WO2022176585A1 - Adhesive sheet for semiconductor device production and method for producing semiconductor device using same - Google Patents

Adhesive sheet for semiconductor device production and method for producing semiconductor device using same Download PDF

Info

Publication number
WO2022176585A1
WO2022176585A1 PCT/JP2022/003561 JP2022003561W WO2022176585A1 WO 2022176585 A1 WO2022176585 A1 WO 2022176585A1 JP 2022003561 W JP2022003561 W JP 2022003561W WO 2022176585 A1 WO2022176585 A1 WO 2022176585A1
Authority
WO
WIPO (PCT)
Prior art keywords
adhesive sheet
semiconductor device
adhesive
lead frame
adhesive layer
Prior art date
Application number
PCT/JP2022/003561
Other languages
French (fr)
Japanese (ja)
Inventor
大祐 水谷
文峰 付
恭史 近藤
Original Assignee
株式会社巴川製紙所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社巴川製紙所 filed Critical 株式会社巴川製紙所
Priority to JP2023500690A priority Critical patent/JPWO2022176585A1/ja
Priority to CN202280012698.1A priority patent/CN116848635A/en
Priority to KR1020237027319A priority patent/KR20230146529A/en
Publication of WO2022176585A1 publication Critical patent/WO2022176585A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J109/00Adhesives based on homopolymers or copolymers of conjugated diene hydrocarbons
    • C09J109/02Copolymers with acrylonitrile
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3412Heterocyclic compounds having nitrogen in the ring having one nitrogen atom in the ring
    • C08K5/3415Five-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J109/00Adhesives based on homopolymers or copolymers of conjugated diene hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/06Non-macromolecular additives organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/35Heat-activated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49805Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers the leads being also applied on the sidewalls or the bottom of the substrate, e.g. leadless packages for surface mounting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/50Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor for integrated circuit devices, e.g. power bus, number of leads
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/326Applications of adhesives in processes or use of adhesives in the form of films or foils for bonding electronic components such as wafers, chips or semiconductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item

Definitions

  • the present invention relates to an adhesive sheet suitably used as a mask tape when assembling a semiconductor device by a QFN (Quad Flat Non-lead) method, and a method of manufacturing a semiconductor device using the same.
  • QFN Quad Flat Non-lead
  • the following method is generally known as a method for assembling a general QFN package according to the QFN method.
  • an adhesive sheet is attached to one surface of the lead frame, and then in the die attach step, a semiconductor such as an IC chip is attached to a plurality of semiconductor element mounting portions (die pad portions) formed on the lead frame. Each element is mounted.
  • a wire bonding process a plurality of leads arranged along the outer periphery of each semiconductor element mounting portion of the lead frame and the semiconductor element are electrically connected by bonding wires.
  • a sealing step the semiconductor element mounted on the lead frame is sealed with a sealing resin.
  • the adhesive sheet is peeled off from the lead frame, thereby forming a QFN unit in which a plurality of QFN packages are arranged.
  • a plurality of QFN packages can be manufactured by dicing this QFN unit along the outer periphery of each QFN package.
  • Adhesive sheets used for such applications must adhere sufficiently and stably to the back surface of the lead frame and the back surface of the sealing resin without being peeled off before the peeling process, and can be easily peeled off during the peeling process. Also, it is required that there be no problems such as adhesive residue remaining on the back surface of the lead frame or the back surface of the sealing resin, breakage of the adhesive sheet, and the like. Especially in recent years, lead frames made of copper alloys have been used to reduce the cost of semiconductor devices.
  • copper which is a transition metal, has a catalytic effect on oxidation deterioration of polymer materials, and the adhesive is easily oxidized and deteriorated due to the heat history associated with the QFN package assembly after the taping process. Heavy peeling and adhesive residue are likely to occur when the sheet is peeled off.
  • JP-A-2003-165961 Japanese Patent Application Laid-Open No. 2005-142401 JP 2008-095014 A
  • the present invention has been made in view of the above-mentioned circumstances, and until the peeling process, even if it receives the heat history associated with QFN assembly, it is sufficient and stable without peeling from the back surface of the lead frame and the back surface of the sealing resin.
  • Adhesive sheet that can be adhered to a surface without leakage of sealing resin, can be easily peeled in a peeling process, and does not cause adhesive residue or breakage, and a method for manufacturing a semiconductor device using the same The task is to provide
  • An adhesive for manufacturing a semiconductor device comprising a base material and a thermosetting adhesive layer provided on one surface of the base material, and detachably attached to a lead frame or wiring board of a semiconductor device.
  • the adhesive layer contains a carboxyl group-containing acrylonitrile-butadiene copolymer (a), an epoxy resin (b), and a compound (c) containing two or more maleimide groups.
  • An adhesive sheet for manufacturing a semiconductor device characterized by having a storage elastic modulus of 1 MPa to 1.7 MPa.
  • the component (a) is a carboxyl group-containing acrylonitrile-butadiene copolymer having an acrylonitrile content of 5 to 50% by mass and a carboxyl group equivalent calculated from the number average molecular weight of 100 to 20000.
  • Adhesive sheet for [4] The adhesive for manufacturing semiconductor devices according to [1], wherein the amount of glycidyl groups based on the component (b)/the amount of carboxyl groups based on the component (a) is 0.14 to 0.43. sheet.
  • [5] A method for manufacturing a semiconductor device using the adhesive sheet for manufacturing a semiconductor device according to [1], A sticking step of sticking an adhesive sheet for manufacturing a semiconductor device to a lead frame or a wiring board; a die attach step of mounting a semiconductor element on the lead frame or wiring board; a wire bonding step of electrically connecting the semiconductor element and the external connection terminal; A sealing step of sealing the semiconductor element with a sealing resin; and a peeling step of peeling off the adhesive sheet for semiconductor device manufacturing from the lead frame or the wiring board after the sealing step.
  • the back surface of the lead frame and the back surface of the sealing resin are sufficiently and stably adhered and sealed without being peeled off.
  • An adhesive sheet that does not leak resin can be easily peeled off in the peeling process, and does not cause adhesive residue or breakage, and the peeling process even for lead frames that have protrusions such as polishing scratches. It is possible to provide an adhesive sheet sufficiently adhered to the front and a method for manufacturing a semiconductor device using the adhesive sheet.
  • FIG. 1 is a plan view showing an example of a lead frame used in the method of manufacturing a semiconductor device of the present invention
  • FIG. It is process drawing explaining the manufacturing method of the semiconductor device of this invention.
  • An adhesive sheet for manufacturing a semiconductor device (hereinafter referred to as an adhesive sheet) of the present invention comprises a base material and a thermosetting adhesive layer provided on one surface of the base material, and comprises a lead frame of a semiconductor device or a
  • the adhesive layer comprises a carboxyl group-containing acrylonitrile-butadiene copolymer (a), an epoxy resin (b), and a compound containing two or more maleimide groups.
  • (c) has a storage elastic modulus of 1 MPa to 1.7 MPa at 80° C., and is used as a mask tape when assembling a semiconductor device by the QFN method.
  • the carboxyl group-containing acrylonitrile-butadiene copolymer (a) plays a role of appropriately maintaining the melt viscosity of the adhesive layer at the initial stage of heating, and provides good flexibility and adhesion to the cured adhesive layer. By containing this, it is possible to form an adhesive layer that has good adhesion to a substrate such as a heat-resistant film and that does not crack.
  • the carboxyl group-containing acrylonitrile-butadiene copolymer (a) known ones can be used without limitation. If the acrylonitrile content is less than the above range, the solubility in the solvent and the compatibility with other components are lowered, so the uniformity of the resulting adhesive layer tends to be lowered.
  • the acrylonitrile content exceeds the above range, the resulting adhesive layer will have excessive adhesion to lead frames and sealing resins, and if this is used as an adhesive sheet, it will be difficult to peel off during the peeling process. or break the adhesive sheet.
  • the carboxyl group equivalent calculated from the number average molecular weight of the carboxyl group-containing acrylonitrile-butadiene copolymer is preferably in the range of 100 to 20,000, more preferably 200 to 10,000. If the carboxyl group equivalent is less than the above range, the reactivity with other components becomes too high, and the resulting adhesive layer tends to have reduced storage stability. On the other hand, if the carboxyl group equivalent exceeds the above range, the resulting adhesive layer tends to be in a low B stage due to insufficient reactivity with other components.
  • the carboxyl group equivalent calculated from the number average molecular weight is obtained by dividing the number average molecular weight (Mn) by the number of carboxyl groups (number of functional groups) per molecule, and is represented by the following formula.
  • Carboxyl group equivalent Mn/number of functional groups
  • Epoxy resin (b) is a compound having two or more epoxy groups in the molecule.
  • Alicyclic epoxy resins such as glycidyl ether, epoxidized phenol novolak, epoxidized cresol novolak, epoxidized cresol novolak, epoxidized trisphenylolmethane, and epoxidized tetraphenylolethane, biphenyl type epoxy resins, novolac type epoxy resins, etc. is mentioned.
  • the epoxy resin (b) and the compound (c) containing two or more maleimide groups are responsible for the thermosetting properties of the adhesive layer. It is possible to form an adhesive layer that can be easily peeled off during the process and that does not cause adhesive residue or breakage.
  • the epoxy resin (b) imparts toughness to the adhesive layer, and by containing this, it is possible to suppress adhesive deposits due to cracking of the adhesive layer during the peeling process.
  • the compound (c) containing two or more maleimide groups has the effect of imparting thermal stability to the adhesive layer and adjusting the adhesiveness of the adhesive layer. is appropriately controlled, and an adhesive layer that can be easily peeled off in the peeling process can be formed.
  • compounds constituting bismaleimide resins are preferably used, and examples thereof include those represented by the following formulas (1-1) to (1-3). Among them, compounds represented by the following formula (1-1) or (1-3) are particularly useful in terms of solubility in solvents.
  • each of the components (a) to (c) described above may be composed of one compound, or a mixture of two or more compounds may be used. .
  • the ratio of each component is preferably 20 to 300 parts by mass, more preferably 20 to 200 parts by mass, for 100 parts by mass of component (a) and components (b) and (c). If the sum of the components (b) and (c) is less than the above range, the reactivity of the adhesive layer will be reduced, making it difficult for the adhesive layer to become insoluble and infusible even by heating, and the thermal stability will be reduced. Adhesion tends to be stronger. On the other hand, when the above range is exceeded, the melt viscosity of the adhesive layer at the initial stage of heating becomes insufficient, and in the adhesive sheet using this adhesive layer, the adhesive layer flows out or foams during the die attach cure treatment after the taping process. There is a risk of
  • the mass ratio of component (c) to component (b) is preferably in the range of 0.1-10. If it is less than the above range, the resulting adhesive layer tends to undergo a curing reaction at room temperature, resulting in poor storage stability, or the adhesive strength becomes too strong, and the adhesive sheet using this layer cannot be peeled off in the peeling process. It may become or break. On the other hand, if the above range is exceeded, the adhesiveness between the adhesive layer and a substrate made of a heat-resistant film may deteriorate during the production of the adhesive sheet, or the adhesive layer may foam or the resulting adhesive sheet may However, there is a tendency for adhesive residue to easily remain.
  • the adhesive layer in the adhesive sheet of the present invention has a storage modulus at 80° C. of 1 MPa to 1.7 MPa, preferably 1.5 MPa to 1.7 MPa.
  • the contents of components (a), (b) and (c) are adjusted so that the storage elastic modulus at 80° C. is 1 MPa to 1.7 MPa. can be obtained by For example, when the component (b) having the same epoxy group equivalent is contained, the storage elastic modulus at 80° C. can be increased by increasing the content of the epoxy resin (b).
  • the storage elastic modulus of the adhesive layer in the adhesive sheet of the present invention is measured by peeling the adhesive layer from the base material and measuring the peeled adhesive layer with a dynamic viscoelasticity measuring device at a measurement frequency of 11 Hz and at a measurement temperature of 25 ° C. It is measured with a load of 1.0 gf while increasing the temperature at 10°C/min up to 150°C.
  • a dynamic viscoelasticity measuring device include a vibro measuring device (RHEOVIBRON DDV-II-EP manufactured by Orientec).
  • the adhesive layer in the adhesive sheet of the present invention preferably has a glycidyl group content/carboxyl group content of 0.14 to 0.43, more preferably 0.21 to 0.43. If the amount of glycidyl groups/the amount of carboxyl groups is within the above range, even a lead frame having protrusions such as polishing scratches can be sufficiently attached before the peeling process.
  • the above glycidyl group content can be determined by (b) component content/epoxy group equivalent.
  • the carboxyl group content can be determined by (a) component content/carboxyl group equivalent.
  • the adhesive layer in the adhesive sheet of the present invention may contain a reactive siloxane compound.
  • the reactive siloxane compound enhances the compatibility of each component constituting the adhesive layer and improves the releasability of the adhesive layer from the sealing resin.
  • the components are well compatible with each other, and a uniform adhesive layer can be formed without problems such as component separation and precipitation. As a result, the adhesive layer has a uniform adhesive strength, and problems such as a decrease in releasability and adhesive residue due to a partially high adhesive strength can be suppressed.
  • a siloxane compound to which reactivity is imparted by a reactive group such as amino-modified, epoxy-modified, carboxyl-modified, or mercapto-modified can be used without limitation.
  • a reactive group such as amino-modified, epoxy-modified, carboxyl-modified, or mercapto-modified
  • 1,3-bis(3-aminopropyl)tetramethyldisiloxane, aminopropyl-terminated dimethylsiloxane tetramer or octamer, bis(3-aminophenoxymethyl)tetramethyldisiloxane (b ) and (c) are favorably reacted with each other rapidly.
  • the reactive siloxane compound it is preferable to use one in which reactive groups are bonded to both ends of the siloxane structure in this way from the viewpoint of reactivity.
  • Silane coupling agents that are non-reactive can also be used.
  • the ratio of the number of reactive groups of the reactive siloxane compound to the sum of the number of epoxy groups in component (b) and the number of maleimide groups in component (c) is 0.05 to 1.2. is preferred, and more preferably 0.1 to 0.8. If it is less than the above range, the reactivity of the adhesive layer as a whole may be lowered, making it difficult for the curing reaction to proceed in a die attach cure treatment or the like, and as a result, the adhesive strength may become too strong. On the other hand, when the above range is exceeded, the reaction proceeds excessively, and problems such as gelation tend to occur during the preparation of the adhesive layer, and the adhesive strength tends to be weak.
  • reaction accelerators such as organic peroxides, imidazoles and triphenylphosphine may be added to the adhesive layer. By adding these, it is also possible to control the state of the adhesive layer at room temperature to a good B stage.
  • a filler having an average particle diameter of 1 ⁇ m or less may be added for the purpose of controlling melt viscosity, improving thermal conductivity, imparting flame retardancy, and the like.
  • examples of fillers include inorganic fillers such as silica, alumina, magnesia, aluminum nitride, boron nitride, titanium oxide, calcium carbonate and aluminum hydroxide, and organic fillers such as silicone resins and fluororesins. When a filler is used, its content is preferably 1 to 40% by mass in the adhesive layer.
  • the adhesive sheet of the present invention is obtained by forming the above-described adhesive layer on one side of a heat-resistant film as a substrate.
  • an adhesive sheet first, at least the above-described carboxyl group-containing acrylonitrile-butadiene copolymer (a), epoxy resin (b), compound (c) containing two or more maleimide groups, Prepare an adhesive coating consisting of a reactive siloxane compound and a solvent according to Then, this paint is applied to one side of the heat-resistant film so that the thickness of the adhesive layer after drying is preferably 1 to 50 ⁇ m, more preferably 3 to 20 ⁇ m, and dried.
  • An adhesive sheet may be produced by forming an agent layer and providing a heat-resistant film thereon. Note that the protective film is peeled off when the adhesive sheet is used.
  • heat-resistant films include heat-resistant plastic films made of polyimide, polyphenylene sulfide, polyethersulfone, polyetheretherketone, liquid crystal polymer, polyethylene terephthalate, polyethylene naphthalate, etc., and composite heat-resistant films such as epoxy resin-glass cloth.
  • Polyimide film is particularly preferred.
  • the thickness of the polyimide film is preferably 12.5-125 ⁇ m, more preferably 25-50 ⁇ m. If the thickness is less than the above range, the adhesive sheet tends to have insufficient stiffness and is difficult to handle.
  • the solvent used in the adhesive coating one or more of organic solvents such as hydrocarbons, alcohols, ketones, ethers (tetrahydrofuran, etc.), water, etc. can be preferably used. It may be adjusted as appropriate so that the viscosity is appropriate.
  • the paint may be in the form of a solution, an emulsion, or a suspension, and may be appropriately selected according to the coating apparatus used, the environmental conditions, and the like.
  • releasable protective films include plastic films such as polyethylene, polypropylene, vinyl chloride, fluororesin, and silicone, as well as polyethylene terephthalate, polyethylene naphthalate, paper, and the like, which are coated with silicone to impart releasability.
  • the method for manufacturing a semiconductor device using the adhesive sheet of the present invention includes a bonding step of bonding the adhesive sheet to a lead frame or wiring board, a die attach step of mounting a semiconductor element on the lead frame or wiring board, a semiconductor element and external connection terminals, a sealing step of sealing the semiconductor element with a sealing resin, and a peeling step of peeling the adhesive sheet from the lead frame or wiring board after the sealing step. It is a thing.
  • FIG. 1 is a plan view of a lead frame viewed from the side on which a semiconductor element is mounted
  • FIG. 2 is a cross-sectional view of the lead frame of FIG. 1 taken along the line AA';
  • the lead frame 20 having the schematic configuration shown in FIG. 1 is prepared.
  • the lead frame 20 has a plurality of semiconductor element mounting portions (die pad portions) 21 for mounting semiconductor elements such as IC chips formed in a matrix. terminals) are formed.
  • Examples of materials for the lead frame 20 include conventionally known materials, such as a copper plate, a copper alloy plate, or a strike-plated version of these, or a nickel-plated layer and a palladium-plated layer on the surface of a copper alloy plate. A gold-plated layer is provided in this order.
  • the adhesive sheet 10 is adhered to one surface (lower surface) of the lead frame 20 so that the adhesive layer (not shown) is in contact with the lead frame 20 (adhering step).
  • Methods for adhering the adhesive sheet 10 to the lead frame 20 include a laminating method, a pressing method, and the like. From the viewpoint of productivity, the laminating method is preferable because the taping process can be continuously performed.
  • the temperature of the adhesive sheet 10 in this step is, for example, normal temperature (5 to 35°C) to 150°C, more preferably 60 to 120°C. Bonding at a temperature higher than 150° C. tends to warp the lead frame. If the lead frame 20 warps in this process, positioning in the die attach process or wire bonding process becomes difficult, and transportation to the heating furnace becomes difficult, which may reduce the productivity of the QFN package. .
  • a semiconductor element 30 such as an IC chip is attached to the side of the semiconductor element mounting portion 21 of the lead frame 20 to which the adhesive sheet 10 is not adhered via a die attach agent (not shown). Place. At this time, the lead frame 20 is easily positioned because warping is suppressed. Then, the semiconductor element 30 is accurately mounted at a predetermined position. After that, the die attach agent is cured by heating to about 100 to 200° C., and the semiconductor element 30 is fixed and mounted on the semiconductor element mounting portion 21 (die attach agent curing process; the above is the die attach step). At this time, the adhesive layer of the adhesive sheet 10 is cured and adhered to the lead frame.
  • the lead frame 20 and the semiconductor element 30 are subjected to plasma processing (plasma cleaning process).
  • plasma processing for example, the lead frame 20 having the adhesive sheet 10 attached and the semiconductor element 30 mounted thereon (hereinafter sometimes referred to as a work-in-process product) is treated with argon gas or a mixed gas of argon gas and hydrogen gas.
  • argon gas or a mixed gas of argon gas and hydrogen gas A method of plasma irradiation in an atmosphere can be mentioned.
  • the plasma irradiation power in the plasma processing is, for example, 150 to 600W.
  • the plasma processing time is, for example, 0.1 to 15 minutes.
  • the semiconductor element 30 and the leads 22 (external connection terminals) of the lead frame 20 are electrically connected by bonding wires 31 such as gold wires, copper wires, and palladium-coated copper wires. (wire bonding process).
  • This step is performed while heating the product in process on a heater block to about 150 to 250°C.
  • the heating time in this step is, for example, 5 to 60 minutes.
  • the product in process shown in FIG. 2(c) is placed in a mold, and a sealing resin (molding material) is injected into the mold to fill it.
  • a sealing resin molding material
  • the semiconductor element 30 is encapsulated with the encapsulating resin 40 by maintaining the inside of the mold at an arbitrary pressure (encapsulation step).
  • the sealing resin a conventionally known one is used, and examples thereof include mixtures of epoxy resins and inorganic fillers.
  • the adhesive sheet 10 is separated from the sealing resin 40 and the lead frame 20 to obtain a QFN unit 60 in which a plurality of QFN packages 50 are arranged (peeling step).
  • a plurality of QFN packages 50 are obtained by dicing the QFN unit 60 along the outer periphery of each QFN package 50 (dicing process).
  • the method for manufacturing a QFN package using a lead frame has been described as an example, but the present invention is not limited to this, and a method for manufacturing a semiconductor device other than a QFN package using a lead frame It can also be applied to a method of manufacturing a semiconductor device using a wiring substrate.
  • the adhesive layer in the adhesive sheet of the present invention takes a B-stage state (semi-cured state) by cross-linking the carboxyl group of the carboxyl group-containing acrylonitrile-butadiene copolymer (a) and the glycidyl group of the epoxy resin (b). Thereby, a low glass transition temperature (-30° C. to 50° C.) can be obtained.
  • An adhesive sheet having an adhesive layer with a low glass transition temperature can be continuously subjected to a taping process using a roll laminator or the like under relatively low temperature heating conditions, specifically room temperature (5°C to 35°C) to 150°C. Excellent productivity.
  • the adhesive layer with a low glass transition temperature ( ⁇ 30° C. to 50° C.) in the adhesive sheet of the present invention exhibits a high elastic modulus property when heated.
  • a low glass transition temperature ⁇ 30° C. to 50° C.
  • the adhesive layer in the adhesive sheet of the present invention has a high elastic modulus property as described above, even if wire bonding is performed using a copper wire or a palladium-coated copper wire, wire bonding failure or sealing may occur. Problems such as leakage of the sealing resin and residue of the adhesive layer are less likely to occur.
  • Carboxyl group-containing acrylonitrile-butadiene copolymer carboxyl group equivalent calculated from number average molecular weight 1500, acrylonitrile content 27% by mass ⁇
  • Epoxy resin a molecular weight 630, epoxy group equivalent weight 210 g / eq ⁇ Epoxy resin b: molecular weight 950, epoxy group equivalent weight 475 g / eq ⁇
  • Epoxy resin c molecular weight 1850, epoxy group equivalent 925 g / eq - Bisphenol A diphenyl ether bismaleimide: molecular weight 570, functional group equivalent weight 285 g/eq ⁇ 1,3-bis (3-aminopropyl) tetramethyldisiloxane: molecular weight 248, functional group equivalent weight 62 g / eq
  • the tensile speed was set to 50 mm/min. Evaluation: A peel strength of 15 gf/cm or more is practically acceptable adhesive strength. A value of 15 gf/cm or more was evaluated as ⁇ , and a value of less than 15 gf/cm was evaluated as x.
  • Plasma irradiation treatment Treatment was performed with 1000P manufactured by Yield Engineering Co., Ltd. using Ar as a gas type at 450 W/60 seconds.
  • Heating at 200° C./30 minutes This is a process assuming a wire bonding process, and heating was performed using a hot plate. Then, using a mold press, on the exposed copper material surface opposite to the surface on which the adhesive sheet of the adherend after the heat treatment of (a) to (d) was bonded, under the conditions of 175 ° C./3 minutes.
  • a sealing resin was laminated (resin sealing step).
  • Epoxy molding resin (EME-G631BQ) manufactured by Sumitomo Bakelite Co., Ltd. was used as the sealing resin.
  • The peel strength was 1000 gf/50 mm or more, the peeled adhesive sheet was not broken, and no adhesive remained on the surface of the lead frame material and the surface of the sealing resin.
  • x Corresponds to at least one of either breakage of the adhesive sheet or residual adhesive on the surface of the lead frame material and the surface of the sealing resin.
  • the adhesive sheet obtained in each example is cut into a width of 50 mm x length of 60 mm, and this is a lead frame for testing made of copper alloy with an outer size of 50 mm x 100 mm and an outer size of 57.5 mm x 53.5 mm ( Surface strike plating, matrix arrangement of 8 ⁇ 8, package size 5 mm ⁇ 5 mm, 32 pins) was applied using a roll laminator.
  • the lamination conditions at that time were a temperature of 80° C., a pressure of 4 N/cm, and a pressing speed of 1 m/min.
  • the adhesive sheets of Examples 1 to 6 have good conformability, peel strength to the Cu plate, thermal properties after the die attach process, peel strength to the test specimen after the resin sealing process, tape In all evaluations regarding the presence or absence of adhesive residue after peeling, there was no problem in practical use.
  • the adhesive sheet of Comparative Example 1 had a problem in evaluation of peel strength
  • the adhesive sheet of Comparative Example 2 had a problem in evaluation of conformability
  • the adhesive sheet of Comparative Example 3 had a problem in evaluation of thermal properties after the die attach process.

Abstract

The present invention provides an adhesive sheet that sufficiently and stably adheres to a back surface of a lead frame and a back surface of a sealing resin, and is not separated therefrom before a separation step even when subjected to a thermal history associated with QFN assembly, and is free from leakage of the sealing resin, while being able to be easily separated in the separation step without the occurrence of adhesive residue, namely without leaving some adhesive behind, or without the occurrence of breakage, and a method for producing a semiconductor device, said method using this adhesive sheet. Specifically, provided is an adhesive sheet for semiconductor device production, the adhesive sheet being provided with a base material and a heat curing adhesive layer and being separably bonded to a lead frame or a circuit board of a semiconductor device, wherein the adhesive layer contains a carboxy group-containing acrylonitrile butadiene copolymer (a), an epoxy resin (b), and a compound (c) containing two or more maleimide groups, and has a storage elastic modulus of 1-1.7 MPa at 80°C.

Description

半導体装置製造用接着シート及びそれを用いた半導体装置の製造方法Adhesive sheet for manufacturing semiconductor devices and method for manufacturing semiconductor devices using the same
 本発明は、QFN(Quad Flat Non-lead)方式により半導体装置を組み立てる際にマスクテープとして好適に使用される接着シートと、それを用いた半導体装置の製造方法に関する。
 本願は、2021年2月16日に、日本に出願された特願2021-022422号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to an adhesive sheet suitably used as a mask tape when assembling a semiconductor device by a QFN (Quad Flat Non-lead) method, and a method of manufacturing a semiconductor device using the same.
This application claims priority based on Japanese Patent Application No. 2021-022422 filed in Japan on February 16, 2021, the contents of which are incorporated herein.
 近年、携帯電話を始めとするIT機器の小型化、薄型化、多機能化の要求に対し、半導体装置(半導体パッケージ)におけるさらなる高密度実装技術の必要性が高まっている。
 この要求に応えるCSP(Chip Size Package)技術として、QFN方式が注目され(特許文献1および特許文献2参照。)、特に100ピン以下の少ピンタイプにおいては広く採用されている。
2. Description of the Related Art In recent years, in response to demands for smaller, thinner, and multifunctional IT devices such as mobile phones, there is an increasing need for higher-density packaging technology in semiconductor devices (semiconductor packages).
As a CSP (Chip Size Package) technology that meets this demand, the QFN system has attracted attention (see Patent Documents 1 and 2), and is widely used especially in low-pin type circuits with 100 pins or less.
 ここで、QFN方式による一般的なQFNパッケージの組立方法として、概略下記の方法が知られている。まず、貼着工程において、リードフレームの一方の面に接着シートを貼着し、次いで、ダイアタッチ工程において、リードフレームに複数形成された半導体素子搭載部(ダイパッド部)に、ICチップ等の半導体素子を各々搭載する。次に、ワイヤボンディング工程において、リードフレームの各半導体素子搭載部の外周に沿って配設された複数のリードと半導体素子とをボンディングワイヤにより電気的に接続する。次に、封止工程において、リードフレームに搭載された半導体素子を封止樹脂により封止する。その後、剥離工程において、接着シートをリードフレームから剥離することにより、複数のQFNパッケージが配列されたQFNユニットを形成することができる。最後に、ダイシング工程において、このQFNユニットを各QFNパッケージの外周に沿ってダイシングすることにより、複数のQFNパッケージを製造できる。 Here, the following method is generally known as a method for assembling a general QFN package according to the QFN method. First, in the attaching step, an adhesive sheet is attached to one surface of the lead frame, and then in the die attach step, a semiconductor such as an IC chip is attached to a plurality of semiconductor element mounting portions (die pad portions) formed on the lead frame. Each element is mounted. Next, in a wire bonding process, a plurality of leads arranged along the outer periphery of each semiconductor element mounting portion of the lead frame and the semiconductor element are electrically connected by bonding wires. Next, in a sealing step, the semiconductor element mounted on the lead frame is sealed with a sealing resin. After that, in the peeling process, the adhesive sheet is peeled off from the lead frame, thereby forming a QFN unit in which a plurality of QFN packages are arranged. Finally, in the dicing process, a plurality of QFN packages can be manufactured by dicing this QFN unit along the outer periphery of each QFN package.
 このような用途に使用される接着シートには、剥離工程の前まではリードフレームの裏面および封止樹脂の裏面から剥がれることなく十分かつ安定に貼着し、かつ、剥離工程では容易に剥離でき、リードフレームの裏面や封止樹脂の裏面に接着剤が残留する糊残りや、接着シートの破断などの不都合がないものであることが要求される。
 特に近年は、半導体装置のコスト低減のために銅合金からなるリードフレームが使用されるようになっている。このような銅合金からなるリードフレームは、遷移金属である銅の高分子材料に対する酸化劣化の触媒作用もあり、テーピング工程後のQFNパッケージ組み立てに伴う熱履歴により、接着剤が酸化劣化されやすく、シート剥離時に重剥離及び糊残りしやすくなる。
Adhesive sheets used for such applications must adhere sufficiently and stably to the back surface of the lead frame and the back surface of the sealing resin without being peeled off before the peeling process, and can be easily peeled off during the peeling process. Also, it is required that there be no problems such as adhesive residue remaining on the back surface of the lead frame or the back surface of the sealing resin, breakage of the adhesive sheet, and the like.
Especially in recent years, lead frames made of copper alloys have been used to reduce the cost of semiconductor devices. In the lead frame made of such a copper alloy, copper, which is a transition metal, has a catalytic effect on oxidation deterioration of polymer materials, and the adhesive is easily oxidized and deteriorated due to the heat history associated with the QFN package assembly after the taping process. Heavy peeling and adhesive residue are likely to occur when the sheet is peeled off.
 しかしながら、従来使用されていた接着シートは、銅合金からなるリードフレームに使用できる実用レベルを十分に満足するものではなかった。
 例えば、従来の接着シートには、耐熱性フィルムからなる基材に、アクリロニトリル-ブタジエン共重合体とビスマレイミド樹脂とを含有する接着剤層が積層した形態のものがあるが(特許文献3参照。)、これを使用した場合、テーピング工程後のダイアタッチキュア処理、ワイヤボンディング工程、樹脂封止工程で加えられる熱により、アクリロニトリル-ブタジエン共重合体が劣化しやすく、剥離工程において、剥離困難となったり、接着シートが破断したり、糊残りが生じる、という問題を有していた。
 また、従来の接着シートは、リードフレーム上に研磨傷などの突起を有していると、該突起の形状に追従できず、接着シートとリードフレームとの間に気泡が生じ、リードフレームから接着シートが剥離するという問題を有していた。
However, conventionally used adhesive sheets do not fully satisfy the practical level that can be used for lead frames made of copper alloys.
For example, some conventional adhesive sheets have a form in which an adhesive layer containing an acrylonitrile-butadiene copolymer and a bismaleimide resin is laminated on a substrate made of a heat-resistant film (see Patent Document 3). ), when this is used, the acrylonitrile-butadiene copolymer tends to deteriorate due to the heat applied in the die attach cure treatment, wire bonding process, and resin sealing process after the taping process, and it becomes difficult to peel off in the peeling process. In addition, there are problems such as breakage of the adhesive sheet and the occurrence of adhesive residue.
In addition, when a conventional adhesive sheet has a protrusion such as a polishing scratch on the lead frame, it cannot follow the shape of the protrusion, air bubbles are generated between the adhesive sheet and the lead frame, and the lead frame is not adhered. There was a problem that the sheet peeled off.
特開2003-165961号公報JP-A-2003-165961 特開2005-142401号公報Japanese Patent Application Laid-Open No. 2005-142401 特開2008-095014号公報JP 2008-095014 A
 本発明は上記事情に鑑みてなされたもので、剥離工程の前までは、QFN組み立てに伴う熱履歴を受けても、リードフレームの裏面および封止樹脂の裏面から剥がれることなくこれらに十分かつ安定に貼着し、封止樹脂の漏れもなく、しかも、剥離工程では容易に剥離でき、接着剤が残留する糊残りが生じたり破断したりしない接着シートと、これを用いた半導体装置の製造方法を提供することを課題とする。 The present invention has been made in view of the above-mentioned circumstances, and until the peeling process, even if it receives the heat history associated with QFN assembly, it is sufficient and stable without peeling from the back surface of the lead frame and the back surface of the sealing resin. Adhesive sheet that can be adhered to a surface without leakage of sealing resin, can be easily peeled in a peeling process, and does not cause adhesive residue or breakage, and a method for manufacturing a semiconductor device using the same The task is to provide
 本発明は、以下の態様を有する。
 [1]基材と、該基材の一方の面に設けられた熱硬化型の接着剤層とを備え、半導体装置のリードフレーム又は配線基板に剥離可能に貼着される半導体装置製造用接着シートにおいて、前記接着剤層は、カルボキシル基含有アクリロニトリル-ブタジエン共重合体(a)と、エポキシ樹脂(b)と、マレイミド基を2個以上含有する化合物(c)とを含有し、80℃における貯蔵弾性率が1MPa~1.7MPaであることを特徴とする半導体装置製造用接着シート。
 [2]前記(a)成分は、アクリロニトリル含有量が5~50質量%で、かつ、数平均分子量から算出されるカルボキシル基当量が100~20000のカルボキシル基含有アクリロニトリル-ブタジエン共重合体であることを特徴とする[1]に記載の半導体装置製造用接着シート。
 [3]前記(a)成分100質量部に対し、前記(b)成分と前記(c)成分との合計が20~300質量部であることを特徴とする[1]に記載の半導体装置製造用接着シート。
 [4]前記(b)成分に基づくグリシジル基量/前記(a)成分に基づくカルボキシル基量が0.14~0.43であることを特徴とする[1]に記載の半導体装置製造用接着シート。
 [5][1]に記載の半導体装置製造用接着シートを用いた半導体装置の製造方法であって、
 リードフレーム又は配線基板に半導体装置製造用接着シートを貼着する貼着工程と、
 前記リードフレーム又は配線基板に半導体素子を搭載するダイアタッチ工程と、
 前記半導体素子と外部接続端子とを導通させるワイヤボンディング工程と、
 前記半導体素子を封止樹脂で封止する封止工程と、
 前記封止工程の後、半導体装置製造用接着シートをリードフレーム又は配線基板から剥離する剥離工程と、を備えることを特徴とする半導体装置の製造方法。
The present invention has the following aspects.
[1] An adhesive for manufacturing a semiconductor device, comprising a base material and a thermosetting adhesive layer provided on one surface of the base material, and detachably attached to a lead frame or wiring board of a semiconductor device. In the sheet, the adhesive layer contains a carboxyl group-containing acrylonitrile-butadiene copolymer (a), an epoxy resin (b), and a compound (c) containing two or more maleimide groups. An adhesive sheet for manufacturing a semiconductor device, characterized by having a storage elastic modulus of 1 MPa to 1.7 MPa.
[2] The component (a) is a carboxyl group-containing acrylonitrile-butadiene copolymer having an acrylonitrile content of 5 to 50% by mass and a carboxyl group equivalent calculated from the number average molecular weight of 100 to 20000. The adhesive sheet for manufacturing a semiconductor device according to [1], characterized by:
[3] The semiconductor device manufacture according to [1], wherein the total amount of the component (b) and the component (c) is 20 to 300 parts by mass with respect to 100 parts by mass of the component (a). Adhesive sheet for
[4] The adhesive for manufacturing semiconductor devices according to [1], wherein the amount of glycidyl groups based on the component (b)/the amount of carboxyl groups based on the component (a) is 0.14 to 0.43. sheet.
[5] A method for manufacturing a semiconductor device using the adhesive sheet for manufacturing a semiconductor device according to [1],
A sticking step of sticking an adhesive sheet for manufacturing a semiconductor device to a lead frame or a wiring board;
a die attach step of mounting a semiconductor element on the lead frame or wiring board;
a wire bonding step of electrically connecting the semiconductor element and the external connection terminal;
A sealing step of sealing the semiconductor element with a sealing resin;
and a peeling step of peeling off the adhesive sheet for semiconductor device manufacturing from the lead frame or the wiring board after the sealing step.
 本発明によれば、剥離工程の前までは、QFN組み立てに伴う熱履歴を受けても、リードフレームの裏面および封止樹脂の裏面から剥がれることなくこれらに十分かつ安定に貼着し、封止樹脂の漏れもなく、しかも、剥離工程では容易に剥離でき、接着剤が残留する糊残りが生じたり破断したりしない接着シートと、特に研磨傷などの突起を有するリードフレームであっても剥離工程の前までは十分に貼着した接着シートと、これに用いた半導体装置の製造方法を提供できる。 According to the present invention, before the peeling process, even when subjected to the heat history associated with the QFN assembly, the back surface of the lead frame and the back surface of the sealing resin are sufficiently and stably adhered and sealed without being peeled off. An adhesive sheet that does not leak resin, can be easily peeled off in the peeling process, and does not cause adhesive residue or breakage, and the peeling process even for lead frames that have protrusions such as polishing scratches. It is possible to provide an adhesive sheet sufficiently adhered to the front and a method for manufacturing a semiconductor device using the adhesive sheet.
本発明の半導体装置の製造方法に用いられるリードフレームの一例を示す平面図である。1 is a plan view showing an example of a lead frame used in the method of manufacturing a semiconductor device of the present invention; FIG. 本発明の半導体装置の製造方法を説明する工程図である。It is process drawing explaining the manufacturing method of the semiconductor device of this invention.
 以下、本発明について詳細に説明する。
[半導体装置製造用接着シート]
 本発明の半導体装置製造用接着シート(以下、接着シートという)は、基材と、該基材の一方の面に設けられた熱硬化型の接着剤層とを備え、半導体装置のリードフレーム又は配線基板に剥離可能に貼着される接着シートにおいて、前記接着剤層は、カルボキシル基含有アクリロニトリル-ブタジエン共重合体(a)と、エポキシ樹脂(b)と、マレイミド基を2個以上含有する化合物(c)とを含有し、80℃における貯蔵弾性率が1MPa~1.7MPaであり、QFN方式により半導体装置を組み立てる際にマスクテープとして使用される。
The present invention will be described in detail below.
[Adhesive sheet for manufacturing semiconductor devices]
An adhesive sheet for manufacturing a semiconductor device (hereinafter referred to as an adhesive sheet) of the present invention comprises a base material and a thermosetting adhesive layer provided on one surface of the base material, and comprises a lead frame of a semiconductor device or a In the adhesive sheet to be releasably attached to the wiring board, the adhesive layer comprises a carboxyl group-containing acrylonitrile-butadiene copolymer (a), an epoxy resin (b), and a compound containing two or more maleimide groups. (c), has a storage elastic modulus of 1 MPa to 1.7 MPa at 80° C., and is used as a mask tape when assembling a semiconductor device by the QFN method.
 カルボキシル基含有アクリロニトリル-ブタジエン共重合体(a)は、加熱初期における接着剤層の溶融粘度を適度に維持する役割などを果たすとともに、硬化した接着剤層に対して良好な柔軟性、接着性を付与するものであって、これを含有することによって、耐熱性フィルムなどからなる基材への密着性がよく、割れのない接着剤層を形成することができる。カルボキシル基含有アクリロニトリル-ブタジエン共重合体(a)としては、公知のものを制限なく使用できるが、アクリロニトリル含有量が5~50質量%のものが好ましく、10~40質量%のものがより好ましい。アクリロニトリル含有量が上記範囲未満であると、溶媒への溶解性や他の成分との相溶性が低下するため、得られる接着剤層の均一性が低下する傾向がある。一方、アクリロニトリル含有量が上記範囲を超えると、得られる接着剤層はリードフレームや封止樹脂への接着性が過度となり、これを接着シートに使用した場合、剥離工程での剥離が困難となったり、接着シートが破断したりする可能性がある。 The carboxyl group-containing acrylonitrile-butadiene copolymer (a) plays a role of appropriately maintaining the melt viscosity of the adhesive layer at the initial stage of heating, and provides good flexibility and adhesion to the cured adhesive layer. By containing this, it is possible to form an adhesive layer that has good adhesion to a substrate such as a heat-resistant film and that does not crack. As the carboxyl group-containing acrylonitrile-butadiene copolymer (a), known ones can be used without limitation. If the acrylonitrile content is less than the above range, the solubility in the solvent and the compatibility with other components are lowered, so the uniformity of the resulting adhesive layer tends to be lowered. On the other hand, if the acrylonitrile content exceeds the above range, the resulting adhesive layer will have excessive adhesion to lead frames and sealing resins, and if this is used as an adhesive sheet, it will be difficult to peel off during the peeling process. or break the adhesive sheet.
 カルボキシル基含有アクリロニトリル-ブタジエン共重合体における数平均分子量から算出されるカルボキシル基当量は100~20000の範囲のものが好ましく、200~10000のものがより好適である。カルボキシル基当量が上記範囲未満であると、他の成分との反応性が高くなりすぎ、得られる接着剤層の保存安定性が低下する傾向にある。一方、カルボキシル基当量が上記範囲を超えると、他の成分との反応性が不足するため、得られる接着剤層は、低Bステージとなりやすい。その結果、これを接着シートに使用した場合、加熱初期、すなわち接着シートの貼着工程や、ダイアタッチキュア処理などにおいて、接着シートが加熱された際に、接着剤層が低粘度化し、接着剤層で発泡を起こしたり、流れ出したりしやすく、熱安定性が低下する傾向にある。
 なお、数平均分子量から算出されるカルボキシル基当量とは、数平均分子量(Mn)を1分子当たりのカルボキシル基数(官能基数)で除したものであって、下記式で示される。
 カルボキシル基当量=Mn/官能基数
The carboxyl group equivalent calculated from the number average molecular weight of the carboxyl group-containing acrylonitrile-butadiene copolymer is preferably in the range of 100 to 20,000, more preferably 200 to 10,000. If the carboxyl group equivalent is less than the above range, the reactivity with other components becomes too high, and the resulting adhesive layer tends to have reduced storage stability. On the other hand, if the carboxyl group equivalent exceeds the above range, the resulting adhesive layer tends to be in a low B stage due to insufficient reactivity with other components. As a result, when this is used for an adhesive sheet, when the adhesive sheet is heated at the initial stage of heating, that is, during the bonding process of the adhesive sheet, die attach cure treatment, etc., the viscosity of the adhesive layer becomes low and the adhesive becomes The layer tends to foam and flow easily, and the thermal stability tends to decrease.
The carboxyl group equivalent calculated from the number average molecular weight is obtained by dividing the number average molecular weight (Mn) by the number of carboxyl groups (number of functional groups) per molecule, and is represented by the following formula.
Carboxyl group equivalent = Mn/number of functional groups
 エポキシ樹脂(b)は、分子内に2つ以上のエポキシ基を有している化合物であり、例えば、ビスフェノールA、ビスフェノールF、ビスフェノールS、レゾルシノール、ジヒドロキナフタレン、ジシクロペンタジエンジフェノール等のジグリシジルエーテル、エポキシ化フェノールノボラック、エポキシ化クレゾールノボラック、エポキシ化クレゾールノボラック、エポキシ化トリスフェニロールメタン、エポキシ化テトラフェニロールエタン等の脂環式エポキシ樹脂、あるいはビフェニル型エポキシ樹脂あるいはノボラック型エポキシ樹脂等が挙げられる。 Epoxy resin (b) is a compound having two or more epoxy groups in the molecule. Alicyclic epoxy resins such as glycidyl ether, epoxidized phenol novolak, epoxidized cresol novolak, epoxidized cresol novolak, epoxidized trisphenylolmethane, and epoxidized tetraphenylolethane, biphenyl type epoxy resins, novolac type epoxy resins, etc. is mentioned.
 エポキシ樹脂(b)とマレイミド基を2個以上含有する化合物(c)は、接着剤層の熱硬化性を担うものであって、これらを併用することにより、熱安定性に優れ、しかも、剥離工程では容易に剥離でき、糊残りや破断が生じない接着剤層を形成することができる。特にエポキシ樹脂(b)は、接着剤層に対して靱性を付与するものであって、これを含有することによって、剥離工程で接着剤層が割れることによる糊残りを抑えることができる。 The epoxy resin (b) and the compound (c) containing two or more maleimide groups are responsible for the thermosetting properties of the adhesive layer. It is possible to form an adhesive layer that can be easily peeled off during the process and that does not cause adhesive residue or breakage. In particular, the epoxy resin (b) imparts toughness to the adhesive layer, and by containing this, it is possible to suppress adhesive deposits due to cracking of the adhesive layer during the peeling process.
 マレイミド基を2個以上含有する化合物(c)は、接着剤層に対して熱安定性を付与するとともに、接着剤層の接着性を調整する作用を奏し、これを含有することによって、接着性が適度に制御され、剥離工程で容易に剥離できる接着剤層を形成することができる。
 マレイミド基を2個以上含有する化合物(c)の具体例としては、ビスマレイミド樹脂を構成する化合物が好ましく使用され、下記式(1-1)~(1-3)のものなどが挙げられるが、中でも特に下記式(1-1)または(1-3)で示される化合物が溶媒に対する溶解性の点で有用である。
The compound (c) containing two or more maleimide groups has the effect of imparting thermal stability to the adhesive layer and adjusting the adhesiveness of the adhesive layer. is appropriately controlled, and an adhesive layer that can be easily peeled off in the peeling process can be formed.
As specific examples of the compound (c) containing two or more maleimide groups, compounds constituting bismaleimide resins are preferably used, and examples thereof include those represented by the following formulas (1-1) to (1-3). Among them, compounds represented by the following formula (1-1) or (1-3) are particularly useful in terms of solubility in solvents.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 なお、上述の(a)~(c)の各成分としては、いずれも、1種の化合物から構成されたものを使用してもよいし、2種以上の化合物の混合物を使用してもよい。 It should be noted that each of the components (a) to (c) described above may be composed of one compound, or a mixture of two or more compounds may be used. .
 前記各成分の比率は、(a)成分100質量部に対し、(b)成分と(c)成分との合計が20~300質量部であることが好ましく、20~200質量部がより好ましい。(b)成分と(c)成分との合計が上記範囲未満であると、接着剤層の反応性が低下し、加熱によっても不溶不融化が進行しにくくなり、熱安定性が低下することにより接着力が強くなる傾向がある。一方、上記範囲を超えると、加熱初期における接着剤層の溶融粘度が不足し、この接着剤層を使用した接着シートでは、テーピング工程後のダイアタッチキュア処理などで、接着剤層が流れ出したり発泡したりするおそれがある。 The ratio of each component is preferably 20 to 300 parts by mass, more preferably 20 to 200 parts by mass, for 100 parts by mass of component (a) and components (b) and (c). If the sum of the components (b) and (c) is less than the above range, the reactivity of the adhesive layer will be reduced, making it difficult for the adhesive layer to become insoluble and infusible even by heating, and the thermal stability will be reduced. Adhesion tends to be stronger. On the other hand, when the above range is exceeded, the melt viscosity of the adhesive layer at the initial stage of heating becomes insufficient, and in the adhesive sheet using this adhesive layer, the adhesive layer flows out or foams during the die attach cure treatment after the taping process. There is a risk of
 さらに、(b)成分に対する(c)成分の質量比((c)/(b))は、0.1~10の範囲が好ましい。上記範囲未満では、得られる接着剤層は常温での硬化反応が進行し易くなり保存安定性が乏しくなる場合や、接着力が強くなりすぎて、これを使用した接着シートは剥離工程で剥離不能となったり、破断したりするおそれがある。一方、上記範囲を超えると、接着シートの製造時において、この接着剤層と耐熱性フィルムからなる基材との接着性が低下する場合や、接着剤層が発泡したり、得られた接着シートが糊残りしやすいものとなる傾向がある。 Further, the mass ratio of component (c) to component (b) ((c)/(b)) is preferably in the range of 0.1-10. If it is less than the above range, the resulting adhesive layer tends to undergo a curing reaction at room temperature, resulting in poor storage stability, or the adhesive strength becomes too strong, and the adhesive sheet using this layer cannot be peeled off in the peeling process. It may become or break. On the other hand, if the above range is exceeded, the adhesiveness between the adhesive layer and a substrate made of a heat-resistant film may deteriorate during the production of the adhesive sheet, or the adhesive layer may foam or the resulting adhesive sheet may However, there is a tendency for adhesive residue to easily remain.
 本発明の接着シートにおける接着剤層は、80℃における貯蔵弾性率が1MPa~1.7MPaであり、好ましくは1.5MPa~1.7MPaである。
 本発明の接着シートにおける接着剤層において、80℃における貯蔵弾性率が1MPa~1.7MPaにするためには、例えば(a)成分、(b)成分および(c)成分の含有量を調整することによって得ることができる。例えば、エポキシ基当量が同じ(b)成分を含有させた場合では、エポキシ樹脂(b)の含有量を多くすることにより80℃における貯蔵弾性率を大きくすることができる。
 本発明の接着シートにおける接着剤層の貯蔵弾性率は、基材から接着剤層を剥離し、剥離した接着剤層を動的粘弾性測定装置により、測定周波数を11Hzとし、測定温度25℃から150℃まで、10℃/分で昇温しながら荷重1.0gfで測定される。接着剤層の80℃における貯蔵弾性率が1MPa~1.7MPaであると、研磨傷などの突起を有するリードフレームであっても剥離工程の前まで十分に貼着することができる。
 上記動的粘弾性測定装置としては、バイブロン測定器(オリエンテック社製、RHEOVIBRON DDV-II-EP)などを挙げることができる。
The adhesive layer in the adhesive sheet of the present invention has a storage modulus at 80° C. of 1 MPa to 1.7 MPa, preferably 1.5 MPa to 1.7 MPa.
In the adhesive layer of the adhesive sheet of the present invention, the contents of components (a), (b) and (c) are adjusted so that the storage elastic modulus at 80° C. is 1 MPa to 1.7 MPa. can be obtained by For example, when the component (b) having the same epoxy group equivalent is contained, the storage elastic modulus at 80° C. can be increased by increasing the content of the epoxy resin (b).
The storage elastic modulus of the adhesive layer in the adhesive sheet of the present invention is measured by peeling the adhesive layer from the base material and measuring the peeled adhesive layer with a dynamic viscoelasticity measuring device at a measurement frequency of 11 Hz and at a measurement temperature of 25 ° C. It is measured with a load of 1.0 gf while increasing the temperature at 10°C/min up to 150°C. When the storage elastic modulus of the adhesive layer at 80° C. is 1 MPa to 1.7 MPa, even a lead frame having protrusions such as polishing scratches can be sufficiently attached before the peeling process.
Examples of the dynamic viscoelasticity measuring device include a vibro measuring device (RHEOVIBRON DDV-II-EP manufactured by Orientec).
 また、本発明の接着シートにおける接着剤層は、グリシジル基量/カルボキシル基量が0.14~0.43であることが好ましく、更に0.21~0.43であることが好ましい。グリシジル基量/カルボキシル基量が上記の範囲内であれば、研磨傷などの突起を有するリードフレームであっても剥離工程の前まで十分に貼着することができる。
 上記のグリシジル基量は、(b)成分含有量/エポキシ基当量で求めることができる。また、カルボキシル基量は、(a)成分含有量/カルボキシル基当量で求めることができる。
The adhesive layer in the adhesive sheet of the present invention preferably has a glycidyl group content/carboxyl group content of 0.14 to 0.43, more preferably 0.21 to 0.43. If the amount of glycidyl groups/the amount of carboxyl groups is within the above range, even a lead frame having protrusions such as polishing scratches can be sufficiently attached before the peeling process.
The above glycidyl group content can be determined by (b) component content/epoxy group equivalent. Also, the carboxyl group content can be determined by (a) component content/carboxyl group equivalent.
 本発明の接着シートにおける接着剤層には、反応性シロキサン化合物を含有させてもよい。反応性シロキサン化合物は、接着剤層を構成する各成分の相溶性を高めるとともに、接着剤層の封止樹脂からの剥離性を向上させるためのものであって、これを含有することによって、各成分が良好に相溶し、成分の分離、析出などの不都合のない均一な接着剤層を形成できる。その結果、接着剤層は接着強度が均一なものとなり、部分的に接着強度が高いことに起因する剥離性の低下、糊残りなどの不都合を抑制することができる。
 反応性シロキサン化合物としては、アミノ変性、エポキシ変性、カルボキシル変性、メルカプト変性等の反応基により反応性が付与されたシロキサン化合物が制限なく使用できる。これらのなかでも、1,3-ビス(3-アミノプロピル)テトラメチルジシロキサン、アミノプロピル末端のジメチルシロキサン4量体または8量体、ビス(3-アミノフェノキシメチル)テトラメチルジシロキサンが(b)成分および(c)成分との反応が速やかに進行する点で好適である。反応性シロキサン化合物としては、このようにシロキサン構造の両末端に反応基が結合したものを使用することが反応性の点から好ましいが、片末端のものや、末端の一方が反応性で他方が非反応性であるシランカップリング剤も使用できる。
The adhesive layer in the adhesive sheet of the present invention may contain a reactive siloxane compound. The reactive siloxane compound enhances the compatibility of each component constituting the adhesive layer and improves the releasability of the adhesive layer from the sealing resin. The components are well compatible with each other, and a uniform adhesive layer can be formed without problems such as component separation and precipitation. As a result, the adhesive layer has a uniform adhesive strength, and problems such as a decrease in releasability and adhesive residue due to a partially high adhesive strength can be suppressed.
As the reactive siloxane compound, a siloxane compound to which reactivity is imparted by a reactive group such as amino-modified, epoxy-modified, carboxyl-modified, or mercapto-modified can be used without limitation. Among these, 1,3-bis(3-aminopropyl)tetramethyldisiloxane, aminopropyl-terminated dimethylsiloxane tetramer or octamer, bis(3-aminophenoxymethyl)tetramethyldisiloxane (b ) and (c) are favorably reacted with each other rapidly. As the reactive siloxane compound, it is preferable to use one in which reactive groups are bonded to both ends of the siloxane structure in this way from the viewpoint of reactivity. Silane coupling agents that are non-reactive can also be used.
 本発明の接着シートにおける接着剤層は、(b)成分のエポキシ基数と(c)成分のマレイミド基数との合計に対する反応性シロキサン化合物の反応基数の比が0.05~1.2であることが好ましく、より好ましくは0.1~0.8である。上記範囲未満では、接着剤層全体としての反応性が低下して、ダイアタッチキュア処理などで硬化反応が進行し難くなり、その結果、接着力が強くなりすぎる場合がある。一方、上記範囲を超えると、反応が過剰に進行しすぎて、接着剤層の調製時にゲル化などの問題が起こりやすく、接着力が弱くなりやすい。 In the adhesive layer of the adhesive sheet of the present invention, the ratio of the number of reactive groups of the reactive siloxane compound to the sum of the number of epoxy groups in component (b) and the number of maleimide groups in component (c) is 0.05 to 1.2. is preferred, and more preferably 0.1 to 0.8. If it is less than the above range, the reactivity of the adhesive layer as a whole may be lowered, making it difficult for the curing reaction to proceed in a die attach cure treatment or the like, and as a result, the adhesive strength may become too strong. On the other hand, when the above range is exceeded, the reaction proceeds excessively, and problems such as gelation tend to occur during the preparation of the adhesive layer, and the adhesive strength tends to be weak.
 接着剤層には、(a)~(c)の各必須成分の他に、有機過酸化物、イミダゾール類、トリフェニルホスフィン等の反応促進剤を添加してもよい。これらの添加により、接着剤層の常温での状態を良好なBステージにコントロールすることも可能である。
 さらに、溶融粘度のコントロール、熱伝導性向上、難燃性付与などの目的のために、平均粒径1μm以下のフィラーを添加してもよい。フィラーとしては、シリカ、アルミナ、マグネシア、窒化アルミニウム、窒化ホウ素、酸化チタン、炭酸カルシウム、水酸化アルミニウム等の無機フィラー、シリコーン樹脂、フッ素樹脂等の有機フィラーなどが挙げられる。フィラーを使用する場合には、その含有量は、接着剤層中、1~40質量%とすることが好ましい。
In addition to the essential components (a) to (c), reaction accelerators such as organic peroxides, imidazoles and triphenylphosphine may be added to the adhesive layer. By adding these, it is also possible to control the state of the adhesive layer at room temperature to a good B stage.
Furthermore, a filler having an average particle diameter of 1 μm or less may be added for the purpose of controlling melt viscosity, improving thermal conductivity, imparting flame retardancy, and the like. Examples of fillers include inorganic fillers such as silica, alumina, magnesia, aluminum nitride, boron nitride, titanium oxide, calcium carbonate and aluminum hydroxide, and organic fillers such as silicone resins and fluororesins. When a filler is used, its content is preferably 1 to 40% by mass in the adhesive layer.
 本発明の接着シートは、基材である耐熱性フィルムの片面に、上述の接着剤層が形成されたものである。
 このような接着シートを製造する場合には、まず、少なくとも上述のカルボキシル基含有アクリロニトリル-ブタジエン共重合体(a)、エポキシ樹脂(b)、マレイミド基を2個以上含有する化合物(c)、必要に応じて反応性シロキサン化合物と溶媒とからなる接着剤塗料を調製する。ついで、この塗料を耐熱性フィルムの片面に、乾燥後の接着剤層の厚さが好ましくは1~50μm、より好ましくは3~20μmになるように塗布し、乾燥すればよい。また、接着剤層の保護のために、形成された接着剤層上には、さらに剥離性の保護フィルムを設けることが好ましく、その場合には、保護フィルム上に塗料を塗布、乾燥して接着剤層を形成し、その上に耐熱性フィルムを設ける方法で接着シートを製造してもよい。なお、保護フィルムは、接着シートの使用時には剥離されるものである。
The adhesive sheet of the present invention is obtained by forming the above-described adhesive layer on one side of a heat-resistant film as a substrate.
When producing such an adhesive sheet, first, at least the above-described carboxyl group-containing acrylonitrile-butadiene copolymer (a), epoxy resin (b), compound (c) containing two or more maleimide groups, Prepare an adhesive coating consisting of a reactive siloxane compound and a solvent according to Then, this paint is applied to one side of the heat-resistant film so that the thickness of the adhesive layer after drying is preferably 1 to 50 μm, more preferably 3 to 20 μm, and dried. In order to protect the adhesive layer, it is preferable to further provide a peelable protective film on the formed adhesive layer. An adhesive sheet may be produced by forming an agent layer and providing a heat-resistant film thereon. Note that the protective film is peeled off when the adhesive sheet is used.
 耐熱性フィルムとしては、ポリイミド、ポリフェニレンサルファイド、ポリエーテルスルホン、ポリエーテルエーテルケトン、液晶ポリマー、ポリエチレンテレフタレート、ポリエチレンナフタレート等からなる耐熱性プラスチックフィルム、エポキシ樹脂-ガラスクロス等の複合耐熱フィルム等が挙げられるが、特にポリイミドフィルムが好ましい。
 ポリイミドフィルムの厚さは、12.5~125μmが好ましく、より好ましくは25~50μmである。上記範囲未満であると、接着シートのコシが不充分になって扱い難くなる傾向があり、上記範囲を超えると、QFN組み立て時のテーピング工程や剥離工程での作業が困難になる傾向がある。
Examples of heat-resistant films include heat-resistant plastic films made of polyimide, polyphenylene sulfide, polyethersulfone, polyetheretherketone, liquid crystal polymer, polyethylene terephthalate, polyethylene naphthalate, etc., and composite heat-resistant films such as epoxy resin-glass cloth. Polyimide film is particularly preferred.
The thickness of the polyimide film is preferably 12.5-125 μm, more preferably 25-50 μm. If the thickness is less than the above range, the adhesive sheet tends to have insufficient stiffness and is difficult to handle.
 接着剤塗料に使用される溶媒としては、炭化水素類、アルコール類、ケトン類、エーテル類(テトラヒドロフランなど)等の有機溶剤、水等のうち1種以上を好ましく使用でき、その使用量は、塗料として適切な粘度となるように適宜調整すればよい。また、塗料の性状は、溶液、エマルジョン、サスペンジョンのいずれでもよく、使用する塗布装置および環境条件などに応じて適宜選択すればよい。 As the solvent used in the adhesive coating, one or more of organic solvents such as hydrocarbons, alcohols, ketones, ethers (tetrahydrofuran, etc.), water, etc. can be preferably used. It may be adjusted as appropriate so that the viscosity is appropriate. The paint may be in the form of a solution, an emulsion, or a suspension, and may be appropriately selected according to the coating apparatus used, the environmental conditions, and the like.
 剥離性の保護フィルムとしては、ポリエチレン、ポリプロピレン、塩化ビニル、フッ素系樹脂、シリコーン等のプラスチックフィルムや、ポリエチレンテレフタレート、ポリエチレンナフタレート、紙等にシリコーン被覆等で剥離性を付与したものが挙げられる。 Examples of releasable protective films include plastic films such as polyethylene, polypropylene, vinyl chloride, fluororesin, and silicone, as well as polyethylene terephthalate, polyethylene naphthalate, paper, and the like, which are coated with silicone to impart releasability.
[半導体装置の製造方法]
 本発明の接着シートを用いた半導体装置の製造方法は、リードフレーム又は配線基板に接着シートを貼着する貼着工程と、リードフレーム又は配線基板に半導体素子を搭載するダイアタッチ工程と、半導体素子と外部接続端子とを導通させるワイヤボンディング工程と、半導体素子を封止樹脂で封止する封止工程と、封止工程の後、接着シートをリードフレーム又は配線基板から剥離する剥離工程とを備えるものである。
[Method for manufacturing a semiconductor device]
The method for manufacturing a semiconductor device using the adhesive sheet of the present invention includes a bonding step of bonding the adhesive sheet to a lead frame or wiring board, a die attach step of mounting a semiconductor element on the lead frame or wiring board, a semiconductor element and external connection terminals, a sealing step of sealing the semiconductor element with a sealing resin, and a peeling step of peeling the adhesive sheet from the lead frame or wiring board after the sealing step. It is a thing.
 以下、本発明の接着シートを用いた半導体装置の製造方法の一例について、図1~2を参照して説明する。図1は、半導体素子を搭載する側から見たリードフレームの平面図であり、図2(a)~(f)は、図1に示すリードフレームを用いてQFNパッケージを製造する方法を示す工程図であって、図1のリードフレームのA-A’断面図である。 An example of a method for manufacturing a semiconductor device using the adhesive sheet of the present invention will be described below with reference to FIGS. FIG. 1 is a plan view of a lead frame viewed from the side on which a semiconductor element is mounted, and FIGS. FIG. 2 is a cross-sectional view of the lead frame of FIG. 1 taken along the line AA';
 まず、図1に示す概略構成のリードフレーム20を用意する。リードフレーム20は、ICチップ等の半導体素子を搭載する複数の半導体素子搭載部(ダイパッド部)21がマトリックス状に形成され、各半導体素子搭載部21の外周に沿って多数のリード22(外部接続端子)が形成されたものである。
 リードフレーム20の材質としては、従来公知のものが挙げられ、例えば、銅板及び銅合金板、またはこれらにストライクメッキを設けたものや、銅合金板の表面に、ニッケルメッキ層とパラジウムメッキ層と金メッキ層とがこの順に設けられたものが挙げられる。
First, the lead frame 20 having the schematic configuration shown in FIG. 1 is prepared. The lead frame 20 has a plurality of semiconductor element mounting portions (die pad portions) 21 for mounting semiconductor elements such as IC chips formed in a matrix. terminals) are formed.
Examples of materials for the lead frame 20 include conventionally known materials, such as a copper plate, a copper alloy plate, or a strike-plated version of these, or a nickel-plated layer and a palladium-plated layer on the surface of a copper alloy plate. A gold-plated layer is provided in this order.
 図2(a)に示すように、リードフレーム20の一方の面(下面)に、接着シート10を接着剤層(図示略)がリードフレーム20に当接するように貼着する(貼着工程)。接着シート10をリードフレーム20に貼着する方法としては、ラミネート法・プレス法等があるが、生産性の観点で、テーピング工程を連続的に行うことができるラミネート法が好適である。本工程における接着シート10の温度は、例えば、常温(5~35℃)から150℃とされ、60~120℃がより好ましい。150℃より高い温度で貼着するとリードフレームに反りが生じやすくなる。
 本工程でリードフレーム20に反りが生じると、ダイアタッチ工程やワイヤボンディング工程での位置決めが困難になることや、加熱炉への搬送が困難になり、QFNパッケージの生産性を低下させるおそれがある。
As shown in FIG. 2A, the adhesive sheet 10 is adhered to one surface (lower surface) of the lead frame 20 so that the adhesive layer (not shown) is in contact with the lead frame 20 (adhering step). . Methods for adhering the adhesive sheet 10 to the lead frame 20 include a laminating method, a pressing method, and the like. From the viewpoint of productivity, the laminating method is preferable because the taping process can be continuously performed. The temperature of the adhesive sheet 10 in this step is, for example, normal temperature (5 to 35°C) to 150°C, more preferably 60 to 120°C. Bonding at a temperature higher than 150° C. tends to warp the lead frame.
If the lead frame 20 warps in this process, positioning in the die attach process or wire bonding process becomes difficult, and transportation to the heating furnace becomes difficult, which may reduce the productivity of the QFN package. .
 図2(b)に示すように、リードフレーム20の半導体素子搭載部21における接着シート10が貼着されていない側に、ダイアタッチ剤(図示略)を介してICチップ等の半導体素子30を載置する。この際、リードフレーム20は、反りが抑制されているため、容易に位置決めされる。そして、半導体素子30が所定の位置に正確に載置される。その後、100~200℃程度に加熱して、ダイアタッチ剤を硬化し、半導体素子30を半導体素子搭載部21に固定して搭載する(ダイアタッチ剤硬化処理。以上、ダイアタッチ工程。)。この際、接着シート10は、接着剤層が硬化して、リードフレームに接着される。 As shown in FIG. 2B, a semiconductor element 30 such as an IC chip is attached to the side of the semiconductor element mounting portion 21 of the lead frame 20 to which the adhesive sheet 10 is not adhered via a die attach agent (not shown). Place. At this time, the lead frame 20 is easily positioned because warping is suppressed. Then, the semiconductor element 30 is accurately mounted at a predetermined position. After that, the die attach agent is cured by heating to about 100 to 200° C., and the semiconductor element 30 is fixed and mounted on the semiconductor element mounting portion 21 (die attach agent curing process; the above is the die attach step). At this time, the adhesive layer of the adhesive sheet 10 is cured and adhered to the lead frame.
 接着シート10やダイアタッチ剤等から発生するアウトガス成分がリードフレーム20や半導体素子30に付着していると、ワイヤボンディング工程においてワイヤの接合不良による歩留低下を生じやすい。そこで、ダイアタッチ工程の後、ワイヤボンディング工程の前に、リードフレーム20や半導体素子30にプラズマ処理を施す(プラズマクリーニング工程)。プラズマ処理としては、例えば、接着シート10が貼着され半導体素子30が搭載されたリードフレーム20(以下、仕掛品ということがある)をアルゴンガス、又はアルゴンガスと水素ガスとの混合ガス等の雰囲気でプラズマ照射する方法が挙げられる。プラズマ処理におけるプラズマの照射出力は、例えば、150~600Wとされる。また、プラズマ処理の時間は、例えば、0.1~15分間とされる。 If the outgassing component generated from the adhesive sheet 10, the die attach agent, etc. adheres to the lead frame 20 or the semiconductor element 30, the yield is likely to decrease due to defective wire bonding in the wire bonding process. Therefore, after the die attach process and before the wire bonding process, the lead frame 20 and the semiconductor element 30 are subjected to plasma processing (plasma cleaning process). As the plasma treatment, for example, the lead frame 20 having the adhesive sheet 10 attached and the semiconductor element 30 mounted thereon (hereinafter sometimes referred to as a work-in-process product) is treated with argon gas or a mixed gas of argon gas and hydrogen gas. A method of plasma irradiation in an atmosphere can be mentioned. The plasma irradiation power in the plasma processing is, for example, 150 to 600W. Also, the plasma processing time is, for example, 0.1 to 15 minutes.
 図2(c)に示すように、半導体素子30とリードフレーム20のリード22(外部接続端子)とを金ワイヤ、銅ワイヤ、パラジウムで被覆された銅ワイヤ等のボンディングワイヤ31で電気的に導通する(ワイヤボンディング工程)。本工程は、仕掛品をヒーターブロック上で150~250℃程度に加熱しながら行われる。本工程における加熱時間は、例えば、5~60分間とされる。
 ワイヤボンディング工程で仕掛品が加熱されると、接着剤層中にフッ素添加剤が含有されている場合は、フッ素添加剤が接着剤層の表面に移行するため、後述の剥離工程において接着シート10は、リードフレーム20及び封止樹脂40から剥離しやすくなる。
As shown in FIG. 2C, the semiconductor element 30 and the leads 22 (external connection terminals) of the lead frame 20 are electrically connected by bonding wires 31 such as gold wires, copper wires, and palladium-coated copper wires. (wire bonding process). This step is performed while heating the product in process on a heater block to about 150 to 250°C. The heating time in this step is, for example, 5 to 60 minutes.
When the work-in-progress is heated in the wire bonding step, if the adhesive layer contains a fluorine additive, the fluorine additive migrates to the surface of the adhesive layer. becomes easy to separate from the lead frame 20 and the sealing resin 40 .
 図2(d)に示すように、図2(c)に示す仕掛品を金型内に載置し、封止樹脂(モールド材)を用いて金型内に射出して充填する。任意の量を金型内に充填した後、金型内を任意の圧力で維持することにより、半導体素子30を封止樹脂40により封止する(封止工程)。封止樹脂としては、従来公知のものが用いられ、例えば、エポキシ樹脂及び無機フィラー等の混合物が挙げられる。
 図2(e)に示すように、接着シート10を封止樹脂40及びリードフレーム20から剥離することにより、複数のQFNパッケージ50が配列されたQFNユニット60を得る(剥離工程)。
As shown in FIG. 2(d), the product in process shown in FIG. 2(c) is placed in a mold, and a sealing resin (molding material) is injected into the mold to fill it. After an arbitrary amount is filled in the mold, the semiconductor element 30 is encapsulated with the encapsulating resin 40 by maintaining the inside of the mold at an arbitrary pressure (encapsulation step). As the sealing resin, a conventionally known one is used, and examples thereof include mixtures of epoxy resins and inorganic fillers.
As shown in FIG. 2(e), the adhesive sheet 10 is separated from the sealing resin 40 and the lead frame 20 to obtain a QFN unit 60 in which a plurality of QFN packages 50 are arranged (peeling step).
 図2(f)に示すように、QFNユニット60を各QFNパッケージ50の外周に沿ってダイシングすることにより、複数のQFNパッケージ50を得る(ダイシング工程)。 As shown in FIG. 2(f), a plurality of QFN packages 50 are obtained by dicing the QFN unit 60 along the outer periphery of each QFN package 50 (dicing process).
 なお、上述の実施形態では、リードフレームを用いたQFNパッケージの製造方法を例にして説明したが、本発明はこれに限定されず、リードフレームを用いたQFNパッケージ以外の半導体装置の製造方法、配線基板を用いた半導体装置の製造方法にも適用できる。 In the above-described embodiments, the method for manufacturing a QFN package using a lead frame has been described as an example, but the present invention is not limited to this, and a method for manufacturing a semiconductor device other than a QFN package using a lead frame It can also be applied to a method of manufacturing a semiconductor device using a wiring substrate.
 本発明の接着シートにおける接着剤層は、カルボキシル基含有アクリロニトリル-ブタジエン共重合体(a)のカルボキシル基とエポキシ樹脂(b)のグリシジル基とを架橋してBステージ状態(半硬化状態)をとることにより、低いガラス転移温度(-30℃~50℃)とすることができる。低いガラス転移温度の接着剤層を有する接着シートは、比較的低温の加熱条件、具体的には常温(5℃~35℃)~150℃でロールラミネータなどによりテーピング工程を連続的に行うことができ生産性に優れる。 The adhesive layer in the adhesive sheet of the present invention takes a B-stage state (semi-cured state) by cross-linking the carboxyl group of the carboxyl group-containing acrylonitrile-butadiene copolymer (a) and the glycidyl group of the epoxy resin (b). Thereby, a low glass transition temperature (-30° C. to 50° C.) can be obtained. An adhesive sheet having an adhesive layer with a low glass transition temperature can be continuously subjected to a taping process using a roll laminator or the like under relatively low temperature heating conditions, specifically room temperature (5°C to 35°C) to 150°C. Excellent productivity.
 また、本発明の接着シートにおける低いガラス転移温度(-30℃~50℃)の接着剤層は、加熱されたときに高弾性率の特性が得られる。近年、ワイヤボンディング工程でのコストダウンを目的として、従来の金ワイヤに換わり低コストな銅ワイヤまたは、パラジウム被覆された銅ワイヤによるボンディングをした製品が普及し始めている。銅ワイヤまたは、パラジウム被覆された銅ワイヤは、金より高弾性の金属のため、安定した形状を作るためには従来の金ワイヤより高荷重での加工が必要となる。
 このような大きな荷重をリードフレームに加えると、リードフレーム下部に貼着されている接着シートにおける接着剤層が低弾性率であると、該接着剤層が変形しその変形された接着剤層の状態で樹脂封止される。そうすると、変形された接着剤層部分から封止樹脂の漏れが発生する。また、リードフレームから接着シートを剥離する際には、該変形された接着剤層部分から接着剤層が破断してリードフレーム表面上に接着剤が残留するという問題も生じる。加えて、ワイヤボンディング時に、接着剤が低弾性率であると、接着剤が変形してしまうことで、ワイヤ荷重が伝わりにくく、ワイヤボンディング不良も起こりやすくなる。本発明の接着シートにおける接着剤層は、上記のように高弾性率の特性を有するため、銅ワイヤまたは、パラジウム被覆された銅ワイヤを用いて、ワイヤボンディングしても、ワイヤボンディング不良や、封止樹脂の漏れや接着剤層の残留の問題が生じにくい。
In addition, the adhesive layer with a low glass transition temperature (−30° C. to 50° C.) in the adhesive sheet of the present invention exhibits a high elastic modulus property when heated. In recent years, in order to reduce costs in the wire bonding process, products bonded with low-cost copper wires or palladium-coated copper wires have begun to spread in place of conventional gold wires. Since copper wire or palladium-coated copper wire is a metal with higher elasticity than gold, it needs to be processed with a higher load than conventional gold wire in order to create a stable shape.
When such a large load is applied to the lead frame, if the adhesive layer in the adhesive sheet attached to the lower part of the lead frame has a low elastic modulus, the adhesive layer will be deformed. resin-sealed in this state. Then, leakage of the sealing resin occurs from the deformed adhesive layer portion. Moreover, when the adhesive sheet is peeled off from the lead frame, the adhesive layer is broken at the deformed adhesive layer portion, and the adhesive remains on the lead frame surface. In addition, if the adhesive has a low elastic modulus at the time of wire bonding, the adhesive is deformed, making it difficult for the wire load to be transmitted, and wire bonding failures are likely to occur. Since the adhesive layer in the adhesive sheet of the present invention has a high elastic modulus property as described above, even if wire bonding is performed using a copper wire or a palladium-coated copper wire, wire bonding failure or sealing may occur. Problems such as leakage of the sealing resin and residue of the adhesive layer are less likely to occur.
 以下、本発明について、実施例を示して具体的に説明する。
[実施例1~6および比較例1~3]
(接着剤塗料の組成)
 表1に示す質量比率で、(a)~(c)成分及びその他の成分と溶媒であるテトラヒドロフラン(THF)とを混合して、接着剤塗料を調製した。
 ついで、この接着剤塗料を厚さ25μmのポリイミドフィルム(東レ・デュポン社製、商品名カプトン100EN)の片面に、乾燥後の接着剤層厚さが5μmとなるよう塗布後、熱風循環型オーブン中で乾燥し、接着シートを得た。
 なお、使用した各成分の詳細は以下の通りである。
EXAMPLES Hereinafter, the present invention will be specifically described with reference to Examples.
[Examples 1 to 6 and Comparative Examples 1 to 3]
(Composition of adhesive paint)
An adhesive coating was prepared by mixing components (a) to (c) and other components with tetrahydrofuran (THF) as a solvent at the mass ratio shown in Table 1.
Then, this adhesive paint was applied to one side of a 25 μm-thick polyimide film (manufactured by Toray DuPont, trade name Kapton 100EN) so that the thickness of the adhesive layer after drying was 5 μm, and then placed in a hot air circulation oven. to obtain an adhesive sheet.
The details of each component used are as follows.
 ・カルボキシル基含有アクリロニトリル-ブタジエン共重合体:数平均分子量より算出されるカルボキシル基当量1500、アクリロニトリル含有量27質量%
 ・エポキシ樹脂a:分子量630、エポキシ基当量210g/eq
 ・エポキシ樹脂b:分子量950、エポキシ基当量475g/eq
 ・エポキシ樹脂c:分子量1850、エポキシ基当量925g/eq
 ・ビスフェノールAジフェニルエーテルビスマレイミド:分子量570、官能基当量285g/eq
 ・1,3-ビス(3-アミノプロピル)テトラメチルジシロキサン:分子量248、官能基当量62g/eq
Carboxyl group-containing acrylonitrile-butadiene copolymer: carboxyl group equivalent calculated from number average molecular weight 1500, acrylonitrile content 27% by mass
・ Epoxy resin a: molecular weight 630, epoxy group equivalent weight 210 g / eq
・ Epoxy resin b: molecular weight 950, epoxy group equivalent weight 475 g / eq
· Epoxy resin c: molecular weight 1850, epoxy group equivalent 925 g / eq
- Bisphenol A diphenyl ether bismaleimide: molecular weight 570, functional group equivalent weight 285 g/eq
· 1,3-bis (3-aminopropyl) tetramethyldisiloxane: molecular weight 248, functional group equivalent weight 62 g / eq
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 上述のようにして得られた各例の接着シートについて、次の測定及び評価を行い、その結果を表2に示した。
(1)Cu板に対する剥離強度
 被着体:銅板(古河製125μm64タイプ)
 接着シートサイズ:幅10mm×長さ50mm
 加工:ロールラミネータを使用し、各例で得られた接着シートを被着体へ貼り付けたものを試験体とした。その際のラミネート条件は、温度80℃、圧力4N/cm、圧着速度1m/分とした。
 測定:万能引張試験機を使用して、加熱した試験体の90°ピール強度を常温で測定した。銅板を固定し、接着シートを垂直方向に引っ張って測定した。引張速度は50mm/分とした。
 評価:剥離強度は、実用上15gf/cm以上が問題ない接着強度である。15gf/cm以上を○とし、15gf/cm未満を×とした。
The adhesive sheets of each example obtained as described above were subjected to the following measurements and evaluations, and the results are shown in Table 2.
(1) Peel strength against Cu plate Adherend: Copper plate (125 μm 64 type manufactured by Furukawa)
Adhesive sheet size: width 10 mm x length 50 mm
Processing: Using a roll laminator, the adhesive sheet obtained in each example was attached to an adherend to prepare a test piece. The lamination conditions at that time were a temperature of 80° C., a pressure of 4 N/cm, and a pressing speed of 1 m/min.
Measurement: Using a universal tensile tester, the 90° peel strength of the heated specimen was measured at room temperature. The copper plate was fixed and the adhesive sheet was pulled vertically to measure. The tensile speed was set to 50 mm/min.
Evaluation: A peel strength of 15 gf/cm or more is practically acceptable adhesive strength. A value of 15 gf/cm or more was evaluated as ◯, and a value of less than 15 gf/cm was evaluated as x.
(2)樹脂封止工程後の試験体に対する剥離強度、テープ剥離後の接着剤残留物の有無
 加工・測定方法:
 (i)試験体の作製と熱処理
 各例で得られたポリイミドフィルム上に接着剤層を有する接着シートを幅50mm×長さ60mmに裁断した後、実際のQFNの組み立てに伴う熱履歴などを想定して、まず、下記の(a)~(d)を順次実施した。
 (a)各例で得られた接着シートを幅50mm×長さ60mmに裁断し、これを50mm×100mmの外寸57.5mm×53.5mm銅合金製のテスト用リードフレーム(表面ストライクメッキ、8×8個のマトリクス配列、パッケージサイズ5mm×5mm、32ピン)に、ロールラミネータを使用して貼り付けた。その際のラミネート条件は、温度80℃、圧力4N/cm、圧着速度0.5m/分とした。
 (b)接着シートが貼着された銅合金製のテスト用リードフレームを通風オーブンで175℃/60分間加熱した。これは、ダイアタッチキュア処理を想定した処理である。
 (c)プラズマ照射処理:Yieldエンジニアリング社製1000Pにより、ガス種にArを使用して、450W/60秒間処理した。
 (d)200℃/30分加熱:ワイヤボンディング工程を想定した処理であって、ホットプレートを使用して加熱した。
 ついで、(a)~(d)の熱処理が済んだ被着体の接着シートが貼り合わされた面とは逆の銅材露出面に、モールドプレス機を用いて、175℃/3分の条件で封止樹脂を積層した(樹脂封止工程)。封止樹脂としては住友ベークライト社製のエポキシモールド樹脂(EME-G631BQ)を使用した。
(2) Peel strength to test piece after resin encapsulation process, presence or absence of adhesive residue after tape peeling Processing/measurement method:
(i) Fabrication and heat treatment of test piece After cutting the adhesive sheet having an adhesive layer on the polyimide film obtained in each example into a width of 50 mm and a length of 60 mm, the heat history, etc. associated with the actual assembly of the QFN is assumed. Then, first, the following (a) to (d) were sequentially performed.
(a) The adhesive sheet obtained in each example was cut into a width of 50 mm × length of 60 mm, and this was cut into a 50 mm × 100 mm outer size of 57.5 mm × 53.5 mm copper alloy test lead frame (surface strike plating, 8×8 matrix arrangement, package size 5 mm×5 mm, 32 pins), using a roll laminator. The lamination conditions at that time were a temperature of 80° C., a pressure of 4 N/cm, and a pressing speed of 0.5 m/min.
(b) The copper alloy test lead frame to which the adhesive sheet was adhered was heated in a ventilation oven at 175°C for 60 minutes. This is processing assuming die attach cure processing.
(c) Plasma irradiation treatment: Treatment was performed with 1000P manufactured by Yield Engineering Co., Ltd. using Ar as a gas type at 450 W/60 seconds.
(d) Heating at 200° C./30 minutes: This is a process assuming a wire bonding process, and heating was performed using a hot plate.
Then, using a mold press, on the exposed copper material surface opposite to the surface on which the adhesive sheet of the adherend after the heat treatment of (a) to (d) was bonded, under the conditions of 175 ° C./3 minutes. A sealing resin was laminated (resin sealing step). Epoxy molding resin (EME-G631BQ) manufactured by Sumitomo Bakelite Co., Ltd. was used as the sealing resin.
(ii)剥離強度の測定、テープ剥離後の接着剤残留物の有無
 上述の樹脂封止工程後の試験体について、万能引張試験機を使用して、90°ピール強度を常温で測定した。なお、試験体を固定し、接着シートのコーナー部分を垂直方向に引っ張って測定した。引張速度は300mm/分とした。また、テープ剥離後の接着剤残留物の有無を、光学顕微鏡(キーエンス社製デジタルマイクロスコープVHX-500)を用いて、倍率100倍で確認した。
 評価:○:剥離強度が1000gf/50mm未満であって、剥離した接着シートが破断しておらず、リードフレーム材表面および封止樹脂表面に接着剤が残留していない。
 △:剥離強度が1000gf/50mm以上であって、剥離した接着シートが破断しておらず、リードフレーム材表面および封止樹脂表面に接着剤が残留していない。
 ×:接着シートの破断が認められるか、リードフレーム材表面および封止樹脂表面に接着剤の残留が認められるかのいずれか少なくとも1つに該当する。
(ii) Measurement of Peel Strength, Presence or Absence of Adhesive Residue after Tape Peeling The 90° peel strength of the test piece after the resin sealing step was measured at room temperature using a universal tensile tester. In addition, the specimen was fixed and the corner portion of the adhesive sheet was pulled in the vertical direction for the measurement. The tensile speed was 300 mm/min. Further, the presence or absence of adhesive residue after peeling off the tape was confirmed using an optical microscope (Digital Microscope VHX-500 manufactured by Keyence Corporation) at a magnification of 100 times.
Evaluation: ◯: The peel strength is less than 1000 gf/50 mm, the peeled adhesive sheet is not broken, and no adhesive remains on the surface of the lead frame material and the surface of the sealing resin.
Δ: The peel strength was 1000 gf/50 mm or more, the peeled adhesive sheet was not broken, and no adhesive remained on the surface of the lead frame material and the surface of the sealing resin.
x: Corresponds to at least one of either breakage of the adhesive sheet or residual adhesive on the surface of the lead frame material and the surface of the sealing resin.
(3)ダイアタッチ工程後の熱特性
 加工:各例で得られる接着シートにおいて、厚さ25μmのポリイミドフィルムを、厚さ38μmの離型処理を施したポリエチレンテレフタレートフィルム(PETフィルム)としたものを作製し、ダイアタッチキュア処理を想定し、通風オーブンを使用して175℃で1時間加熱した。
 測定:加熱後の接着シートにおける接着剤層をPETフィルムから取り出し、貯蔵弾性率をDMA(Dynamic Mechanical Analyzer)を用いて測定した。
 DMAとしてバイブロン測定器(オリエンテック社製、RHEOVIBRON DDV-II-EP)を用いて、周波数11Hz、昇温速度10℃/min、荷重1.0gfにて測定を行った。
 評価:ワイヤボンディング工程時を想定した際にかかる温度、200℃における貯蔵弾性率が5MPa以上のものを○とした。
(3) Thermal characteristics after die attach process Processing: In the adhesive sheet obtained in each example, a polyethylene terephthalate film (PET film) having a thickness of 38 μm and having a thickness of 38 μm subjected to a release treatment was made from a polyimide film having a thickness of 25 μm. Assuming a die attach cure treatment, it was heated at 175° C. for 1 hour using a ventilated oven.
Measurement: The adhesive layer in the adhesive sheet after heating was removed from the PET film, and the storage elastic modulus was measured using a DMA (Dynamic Mechanical Analyzer).
Using a Vibron measuring instrument (RHEOVIBRON DDV-II-EP, manufactured by Orientec) as DMA, measurement was performed at a frequency of 11 Hz, a heating rate of 10° C./min, and a load of 1.0 gf.
Evaluation: A sample having a storage elastic modulus of 5 MPa or more at a temperature of 200° C., which is assumed to be in the wire bonding process, was evaluated as ◯.
(4)追従性
加工:各例で得られた接着シートを幅50mm×長さ60mmに裁断し、これを50mm×100mmの外寸57.5mm×53.5mm銅合金製のテスト用リードフレーム(表面ストライクメッキ、8×8個のマトリクス配列、パッケージサイズ5mm×5mm、32ピン)に、ロールラミネータを使用して貼り付けた。その際のラミネート条件は、温度80℃、圧力4N/cm、圧着速度1m/分とした。
評価:上述のテスト用リードフレームに貼着した接着テープについて、リードフレームと接着剤層間の追従性を目視で確認した。
  ○:リードフレームと接着剤層間に気泡が生じていない
  ×:リードフレームと接着剤層間に気泡が生じている
(4) Followability processing: The adhesive sheet obtained in each example is cut into a width of 50 mm x length of 60 mm, and this is a lead frame for testing made of copper alloy with an outer size of 50 mm x 100 mm and an outer size of 57.5 mm x 53.5 mm ( Surface strike plating, matrix arrangement of 8×8, package size 5 mm×5 mm, 32 pins) was applied using a roll laminator. The lamination conditions at that time were a temperature of 80° C., a pressure of 4 N/cm, and a pressing speed of 1 m/min.
Evaluation: For the adhesive tape attached to the test lead frame described above, followability between the lead frame and the adhesive layer was visually confirmed.
○: Air bubbles are not generated between the lead frame and the adhesive layer ×: Air bubbles are generated between the lead frame and the adhesive layer
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 上記の表2から明らかなように、実施例1~6の接着シートは、追従性、Cu板に対する剥離強度、ダイアタッチ工程後の熱特性、樹脂封止工程後の試験体に対する剥離強度、テープ剥離後の接着剤残留物の有無、における全ての評価において、実用上問題ない結果であった。
 これに対して、比較例1の接着シートは剥離強度の評価で問題を有し、比較例2の接着シートは追従性の評価で問題を有していた。また、比較例3の接着シートは、ダイアタッチ工程後の熱特性の評価で問題を有していた。
As is clear from Table 2 above, the adhesive sheets of Examples 1 to 6 have good conformability, peel strength to the Cu plate, thermal properties after the die attach process, peel strength to the test specimen after the resin sealing process, tape In all evaluations regarding the presence or absence of adhesive residue after peeling, there was no problem in practical use.
On the other hand, the adhesive sheet of Comparative Example 1 had a problem in evaluation of peel strength, and the adhesive sheet of Comparative Example 2 had a problem in evaluation of conformability. Also, the adhesive sheet of Comparative Example 3 had a problem in evaluation of thermal properties after the die attach process.
 10 半導体装置製造用接着シート
 20 リードフレーム
 30 半導体素子
 31 ボンディングワイヤ
 40 封止樹脂
 50 QFNパッケージ
REFERENCE SIGNS LIST 10 semiconductor device manufacturing adhesive sheet 20 lead frame 30 semiconductor element 31 bonding wire 40 sealing resin 50 QFN package

Claims (5)

  1.  基材と、該基材の一方の面に設けられた熱硬化型の接着剤層とを備え、半導体装置のリードフレーム又は配線基板に剥離可能に貼着される半導体装置製造用接着シートにおいて、前記接着剤層は、カルボキシル基含有アクリロニトリル-ブタジエン共重合体(a)と、エポキシ樹脂(b)と、マレイミド基を2個以上含有する化合物(c)とを含有し、80℃における貯蔵弾性率が1MPa~1.7MPaであることを特徴とする半導体装置製造用接着シート。 An adhesive sheet for manufacturing a semiconductor device, comprising a base material and a thermosetting adhesive layer provided on one surface of the base material, the adhesive sheet being detachably adhered to a lead frame or wiring board of a semiconductor device, The adhesive layer contains a carboxyl group-containing acrylonitrile-butadiene copolymer (a), an epoxy resin (b), and a compound (c) containing two or more maleimide groups, and has a storage modulus at 80°C. is 1 MPa to 1.7 MPa.
  2.  前記(a)成分は、アクリロニトリル含有量が5~50質量%で、かつ、数平均分子量から算出されるカルボキシル基当量が100~20000のカルボキシル基含有アクリロニトリル-ブタジエン共重合体であることを特徴とする請求項1に記載の半導体装置製造用接着シート。 The component (a) is a carboxyl group-containing acrylonitrile-butadiene copolymer having an acrylonitrile content of 5 to 50% by mass and a carboxyl group equivalent calculated from the number average molecular weight of 100 to 20000. The adhesive sheet for manufacturing a semiconductor device according to claim 1.
  3.  前記(a)成分100質量部に対し、前記(b)成分と前記(c)成分との合計が20~300質量部であることを特徴とする請求項1に記載の半導体装置製造用接着シート。 2. The adhesive sheet for manufacturing a semiconductor device according to claim 1, wherein the total amount of the component (b) and the component (c) is 20 to 300 parts by mass with respect to 100 parts by mass of the component (a). .
  4.  前記(b)成分に基づくグリシジル基量/前記(a)成分に基づくカルボキシル基量が0.14~0.43であることを特徴とする請求項1に記載の半導体装置製造用接着シート。 The adhesive sheet for manufacturing a semiconductor device according to claim 1, wherein the amount of glycidyl groups based on component (b)/the amount of carboxyl groups based on component (a) is 0.14 to 0.43.
  5.  請求項1に記載の半導体装置製造用接着シートを用いた半導体装置の製造方法であって、
     リードフレーム又は配線基板に半導体装置製造用接着シートを貼着する貼着工程と、
     前記リードフレーム又は配線基板に半導体素子を搭載するダイアタッチ工程と、
     前記半導体素子と外部接続端子とを導通させるワイヤボンディング工程と、
     前記半導体素子を封止樹脂で封止する封止工程と、
     前記封止工程の後、半導体装置製造用接着シートをリードフレーム又は配線基板から剥離する剥離工程と、を備えることを特徴とする半導体装置の製造方法。
    A method for manufacturing a semiconductor device using the adhesive sheet for manufacturing a semiconductor device according to claim 1,
    A sticking step of sticking an adhesive sheet for manufacturing a semiconductor device to a lead frame or a wiring board;
    a die attach step of mounting a semiconductor element on the lead frame or wiring board;
    a wire bonding step of electrically connecting the semiconductor element and the external connection terminal;
    A sealing step of sealing the semiconductor element with a sealing resin;
    and a peeling step of peeling off the adhesive sheet for semiconductor device manufacturing from the lead frame or the wiring board after the sealing step.
PCT/JP2022/003561 2021-02-16 2022-01-31 Adhesive sheet for semiconductor device production and method for producing semiconductor device using same WO2022176585A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2023500690A JPWO2022176585A1 (en) 2021-02-16 2022-01-31
CN202280012698.1A CN116848635A (en) 2021-02-16 2022-01-31 Adhesive sheet for manufacturing semiconductor device and method for manufacturing semiconductor device using the same
KR1020237027319A KR20230146529A (en) 2021-02-16 2022-01-31 Adhesive sheet for manufacturing semiconductor devices and method of manufacturing semiconductor devices using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-022422 2021-02-16
JP2021022422 2021-02-16

Publications (1)

Publication Number Publication Date
WO2022176585A1 true WO2022176585A1 (en) 2022-08-25

Family

ID=82931992

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/003561 WO2022176585A1 (en) 2021-02-16 2022-01-31 Adhesive sheet for semiconductor device production and method for producing semiconductor device using same

Country Status (5)

Country Link
JP (1) JPWO2022176585A1 (en)
KR (1) KR20230146529A (en)
CN (1) CN116848635A (en)
TW (1) TW202239901A (en)
WO (1) WO2022176585A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006183020A (en) * 2004-04-20 2006-07-13 Hitachi Chem Co Ltd Adhesive sheet, semiconductor device, and method for producing the semiconductor device
JP2018123254A (en) * 2017-02-02 2018-08-09 株式会社巴川製紙所 Adhesive sheet for producing semiconductor device, and method for producing semiconductor device using the same
WO2019150445A1 (en) * 2018-01-30 2019-08-08 日立化成株式会社 Film-form adhesive, method for producing same, and semiconductor device and method for producing same
JP2019137785A (en) * 2018-02-12 2019-08-22 株式会社巴川製紙所 Adhesive sheet for manufacturing semiconductor device, and manufacturing method of semiconductor device using the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3779601B2 (en) 2001-11-28 2006-05-31 株式会社巴川製紙所 Mask sheet for semiconductor device assembly
JP4319892B2 (en) 2003-11-07 2009-08-26 株式会社巴川製紙所 Adhesive sheet for manufacturing semiconductor device and method for manufacturing semiconductor device
JP2008095014A (en) 2006-10-13 2008-04-24 Tomoegawa Paper Co Ltd Thermosetting resin composition for qfn(quad flat non-lead) and adhesive sheet

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006183020A (en) * 2004-04-20 2006-07-13 Hitachi Chem Co Ltd Adhesive sheet, semiconductor device, and method for producing the semiconductor device
JP2018123254A (en) * 2017-02-02 2018-08-09 株式会社巴川製紙所 Adhesive sheet for producing semiconductor device, and method for producing semiconductor device using the same
WO2019150445A1 (en) * 2018-01-30 2019-08-08 日立化成株式会社 Film-form adhesive, method for producing same, and semiconductor device and method for producing same
JP2019137785A (en) * 2018-02-12 2019-08-22 株式会社巴川製紙所 Adhesive sheet for manufacturing semiconductor device, and manufacturing method of semiconductor device using the same

Also Published As

Publication number Publication date
JPWO2022176585A1 (en) 2022-08-25
TW202239901A (en) 2022-10-16
KR20230146529A (en) 2023-10-19
CN116848635A (en) 2023-10-03

Similar Documents

Publication Publication Date Title
US8119737B2 (en) Adhesive composition, process for producing the same, adhesive film using the same, substrate for mounting semiconductor and semiconductor device
JP4258984B2 (en) Manufacturing method of semiconductor device
KR102424574B1 (en) Adhesive sheet for manufacturing semiconductor device and method for manufacturing semiconductor device using same
WO2018207408A1 (en) Temporary protective film for semiconductor sealing molding
KR100845092B1 (en) Adhesive composition for a semiconductor packing, adhesive film, dicing die bonding film and semiconductor device using the same
JP2008095014A (en) Thermosetting resin composition for qfn(quad flat non-lead) and adhesive sheet
JP2008038111A (en) Film-shaped adhesive and method for producing semiconductor package using the same
JP3528639B2 (en) Adhesive, adhesive member, wiring board for mounting semiconductor provided with adhesive member, and semiconductor device using the same
KR102481726B1 (en) Adhesive sheet for manufacturing semiconductor devices and method for manufacturing semiconductor devices using the same
JP4002736B2 (en) Mask sheet for assembling semiconductor device and assembling method of semiconductor device
WO2022176585A1 (en) Adhesive sheet for semiconductor device production and method for producing semiconductor device using same
JP5585542B2 (en) Adhesive film, use thereof, and method for manufacturing semiconductor device
KR100572191B1 (en) Mask sheet for assembling semiconductor device and method for assembling semiconductor device
JP7412555B2 (en) Adhesive sheet for manufacturing semiconductor devices and method for manufacturing semiconductor devices using the same
JP2009158817A (en) Thermosetting type resin composition for qfn, and adhesive sheet for qfn using it
JP2002256227A (en) Photosensitive adhesive film, its use and method for producing semiconductor device
JP2009135506A (en) Adhesive film, use of the same, and method of manufacturing semiconductor device
KR100530519B1 (en) Manufacturing method of adhesive tapes for the electronic parts
KR20210142074A (en) Method for manufacturing semiconductor device and adhesive sheet for manufacturing semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22755907

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023500690

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202280012698.1

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22755907

Country of ref document: EP

Kind code of ref document: A1