
ムであり、中間層が金属酸化物あるいはけい素化合物か
らなることが有効である。また本発明は、絶縁基板の一
面上に第一電極層、半導体層および第二電極層の積層
体、他面上に第三電極層を備え、第二電極層が透明であ
り、第二電極層と第三電極層とが、半導体層、第一電極
層および絶縁性基板に実質的に等間隔で分散して明けら
れた貫通孔を通じて接続される薄膜太陽電池の製造方法
において、絶縁性基板に貫通孔を明けたのち、基板の少
なくとも貫通孔周辺部の表面を、酸素、窒素およびアル
ゴンのうちの少なくとも一つを含むガス中に発生させた
プラズマに接触させ、そのあと第一電極層、半導体層、
第二電極層および第三電極層を基板の表面上に形成する
ものとする。In order to achieve the above-mentioned object, the present invention provides a method for forming a first electrode layer, a semiconductor layer and a second electrode layer on one surface of an insulating substrate, and a third electrode layer on the other surface. An electrode layer is provided, the second electrode layer is transparent, and the second electrode layer and the third electrode layer are dispersed at substantially equal intervals in the semiconductor layer, the first electrode layer, and the insulating substrate. In the thin-film solar cell connected through the through-hole, an intermediate layer for improving the adhesion to the substrate is interposed between the substrate and the first and third electrode layers. It is effective that the insulating substrate is a plastic film and the intermediate layer is made of a metal oxide or a silicon compound. The present invention also provides a first electrode layer on one surface of an insulating substrate, a laminate of a semiconductor layer and a second electrode layer, a third electrode layer on the other surface, the second electrode layer is transparent, the second electrode The method for manufacturing a thin-film solar cell, wherein the layer and the third electrode layer are connected to the semiconductor layer, the first electrode layer, and the insulating substrate through through holes that are dispersed and opened at substantially equal intervals, wherein the insulating substrate After opening the through-hole, at least the surface of the periphery of the through-hole of the substrate is contacted with plasma generated in a gas containing at least one of oxygen, nitrogen and argon, and then the first electrode layer, Semiconductor layer,
The second electrode layer and the third electrode layer are formed on the surface of the substrate.
【0007】[0007]
【作用】第一電極層および第三電極層と絶縁性基板との
間に、例えば基板がプラスチック材料の場合には金属酸
化物層あるいはけい素化合物層のような基板との付着力
を向上させる中間層を介在させることにより、電極層形
成後基板に貫通孔を明けた場合の機械的あるいは熱的歪
みによる基板と電極層との加工部周辺での剥離が生ぜ
ず、また貫通孔形成後電極層を設ける場合でも貫通孔周
辺で電極層の剥離が生ずることがない。一方、基板に貫
通孔を明けたのち電極層を形成する場合、予め基板周辺
部に生じた熱的あるいは機械的な損傷部分あるいは基板
周辺部に付着した飛散物は、プラズマ処理により除去で
きるので、そのあと形成する電極層と基板との付着力が
向上する。The adhesion between the first and third electrode layers and the insulating substrate, for example, a metal oxide layer or a silicon compound layer when the substrate is a plastic material is improved. By interposing the intermediate layer, when the through hole is formed in the substrate after the formation of the electrode layer, the substrate and the electrode layer do not peel around the processed portion due to mechanical or thermal strain, and the electrode after the formation of the through hole is formed. Even when the layer is provided, the electrode layer does not peel around the through hole. On the other hand, when the electrode layer is formed after the through-hole is formed in the substrate, thermal or mechanically damaged portions generated in advance in the peripheral portion of the substrate or scattered matters attached to the peripheral portion of the substrate can be removed by plasma processing. The adhesion between the subsequently formed electrode layer and the substrate is improved.
【0008】[0008]
【実施例】図1(a) 〜(g) は、本発明の一実施例の製造
方法を製造工程の流れに従って示すものである。図2と
共通の部分に同一の符号が付されている。図1(a) は、
基板の断面図を示す。基板1としては、本実施例では厚
さ50μmのアラミドフィルムを用いたが、ポリエーテル
サルフォン (PES) 、ポリエチレンナフタレート(P
EN) 、ポリエチレンテレフタレート (PET) 、ポリ
イミドなどの絶縁性プラスチックフィルムを用いること
も出来る。この基板1に図1(b) に示すように所定の位
置にYAGレーザの第二高調波を用いて複数個の基板貫
通孔21、22を開ける。この基板貫通孔21、22の形状は必
ずしも円である必要はなく、例えば太陽電池の特性を向
上させるためには基板貫通孔21、22の面積は出来るだけ
小さく、しかも周辺の長さが出来る限り長くなる形状が
良い。貫通孔21、22の加工は必ずしもYAGレーザの第
二高調波である必要はなく、例えばYAGレーザの基本
波、第四高調波およびエキシマレーザなどの他のエネル
ギービームを用いた方法でも有効である。次に、図示し
ないが、この基板1を酸素を含むガス中でプラズマ処理
することにより、貫通孔21、22周辺の加工により生じた
飛散物および熱により損傷した部分を除去する。プラズ
マ処理は、例えばAr+O2 の混合ガス雰囲気中で圧力0.
1〜0.001 Torr程度の範囲で逆スパッタ法により絶縁性
基板表面をスパッタして行う。この際の放電電力および
基板温度などは、処理時間との兼ね合いならびに処理状
態により任意に選択することが出来る。また、放電ガス
はArガス、N2 ガスおよびO2 ガスの単一ガスまたは、
各々のガスの組み合わせによる混合ガスを用いても、同
様に基板貫通孔21、22周辺の加工により生じた飛散物お
よび熱により損傷した部分を除去することができる。1 (a) to 1 (g) show a manufacturing method according to an embodiment of the present invention in accordance with the flow of manufacturing steps. 2 are denoted by the same reference numerals. Fig. 1 (a)
1 shows a cross-sectional view of a substrate. Although an aramid film having a thickness of 50 μm was used as the substrate 1 in this embodiment, polyether sulfone (PES), polyethylene naphthalate (P
EN), polyethylene terephthalate (PET), and an insulating plastic film such as polyimide. As shown in FIG. 1B, a plurality of substrate through holes 21 and 22 are formed in predetermined positions of the substrate 1 by using the second harmonic of a YAG laser. The shapes of the substrate through holes 21 and 22 do not necessarily have to be circular. For example, in order to improve the characteristics of a solar cell, the area of the substrate through holes 21 and 22 is as small as possible, and the peripheral length is as long as possible. A longer shape is better. The processing of the through holes 21 and 22 does not necessarily need to be the second harmonic of the YAG laser, and is also effective with a method using another energy beam such as a fundamental wave of the YAG laser, a fourth harmonic, and an excimer laser. . Next, although not shown, the substrate 1 is subjected to a plasma treatment in a gas containing oxygen to remove scattered matter generated by processing around the through holes 21 and 22 and a portion damaged by heat. The plasma treatment is performed, for example, in a mixed gas atmosphere of Ar + O 2 at a pressure of 0.
The insulating substrate surface is sputtered by a reverse sputtering method in a range of about 1 to 0.001 Torr. At this time, the discharge power and the substrate temperature can be arbitrarily selected depending on the balance with the processing time and the processing state. The discharge gas is a single gas of Ar gas, N 2 gas and O 2 gas, or
Even if a mixed gas obtained by a combination of the respective gases is used, the scattered matter generated by the processing around the substrate through holes 21 and 22 and the portion damaged by heat can be similarly removed.
【0009】この上にそれぞれAgからなる第一電極層
3、それと反対側の面に第三電極層6をスパッタするこ
とにより数百nm厚で形成する〔図1(c) 〕。材料として
は、このほかAl膜やAg/透明導電膜などの多層構造膜な
どを用いることができる。第一電極層3、第三電極層
6、どちらが先でもかまわないが、必ずプラズマ処理を
した後に各電極層を形成する。A first electrode layer 3 made of Ag is formed thereon, and a third electrode layer 6 is formed on the surface opposite to the first electrode layer 3 by sputtering to a thickness of several hundred nm (FIG. 1 (c)). In addition, as a material, a multilayer film such as an Al film or an Ag / transparent conductive film can be used. Either the first electrode layer 3 or the third electrode layer 6 may be used first, but each electrode layer is formed after the plasma treatment without fail.
【0010】上記のような方法により電極を形成すれ
ば、基板貫通孔21、22加工周辺での熱影響部や飛散物が
除去されているので、基板1と各電極層3、6との間の
付着力が向上する。また、プラズマ処理をした後に、真
空中で第一電極層3、第三電極層6を連続形成すること
により、より一層の効果を上げることができる。次に、
第一電極層3の基板貫通孔21周辺部をレーザ光を照射
し、その部分7の第一電極層3を除去する〔図1(d)
〕。When the electrodes are formed by the above-described method, since the heat-affected zone and the scattered matter around the processing of the substrate through holes 21 and 22 are removed, the distance between the substrate 1 and each of the electrode layers 3 and 6 is reduced. Adhesive force is improved. Further, by forming the first electrode layer 3 and the third electrode layer 6 continuously in a vacuum after performing the plasma treatment, the effect can be further enhanced. next,
The periphery of the substrate through hole 21 of the first electrode layer 3 is irradiated with a laser beam, and the first electrode layer 3 in the portion 7 is removed (FIG. 1D).
].
【0011】こうした工程を経たうえで、光電変換層と
なる薄膜半導体層4を形成する。本実施例では、通常の
グロー放電分解法により堆積される水素化アモルファス
シリコン (a−Si:H) 系の材料を用いて基板側からn
−i−p接合を形成した〔図1(e) 〕。その上に第二電
極層である透明電極層5を形成する。この層にはIT
O、ZnOなどの酸化物導電膜を用いることができるが、
本実施例ではスパッタ法によるITO膜を用いた〔図1
(f) 〕。このとき、膜形成時にマスクで覆うなどして端
部の貫通孔22の部分には膜が形成されないようにする。
次に、太陽電池を形成した面とは反対側の基板面の第三
電極層6を被覆して金属膜などからなる補助第三電極層
61を最終的に形成する。本実施例では材料としてはAlや
Ag、Crを用い、スパッタ法で成膜を行った〔図1(g)
〕。この補助第三電極層61は、第三電極6と第二電極
層5との電気的な接続を確実にするためのものである。After these steps, a thin film semiconductor layer 4 to be a photoelectric conversion layer is formed. In this embodiment, hydrogenated amorphous silicon (a-Si: H) based material deposited by a normal glow discharge decomposition method is used to form n from the substrate side.
An -ip junction was formed [FIG. 1 (e)]. A transparent electrode layer 5 as a second electrode layer is formed thereon. This layer has IT
An oxide conductive film such as O or ZnO can be used.
In this embodiment, an ITO film formed by a sputtering method was used [FIG.
(f)]. At this time, the film is not formed in the through hole 22 at the end by covering the film with a mask when forming the film.
Next, an auxiliary third electrode layer made of a metal film or the like by covering the third electrode layer 6 on the substrate surface opposite to the surface on which the solar cell is formed
61 is finally formed. In this embodiment, the material is Al or
Film formation was performed by a sputtering method using Ag and Cr [Fig. 1 (g).
]. The auxiliary third electrode layer 61 is for ensuring electrical connection between the third electrode 6 and the second electrode layer 5.
【0012】最後に、直列構造を作製するためYAGレ
ーザにより所定のパターンで除去して単位太陽電池に分
割する。こうして作製した太陽電池の特性は、リーク電
流も少なく、良好な特性を示す。また、加工周辺部の第
一電極層3および第三電極層6の剥離もなく歩留まり良
く太陽電池を作製することが可能となる図3に示した本
発明の別の実施例では、図1(c) のプラズマ処理をした
あとこの基板1上に第一電極層3および第三電極層6を
形成する前に、基板1と第一、第三電極層3、6の間に
それぞれ中間層8を挿入したものである。この中間層8
としては、ZnO、ITO、SnO2 、InO3 などの導電性
金属酸化物膜あるいはSiN、SiOなどの絶縁性けい素化
合物膜が用いられ、プラスチックフィルムと電極層の金
属膜との間の付着力を向上させる役目をする。従って、
このような中間層を、貫通孔21、22を明ける前の絶縁性
基板上に形成し、その上に第一電極層3あるいは第三電
極層6を形成したのち、貫通孔を明ければ、貫通孔を明
けるときに第一電極層あるいは第三電極層の剥離が起こ
るのを防止することができる。しかし、貫通孔を明けた
あとに第一電極層あるいは第三電極層を形成する場合に
もこの中間層を挿入すれば、第一、第三電極層の基板と
の付着力の向上により、太陽電池の信頼性を高くする。Finally, to form a series structure, the solar cell is removed in a predetermined pattern by a YAG laser and divided into unit solar cells. The characteristics of the solar cell fabricated in this manner show good characteristics with little leakage current. Further, in another embodiment of the present invention shown in FIG. 3 in which a solar cell can be manufactured with high yield without peeling of the first electrode layer 3 and the third electrode layer 6 in the peripheral portion of the processing, FIG. c) before the first electrode layer 3 and the third electrode layer 6 are formed on the substrate 1 after the plasma treatment of c), the intermediate layer 8 is interposed between the substrate 1 and the first and third electrode layers 3 and 6, respectively. Is inserted. This middle layer 8
As the conductive metal oxide film such as ZnO, ITO, SnO 2 , and InO 3 or the insulating silicon compound film such as SiN and SiO, the adhesive force between the plastic film and the metal film of the electrode layer is used. Serve to improve Therefore,
Such an intermediate layer is formed on the insulating substrate before the through holes 21 and 22 are formed, and the first electrode layer 3 or the third electrode layer 6 is formed thereon. It is possible to prevent the first electrode layer or the third electrode layer from peeling off when the holes are formed. However, even when the first electrode layer or the third electrode layer is formed after the through hole is formed, if this intermediate layer is inserted, the adhesion of the first and third electrode layers to the substrate is improved, and the Improve battery reliability.
【0013】[0013]
【発明の効果】本発明によれば、基板の一面上の透明電
極層を他面上の電極層と基板貫通孔を通じて接続してシ
ート抵抗の大きい透明電極層を流れる電流の距離を小さ
くした薄膜太陽電池の基板と電極層との間の付着力を中
間層によって向上させることにより、あるいは貫通孔形
成後、その周辺部をプラズマ処理してそのあと形成され
る電極層との付着力を向上させることにより、貫通孔近
傍での電極層の剥離を抑制することができ、良好な特性
の太陽電池を歩留まり良く製造することが可能になっ
た。According to the present invention, a transparent electrode layer on one surface of a substrate is connected to an electrode layer on the other surface through a through hole in the substrate to reduce the distance of a current flowing through the transparent electrode layer having a large sheet resistance. Improving the adhesion between the solar cell substrate and the electrode layer by the intermediate layer, or, after forming the through-hole, performing a plasma treatment on the periphery thereof to improve the adhesion with the electrode layer formed thereafter. As a result, peeling of the electrode layer in the vicinity of the through hole can be suppressed, and a solar cell having good characteristics can be manufactured with high yield.
【図1】本発明の一実施例の薄膜太陽電池の製造工程を
(a) ないし(g) の順に示す断面図FIG. 1 shows a manufacturing process of a thin-film solar cell according to one embodiment of the present invention.
Sectional views shown in the order of (a) to (g)
【図2】先願の特許出願明細書に記載された薄膜太陽電
池の断面図FIG. 2 is a cross-sectional view of the thin-film solar cell described in the specification of the prior application.
【図3】本発明の別の実施例の薄膜太陽電池の断面図FIG. 3 is a cross-sectional view of a thin-film solar cell according to another embodiment of the present invention.
1 絶縁性基板 21、22 貫通孔 3 第一電極層 4 薄膜半導体層 5 透明電極層 (第二電極層) 6 第三電極層 61 補助第三電極層 7 第一電極層除去部 8 中間層 DESCRIPTION OF SYMBOLS 1 Insulating substrate 21, 22 Through hole 3 First electrode layer 4 Thin film semiconductor layer 5 Transparent electrode layer (second electrode layer) 6 Third electrode layer 61 Auxiliary third electrode layer 7 First electrode layer removal part 8 Intermediate layer
───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01L 31/04 - 31/078 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) H01L 31/04-31/078
Claims (3)
および第二電極層の積層体、他面上に第三電極層を備
え、第二電極層が透明であり、第二電極層と第三電極層
とが、半導体層、第一電極層および絶縁性基板に実質的
に等間隔で分散して明けられた貫通孔を通じて接続され
るものにおいて、第一電極層および第三電極層と基板と
の間に基板との付着力を向上させる中間層が介在するこ
とを特徴とする薄膜太陽電池。A first electrode layer, a laminated body of a semiconductor layer and a second electrode layer on one surface of an insulating substrate, a third electrode layer on the other surface, wherein the second electrode layer is transparent, The layer and the third electrode layer are connected to the semiconductor layer, the first electrode layer and the insulating substrate through through-holes dispersed and formed at substantially equal intervals, and the first electrode layer and the third electrode A thin-film solar cell, comprising an intermediate layer between the layer and the substrate, the intermediate layer improving the adhesion to the substrate.
り、中間層が金属酸化物あるいはけい素化合物からなる
請求項1記載の薄膜太陽電池。2. The thin-film solar cell according to claim 1, wherein the insulating substrate is a plastic film, and the intermediate layer is made of a metal oxide or a silicon compound.
および第二電極層の積層体、他面上に第三電極層を備
え、第二電極層が透明であり、第二電極層と第三電極層
とが、半導体層、第一電極層および絶縁性基板に実質的
に等間隔で分散して明けられた貫通孔を通じて接続され
る薄膜太陽電池の製造方法において、絶縁性基板に貫通
孔を明けたのち、基板の少なくとも貫通孔周辺部の表面
を、酸素、窒素あるいはアルゴンのうちの少なくとも一
つを含むガス中に発生させたプラズマに接触させ、その
あと第一電極層、半導体層、第二電極層および第三電極
層を基板の表面上に形成することを特徴とする薄膜太陽
電池の製造方法。3. A laminate comprising a first electrode layer, a semiconductor layer and a second electrode layer on one surface of an insulating substrate, a third electrode layer on the other surface, wherein the second electrode layer is transparent, The method for manufacturing a thin-film solar cell, wherein the layer and the third electrode layer are connected to the semiconductor layer, the first electrode layer, and the insulating substrate through through holes that are dispersed and opened at substantially equal intervals, wherein the insulating substrate After drilling the through-hole, at least the surface of the periphery of the through-hole of the substrate is contacted with plasma generated in a gas containing at least one of oxygen, nitrogen or argon, and then the first electrode layer, A method for manufacturing a thin-film solar cell, comprising forming a semiconductor layer, a second electrode layer, and a third electrode layer on a surface of a substrate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP05273921A JP3102232B2 (en) | 1993-11-02 | 1993-11-02 | Thin film solar cell and method of manufacturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP05273921A JP3102232B2 (en) | 1993-11-02 | 1993-11-02 | Thin film solar cell and method of manufacturing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH07131039A JPH07131039A (en) | 1995-05-19 |
JP3102232B2 true JP3102232B2 (en) | 2000-10-23 |
Family
ID=17534432
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP05273921A Expired - Fee Related JP3102232B2 (en) | 1993-11-02 | 1993-11-02 | Thin film solar cell and method of manufacturing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3102232B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4432236B2 (en) * | 2000-08-31 | 2010-03-17 | 富士電機システムズ株式会社 | Thin film solar cell |
-
1993
- 1993-11-02 JP JP05273921A patent/JP3102232B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH07131039A (en) | 1995-05-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2755281B2 (en) | Thin film solar cell and method of manufacturing the same | |
US5500051A (en) | Photoelectric conversion device | |
US4542578A (en) | Method of manufacturing photovoltaic device | |
JP3449155B2 (en) | Photoelectric conversion device and method of manufacturing the same | |
JP3102232B2 (en) | Thin film solar cell and method of manufacturing the same | |
US6235982B1 (en) | Photoelectric conversion apparatus and method for manufacturing the same | |
JP3393842B2 (en) | Method for manufacturing photoelectric conversion device | |
JP3111820B2 (en) | Manufacturing method of thin film solar cell | |
JP2001298203A (en) | Method for manufacturing thin-film solar cell | |
JP2002280580A (en) | Integrated photovoltaic device and manufacturing method therefor | |
JP3111805B2 (en) | Thin film solar cell and method of manufacturing the same | |
JPH0779004A (en) | Thin film solar cell | |
JP3685964B2 (en) | Photoelectric conversion device | |
JPH06268241A (en) | Thin-film solar cell and manufacture thereof | |
JPH0243776A (en) | Manufacture of thin film solar cell | |
JP2005101412A (en) | Method of manufacturing photovoltaic device | |
JPH0758351A (en) | Manufacture of thin film solar cell | |
JP2001237442A (en) | Solar cell and its manufacturing method | |
JPS62113483A (en) | Thin-film solar cell | |
JP3365148B2 (en) | Metal layer patterning method | |
JP3455364B2 (en) | Thin film solar cell and method of manufacturing the same | |
JPH0443432B2 (en) | ||
JPS62147784A (en) | Amorphous solar cell and manufacture thereof | |
JPH07307481A (en) | Manufacture of thin-film solar cell | |
JP3920468B2 (en) | Photovoltaic device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20070825 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080825 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080825 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090825 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090825 Year of fee payment: 9 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090825 Year of fee payment: 9 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090825 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100825 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110825 Year of fee payment: 11 |
|
LAPS | Cancellation because of no payment of annual fees |