JP4815857B2 - 力学量検出センサの製造方法 - Google Patents

力学量検出センサの製造方法 Download PDF

Info

Publication number
JP4815857B2
JP4815857B2 JP2005128304A JP2005128304A JP4815857B2 JP 4815857 B2 JP4815857 B2 JP 4815857B2 JP 2005128304 A JP2005128304 A JP 2005128304A JP 2005128304 A JP2005128304 A JP 2005128304A JP 4815857 B2 JP4815857 B2 JP 4815857B2
Authority
JP
Japan
Prior art keywords
etching
layer
opening
manufacturing
detection sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005128304A
Other languages
English (en)
Other versions
JP2006308325A (ja
Inventor
克美 橋本
明雄 森井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2005128304A priority Critical patent/JP4815857B2/ja
Publication of JP2006308325A publication Critical patent/JP2006308325A/ja
Application granted granted Critical
Publication of JP4815857B2 publication Critical patent/JP4815857B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Gyroscopes (AREA)
  • Pressure Sensors (AREA)

Description

本発明は、力学量検出センサ及びその製造方法に関する。力学量検出センサには、例えば、加速度センサ、角速度センサが含まれる。
シリコン層/酸化シリコン層/シリコン層の3層構造をもったSOI基板をエッチングして、加速度を検出する力学量検出センサを製造する技術が開示されている(特許文献1参照)。
特許公開2003−329702号公報、第0031段落及び第0040段落、並びに図2及び図8
しかしながら、このような技術では、エッチングが不均一となる可能性がある。加速度センサは加速度による力を受ける重量部を有し、この重量部の形状が複雑になりがちである。このため、重量部を形成するためのエッチングにおいて、マイクロローディング効果(エッチングする幅の大小によりエッチングのスピードが異なる現象)の影響を受ける可能性がある。
上記に鑑み、本発明は、上記のマイクロローディング効果の影響を抑制し、エッチングの均一性の向上が図られた力学量検出センサ及びその製造方法を提供することを目的とする。
本発明に係る力学量検出センサは、開口を有する固定部と、この開口内に配置され、かつ前記固定部に対して変位する変位部と、前記固定部と前記変位部とを接続する接続部と、を有する第1の構造体と、前記変位部に接合され、かつ前記接続部に対応する凹部を有する重量部と、前記重量部を囲んで配置され、かつ前記固定部に接合される台座と、を有し、前記第1の構造体に積層して配置される第2の構造体と、前記変位部の変位を検出する変位検出部と、を具備することを特徴とする。
本発明の力学量検出センサでは、重量部の変位を可能とする凹部を有する。この凹部は、第1の構造体側(上方)からのエッチングで形成可能であり、接続部の下の領域について、第3の構造体の下方からのエッチングを要しない。このため、重量部の形成のために下方からエッチングする領域を重量部と台座との間のみに限定できる。下方からエッチングする領域を限定することで、マイクロローディング効果等に起因するエッチングの不均一性を低減することが可能となる。
本発明によれば、マイクロローディング効果の影響を抑制し、エッチングの均一性の向上が図られた力学量検出センサ及びその製造方法を提供できる。
以下図面を参照して、本発明の実施の形態を詳細に説明する。
(第1の実施形態)
本発明は、力学量検出センサ及びその製造方法に関するものであるが、ここでは、加速度センサの構成を述べる。
図1は本発明の第1の実施形態に係る加速度センサ100を表す斜視図である。また、図2は加速度センサ100を分解した状態を表す分解斜視図である。図3及び図4は、それぞれ、加速度センサ100を、図1のA−A及びB−Bに沿って切断した状態を表す一部断面図である。
加速度センサ100は、互いに積層して配置される第1の構造体110、接合部120、第2の構造体130及び基体140を有する。なお、図2では、見やすさのために、接合部120は省略している。
第1の構造体110、接合部120及び第2の構造体130は、その外周が例えば、
1mmの辺の略正方形状である。これらの高さは、加速度センサの用途に応じて決めることができる。これらの高さは、それぞれ、例えば、3μm〜12μm、0.5μm〜3μm、500μm〜725μmである。
第1の構造体110、接合部120、及び第2の構造体130はそれぞれ、シリコン、酸化シリコン、シリコンから構成可能であり、シリコン/酸化シリコン/シリコンの3層構造をなすSOI(Silicon On Insulator)基板を用いて製造可能である。本実施の形態では、第2の構造体の構成材料として、主面の面方位が(100)の単結晶シリコンを使用した。また、基体140は、シリコン、金属、ガラスで構成可能である。
第1の構造体110は、外径が略正方形であり、固定部111、変位部112、接続部113a〜113dから構成される。第1の構造体110は、半導体材料の層をエッチングして開口部114a〜114d、梁開口部115a〜115dを形成することで作成できる。
固定部111は、外周、内周(開口)が共に略正方形の枠形状の基板である。
変位部112は、外周が略正方形の基板であり、固定部111の開口の中央近傍に配置される。
接続部113a〜113dは長手方向の一部に梁開口部115a〜115dを備え、固定部111と変位部112とを4方向(X正方向、X負方向、Y正方向、Y負方向)で接続する。
接続部113a〜113dは、撓みが可能な梁として機能する。接続部113a〜113dが撓むことで、変位部112が固定部111に対して変位可能である。具体的には、変位部112が固定部111に対して、Z正方向、Z負方向に直線的に変位する。また、変位部112は、固定部111に対してX軸およびY軸を回転軸とする正負の回転が可能である。即ち、ここでいう「変位」には、移動および回転(Z軸方向での移動、X,Y軸での回転)の双方を含めることができる。
変位部112の変位(移動および回転)を検知することで、X,Y,Zの3軸方向の加速度を測定することができる。
接続部113a〜113d上に、12個のピエゾ抵抗素子R(Rx1〜Rx4,Ry1〜Ry4、Rz1〜Rz4)が配置されている。このピエゾ抵抗素子Rは、抵抗の変化として接続部113の撓み(あるいは、歪み)、ひいては変位部112の変位を検出するためのものである。なお、この詳細は後述する。
第2の構造体130は、外形が略正方形であり、台座131及び重量部132から構成される。
台座131は、外周、内周(開口133)が共に略正方形の枠形状の基板である。台座131は固定部111と対応した形状を有し、台座接合部121によって固定部111に接続される。
重量部132は、複数の凹部132a〜132dを有する周辺部132eと、中央部132fとに区分して考えることができる。中央部132fは、重量部132の中央に配置される。周辺部132eは、接続部113a〜113dに対応する複数の凹部132a〜132dを有し、中央部132fの周辺に接続される。重量部132は、質量を有し、加速度によって力を受ける重錘、あるいは作用体として機能する。即ち、加速度が印加されると、重量部132の重心に力が作用し、全体として変位(移動、回転)が可能となっている。
重量部132のうちの中央部132fは、変位部112と対応する略正方形の断面形状を有し、後述の重量部接合部122によって変位部112と接合される。この結果、重量部132に加わった加速度に応じて変位部112が変位し、その結果、加速度の測定が可能となる。
重量部132のうちの周辺部132eは、第1の構造体110の開口114a〜114dに対応して配置される。また、凹部132a〜132dは、接続部113a〜113dに対応して配置される。重量部132が変位したときに周辺部132eが接続部113に接触しないようにするためである(周辺部132eが接続部113に接触すると、加速度の検出が阻害される)。
重量部132に凹部132a〜132dを設けているのは、加速度センサ100の小型化と高感度化の両立を図るためである。加速度センサ100を小型化(小容量化)すると、重量部132の容量も小さくなり、その質量が小さくなることから、加速度に対する感度も低下する。接続部113a〜113dの撓みを阻害しないように、接続部113に対応する部分のみに凹部132a〜132dを設けて、重量部132の質量を確保している。この結果、加速度センサ100の小型化と高感度化の両立が図られる。
また、重量部132が接続部113a〜113dに対応する凹部132a〜132dを有することによって、マイクロローディング効果の影響を抑制することができ、エッチングの面内均一性を向上することができる。接続部113a〜113dの下の領域を下方向から垂直エッチングを行う必要はないので、重量部132と台座131との間のみを下方向から垂直エッチングするだけで足りる。エッチングの範囲が限定されるので、エッチングむらが発生しにくい。さらに、重量部132と台座131との間隔を均一にすることで、さらにエッチングの均一化が可能である。
第2の構造体130は、半導体材料の基板を上方から異方性ウエットエッチング(接続部113の下のアンダーエッチング)して凹部132a〜132dを形成し、半導体材料の基板の下方から異方性ドライエッチング(垂直エッチング)して開口部133を形成することで作成可能である。
接合部120は、既述のように、第1、第2の構造体110、130を接続するものである。接合部120は、固定部111と台座131を接続する台座接合部121と、変位部112と重量部132のうちの中央部132fを接続する重量部接合部122とに区分される。接合部120は、これ以外の部分では、第1、第2の構造体110、130を接続していない。接続部113a〜113dの撓み、および重量部132の変位を可能とするためである。
なお、接合部121、122は、例えばシリコン酸化膜をエッチングすることで構成可能である。
基体140は、略長方体の外形を有し、枠部141と底板部142とを有する。シリコン、金属等の基板に略直方形状(例えば、縦横800μm、深さ10μm)の凹部143を形成することで基体140を形成できる。凹部の形成には、種々の加工手段(例えば、エッチング、プレス加工、切削加工)を利用可能である。
基体140には、シリコン、ガラス、金属、例えば、Fe−Ni系合金、Fe−Ni−Co系合金等を用いることができる。
基体140に凹部143が形成されているのは、重量部132が変位するための空間を確保するためである。但し、基体140に凹部143を形成するのに替えて、あるいはこれと共に、台座131、重量部132の高さ(厚さ)を異ならせることも可能である。例えば半導体材料の基板の下からのエッチングを2段階にすることで、台座131の高さ(厚さ)に対して重量部132を薄くすることができる。その結果、重量部132が変位する空間を確保できる。
(加速度センサ100の動作)
加速度センサ100による加速度の検出の原理を説明する。既述のように、接続部113a〜113dには、合計12個のピエゾ抵抗素子Rx1〜Rx4,Ry1〜Ry4,Rz1〜Rz4が配置されている。
これら各ピエゾ抵抗素子は、シリコンからなる接続部113a〜113dの上面付近に形成されたP型もしくはN型の不純物ドープ領域によって構成できる。
3組のピエゾ抵抗素子Rx1〜Rx4、Ry1〜Ry4、Rz1〜Rz4が、X軸方向、Y軸方向、X軸方向に配置される。ピエゾ抵抗素子Rx1〜Rx4は、例えば、それぞれ、接続部113dの外周近傍、内周近傍、接続部113bの内周近傍、外周近傍に配置される。ピエゾ抵抗素子Ry1〜Ry4は、例えば、それぞれ、接続部113cの外周近傍、内周近傍、接続部113aの内周近傍、外周近傍に配置される。ピエゾ抵抗素子Rz1〜Rz4は、例えば、それぞれ、接続部113dの外周近傍、内周近傍、接続部113bの内周近傍、外周近傍に配置される。
3組のピエゾ抵抗素子Rx1〜Rx4、Ry1〜Ry4、Rz1〜Rz4はそれぞれ、重量部132のX、Y,Z軸方向成分の変位を検出するX、Y,Z軸方向成分変位検出部として機能する。なお、4つのピエゾ抵抗素子Rz1〜Rz4は、必ずしもX軸方向に配置する必要はなく、Y軸方向に配置してもよい。
図5は、図3に対応し、重量部132(質量m)にX軸正方向の加速度(+αx)による力(+Fx=+m・αx)が印加されたときの加速度センサ100の状態を表す断面図である。
重量部132がY軸に対して正方向に移動(回転)する結果、ピエゾ抵抗素子Rx1、Rx3はX軸方向に伸び((+)として表現)、ピエゾ抵抗素子Rx2、Rx4はX軸方向に縮んでいる((−)として表現)。
図6は、図3に対応し、重量部132(質量m)にX軸負方向の加速度(−αx)による力(−Fx=−m・αx)が印加されたときの加速度センサ100の状態を表す断面図である。
重量部132がY軸に対して負方向に回転する結果、ピエゾ抵抗素子Rx1、Rx3はX軸方向に縮み((−)として表現)、ピエゾ抵抗素子Rx2、Rx4はX軸方向に伸びている((+)として表現)。
図7は、図3に対応し、重量部132(質量m)にZ軸正方向の加速度(+αz)による力(+Fz=+m・αz)が印加されたときの加速度センサ100の状態を表す断面図である。
重量部132がZ軸に対して正方向に移動する結果、ピエゾ抵抗素子Rz1、Rz4はX軸方向に縮み((−)として表現)、ピエゾ抵抗素子Rz2、Rz3はX軸方向に伸びている((+)として表現)。
図8は、図3に対応し、重量部132(質量m)にZ軸負方向の加速度(−αz)による力(−Fz=−m・αz)が印加されたときの加速度センサ100の状態を表す断面図である。
重量部132がZ軸に対して負方向に移動する結果、ピエゾ抵抗素子Rz1、Rz4はX軸方向に伸び((+)として表現)、ピエゾ抵抗素子Rz2、Rz3はX軸方向に縮んでいる((−)として表現)。
以上から判るように、ピエゾ抵抗素子Rの伸び(+)、縮み(−)の組み合わせと、その伸び縮みの量それぞれから、加速度の方向および量を検出することができる。ピエゾ抵抗素子Rの伸び、縮みは、ピエゾ抵抗素子Rの抵抗の変化として検出できる。
各ピエゾ抵抗素子RがシリコンへのP型不純物ドープによって構成されているとする。この場合には、ピエゾ抵抗素子Rの長手方向での抵抗値は、伸び方向の応力が作用したときには増加し、縮み方向の応力が作用した場合には減少する。
なお、ピエゾ抵抗素子RをシリコンへのN型不純物ドープによって構成した場合には、抵抗値の増減が逆になる。
図9〜図11はそれぞれ、ピエゾ抵抗素子Rの抵抗からX,Y,Zの軸方向それぞれでの加速度を検出するための検出回路の構成例を示す回路図である。この検出回路では、X,Y,Zの軸方向の加速度成分それぞれを検出するために、4組のピエゾ抵抗素子からなるブリッジ回路を構成し、そのブリッジ電圧を検出している。
これらのブリッジ回路では入力電圧Vin(Vx_in、Vy_in、Vz_in)それぞれに対する出力電圧Vout(Vx_out、Vy_out、Vz_out)の関係は以下の式(1)〜(3)で表される。
Vx_out/Vx_in=
[Rx4/(Rx1+Rx4)−Rx3/(Rx2+Rx3)] ……式(1)
Vy_out/Vy_in=
[Ry4/(Ry1+Ry4)−Ry3/(Ry2+Ry3)] ……式(2)
Vz_out/Vz_in=
[Rz3/(Rz1+Rz3)−Rz4/(Rz2+Rz4)] ……式(3)
ピエゾ抵抗素子Rの伸び縮みの量と抵抗値Rの変化とが比例することから、入力電圧に対する出力電圧の比(Vxout/Vxin、Vyout/Vyin、Vzout/Vzin)は加速度と比例し、X,Y,Z軸それぞれでの加速度を分離して測定することが可能となる。
(加速度センサ100の作成)
加速度センサ100の作成工程につき説明する。
図12は、加速度センサ100の作成手順の一例を表すフロー図である。また、図13〜図19は、図4に対応し、図12の作成手順における加速度センサ100の状態を表す断面図である(図1に示す加速度センサ100をB−Bで切断した断面に相当する)。
(1)半導体基板の用意(ステップS11、図13)
まず、第1、第2、第3の層11、12、13の3層を積層してなる半導体基板を用意する。
第1、第2、第3の層11、12、13はそれぞれ、第1の構造体110、接合部120、第2の構造体130を構成するための層であり、ここでは、シリコン、酸化シリコン、及び主面の面方位(100)の単結晶シリコンからなる層とする。
シリコン/酸化シリコン/シリコンという3層の積層構造をもった半導体基板は、主面の面方位(100)の単結晶シリコン基板上に、シリコン酸化膜、シリコン膜を順に積層することで作成できる(いわゆるSOI基板)。
第2の層12を第1、第3の層11,13とは異なる材料から構成しているのは、第1、第3の層11,13とエッチング特性を異ならせ、エッチングのストッパ層として利用するためである。第1の層11に対する上面からのエッチング、および第3の層13に対する下面からのエッチングの双方で、第2の層12がエッチングのストッパ層として機能する。
(2)第1の構造体110の作成(第1の層11のエッチング、ステップS12、および図14)
第1の層11をエッチングすることにより、開口部114及び梁開口部115を形成し、第1の構造体110を形成する。即ち、第1の層11に対して浸食性を有し、第2の層12に対して浸食性を有しないエッチング方法を用いて、第1の層11の所定領域(開口部114a〜114d及び梁開口部115a〜115d)に対して、第2の層12の上面が露出するまで厚み方向にエッチングする。
第1の層11の上面に、第1の構造体110に対応するパターンをもったレジスト層を形成し、このレジスト層で覆われていない露出部分を垂直下方に浸食する。作成される接続部113a〜113dの長手方向が、第3の層(主面の面方位が(100)の単結晶シリコン)の<110>方向に配置されるようにする。なお、この理由は、後述する。
このエッチング工程では、第2の層12に対する浸食は行われないので、第1の層11の所定領域(開口部114a〜114d及び梁開口部115a〜115d)のみが除去される。図14は、第1の層11に対して、上述のようなエッチングを行い、第1の構造体110を形成した状態を示す。
(3)第2の層12の開口部の作成(第2の層12のエッチング、ステップS13、および図15)
図20は、第2の層12の開口部123及び梁開口部115に対応する開口領域(開口部124)を表す斜視図である。第2の層12をエッチングすることにより、開口部123及び梁開口部115に対応する開口部124を形成し、第3の層を上方からエッチングするためのマスクパターンを作成する。即ち、第2の層12に対しては浸食性を有し、第1の層11および第3の層13に対しては浸食性を有しないエッチング方法により、第2の層12の所定領域(開口部123及び梁開口部115に対応する開口部124)に対して、第3の層13の上面が露出するまで厚み方向にエッチングする。
第2の層12の上面に、図20のマスクパターン(開口パターン)に対応するレジスト層を形成し、このレジスト層で覆われていない露出部分を垂直下方に浸食する。このエッチング工程では、第3の層13に対する浸食は行われないので、第2の層12の所定領域(開口部123、124)のみが除去される。
図15は、第2の層12に対して、上述のようなエッチングを行った状態を示す。
(4)第3の層13の上方から異方性ウエットエッチング(ステップS14、および図16)
第3の層13を上方から異方性ウエットエッチングすることにより、接続部113に対応する部分に凹部132a〜132dを形成する。すなわち、第3の層を構成する結晶材料の結晶方位によってエッチング速度が異なる面方位依存性のエッチングにより、第3の層13の接続部113a〜113dの下付近の領域をアンダーエッチング(開口部123、124以外の領域のエッチング)する。異方性のエッチング溶剤としては、水酸化カリウム(KOH)水溶液や水酸化テトラメチルアンモニウム(TMAH)水溶液などが利用できる。
第1の構造体110の上面及び側面の全域にレジスト層を形成し、第3の層13を上方から異方性ウエットエッチングする際に、第1の構造体110が浸食されないようにする。そうすると、このエッチング工程では、第2の層12に対する浸食は行われないので、第3の層13の所定領域(凹部132a〜132d)のみが除去される。
図16は、第3の層13に対して、上述のようなエッチングを行い、凹部132a〜132dを形成した状態を示す。
この異方性ウエットエッチングでは、シリコン単結晶の特定の結晶面によってエッチング速度が著しく異なる。例えば、シリコン単結晶の(100)面や(110)面に対して(111)面のエッチングされる速度は非常に遅く、速度比で約100:1程度になる。このような性質から、異方性エッチングは(111)面で実質的に止まる。本実施の形態でも、凹部132a〜132dでは(111)面が露出する。すなわち、この工程では、(111)面をエッチングストッパとする異方性ウエットエッチングを行い、凹部132a〜132dのエッチング形状を第2の層12のマスクパターン(開口部123、124)によって制御している。
図21〜24は、第3の層に凹部132a〜132dが形成されるまでの異方性ウエットエッチングの進行状況を表す上面図である。図21は、第2の層12の開口部123、124を表す上面図である。接続部113の長手方向が、第3の層(主面の面方位が(100)の単結晶シリコン)の<110>方向にそれぞれ配置されている。また、第2の層の開口部123、124も、その長手方向及び長手方向に垂直な方向が第3の層の<110>方向に沿うように開口されている。
図21のマスクパターン(開口パターン)を用いて第3の層を異方性ウエットエッチングする。図22に表すように、まず、第3の層の厚み方向にエッチングが進行し、開口部123、124の端部を基準にした(111)面a、b、c、d、e、hが露出する。面f、iは(100)面である。(100)面と(111)面とは、約55.7°の角度を有する。次に、開口部123から開口部124に向かって接続部113の下のアンダーエッチングが進行していく(面g)。
さらにエッチングが進行すると、図23に示すようになる。面j、k、l、mが(111)面であり、面oは(100)面である。開口部123から開口部124に向かって接続部113の下へのアンダーエッチングが進行し、開口部124に到達しても、すべての面について(111)面が表れることはなく、エッチングは収束しない。そのため、開口部124から、接続部113の長手方向(図では、左方向)に向かって、さらにアンダーエッチングが進行していく(面n)。
さらにエッチングが進行すると、図24に示すように、(111)面の面p、qで囲まれた凹部132が形成され、エッチングは実質的に収束する。接続部113の下は、完全にエッチングされ、重量部132が変位しても接続部113に接触せず、加速度の検出が阻害されない。
この方法によれば、(111)面をエッチングストッパとする異方性ウエットエッチングにより、凹部132が形成されるため、エッチング時間のコントロールが不要であり、マスクパターンによって、精度良く凹部132を形成できる。
以上から、接続部113の下の第3の層をエッチングして凹部132a〜132dを形成するためには、図21に示すように、直線s、tのいずれもが、開口部124の一部を横切っていれば良い。直線s、tは、接続部113のうち、梁開口部115のない単純な平板部分の長手方向に沿った縁を、それぞれ延長した直線である。このようにすれば、開口部123から接続部113の下へアンダーエッチングが進行して、開口部124に到達することが可能であり、すべての面について(111)面が表れることはないので、エッチングはさらに進行し途中で収束しないからである。そのため、接続部の形状は、図20に限定されず、例えば、図25〜図28に示すような形状であっても良い。いずれの接続部の形状であっても、前記したように、開口部123からアンダーエッチングが進行し開口部124に到達するので、途中においてすべての面について(111)面が表れることはなく、エッチングは途中で収束しないからである。
また、マスク開口(開口部123、124)は、第3の層の<110>方向に合わせることが好ましい。このようにすれば、エッチングの結果、この<110>方向に沿って(111)面が形成されるからである。
しかし、開口部123、124は必ずしも<110>方向に沿っている必要はない。また、この大きさ、形状(長方形)にも限定されない。異方性ウエットエッチングによって、接続部113の下に適当な凹部132が形成されて、重量部132の変位が可能なものであれば良い。例えば、図29に表すように、図21の開口部123、124の各辺に接するような形状の開口部123e、124eを設けても、十分な時間をかければ、図21の開口パターンによって形成された凹部132と同一形状の凹部が形成できる。
すなわち、L1〜L4で囲まれた領域が最終的にエッチングされる領域である。L1〜L4は開口部123e、124eの最も張り出した点の<110>方向の接線である。開口部123e、124eの<110>方向の接線についての接点をP1〜P18とする。L1〜L4で囲まれた領域が最終的にエッチングされるためには、第1に、接線L1〜L4のそれぞれに、開口部123又は124の少なくとも1点が接していればよい。L1には、P1及びP8が接しているが、P1又はP8のいずれか一方がL1に接していれば良い。L2には、P2及びP3が接しているが、P2又はP3のいずれか一方がL2に接していれば良い。L3には、P13及びP14が接しているが、P13又はP14のいずれか一方がL3に接していれば良い。L4には、P4、P12及びP17が接しているが、これらのいずれか一つがL4に接していれば良い。
第2に、直線L5、L6のいずれもが開口部124の一部を横切っていることが必要である。直線L5、L6は、接続部113のうち、梁開口部115のない単純な平板部分の長手方向に沿った縁を、それぞれ延長した直線である。前記したように、開口部123からアンダーエッチングが進行し開口部124に到達することにより、途中ですべての面について(111)面が表れることはないので、エッチングが途中で収束せずにさらに進行するようにするためである。
第3に、開口部123、124の3つの開口は、エッチングが進行することによって、互いにつながることが必要である。
上記3つの要件を満たせば、図21の開口パターンと同一形状の凹部が形成される。十分に長時間エッチングすれば、マスク開口がどんな形をしていたとしてもマスクの下にアンダーエッチングが進行し、エッチング形状は、すべて(111)面で構成されるからである。
(5)第2の構造体130の作成(第3の層13の下方からの異方性ドライエッチング、ステップS15、および図17)
第3の層13を下方から異方性ドライエッチング(垂直エッチング)することにより、開口部133を形成し、第2の構造体130を形成する。即ち、第3の層13に対して浸食性を有し、第2の層12に対して浸食性を有しないエッチング方法により、第3の層13の所定領域(開口部133)に対して、第2の層12の下面が露出するまで厚み方向へのエッチングを行う。
第3の層13の下面に、第2の構造体130に対応するパターンをもったレジスト層を形成し、このレジスト層で覆われていない露出部分を垂直上方へと浸食させる。このエッチング工程では、第2の層12に対する浸食は行われないので、第3の層13の所定領域(開口部133)のみが除去される。
図17は、第3の層13に対して、上述のようなエッチングを行い、第2の構造体130を形成した状態を示す。
重量部132が接続部113a〜113dに対応する凹部132a〜132dを有することによって、接続部113a〜113dの下の領域について、第3の構造体の下方からのエッチングを要しない。このため、重量部132の形成のために下方からエッチングする領域を重量部132と台座131との間のみに限定できる。下方からエッチングする領域を限定することで、マイクロローディング効果等に起因するエッチングの不均一性を低減することが可能となる。
なお、マイクロローディング効果とは、被エッチング面であるマスク開口部のパターン幅の相違によりエッチング箇所によってエッチング速度が異なってくる現象をいう。マスク開口部のパターン幅が細くなると、エッチング速度が低くなる効果をいう。
なお、(ステップS12)→(ステップS13→ステップS14)→(ステップS15)の上記の工程の順序は入れ替えることができる。(ステップS12)→(ステップS15)→(ステップS13→ステップS14)の順序でも良く、(ステップS15)→(ステップS12)→(ステップS13→ステップS14)の順序でも良い。
(6)第1、第2の構造体110,130間の接合部120の作成(第2の層12のエッチング、ステップS16、および図18)
第2の層12をエッチングすることにより、接合部120を形成する。即ち、第2の層12に対しては浸食性を有し、第1の層11および第3の層13に対しては浸食性を有しないエッチング方法により、第2の層12に対して、その露出部分から厚み方向にエッチングする。
このエッチング工程では、別途、レジスト層を形成する必要はない。即ち、図18に示すように、第1の層11の残存部分である第1の構造体110と、第3の層13の残存部分である第2の構造体130とが、それぞれ第2の層12に対するレジスト層として機能する。エッチングは、第2の層12の露出部分、すなわち、開口部114a〜114d、及び開口部133の形成領域に対してなされる。
以上の製造プロセスにおいて、第1の構造体110を形成する工程(ステップS12)と、第2の構造体130を形成する工程(ステップS15)では、次の2つの条件を満たすエッチング法を行う必要がある。
第1の条件は、各層の厚み方向への方向性を持つことである、第2の条件は、シリコン層に対しては浸食性を有するが、酸化シリコン層に対しては浸食性を有しないことである。第1の条件は、所定寸法をもった開口部を形成するために必要な条件であり、第2の条件は、酸化シリコンからなる第2の層12を、エッチングストッパ層として利用するために必要な条件である。
第1の条件を満たすエッチング方法として、DRIE(Deep Reactive Ion Etching)と呼ばれているエッチング方法を挙げることができる。このエッチング法は、垂直方向に深い溝を掘る際に効果的な方法である。このエッチング方法のうち誘導結合型プラズマエッチング法(ICPエッチング法:Induced Coupling Plasma Etching Method)が好ましい。
この方法では、材料層を厚み方向に浸食しながら掘り進むエッチング段階と、掘った穴の側面にポリマーの壁を形成するデポジション段階と、を交互に繰り返す。掘り進んだ穴の側面は、順次ポリマーの壁が形成されて保護されるため、ほぼ厚み方向にのみ浸食を進ませることが可能になる。
一方、第2の条件を満たすエッチングを行うには、酸化シリコンとシリコンとでエッチング選択性を有するエッチング材料を用いればよい。例えば、エッチング段階では、SFガス、およびOガスの混合ガスを、デポジション段階では、Cガスを用いることが考えられる。
エッチングの条件としては、例えばエッチング段階では、SFガスを100sccm、Oガスを10sccmの割合でチャンバ内に供給する。デポジション段階では、Cガスを100sccmの割合でチャンバ内に供給する。このようなエッチング段階とデポジション段階をそれぞれ10秒程度で周期的に繰り返すことが可能である。
第2の層12のエッチング(ステップS13、ステップS16)では、酸化シリコン層に対しては浸食性を有するが、シリコン層に対しては浸食性を有しないことが必要である。
既に所定形状への加工が完了しているシリコンからなる第1の構造体110や第2の構造体130に浸食が及ばないようにするために必要だからである。
この条件を満たすエッチング方法として、バッファド弗酸(HF:NHF=1:10の混合液)をエッチング液として用いるウェットエッチングを挙げることができる。
エッチング条件としては、例えば、バッファド弗酸(HF:NHF=1:10の混合液)に30分間浸漬して行うことが可能である。あるいは、CFガスとOガスとの混合ガスを用いたRIE法によるドライエッチングも適用可能である。
(5)基体140の作成及びその接合(ステップS17、および図19)
例えば、シリコン基板、金属基板、ガラス基板に略直方体状の凹部143を形成することで基体140を作成できる。基板140は、略長方体の外形を有し、枠部141と底板部142とを有する。凹部143の作成には、種々の加工手段(例えば、エッチング、プレス加工、切削加工)を利用可能である。これらの基体140を通常の方法により接合することができる。
(シリコン単結晶の異方性を利用した加速度センサの高感度化)
ここまでの記載は、(111)面をエッチングストッパとする面方位依存性のエッチングにより、第3の層13の接続部113の下付近の領域をアンダーエッチングすることについて考察していた。そのため、第3の層の面方位や方向を問題としていた。ここでは、第1の層の面方位や方向、すなわち、第1の層のシリコン単結晶の異方性が、電気的特性に与える影響について説明し、検出感度を向上させるための考察をする。
図30に示すように、電流が流れる方向にピエゾ抵抗素子Rの長手方向を配置する。ピエゾ抵抗素子Rの長手方向の応力σと長手方向と直交する方向の応力σとが作用すると、ピエゾ抵抗素子の抵抗変化率ΔR/Rは近似的に次式のように表される。
ΔR/R=πσ+πσ ……式(4)
ここで、Rは加速度による力が印加される前のピエゾ抵抗素子の抵抗、ΔRは加速度による力が印加された後のピエゾ抵抗素子の抵抗(R+ΔR)と加速度による力が印加される前のピエゾ抵抗素子の抵抗Rとの差である。π、πは応力σ、σにそれぞれ対するピエゾ抵抗係数である。
ピエゾ抵抗素子にp型シリコンを用いた場合を例に、ピエゾ抵抗係数π、πの結晶方向における特性について説明する。p型シリコンからなるピエゾ抵抗素子を用いたほうが、n型と比較してせん断応力に関係するピエゾ抵抗係数が大きいため、加速度センサを高感度化できる。
図31にp型シリコンの(100)面におけるピエゾ抵抗係数π、πを示す。図32にp型シリコンの(110)面におけるピエゾ抵抗係数π、πを示す。図33にp型シリコンの(111)面におけるピエゾ抵抗係数π、πを示す。原点からの長さがピエゾ抵抗係数の大きさを表し、原点からの方向がそれぞれの基板面におけるピエゾ抵抗素子の長手方向の配置方向を示す。図31と図32と図33は同一のスケールで示されている。
図31、図32及び図33が示すように、いずれの結晶面の単結晶シリコン基板でもπはπよりも値が大きい。そのため、σの値を大きくすれば、式(4)のΔR/Rの値を大きくすることができ、その結果、ホイーンストンブリッジからの出力電圧も大きくなり、検出感度を向上させることができる。
σの値を大きくするには、ピエゾ抵抗素子Rの長手方向とピエゾ抵抗素子Rの伸び縮み方向を一致させればよい。そのため、本発明の実施の形態では、図1に示すように、ピエゾ抵抗素子Rの長手方向(電流方向)とピエゾ抵抗素子Rの伸び縮み方向を一致させるべく、ピエゾ抵抗素子Rを接続部113a〜113dの上面に配置し、検出感度を向上させている。
図31に示すように、(100)面では、<110>方向で大きなピエゾ抵抗係数πを有する。そのため、第1の構造体110を、主面の面方位が(100)の単結晶シリコンによって構成し、接続部113a〜113dの長手方向を、それぞれ<110>方向に配置する。ピエゾ抵抗素子Rの長手方向も、接続部113a〜113dの長手方向に沿うように、<110>方向に配置すれば、高感度の加速度センサを得ることができる。
図32に示すように、(110)面では、<110>方向に対して45度、135度の角度において比較的大きなピエゾ抵抗係数πをとっている。そのため、第1の構造体110を、主面の面方位が(110)の単結晶シリコンによって構成し、接続部113a〜113dの長手方向を、それぞれ<110>方向に対して45度と135度の角度に配置する。ピエゾ抵抗素子Rの長手方向も、接続部113a〜113dの長手方向に沿うように、<110>方向に対して45度または135度の角度に配置にすれば、高感度の加速度センサを得ることができる。
図33に示すように、(111)面では、すべての方向において比較的大きなピエゾ抵抗係数πをとっている。そのため、第1の構造体110を、主面の面方位が(111)の単結晶シリコンによって構成すれば、接続部113a〜113dの長手方向をどの方向に配置しても、高感度の加速度センサを得ることができる。
(第2の実施形態)
図34は、本発明の第2の実施形態に係る加速度センサ200を表す上面図である。固定部211は、外周、内周(開口)が共に略正方形の枠形状の基板である。変位部212は、外周が略正方形の基板であり、固定部211の開口の中央近傍に配置される。接続部213a〜213dは、長手方向の一部に梁開口部215a〜215dを備え、固定部211と変位部212とを第3層の<110>方向で接続する。重量部232は、複数の凹部232a〜232dを有する周辺部232eと、中央部 (図示せず)とに区分して考えることができる。中央部は、重量部232の中央に配置される。周辺部232eは、接続部213a〜213dに対応する複数の凹部232a〜232dを有し、中央部の周辺に接続される。
図35に、第2の実施形態における第1の構造体210と、第3の層を上方から異方性ウエットエッチングするための第2の層の開口部223、224(マスクパターン)の上面図を示す。接続部213の長手方向が、第3の層(主面の面方位が(100)の単結晶シリコン)の<110>方向にそれぞれ配置されている。また、第2の層の開口部223、224も、開口部223、224の長手方向及び長手方向に垂直な方向が第3の層の<110>方向に沿うように開口されている。
以上のように、本実施形態は、以下の点において第1の実施形態と相違する。第一に、接続部213a〜213dが、固定部211の対角線方向に配置されている。第二に、接続部213a〜213dが、固定部211の対角線方向に配置されていることにより、第2の層の開口部223、224もこの対角線方向に沿って設けられている。第三に、重量部232は接続部213a〜213dに対応する凹部232a〜232dを有するため、凹部232a〜232dが、重量部232の対角線の位置に配置している。
なお、第2の実施形態では、梁開口部215a〜215dに対応する第2の層のすべての領域に開口部224が設けられていない。これは、異方性ウエットエッチングによる台座231(図示せず)の侵食を防止するためである。開口部224が設けられていないために全くエッチングされていない梁開口部215a〜215dの下の部分の第3の層は、下方からの垂直エッチングで除去される。
本実施形態は、その他の点では、第1の実施形態と本質的に相違するところが無いので説明を省略する。
(第3の実施形態)
図36は、本発明の第3の実施形態に係る加速度センサ300を表す上面図である。固定部311は、外周、内周(開口)が共に略正方形の枠形状の基板である。変位部312は、外周が略正方形の基板であり、固定部311の開口の中央近傍に配置される。接続部313a〜313dは、略長方形の基板であり、梁開口部を備えておらず、また、固定部311と変位部312とを第3層の<110>方向に対して45度の角度でそれぞれ接続する。重量部332は、複数の凹部332a〜332dを有する周辺部332eと、中央部 (図示せず)とに区分して考えることができる。中央部は、重量部332の中央に配置される。周辺部332eは、接続部313a〜313dに対応する複数の凹部332a〜332dを有し、中央部の周辺に接続される。
図37に、第3の実施形態における第1の構造体310と、第3の層を上方から異方性ウエットエッチングするための第2の層の開口部323(マスクパターン)の上面図を示す。接続部313の長手方向が、第3の層(主面の面方位が(100)の単結晶シリコン)の<110>方向に対して45度の角度にそれぞれ配置されている。また、第2の層の開口部323は、底辺が接続部313に沿う直角二等辺三角形である。
以上のように、本実施形態は、以下の点において第1の実施形態と相違する。第一に、接続部313a〜313dは、略長方形の基板であり、梁開口部を備えていない。第二に、接続部313a〜313dの長手方向が、第3の層(主面の面方位が(100)の単結晶シリコン)の<110>方向に対して45度の角度にそれぞれ配置されている。第三に、第3の層を上方から異方性ウエットエッチングするための第2の層の開口部323が、底辺が接続部313に沿う直角二等辺三角形である。第四に、重量部332の接続部313a〜313dに対応する凹部332a〜332dが、逆ピラミッド型の形状である。
ここで、凹部332a〜332dの形状が、逆ピラミッド型であることを説明するため、本実施形態における第3の層の上方からの異方性ウエットエッチングの進行状況について説明する。
図38は、第2の層の開口部323を表す上面図である。本実施形態では、接続部313a〜313dの長手方向が、第3の層(主面の面方位が(100)の単結晶シリコン)の<110>方向に対して45度の角度にそれぞれ配置されている。また、第2の層の開口部323は、接続部313の両側に配置され、底辺が接続部313に沿う直角二等辺三角形である。
図39は、異方性ウエットエッチングによって接続部313の下に形成された第3の層の凹部332a〜332dの形状を表す上面図である。異方性ウエットエッチングによって、第3の層の厚み方向にエッチングが進行するとともに、接続部313の下のアンダーエッチングが進行する。そして、開口部323の端部を基準にした(111)面である面rで囲まれた逆ピラミッド型の凹部332a〜332dが形成され、エッチングは実質的に収束する。(100)面と(111)面とは、約55.7°の角度を有する。接続部313の下は、完全にエッチングされ、重量部332が変位しても接続部313に接触せず、加速度の検出が阻害されない。
この方法によれば、(111)面をエッチングストッパとする異方性ウエットエッチングにより、凹部332a〜332dが形成されるため、エッチング時間のコントロールが不要であり、マスクパターンによって、精度良く凹部332を形成できる。
本実施の形態では、マスク開口(開口部323)は、接続部313の両側に配置され、底辺が接続部313に沿う直角二等辺三角形とするのが好ましい。このようにすれば、この直角二等辺三角形の2つの等辺は、<110>方向に沿って配置される。そのため、エッチングをすると、この<110>方向に沿って、(111)面が形成されるからである。
しかし、開口部323の形状は必ずしも底辺が接続部313に沿う、この大きさ、形状(直角二等辺三角形)に限定されない。異方性ウエットエッチングによって、接続部313の下に適当な凹部332a〜332dが形成されて、重量部332が変位しても接続部313に接触せず、加速度の検出が阻害されない大きさ、形状であれば良い。
例えば、図40に示すように、図38の直角二等辺三角形の底辺の2つの頂点C、D、(接続部の端部の両脇の点)を通り、つながっている開口部323を2つ設ければ良い(ただし、C、Dを通る開口部323がつながっていなくてもエッチングによってつながるのであれば良い)。十分な時間をかければ、図38の開口パターンによって形成された凹部332a〜332dと同一形状のものが形成できる。十分に長時間エッチングすれば、マスク開口がどんな形をしていたとしてもマスクの下にアンダーエッチングが進行し、エッチング形状は、すべて(111)面で構成されるからである。
本実施形態は、その他の点では、第1の実施形態と本質的に相違するところが無いので説明を省略する。
(第4の実施形態)
図41は、本発明の第4の実施形態に係る加速度センサ400を表す上面図である。固定部411は、外周、内周(開口)が共に略正方形の枠形状の基板である。変位部412は、外周が略正方形の基板であり、固定部411の開口の中央近傍に配置される。接続部413a〜413dは、固定部411と変位部412とを第3層の<110>方向に対して45度の角度で接続する。重量部432は、複数の凹部432a〜432dを有する周辺部432eと、中央部 (図示せず)とに区分して考えることができる。中央部は、重量部432の中央に配置される。周辺部432eは、接続部413a〜413dに対応する複数の凹部432a〜432dを有し、中央部432fの周辺に接続される。
図42に、第4の実施形態における第1の構造体410と、第3の層を上方から異方性ウエットエッチングするための第2の層の開口部423(マスクパターン)の上面図を示す。接続部413の長手方向が、第3の層(主面の面方位が(100)の単結晶シリコン)の<110>方向に対して45度の角度にそれぞれ配置されている。また、第2の層の開口部423は、接続部413の両側に配置され、底辺が接続部413に沿う直角二等辺三角形である。
以上のように、本実施形態は、以下の点において第3の実施形態と相違する。第一に、第1の構造体410の接続部413a〜413dが、固定部411の対角線方向に配置されている。第二に、接続部413a〜413dが、固定部411の対角線方向に配置されていることにより、第2の層12の開口部423もその対角線に沿って設けられている。第三に、重量部432が接続部413a〜413dに対応する凹部432a〜432dを有するため、凹部432a〜432dが、重量部432の対角線の位置に配置している。
本実施形態は、その他の点では、第3の実施形態と本質的に相違するところが無いので説明を省略する。
(第5の実施形態)
本発明にかかる力学量検出センサ及びその製造方法は加速度センサに限定されるものではなく、角速度センサにも利用可能である。たとえば、図1に示すセンサ本体は、加速度センサとして利用することも可能であるが、角速度センサとして利用することも可能である。角速度センサとして利用する場合には、ピエゾ抵抗素子を使用せずに、一部の容量素子に交流電力を供給することにより重量部532を所定方向に振動させた状態において、一部の容量素子の静電容量値を測定し、作用したコリオリ力を求め、重量部532に作用した角速度を検出するようにすればよい。
図43に、図1に示すセンサ本体を利用した角速度センサ500を、接続部の長手方向に対して45度の角度(固定部の対角線を通る面)で切断した断面図を示す。ただし、本実施形態は、以下の点において図1と相違する。第一に、本実施形態では、重量部532の上部に位置する変位部の上面に駆動用電極515(515a〜515e)及び検出用電極(図示せず)が配置され、重量部532の下面に駆動用電極535が配置されている。第二に、この電極に対向する電極を有する基体541、551が付加されている。第三に、重量部532の中央部上だけでなく、凹部を除く周辺部上にも、変位部が設けられている。すなわち、重量部532の中央部上だけでなく、凹部を除く周辺部上にも、第1の層(Si層)及び第2の層(SiO層)が設けられており、対向電極間の距離が同一になっている。
駆動用電極515、546、駆動用電極535、556によって変位部(重量部532の上部に位置する第1の層)をZ方向に振動させる。駆動用電極515、546と並んで配置される検出用電極 (図示せず)によって、Y方向、X方向(2軸)の角速度ωy、ωxに基づくコリオリ力により変位部に生じるX方向、Y方向への傾きを検出する(駆動用電極515、546、駆動用電極535、556は振動付与部として、検出用電極は変位検出部として機能する)。この結果、角速度センサ500による角速度ωy、ωxの測定が可能となる。
(その他の実施形態)
本発明の実施形態は上記の実施形態に限られず拡張、変更可能であり、拡張、変更した実施形態も本発明の技術的範囲に含まれる。
例えば、図44に示す第2の層の開口部623を設けて、等方性ウエットエッチングや等方性ドライエッチングを行い、エッチング時間をコントロールして、接続部613の下のアンダーエッチングを行うことにより、重量部に凹部を形成しても良い。
また、第2の構造体(第3の層)の構成材料は、面方位(100)の単結晶シリコンに限定されず、面方位(110)、面方位(111)等の他の面方位の単結晶シリコンや、多結晶シリコン等の他の材料を用いて、重量部に凹部を形成しても良い。
また、本実施の形態では、ピエゾ抵抗素子にp型シリコンを用いた場合について説明したが、本発明はこれに何ら限定されるものではなく、n型のピエゾ抵抗素子を用いても良いことはもちろんである。
本発明の第1の実施形態に係る加速度センサを表す斜視図である。 図1の加速度センサを分解した状態を表す分解斜視図である。 図1の加速度センサを切断線A−Aの位置で切断した状態を表す一部断面図である。 図1の加速度センサを切断線B−Bの位置で切断した状態を表す一部断面図である。 重量部にX軸正方向の加速度による力が印加されたときの加速度センサの状態を表す断面図である。 重量部にX軸負方向の加速度による力が印加されたときの加速度センサの状態を表す断面図である。 重量部にZ軸正方向の加速度による力が印加されたときの加速度センサの状態を表す断面図である。 重量部にZ軸負方向の加速度による力が印加されたときの加速度センサの状態を表す断面図である。 ピエゾ抵抗素子の抵抗からX軸方向での加速度を検出するための検出回路の構成例を示す回路図である。 ピエゾ抵抗素子の抵抗からY軸方向での加速度を検出するための検出回路の構成例を示す回路図である。 ピエゾ抵抗素子の抵抗からZ軸方向での加速度を検出するための検出回路の構成例を示す回路図である。 加速度センサの作成手順の一例を表すフロー図である。 図12の加速度センサの作成手順を表す断面図である。 図12の加速度センサの作成手順を表す断面図である。 図12の加速度センサの作成手順を表す断面図である。 図12の加速度センサの作成手順を表す断面図である。 図12の加速度センサの作成手順を表す断面図である。 図12の加速度センサの作成手順を表す断面図である。 図12の加速度センサの作成手順を表す断面図である。 本発明の第1の実施形態に係る第2の層の開口部を表す斜視図である。 本発明の第1の実施形態に係る第2の層の開口部を表す上面図である。 本発明の第1の実施形態に係る第3の層の異方性ウエットエッチングの進行状況を表す上面図である。 本発明の第1の実施形態に係る第3の層の異方性ウエットエッチングの進行状況を表す上面図である。 本発明の第1の実施形態に係る第3の層の異方性ウエットエッチングの進行状況を表す上面図である。 本発明の第1の実施形態に係る接続部の形状を表す斜視図である。 本発明の第1の実施形態に係る接続部の形状を表す斜視図である。 本発明の第1の実施形態に係る接続部の形状を表す斜視図である。 本発明の第1の実施形態に係る接続部の形状を表す斜視図である。 本発明の第1の実施形態に係る第2の層の開口部の一例を表す上面図である。 ピエゾ抵抗素子に作用するピエゾ抵抗素子の長手方向の応力σと長手方向と直交する方向の応力σを表す図である。 単結晶シリコン基板の主面である(100)面についてのピエゾ抵抗係数π、πを表す図である。 単結晶シリコン基板の主面である(110)面についてのピエゾ抵抗係数π、πを表す図である。 単結晶シリコン基板の主面である(111)面についてのピエゾ抵抗係数π、πを表す図である。 本発明の第2の実施形態に係る加速度センサを表す上面図である。 本発明の第2の実施形態に係る第1の構造体と第2の層の開口部を表す上面図である。 本発明の第3の実施形態に係る加速度センサを表す上面図である。 本発明の第3の実施形態に係る第1の構造体と第2の層の開口部を表す上面図である。 本発明の第3の実施形態に係る第2の層の開口部を表す上面図である。 本発明の第3の実施形態に係る第3の層の上方からの異方性ウエットエッチング後の形状を表す上面図である。 本発明の第3の実施形態に係る第2の層の開口部の一例を表す上面図である。 本発明の第4の実施形態に係る加速度センサを表す上面図である。 本発明の第4の実施形態に係る第1の構造体と第2の層の開口部を表す上面図である。 本発明の第5の実施形態に係る角速度センサを表す断面図である。 第3の層を上方から等方性ドライエッチング又は等方性ウエットエッチングする場合の接続部と第2の層の開口部を表す上面図である。
符号の説明
100、200、300、400 加速度センサ
500 角速度センサ
110、210、310、410、510 第1の構造体
111、211、311、411、611 固定部
112、212、312、412、612 変位部
113(113a〜113d)、213(213a〜213d)、313(313a〜313d)、413(413a〜413d)、613 接続部
114a〜114d、214a〜214d、314a〜314d、414a〜414d 開口部
115(115a〜115d)、215(215a〜215d) 梁開口部
120、520 接合部
121 台座接合部
122 重量部接合部
123、123a〜123e、223、323、423、623 開口部
124、224 開口部
130、530 第2の構造体
131 台座
132、232、332、432、532 重量部
132a〜132d、232a〜232d、332a〜332d、432a〜432d 凹部
132e、232e、332e、432e 周辺部
132f 中央部
133 開口部
140、541、551 基体
141 枠部
142 底板部
143、555 凹部
R,Rx1−4,Ry1−4,Rz1−4 ピエゾ抵抗素子
515(515a、515c、515e)、546(546a、546c、546e)、535、556 駆動用電極

Claims (14)

  1. 第1,第2,第3の層が順に積層されてなる積層基板の第1の層をエッチングして,第1の開口を有する固定部と,この第1の開口内に配置され,かつ前記固定部に対して変位する変位部と,前記固定部と前記変位部とを接続する接続部と,を有する第1の構造体を作成するステップと,
    前記第2の層をエッチングして,前記接続部の幅方向での両脇の少なくとも一部に対応する領域に第2の開口を作成するステップと,
    前記第3の層を前記第2の開口から異方性エッチングして,前記接続部に対応する領域に凹部を形成し,前記接続部の撓みを可能とするステップと,
    前記第3の層をエッチングして,均一な幅の溝を形成することによって,前記変位部に接合され,かつ前記凹部を有する重量部と,前記重量部を囲んで配置され,かつ前記固定部に接合される台座と,を有し,前記第1の構造体に積層して配置される第2の構造体を作成するステップと,
    前記第2の層をエッチングして,第3の開口を有し,かつ前記固定部と前記台座とを接合する台座接合部と,この第3の開口内に配置され,かつ前記変位部と前記重量部とを接合する重量部接合部と,を有する接合部を作成するステップと,
    を具備することを特徴とする力学量検出センサの製造方法。
  2. 前記重量部は,前記変位部に接合された中央部と,前記中央部の周辺に接続され,かつ前記凹部を有する周辺部と,から構成されることを特徴とする請求項1記載の力学量検出センサの製造方法。
  3. 前記第2の構造体を作成するステップは,前記重量部と前記台座との間のみを前記積層基板に垂直な方向にエッチングすることを特徴とする請求項1または2に記載の力学量検出センサの製造方法。
  4. 前記接続部が,所定の幅を有する第1の部材と,前記第1の部材の一端にそれぞれ接続される一端を備え,かつ少なくとも一部分が前記所定の幅より大きい間隔で離間して配置される第2,第3の部材と,を有することを特徴とする請求項1〜3のいずれか1項に記載の力学量検出センサの製造方法。
  5. 前記第2の層をエッチングして,前記第2,第3の部材間の少なくとも一部に第4の開口を作成するステップをさらに具備し,
    前記凹部を形成するステップが,前記第3の層を前記第4の開口からエッチングするステップを含むことを特徴とする請求項に記載の力学量検出センサの製造方法。
  6. 前記接続部が,前記第2,第3の部材それぞれの他端と接続される一端を備える第4の部材を有することを特徴とする請求項又はに記載の力学量検出センサの製造方法。
  7. 前記接続部が,前記第1の部材の他端と接続され,かつ互いに離間して配置される第5,第6の部材を有することを特徴とする請求項又はに記載の力学量検出センサの製造方法。
  8. 前記第1の構造体の構成材料が,面方位(100),(110)または(111)の単結晶シリコンであることを特徴とする請求項のいずれか一項に記載の力学量検出センサの製造方法。
  9. 前記第1の構造体の構成材料が,面方位(100)と,前記接続部の接続方向と一致する方位<110>と,を有する単結晶シリコンであることを特徴とする請求項に記載の力学量検出センサの製造方法。
  10. 前記第1の構造体の構成材料が,面方位(110)と,前記接続部の接続方向と45°または135°の角度をなす方位<110>と,を有する単結晶シリコンであることを特徴とする請求項に記載の力学量検出センサの製造方法。
  11. 前記第2の構造体の構成材料が,面方位(100),(110)または(111)の単結晶シリコンであることを特徴とする請求項10のいずれか一項に記載の力学量検出センサの製造方法。
  12. 前記第2の構造体の構成材料が,面方位(100)と,前記接続部の接続方向と一致する方位<110>と,を有する単結晶シリコンであることを特徴とする請求項11に記載の力学量検出センサの製造方法。
  13. 前記第2の構造体の構成材料が,面方位(100)と,前記接続部の接続方向と45°の角度をなす方位<110>と,を有する単結晶シリコンであることを特徴とする請求項11に記載の力学量検出センサの製造方法。
  14. 前記第1の構造体を作成するステップ及び前記第2の構造体を作成するステップのエッチングが,誘導結合型プラズマエッチング方法により行われることを特徴とする請求項13のいずれか一項に記載の力学量検出センサの製造方法。
JP2005128304A 2005-04-26 2005-04-26 力学量検出センサの製造方法 Expired - Fee Related JP4815857B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005128304A JP4815857B2 (ja) 2005-04-26 2005-04-26 力学量検出センサの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005128304A JP4815857B2 (ja) 2005-04-26 2005-04-26 力学量検出センサの製造方法

Publications (2)

Publication Number Publication Date
JP2006308325A JP2006308325A (ja) 2006-11-09
JP4815857B2 true JP4815857B2 (ja) 2011-11-16

Family

ID=37475395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005128304A Expired - Fee Related JP4815857B2 (ja) 2005-04-26 2005-04-26 力学量検出センサの製造方法

Country Status (1)

Country Link
JP (1) JP4815857B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101975795B1 (ko) * 2017-12-20 2019-05-07 주식회사 한화 반구형 공진기 발란싱 장치 및 방법

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4747677B2 (ja) * 2005-05-27 2011-08-17 大日本印刷株式会社 角速度センサの製造方法
JP2007309654A (ja) * 2006-05-16 2007-11-29 Sony Corp 加速度センサおよびその製造方法
JP2010085143A (ja) * 2008-09-30 2010-04-15 Torex Semiconductor Ltd 加速度センサー
JP5041438B2 (ja) * 2008-09-30 2012-10-03 トレックス・セミコンダクター株式会社 加速度センサー
JP5884603B2 (ja) * 2012-03-30 2016-03-15 株式会社デンソー ロールオーバージャイロセンサ
JP6331702B2 (ja) 2014-05-29 2018-05-30 セイコーエプソン株式会社 電子デバイス、電子機器および移動体
JP6619313B2 (ja) * 2016-09-21 2019-12-11 株式会社東芝 センサ及びセンサパッケージ

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04276559A (ja) * 1991-03-04 1992-10-01 Nec Corp 半導体加速度センサ
JPH06151887A (ja) * 1992-11-02 1994-05-31 Fujikura Ltd 半導体加速度センサの製造方法
JPH0835982A (ja) * 1994-07-25 1996-02-06 Fujikura Ltd 半導体加速度センサの製造方法
JPH11337571A (ja) * 1998-05-27 1999-12-10 Japan Aviation Electronics Ind Ltd 慣性センサ
JP2000022168A (ja) * 1998-06-29 2000-01-21 Matsushita Electric Works Ltd 半導体加速度センサ及びその製造方法
JP2001194153A (ja) * 2000-01-11 2001-07-19 Matsushita Electric Ind Co Ltd 角速度センサ、加速度センサおよび製造方法
JP4216525B2 (ja) * 2002-05-13 2009-01-28 株式会社ワコー 加速度センサおよびその製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101975795B1 (ko) * 2017-12-20 2019-05-07 주식회사 한화 반구형 공진기 발란싱 장치 및 방법

Also Published As

Publication number Publication date
JP2006308325A (ja) 2006-11-09

Similar Documents

Publication Publication Date Title
JP4815857B2 (ja) 力学量検出センサの製造方法
US9702893B2 (en) In-plane piezoresistive detection sensor
JP4216525B2 (ja) 加速度センサおよびその製造方法
CN103712612B (zh) 加速度和角速度谐振检测集成结构及相关mems传感器设备
US9061895B2 (en) Micromechanical structure comprising a mobile part having stops for out-of plane displacements of the structure and its production process
JP5562517B2 (ja) 表面加工により形成される可変厚さの共振型マイクロ慣性センサ
JP4871513B2 (ja) 薄く形成されたカンチレバー構造を備えた微小機械装置及び関連の方法
US8082790B2 (en) Solid-state inertial sensor on chip
US9828242B2 (en) Accelerometer and its fabrication technique
US8850890B2 (en) Inertial sensor and method for manufacturing an inertial sensor
JP6893179B2 (ja) 直交同調ための傾斜電極を有するmems慣性測定装置
US9557346B2 (en) Accelerometer and its fabrication technique
CN108020686B (zh) 具有改进配置的mems三轴加速度计
EP3657178B1 (en) Accelerometer
CN104133079B (zh) 一种石英梳齿电容式加速度计的制备方法
US20050140356A1 (en) Multiaxial micromachined differential accelerometer
US20220144624A1 (en) Electrode layer partitioning
US20060196266A1 (en) Integrated gyroscope and temperature sensor
JP2006317242A (ja) 力学量検出センサ及びその製造方法
JP4628018B2 (ja) 容量型力学量センサとその製造方法
JP2005345245A (ja) 容量型力学量センサ及びその製造方法
Piot et al. Electromechanical and process design of a 3 axis piezoelectric MEMS gyro in GaAs
EP3121561B1 (en) Sensor
JP5257115B2 (ja) 力学量センサ及びその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071211

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110802

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110815

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140909

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees