JP4807118B2 - 画像形成装置及び画像形成方法 - Google Patents

画像形成装置及び画像形成方法 Download PDF

Info

Publication number
JP4807118B2
JP4807118B2 JP2006077360A JP2006077360A JP4807118B2 JP 4807118 B2 JP4807118 B2 JP 4807118B2 JP 2006077360 A JP2006077360 A JP 2006077360A JP 2006077360 A JP2006077360 A JP 2006077360A JP 4807118 B2 JP4807118 B2 JP 4807118B2
Authority
JP
Japan
Prior art keywords
toner
color
component
image
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006077360A
Other languages
English (en)
Other versions
JP2007256359A (ja
Inventor
功 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Fujifilm Business Innovation Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd, Fujifilm Business Innovation Corp filed Critical Fuji Xerox Co Ltd
Priority to JP2006077360A priority Critical patent/JP4807118B2/ja
Priority to US11/604,031 priority patent/US7923183B2/en
Priority to CNB2006101645127A priority patent/CN100514220C/zh
Publication of JP2007256359A publication Critical patent/JP2007256359A/ja
Application granted granted Critical
Publication of JP4807118B2 publication Critical patent/JP4807118B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/01Apparatus for electrographic processes using a charge pattern for producing multicoloured copies
    • G03G15/0105Details of unit
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/087Binders for toner particles
    • G03G9/08784Macromolecular material not specially provided for in a single one of groups G03G9/08702 - G03G9/08775
    • G03G9/08793Crosslinked polymers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/087Binders for toner particles
    • G03G9/08784Macromolecular material not specially provided for in a single one of groups G03G9/08702 - G03G9/08775
    • G03G9/08795Macromolecular material not specially provided for in a single one of groups G03G9/08702 - G03G9/08775 characterised by their chemical properties, e.g. acidity, molecular weight, sensitivity to reactants
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/087Binders for toner particles
    • G03G9/08784Macromolecular material not specially provided for in a single one of groups G03G9/08702 - G03G9/08775
    • G03G9/08797Macromolecular material not specially provided for in a single one of groups G03G9/08702 - G03G9/08775 characterised by their physical properties, e.g. viscosity, solubility, melting temperature, softening temperature, glass transition temperature
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/093Encapsulated toner particles
    • G03G9/09307Encapsulated toner particles specified by the shell material
    • G03G9/09314Macromolecular compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/093Encapsulated toner particles
    • G03G9/09307Encapsulated toner particles specified by the shell material
    • G03G9/09314Macromolecular compounds
    • G03G9/09321Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/093Encapsulated toner particles
    • G03G9/0935Encapsulated toner particles specified by the core material
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/093Encapsulated toner particles
    • G03G9/0935Encapsulated toner particles specified by the core material
    • G03G9/09378Non-macromolecular organic compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/093Encapsulated toner particles
    • G03G9/0935Encapsulated toner particles specified by the core material
    • G03G9/09385Inorganic compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/093Encapsulated toner particles
    • G03G9/09392Preparation thereof

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Developing Agents For Electrophotography (AREA)
  • Color Electrophotography (AREA)
  • Dry Development In Electrophotography (AREA)

Description

本発明は静電記録方式を採用した画像形成装置及び画像形成方法に関するものであり、詳しくは、異なる波長の光を露光することにより異なる色に発色させることが可能なトナーを用いた画像形成装置及び画像形成方法に関するものである。
従来より電子写真方式でカラー画像を得る記録装置においては、基本三原色をそれぞれの画像情報に応じて現像し、これらのトナー像を順次重ね合わせることでカラー画像を得ている。具体的な装置構成としては、画像形成の方法によって潜像形成された一つの感光体ドラムに各色ごとに現像し、それらを転写部材に転写することを繰り返してカラー画像を得る所謂4サイクル機、あるいは各色の画像形成手段ごとに感光体ドラム、現像装置を具備して転写部材が移動することにより順次連続してトナー像を転写してカラー画像を得るタンデム機などが知られている。
これらは少なくとも、各色ごとに複数の現像装置を持つことで共通している。そのため、通常のカラー画像形成では三原色に黒色を加えた4つの現像装置が必要であり、さらにタンデム機ではそれぞれの4つの現像装置に応じて4つの感光体ドラムが必要であり、それら4つの画像形成手段の同期を整合する手段が必要になるなど、装置の大型化やコストの増大は避けられないものとなっている。
これに対し、単一の現像装置でカラー画像を得る方法が提案されている(例えば、特許文献1参照)。しかしながら、ここで開示されている方法では、異なる波長により異なる色に発色するトナーを使用し、1つの現像器でカラー画像を得るプロセスは提案されているものの、トナーの発色メカニズムの記載などがなくほとんど実現性がないものとなっている。
また、1つの現像器でカラー画像を得るプロセスとして、トナーの発色メカニズムを開示した方法も提案されている(例えば、特許文献2参照)。ここで開示されているプロセスで使用しているトナーは、外部刺激を受けて物質透過性が変化するカプセル壁を有する複数のマイクロカプセルをトナー樹脂中に分散混合して成る粒子であり、この粒子中に互いに混合されて発色反応を起こす2種類の反応性物質のうちの一方(各色染料前駆体)が、マイクロカプセル内に、他方(顕色剤)がマイクロカプセル外のトナー樹脂中に含まれるものである。
このトナーでは、カプセル壁として特定波長の光を照射した際に物質透過性が増大する光異性化物質を用い、このシス−トランス遷移を利用して光の照射や超音波を印加した際に、カプセル内外に存在する2種類の反応性物質が反応して発色する。
しかしこの構成のトナーの場合、前記シス−トランス遷移は可逆反応であるため、光刺激によりトランス状態からシス状態への遷移が起こり、顕色剤がカプセル壁をわずかに透過したとしても、プリントプロセス中にトランス状態に戻った場合には加熱による発色時に十分な発色反応(濃度)が得られないという問題がある。
すなわち、上記問題に起因して、このトナーを使用した場合には低速印字において安定した画像を得ることが困難であり、低速から高速までの広いスピードレンジに対応できないという課題を有している。さらに、通常プリントでも、光刺激による前記シス−トランスの遷移の量が小さい場合には、加熱前にトランス状態に戻る反応がわずかでも起こればトナーは発色しなくなるので、ハイライト画像を形成する場合にこのトナーを使用することが困難、すなわち、高画質化に対応することが難しいという課題も有している。
さらに、本提案においても、具体的なトナーの製造方法が開示されておらず、実現性に乏しいものである。
特開昭63−311364号公報 特開2003−330228号公報
本発明は、上記従来技術の問題点を解決することを目的とする。
すなわち、本発明は、光による発色情報に応じて発色または非発色の状態を制御することが可能なトナーを用い、1つの現像器でフルカラー画像形成を行う際においても、広範な種類の画像に対して再現性よく安定した画像形成が行えると共に、広いスピードレンジに対しても高画質のフルカラー画像を得ることができる画像形成装置及び画像形成方法を提供することを目的とする。
上記課題は、以下の本発明により達成される。すなわち本発明は、
<1> 互いに隔壁で隔離された状態で存在し、互いに反応した際に発色する第1成分及び第2成分と、該第2成分を含み該第1成分を含まない光硬化性組成物と、を有し、光による発色情報の付与により前記光硬化性組成物が硬化または未硬化の状態を維持して、前記発色のための反応が制御されるトナーを用いる画像形成装置であって、
像担持体と、該像担持体表面にトナー像を形成するトナー像形成手段と、前記像担持体表面に形成されたトナー像を記録媒体表面に転写する転写手段と、前記トナー像に光による発色情報を付与して、前記第2成分が拡散する領域と拡散しない領域とを形成する発色情報付与手段と、該記録媒体表面に転写されたトナー像を熱及び/または圧力により定着する定着手段と、加熱により前記隔壁の物質透過性を増大させて、前記発色情報を付与されたトナー像のうち、前記第2成分が拡散する領域において、前記第1成分と前記第2成分を反応させて発色させる発色手段と、を含む画像形成装置である。
上記画像形成装置では、例えばシアン(C)、マゼンタ(M)、イエロー(Y)及び黒(K)の4つの色の画像形成情報の論理和で像担持体上にトナー像を形成し、その後、色情報に応じた波長の光で該トナー像を露光して該トナー像に発色情報を付与し、その後、発色情報を付与された前記トナー像が記録媒体に転写、定着され、この前後または同時に熱によりトナーの発色反応が行なわれることによりカラー画像が得られる。よって、1つの像担持体と1つの現像器でフルカラー画像を得ることができるので、装置の大幅な小型化が可能となる。
また、本発明に用いるトナーは、トナーに対する発色情報付与メカニズムは可逆反応ではないので、トナーを低中間調の濃度で安定して発色させることができる。従って、ハイライト画像部においても高画質画像形成が可能となる。さらに、加熱による発色までに時間的制約がないため、低速域までのプリントも可能、すなわち、広いスピードレンジに対応可能であるというメリットを有している。
<2> 前記定着手段が、前記発色手段を兼ねる<1>に記載の画像形成装置である。
前記のように、トナーの発色のためにはトナー像を加熱することが好ましく、この場合、通常のトナーの定着時に定着手段により付与される加熱を同時にトナー発色のために用いることにより、エネルギーを効率的に利用でき、さらに装置の小型化を可能とすることができる。加えて、加熱による発色までの時間的制約がないことより、加熱手段の配置場所も自由に選べるメリットを有する。
<3> 前記像担持体が感光体であり、前記トナー像形成手段が、前記感光体表面を帯電する帯電手段と、該感光体表面に露光により静電潜像を形成する露光手段と、該静電潜像を前記トナーを含む現像剤によりトナー像とする現像手段とを含む<1>に記載の画像形成装置である。
本発明の画像形成装置における像担持体上へのトナー像形成には、種々の方法を用いることが可能であるが、後述するように、本発明におけるトナーが光発色機能を有する以外は従来のトナーと同等の特性を有するものであるため、いわゆる電子写真方式を用いて行うことにより、高画質化、繰り返し安定化などの優れた機能が発揮される。
<4> さらに、
さらに、定着後の記録媒体表面に前記第1成分及び前記第2成分を分解又は失活させるための光を照射する光照射手段を有する<1>に記載の画像形成装置である。
発色後のトナー中では、発色反応がさらに継続される場合がある。これに対して前記第1成分及び前記第2成分を分解又は失活させるための光照射を行うことにより、発色不可能な状態に制御された発色部中に残存する反応性物質を分解又は失活させることができ、画像形成後のカラーバランスの変動をより確実に抑制したり、バックグランド色の除去・漂白を行ったりすることができる。
<5> 前記像担持体に、該像担持体表面に形成されたトナー像に発色情報を付与する光を、再び前記トナー像に向けて反射する反射手段を設けた<1>に記載の画像形成装置である。
発色情報を光により付与する場合、多層に現像されたトナーの下層部に対しては発色させるための光が届きにくく、十分な発色が得られないことがある。そこで、像担持体に、該像担持体上に形成されたトナー像に発色情報を付与する露光光を反射する手段を設けることにより、下層側からも露光することが可能となり、十分な発色情報付与露光がトナーに対して行なわれ、その結果十分な発色が得られ、画像における色味を所望のものとすることができる。
<6> 前記トナーが、前記隔壁として、前記光硬化性組成物中に分散されるマイクロカプセルを含み、前記第1成分が該マイクロカプセル内に含まれ、前記第2成分が前記光硬化性組成物中に含まれる構成からなる<1>に記載の画像形成装置である。
トナーが上記のように構成されることにより、互いに反応して発色等する第1成分及び第2成分を確実に隔離することができ、また、発色工程において前記第1成分及び第2成分を効率的に反応させることができる。
<7> 前記光硬化性組成物中に、前記第2成分と重合性化合物とが含まれる<6>に記載の画像形成装置である。
<8> 前記第2成分が光重合性基を有する<6>に記載の画像形成装置である。
本発明においては、光照射により発色する光発色型トナー、及び、光照射により非発色状態を維持する光非発色型トナー共に使用可能であるが、両トナーの構成としては、前記2つの構成により各々なされることで、光による発色情報の付与に対して不可逆性を維持しつつ、トナーに確実に発色情報を担持させることができる。
<9> 互いに隔壁で隔離された状態で存在し、互いに反応した際に発色する第1の反応性成分及び第2の反応性成分と、該第2反応性成分を含み該第1反応性成分を含まない光硬化性組成物と、を有し、光による発色情報の付与により前記光硬化性組成物が硬化または未硬化の状態を維持して、前記発色のための反応が制御されるトナーを用いる画像形成方法であって、
像担持体表面にトナー像を形成するトナー像形成工程と、該発色情報を付与されたトナー像を記録媒体表面に転写する転写工程と、前記トナー像に光による発色情報を付与して、前記第2成分が拡散する領域と拡散しない領域とを形成する発色情報付与工程と、記録媒体表面に転写されたトナー像を熱及び/または圧力により定着する定着工程と、加熱により前記隔壁の物質透過性を増大させて、前記発色情報を付与されたトナー像のうち、前記第2反応性成分が拡散する領域において、前記第1反応性成分と前記第2反応性成分を反応させて発色させる発色工程と、を含む画像形成方法である。
<10> 前記発色情報付与工程が、前記トナー像形成工程と前記転写工程との間に設けられる<9>に記載の画像形成方法である。
本発明によれば、光による発色情報に応じて発色または非発色の状態を制御することが可能なトナーを用い、1つの現像器でフルカラー画像形成を行う際においても、広範な種類の画像に対して再現性よく安定した画像形成が行えると共に、広いスピードレンジに対しても高画質のフルカラー画像を得ることができる画像形成装置及び画像形成方法を提供することができる。
以下、本発明を詳細に説明する。
本発明の画像形成装置(画像形成方法)は、互いに隔離された状態で存在し、互いに反応した際に発色する第1成分及び第2成分と、該第1成分及び第2成分のいずれかを含む光硬化性組成物と、を有し、光による発色情報の付与により前記光硬化性組成物が硬化または未硬化の状態を維持して、前記発色のための反応が制御されるトナーを用いる画像記録装置(画像形成方法)であって、像担持体と、該像担持体表面にトナー像を形成するトナー像形成手段(トナー像形成工程)と、該像担持体表面に形成されたトナー像を記録媒体表面に転写する転写手段(転写工程)と、前記トナー像に光による発色情報を付与する発色情報付与手段(発色情報付与工程)と、該記録媒体表面に転写されたトナー像を熱及び/または圧力により定着する定着手段(定着工程)と、加熱により前記発色情報を付与されたトナー像を発色させる発色手段(発色工程)と、を含むことを特徴とする。
但し、本発明においては、上記光硬化性組成物とは、前記該第2成分を含んで前記第1成分を含まない光硬化性組成物を適用し、上記発色情報付与手段(発色情報付与工程)とは、光の照射により、第2成分が拡散する領域と第2成分が拡散しない領域とを形成する発色情報付与手段(発色情報付与工程)を適用し、上記トナー像を発色させる発色手段(発色工程)とは、加熱により隔壁の物質透過性を増大させて、発色情報を付与されたトナー像のうち、前記第2成分が拡散する領域において、前記第1成分と前記第2成分を反応させて発色させる発色手段(発色工程)を適用する。
本発明に用いられるトナーは、例えばトナーの1粒1粒が異なる波長の光で露光されると、該波長に応じた色に発色する、あるいは発色しない状態を維持する機能を有している。
最初に、本発明に用いられるトナーについて簡単に説明する。
本発明におけるトナーは、互いに隔離された状態で存在し、互いに反応した際に発色する第1成分及び第2成分と、該第2成分のいずれかを含む光硬化性組成物と、を有し、光による発色情報の付与により前記光硬化性組成物が硬化または未硬化の状態を維持して、前記発色のための反応が制御されるものである。
但し、本発明においては、互いに隔離された状態で存在し、互いに反応した際に発色する第1成分及び第2成分と、該第2成分を含み該第1成分を含まない光硬化性組成物と、を有し、光による発色情報の付与により前記光硬化性組成物が硬化または未硬化の状態を維持して、前記発色のための反応が制御されるトナーを適用する。
まず、トナーの発色メカニズムについて説明する。
本発明におけるトナーは、後述するように、バインダー樹脂中に発色部と呼ばれる光による発色情報が付与された際に、特定のひとつの色に発色可能な(または非発色状態を維持することが可能な)連続した領域を1つ以上有する。
図5は、トナー中の前記発色部の一例を示す模式図であり、(A)は1つの発色部の断面図であり、(B)はさらにその発色部を拡大したものである。
図5(A)に示すように、発色部60中には、各色の発色剤を含有する発色性マイクロカプセル50とそれを取り巻く組成物58とから構成され、図5(B)に示すように、組成物58は、マイクロカプセル50に含有される発色剤(第1成分)52と近接または接触することで発色させる重合性官能基を有した顕色剤モノマー(第2成分)54と光重合開始剤56とを含んでいる。
トナー粒子を構成する発色部60において、発色性マイクロカプセル50に封入する発色剤52としては、発色色相の鮮やかさに優れたトリアリール系ロイコ化合物などが好適である。このロイコ化合物(電子供与性)を発色させる顕色剤モノマー54としては電子受容性化合物が好ましい。特にフェノール系化合物が一般的であり、感熱、感圧紙などに利用されている顕色剤から適宜選択できる。このような電子供与性の発色剤52と電子受容性の顕色剤モノマー54とが酸塩基反応することで発色剤が発色することになる。
光重合開始剤56としては、可視光により感光し顕色剤モノマー54を重合させるためのトリガーとなる重合性ラジカルを発生する分光増感色素が用いられる。例えば、R色、G色、B色の如き三原色露光に対して、顕色性モノマー54が十分な重合反応を進行させることができるように光重合開始剤56の反応促進剤が用いられる。例えば、露光光を吸収する分光増感色素(カチオン)とホウ素化合物(アニオン)からなるイオンコンプレックスを用いることにより、露光により分光増感色素が光励起されホウ素化合物に電子移動することで重合性ラジカルが生成し重合を開始する。
これらの材料を組み合わせることにより、感光性の発色部60として、0.1〜0.2mJ/cm2程度の発色記録感度を得ることができる。
上記構成の発色部60に対する発色情報のための光照射の有無により、発色部60によっては重合された顕色剤化合物と重合されなかった顕色剤モノマー54とを有するものが存在することになる。その後の加熱などの発色装置によって、重合されなかった顕色剤モノマー54を有する発色部60では、この顕色剤モノマー54が熱などによって泳動し、発色剤マイクロカプセル50の隔壁の空孔を泳動通過して発色剤マイクロカプセル中に拡散する。マイクロカプセル50中に拡散された顕色剤モノマー54と発色剤52とは、前述のように発色剤52が塩基性であり、顕色剤モノマー54が酸性であることにより発色剤52を酸塩基反応によって発色させることになる。
一方、重合反応を生じた顕色剤化合物は、この後の加熱などによる発色工程では重合による嵩高さによりマイクロカプセル50の隔壁の空孔を拡散通過できず、発色性マイクロカプセル中の発色剤52と反応ができないため発色することができない。したがって、発色性マイクロカプセル50は無色のままで残ることとなる。すなわち、特定波長光を照射された発色部60は発色されに存在することになる。
発色後、適当な段階で再度全面を白色光源で露光することにより、残留している重合未了の顕色性モノマー54を全て重合させて安定した画像定着がなされるとともに、残留分光増感色素を分解することで地色の消色が行われる。なお、可視光域に対応する光重合開始剤56の分光増感色素はその色調が最後まで地色として残留してしまうが、この分光増感色素の消色には色/ホウ素化合物の光消色現象を利用することができる。すなわち、光励起された分光増感色素からホウ素化合物に電子移動することで重合性ラジカルが生成するが、このラジカルはモノマーの重合を引き起こす一方で、励起された色素ラジカルと反応して色素の色分解を起し、結果的に色素を消色させることができる。
本発明におけるトナーでは、このような異なる発色を行なう発色部60(例えば、Y色、M色、C色に発色する)を、それぞれの顕色剤モノマー54が目的とする発色剤52以外の発色剤と干渉し合わない状態(互いに隔離された状態)にして一つのマイクロカプセルとして構成し用いる。
このように、本発明では、複数の異なる発色をする発色剤52を一体としたマイクロカプセルを含んだトナーとして、単一の現像装置に適用し、電子写真法を応用してカラー画像を得るものである。
本発明の画像形成装置(画像形成方法)では、このようなトナーを1つの現像器に搭載し、シアン(C)、マゼンタ(M)、イエロー(Y)及び黒(K)の4つの色の画像形成情報の論理和で像担持体上に静電潜像を形成し、該静電潜像を該トナーで現像してトナー像とし、例えばしかる後、発色情報に応じた波長の光で該トナー像を露光して該トナー像に発色情報を付与する。その後、発色情報を付与された前記トナー像が記録媒体に転写され、その後熱と圧力により記録媒体に定着される。この時、前記熱によりトナーの発色反応が行なわれ、カラー画像が得られる。
従って、1つの像担持体と1つの現像器でフルカラー画像を得ることができるので、画像形成装置本体の大きさは限りなくモノクロプリンタ並みの大きさに近づくこととなり、装置の小型化が可能となる。これに加えて、トナー像の形成に際して色毎にトナーを積層する必要がないために画像表面の凸凹が抑制でき、画像表面の光沢を均一にすることができ、更に、トナーに顔料等の着色剤を使わないため、銀塩ライクな画像を得ることも可能である。
また、後述するように本発明におけるトナーにおいては、トナーに対する発色情報付与メカニズムは可逆反応ではないので、ハイライト画像形成用に発色させたいトナーは低中間調の濃度で安定して発色させることができる。従って、現状の多色インクジェットプリンターに見られるような高画質画像形成が可能となる。さらに、前記のように発色情報付与メカニズムが可逆反応ではないことより、加熱による発色までに時間的制約がないというメリットを有する結果、低速域までのプリントも可能、すなわち、広いスピードレンジに対応可能となり、加えて、加熱による発色が行なわれる定着器等の配置場所についても自由度が高いというメリットを有している。
本発明が適用される画像形成プロセスは、いわゆる電子写真プロセス、誘電体上にイオンなどで静電潜像を形成するプロセス(イオノグラフィ)または、一様帯電した誘電体に、サーマルヘッドの熱により画像情報に応じて静電潜像を形成するプロセス、さらに、静電潜像を利用するものではなく、たとえば、磁気潜像を形成してトナー画像を形成するプロセス、粘着性のインク滴を像担持体に画像情報に応じて形成し、トナー画像を形成するプロセス、など特に制限されない。まず、本発明が適用する、光による発色情報に応じて発色または非発色の状態を制御することが可能なトナーを用いた電子写真プロセスによるカラー画像を形成する画像形成装置(画像形成方法)を、簡単に説明する。
なお、用いるトナーの構成材料等の詳細については後述する。
図1は、本発明の画像形成装置の一例を示す概略構成図である。図1に示す画像形成装置は、通常の電子写真プロセスに用いる感光体(像担持体)10、帯電装置(帯電手段)12、露光装置(露光手段)14、現像装置(現像手段)16、転写装置(転写手段)18、定着装置(定着手段)22を有している。また、本装置においては、現像後のトナー像に発色情報を付与する発色情報付与装置28が設けられており、定着装置22はトナー像を発色させる発色装置(発色手段)を兼ねている。さらに、定着装置22の下流側にはトナーの発色を固定化するための記録媒体26への光照射を行う光照射装置24(光照射手段)が設けられている。なお、符号20はクリーナである。
以下、本発明の画像形成装置の構成を、画像形成における各工程に沿って説明する。
<トナー像形成工程>
図1に示すような像担持体が感光体10である場合には、前記トナー像形成手段には、感光体表面を帯電する帯電装置12と、該感光体表面に露光により静電潜像を形成する露光装置14と、該静電潜像を前記トナーを含む現像剤によりトナー像とする現像装置16とが含まれる。
まず、帯電装置12により感光体10の表面全面を帯電させる。
感光体10としては、公知のいかなるものも用いることができる。例えば、導電性基体上にSe、a−Si等の無機の感光層、あるいは単層若しくは多層の有機感光層を形成したものである。ベルト状感光体の場合は、基体としてPET、PC等の透明樹脂が使用でき、その厚みはベルト状感光体を張架するロールの径、張力等の設計事項から決められ、おおよそ10〜500μm程度の範囲である。その他の層構成等はドラムの場合と同様である。
なお、後述する発色情報付与工程において、露光を感光体10の背面(感光体の内側)から行う場合には、前記基体を透明な樹脂等とした透明感光体を用いることができる。透明感光体の場合には、感光体基体として露光光に対して透明な材質を用いる。例えば基材用材料としてガラス、プラスチック材料が用いられ電極形成の為に、外表面に導電層が形成されるが、基材材料自体が導電化処理されていてもよい。なお、透明感光体を用いない場合は、上述の透明基体のほかに通常用いられるアルミウムなどの金属円筒体やニッケルシームレスベルトなどの基体材料も用いることができる。
また、後述する発色情報付与のための露光が通常の潜像形成のための露光よりかなり強い強度で行われるため(発色情報付与に供する光のエネルギー量は、通常の電子写真プロセスに使用される感光体の露光量(2mJ/m2)の約1000倍程度必要)、感光体10へのダメージが心配されるが、例えば、感光体10の電荷発生層の光感度を従来の1/1000とすれば、バランスが取れるので問題とはならない。
さらに、感光体10の表面には、発色情報付与のための露光による感光体10の劣化を防止する機能を持たせることが好ましい。具体的には、感光層の表面に潜像形成のための露光光のみ透過し、発色情報付与のための露光光を反射する若しくは吸収する(ただし、潜像形成のための露光光は透過する)表面層を設けることが有効である。該表面層としては、ダイクロイックミラーコート(反射)、光吸収物質を分散したシャープカットフィルター(吸収)などを挙げることができる。
帯電には公知の帯電手段が使用できる。接触方式である場合は、ロール、ブラシ、磁気ブラシ、ブレード等が使用でき、非接触の場合は、コロトロン、スコロトロン等が使用できる。帯電手段としてはこれらに限られるものではない。
これらの中でも、帯電補償能力とオゾン発生量のバランスから、接触型帯電器が好ましく用いられる。接触帯電方式は、感光体表面に接触させた導電性部材に電圧を印加することにより感光体表面を帯電させるものである。導電性部材の形状はブラシ状、ブレード状、ピン電極状、あるいはロール状等何れでもよいが、特にロール状部材が好ましい。通常、ロール状部材は外側から抵抗層とそれらを支持する弾性層と芯材から構成される。さらに必要に応じて、抵抗層の外側に保護層を設けることができる。
これらの導電性部材を用いて感光体10を帯電させる方法としては、導電性部材に電圧を印加するが、印加電圧は直流電圧、あるいは直流電圧に交流電圧を重畳したものが好ましい。電圧の範囲としては、直流のみで帯電させる場合は、絶対値で所望の表面電位+500V程度の正または負が好ましく、その値は、700V〜1500Vである。交流電圧を重畳する場合は、その直流値はおおよそ所望の表面電位±50V程度とし、交流のピーク間電圧(Vpp)が400〜1800V、好ましくは800〜1600V、交流電圧の周波数は50〜20000Hz、好ましくは100〜5000Hzであり、サイン波、方形波、三角波がいずれも使用可能である。
帯電電位は、電位の絶対値で150〜700Vの範囲に設定することが好ましい。
静電潜像の形成には公知の露光装置14が使用できる。露光装置14としては、例えばレーザスキャニングシステム、LEDイメージバーシステム、アナログ露光手段、さらにはイオン流制御ヘッド等などを用いることができ、図1における矢印Aのように感光体10表面に露光を行うことが可能である。これ以外にも今後開発される新規な露光手段が本発明の効果を達成する限り使用できる。
光源の波長は、感光体10の分光感度領域にあるものが使用される。これまで、半導体レーザの波長として780nmm付近に発振波長を有する近赤外が主流であるが、600nm台の発振波長レーザや青色レーザとして400〜450nm近傍に発振波長を有するレーザも利用が可能である。また、カラー画像形成のためにはマルチビーム出力が可能なタイプの面発光型のレーザ光源も有効である。
感光体10に対する露光は、反転現像の場合は後述するトナーを現像する位置に、正規現像の場合はトナーを現像する以外に位置に、前記4つの色の画像形成情報の論理和として行なわれる。露光スポット径は、解像度が600〜1200dpiの範囲となるように、40〜80μmの範囲となるようにすることが好ましい。露光量としては、露光後電位が前記帯電電位の5〜30%程度の範囲となるようにすることが好ましいが、画像の階調に応じてトナーの現像量を変化させる場合には、露光位置ごとに現像量に応じて露光量を変化させてもよい。
前記静電潜像に対する現像には、公知の現像装置16が使用できる。現像法としては、キャリアと呼ばれるトナーを担持するための微小磁性粒子とトナーからなる二成分現像法、またはトナーのみからなる一成分現像法、またこれらの現像法においてさらに現像その他の特性改善のために別の構成物質が添加される場合もある全ての現像方法が使用できる。
また、現像方法によっては感光体10へ現像剤が接触または非接触で現像を行なうもの、あるいはそれらの組み合わせのいずれもが使用可能である。さらに、前記一成分現像法と二成分現像法とを組み合わせたハイブリッド現像方法も使用可能である。これ以外にも、今後開発される新規な現像手段が本発明の効果を達成する限り使用できる。
なお、前記現像剤に含まれるトナーとしては、例えばY色に発色可能な発色部(Y発色部)、M色に発色可能な発色部(M発色部)及びC色に発色可能な発色部(C発色部)を1つのトナー粒子中に含むものであってもよいし、前記Y発色部、M発色部、C発色部を各々トナーごとに別々に含むものであってもよい。
トナー現像量(感光体に付着させるトナー付着量)としては、形成する画像によっても異なるが、べた画像において3.5〜8.0g/m2の範囲とすることが好ましく、4.0〜6.0g/m2の範囲とすることがより好ましい。
また、形成されたトナー像Tにおいて、後述する発色情報付与のための光が、当該照射された部分全体に行き渡らなければならないため、トナー層厚は一定以下に抑えることが好ましい。具体的には、例えばべた画像においてトナー層は3層以下であることが好ましく、2層以下であることがより好ましい。なお、上記トナー層厚は、実際の感光体10表面に形成されたトナー層の厚さを測定し、これをトナーの個数平均粒径で除した値である。
<発色情報付与工程>
次に、こうして得たトナー像Tに対して、図1に示すように発色情報付与装置28により、矢印Bのような光による発色情報が付与される。ここで、該「光による発色情報の付与」とは、トナー像Tを構成する個々のトナー粒子単位で発色/非発色状態や発色した際の色調を制御するために、トナー像の所望の領域に対して選択的に1種類以上の特定波長の光を付与する、あるいは、何らの光を付与しないことを意味する。
なお、図1に示す発色情報付与工程の位置は1つの例であり、後述するように、発色情報付与工程は転写工程後であってもよい。
発色情報付与装置28としては、そのとき発色させるトナー粒子が特定色に発色するための波長の光を所定の解像度と強度とで照射することができるものであれば何でもよい。例えば、LEDイメージバー、レーザROS等を使用することが可能である。なお、トナー像Tに照射される光の照射スポット径は、形成される画像の解像度が100〜2400dpiの範囲となるよう、10〜300μmの範囲となるように調整されることが好ましく、20〜200μmの範囲とすることがより好ましい。
発色あるいは非発色状態維持のために供される光の波長は、使用されるトナーの材料設計により決まるが、例えば、特定波長の光照射により発色するトナー(光発色型トナー)を用いる場合、イエロー(Y色)に発色させるときは405nmの光(λA光とする)を、マゼンタ(M色)に発色させるときは535nmの光(λB光とする)を、シアン(C色)に発色させるときは657nmの光(λC光とする)を、その発色させる所望の位置にそれぞれ照射する。
また、二次色に発色させる時には、前記光の組み合わせになり、レッド(R色)に発色させる時はλA光及びλB光を、グリーン(G色)に発色させる時はλA光及びλC光を、ブルー(B色)に発色させる時はλB光及びλC光を、その発色させる所望の位置にそれぞれ照射する。さらに、三次色であるブラック(K色)に発色させるときは上記λA光、λB光及びλC光をその発色させる所望の位置に重ねて照射する。
一方、特定波長の光照射により非発色状態を維持するトナー(光非発色型トナー)の場合には、例えば、イエロー(Y色)を発色させないようにするときは405nmの光(λA光)を、マゼンタ(M色)に発色させないようにするときは535nmの光(λB光)を、シアン(C色)に発色させないようにするときは657nmの光(λC光)を、その発色させる所望の位置にそれぞれ照射する。したがって、Y色に発色させる時はλB光及びλC光を、M色に発色させる時はλA光及びλC光を、C色に発色させる時はλA光及びλB光を、その発色させる所望の位置にそれぞれ照射することとなる。
また、二次色に発色させる時には、前記光の組み合わせになり、レッド(R色)に発色させる時はλC光を、グリーン(G色)に発色させる時はλB光を、ブルー(B色)に発色させる時はλA光を、その発色させる所望の位置にそれぞれ照射する。さらに、三次色であるブラック(K色)に発色させるときはその発色させる所望の位置には露光しないようにする。
発色情報付与装置28からの光は、必要に応じてパルス巾変調、強度変調、左記2つを組み合わせたものなど、公知の画像変調方法が使用可能である。また、光の露光量は0.05〜0.8mJ/cm2の範囲とすることが好ましく、0.1〜0.6mJ/cm2の範囲とすることがより好ましい。特にこの露光量に関しては、必要露光量は現像されたトナーの量と相関があり、例えば、トナー現像量(べた)が約5.5g/m2に対し0.2〜0.4mJ/m2の範囲の露光を行うことが好ましい。
なお、図1に示す装置構成では、発色情報の付与が感光体10の一方側からのみ行なわれるため、多層に現像されたトナーの下層部に対しては発色させるための光が届きにくく、十分な発色が得られず、その結果、画像における色味が所望のものと異なってしまう場合がある。そこで本発明では、感光体10に、感光体10上に形成されたトナー像に発色情報を付与する露光光を反射する反射手段を設けることが好ましい。
図2に、発色情報付与露光時のトナー像を担持した感光体10の断面を示すが、感光体10上に形成されたトナー像(トナー層)Tを発色情報付与のための露光光(図中の矢印L)により露光をする場合、約10〜50%程度の光は、トナーそのものや、トナー層の隙間を抜けて、感光体10に到達する。従って、図におけるl1〜l3のように、前記到達した光を反射手段4で反射させ再び前記トナーを露光すれば、多層に現像されたトナー像Tを図における下層側から露光することが可能となり、十分な発色情報付与露光がトナーに対して行なわれ、その結果十分な発色が得られ、画像における色味を所望のものとすることができる。
前記露光光を反射する反射手段4としては、感光体10における感光層そのものがその機能を有してもいいし、感光体10における基体がその機能を有していてもよい。前者の感光層が反射手段を有する例としては、前記感光層の表面に設けられる表面層を鏡面とすることが挙げられ、表面層としてはダイクロイックミラーコートなどを用いることが好ましい。また、後者の基体そのものを反射手段とするには、基体表面を滑らか(JIS B 0601に記載の算術平均粗さRaで12.5μm以下)とすることが好ましい。
上記反射手段を設けた場合の露光光の反射率は80%以上とすることが好ましく、90%以上とすることがより好ましい。
なお、この時の露光光がレーザ光である場合、レーザビームの感光体入射に関しては、レーザにおけるモニター(Photo Detector)への戻り光防止のために、通常数度(4度〜13度)傾ける必要があるが、本発明における発色情報付与露光の際は、戻り光がトナーにより吸収されるので、戻り光が極端に少なくなり、0度を含む任意の角度に入射させることができる。
また、上記に関連して、発色情報付与装置28は前記潜像形成のための露光装置14と同一の筐体に配置してもよい。これにより、光学系を含む露光手段を部分的に共通化、簡略化することができ、装置全体のさらなる小型化を可能とすることができる。
以下に、上記発色情報付与のための露光がどのようなタイミングで、どのような位置制御により行われるかを簡単に説明する。
図3は、本発明の画像形成装置における印字制御部の具体的な回路ブロック図を示す。同図において、プリンタコントローラ36は、論理和回路40、発振回路42、マゼンタ発色制御回路44M、シアン発色制御回路44C、イエロー発色制御回路44Y、ブラック発色制御回路44Kで構成されている。一方、露光部38は、光書込ヘッド32及び発色情報付与露光ヘッド34で構成されている。
図示しないインターフェース(I/F)によって、入力されたRGB信号がCMYK値に変換された画像データは、更にインターフェース(I/F)からマゼンタ(M)、シアン(C)、イエロー(Y)、ブラック(K)の画素データとして論理和回路40に出力される。ここで、論理和回路40はCMYKの論理和を計算し、光書込ヘッド32に出力する。
すなわち、CMYKの全ての画素データを含む論理和のデータを光書込ヘッド32に出力し、前記のように感光体10に光書込みを行う。したがって、感光体10の周面にはCMYKの全ての画素データを含む論理和データに基づく静電潜像が形成される。
また、CMYKの画素データは対応するマゼンタ発色制御回路44M〜ブラック発色制御回路44Kにも供給され、発振回路42から出力される発振信号fm、fc、fy、fkに同期して発色情報付与露光ヘッド34に出力される。すなわち、マゼンタ(M)、シアン(C)、イエロー(Y)、ブラック(K)のそれぞれに対応する発色データが発色情報付与露光ヘッド34に供給され、感光体10上に現像されたトナー像Tに対応して発色または非発色状態を維持するための特定波長の光が照射される。したがって、照射される光を受けたトナー内で、後述する光硬化反応等が起こり、発色情報が付与される。
例えば、マゼンタ発色制御回路44Mから出力された発色信号fmはトナー内の発色部に前記λB光を照射し、該トナーをマゼンタ(M)色の発色が可能な状態とする。また、シアン発色制御回路44Cから出力された発色信号fcはトナー内の発色部に前記λC光を照射し、該トナーをシアン(C)色の発色が可能な状態とする。さらに、イエロー(Y)及びブラック(K)についても同様であり、イエロー発色制御回路44Y、ブラック発色制御回路44Kから出力される発色信号fy、fkは、トナー内の発色部に前記λA光またはλA光、λB光及びλC光を照射し、イエロー(Y)またはブラック(K)の発色が可能な状態とする。
以上、本発明における発色情報付与工程(手段)について、フルカラー画像形成を行う場合の機構について説明したが、本発明における発色情報付与工程は、イエロー、マゼンタ及びシアンのうちのいずれかを発色させるモノカラー画像形成のための発色情報付与工程であってもよい。この場合は、発色情報付与露光ヘッド54からは、前記イエロー、マゼンタ及びシアンのうちの所望の発色に対応する特定波長の光のみを照射する。その他の好ましい条件等については、フルカラー画像形成時における条件等と同様である。また、トナー像担持体と透明とし、背面から発色情報を付与してもよい。
図1に示す画像形成装置では、発色情報付与工程は現像後転写前に行われているが、本発明における発色情報付与工程は、少なくとも定着工程の前であればよく、例えば発色情報付与工程は後述する転写工程の後でもよい。ただし、発色情報付与のための露光が転写後の場合、記録媒体表面の平滑性や所望画像の発色位置精度の正確性から、現像工程後転写工程前に行われることが画像品質の上で望ましい。
なお、この段階ではトナー像は未発色の本来の色調のままであり、トナー像は、例えば色素増感されていればその色素の色調を帯びているに過ぎない。
<転写工程>
発色情報を与えられたトナーは、その後一括して記録媒体26に転写される。転写には公知の転写装置18が使用できる。例えば、接触方式である場合は、ロール、ブラシ、ブレード等が使用でき、非接触方式の場合は、コロトロン、スコロトロン、ピンコロトロン等が使用できる。また、圧力、若しくは圧力及び熱による転写も可能である。
転写バイアスは300〜1000V(絶対値)の範囲とすることが好ましく、さらに交流(Vpp:400V〜4kV、400〜3kHz)を重畳してもよい。
<定着工程及び発色工程>
こうして発色(あるいは非発色状態維持)可能な状態におかれた前記トナー像は、記録媒体26が定着装置22によって加熱されることで前述のように発色がなされる。定着装置22としては公知の定着手段が使用できる。例えば、加熱部材及び加圧部材としてロール、ベルトのそれぞれが選択可能であり、熱源としては、ハロゲンランプ、IH等が使用可能である。その配置も、種々の紙パス、例えばストレートパス、リアCパス、フロントCパス、Sパス、サイドCパス等に対応可能である。
本実施形態では、定着装置22が発色工程と定着工程とを兼ねているが、発色工程は定着工程と別に設けられていてもよい。発色工程を実施するための発色装置を配置する位置は特に制限されないが、例えば、図4に示すように、発色装置25及び光照射装置24を定着装置22の上流側に設けることもできる。このようにすることにより、発色のための加熱温度と、記録媒体26へのトナー定着のための加熱温度とが別途制御可能となるため、発色材料、トナーバインダー材料等の設計度の自由度を向上させることができる。
この場合、発色の方法についてはトナー粒子の発色メカニズムに応じて様々の方法が考えられるため、発色装置(発色手段)25としては、例えばさらに異なる波長の光を用いてトナー中に発色関与物質を硬化させ、あるいは光分解させるなどの方法で発色をさせ、または制限する方法では特定光の発光装置、加圧してカプセル化した発色粒子を破壊するなどの方法で発色をさせ、または制限する方法では加圧装置、などを用いることができる。
しかしながら、発色をさせるこうした化学的な反応は、一般的に泳動、拡散による反応速度が遅いため、上記いずれの方法をとるにしても充分な拡散エネルギーを与える必要があり、そういった点で加熱して反応を促す方法が最も優れているといえる。このため、前記発色工程と定着工程とを兼ねる定着装置22を用いることが省スペース化も含め好ましい。
<その他の工程>
本発明では、定着、発色工程を経て得られた画像に光を照射する光照射工程を含むことが好ましい。これにより発色不可能な状態に制御された発色部中に残存する反応性物質を分解又は失活させることができるため、画像形成後のカラーバランスの変動をより確実に抑制したり、バックグランド色の除去・漂白を行ったりすることができる。
なお、本実施形態においては、上記光照射工程は定着工程の後に設けられているが、加熱溶融しない定着方法、例えば圧力を用いて定着させる圧力定着などの場合は、光照射工程後、定着工程を行うこともできる。
但し、本発明においては、上記光照射工程とは、定着後の記録媒体表面に前記第1成分及び前記第2成分を分解又は失活させるための光を照射する光照射手段を適用する。
光照射装置24としては、トナーの発色をこれ以上進めないようにすることができれば特に制限されず、公知のランプ、例えば、蛍光灯、LED、EL等が使用できる。また、その波長は前記トナーを発色させるための光に三波長を含み、照度は2000〜200000luxの範囲程度とすることが好ましく、露光時間は0.5〜60secの範囲とすることが好ましい。
これらに加えて、上述の画像形成方法では、従来の顔料等の着色剤を用いて実施される電子写真プロセスに利用される公知の工程が含まれていてもよく、例えば、トナー像を転写後の像担持体表面をクリーニングするクリーニング工程が含まれていてもよい。クリーナ20としては公知のものが使用でき、ブレード、ブラシ等が使用可能である。また、クリーナ20を除去したいわゆるクリーナレスプロセスも適用可能である。
また、この他にも、転写工程が、トナー像を像担持体から中間転写ベルト等の中間転写体へ転写する第1の転写工程と、中間転写体上に転写されたトナー像を記録媒体に転写する第2の転写工程とからなる中間転写方式であってもよい。
本発明の画像形成装置では、前述のように、発色情報付与工程において発色情報が与えられてから発色工程まで、トナーにおいて該発色情報が安定して保持されるため、発色情報付与工程から発色工程に到るまでの時間を考慮する必要がなく、広いスピードレンジの設計に対応することが可能である。具体的には、線速を10〜500mm/秒の範囲とすることが好ましく、50〜300mm/秒の範囲とすることがより好ましい。ただし、上記のような線速で画像形成を行う場合でも、前記発色情報付与のための露光時間は線速と解像度とから決まる値に設定すればよい。
また、上記発色情報の安定的保持は、画像における色調安定性やハイライト画像の再現性にも優れた効果を有するため、入力画像情報を高画質で忠実に再現できるフルカラー画像形成に大きく寄与する。
<使用するトナー>
次に、本発明に使用するトナーの構成について説明する。
本発明におけるトナーは、前述のように、互いに隔離された状態で存在し、互いに反応した際に発色する第1成分及び第2成分と、該第1成分及び第2成分のいずれかを含む光硬化性組成物と、を有し、光による発色情報の付与により前記光硬化性組成物が硬化または未硬化の状態を維持して、前記発色のための反応が制御されるものである。また、トナーの発色のメカニズムを既述の通りである。
但し、本発明においては、互いに隔離された状態で存在し、互いに反応した際に発色する第1成分及び第2成分と、該第2成分を含み該第1成分を含まない光硬化性組成物と、を有し、光による発色情報の付与により前記光硬化性組成物が硬化または未硬化の状態を維持して、前記発色のための反応が制御されるトナーを適用する。
本発明におけるトナーは、発色可能な物質(発色性物質)として、互いに隔離された状態で存在し、互いに反応した際に発色する第1成分と第2成分とを含む。このように、2種類の反応性成分の反応を利用して発色させることにより、発色の制御が容易になる。なお、前記第1成分、第2成分は、発色する前の状態において予め着色していてもよいが、実質的に無色の物質であることが特に好ましい。
本発明においては、発色制御を容易とするために、発色性物質として互いに反応した際に発色する2種類の反応性成分を用いるが、これらの反応性成分が、光による発色情報が付与されない状態でも物質拡散が容易な同一のマトリックス内に存在すると、トナーの保管時や製造時において、自発的な発色が進行してしまう場合がある。
このため、前記反応性成分は、その種類毎に、発色情報が付与されない限り互いの領域への物質拡散が困難な異なるマトリックス内に含まれていること(互いに隔離されていること)が必要である。
このように光による発色情報が付与されない状態での物質拡散を阻害して、トナーの保管時や製造時における自発的な発色を防止するためには、2種類の反応性成分の第1成分が第1のマトリックスに含まれ、第2成分が第1のマトリックス外(第2のマトリックス)に含まれ、第1のマトリックスと第2のマトリックスとの間には、両マトリックス間の物質の拡散が阻害されると共に、熱等の外部刺激が付与された際には、刺激の種類、強度や、組み合わせに応じて両マトリックス間の物質の拡散を可能とするような機能を持つ隔壁が設けられることが好ましい。
なお、このような隔壁を利用して2種類の反応性成分をトナー中に配置するには、マイクロカプセルを利用することが好適である。
この場合、本発明におけるトナーには、2種類の反応性成分のうち、例えば第1成分がマイクロカプセル内に含まれ、第2成分がマイクロカプセル外に含まれることが好ましい。この場合、マイクロカプセル内部が前記第1のマトリックス、マイクロカプセル外が前記第2のマトリックスに相当する。
このマイクロカプセルは、芯部と、該芯部を被覆する外殻とを有するものであり、熱等の外部刺激が付与されない限りマイクロカプセル内外の物質の拡散を阻害すると共に、外部刺激が付与された際には、刺激の種類、強度や、組み合わせに応じてマイクロカプセル内外の物質の拡散を可能とする機能を有するものであれば特に限定されない。なお芯部には、前記反応性成分の一方が少なくとも含まれる。
また、マイクロカプセルは、光の照射や圧力などの刺激の付与によってマイクロカプセル内外の物質拡散を可能とするものでもよいが、加熱処理によりマイクロカプセル内外の物質拡散を可能とする(外殻の物質透過性が増大する)熱応答性マイクロカプセルであることが特に好ましい。
なお、刺激が付与された際のマイクロカプセル内外の物質拡散は、画像形成時の発色濃度の低下を抑制したり、高温環境下に放置された画像のカラーバランスの変化を抑制する観点からは、不可逆的なものであることが好ましい。それゆえ、マイクロカプセルを構成する外殻は、加熱処理や光照射等の刺激の付与による軟化、分解、溶解(周囲の部材への相溶)、変形等により、物質透過性が不可逆的に増大する機能を有することが好ましい。
次に、前記トナーがマイクロカプセルを含む場合の好ましい構成について説明する。
このようなトナーとしては、互いに反応した際に発色する第1成分および第2成分と、マイクロカプセルと、第2成分を分散させた光硬化性組成物とを含むものであることが好ましく、このようなトナーとしては、以下の3つの態様が挙げられる。
すなわち、本発明におけるトナーは、互いに隔離された状態で存在し、互いに反応した際に発色する第1成分および第2成分と、第1成分および第2成分のいずれか一方を含む光硬化性組成物と、を有するトナーにおいて、さらにマイクロカプセルを利用する場合は、(1)光硬化性組成物中に分散するマイクロカプセルを含み、第1成分がマイクロカプセル内に含まれ、第2成分が光硬化性組成物中に含まれる態様(以下、「第1の態様」と称す場合がある)、(2)第2成分がマイクロカプセル内に含まれ、第1成分が光硬化性組成物中に含まれる態様(以下、「第2の態様」と称す場合がある)、あるいは、(3)第1成分および第2成分の双方が各々マイクロカプセルに含まれ、光硬化性組成物は、第1成分または第2成分を含むいずれか一方のマイクロカプセル内に含まれる態様(以下、「第3の態様」と称する場合がある)のいずれかであることが好ましい。
これら3つの態様の中では、特に第1の態様が、光による発色情報付与前の安定性、発色の制御等の観点から好ましい。なお、以下のトナーの説明においては、基本的に第1の態様のトナーを前提としてより詳細に説明するが、以下に説明する第1の態様のトナーの構成、材料、製法等は、第2の態様や第3の態様のトナーにおいても、勿論、利用/転用可能である。
(マイクロカプセル)
マイクロカプセルは、加熱処理によりマイクロカプセル内外の物質拡散を可能とする熱応答性マイクロカプセルであることが特に好ましく、この場合、光硬化性組成物が、発色情報付与光の照射により硬化する場合、外部刺激としては、発色情報付与光の照射(制御刺激の付与)の有無と加熱処理(発色刺激の付与)とを含む組み合わせを利用することができる。
すなわち、この場合、第1成分と第2成分との反応の制御(発色反応制御)を行うために付与される外部刺激が、反応可能な状態の第1成分と第2成分とを反応(発色反応)させる発色刺激と、この発色刺激が付与される前の第1成分と第2成分の反応(発色反応)を、発色刺激が付与された際に発色可能な状態または発色不可能な状態に制御する制御刺激とを含み、制御刺激として発色情報付与光の照射を用い、発色刺激として加熱処理を用いることが好ましい。
なお、熱応答性マイクロカプセル(以下、単に「マイクロカプセル」と略す場合がある)は、第1成分を含む芯部と、この芯部を被覆する外殻とから構成されるが、前記外殻を構成する材料は加熱処理によりマイクロカプセル内外の物質拡散を可能とする熱応答性材料からなることが好ましい。この場合、マイクロカプセルの外殻として用いられる熱応答性材料は、加熱処理による分解、軟化や、周囲の部材との相溶等により、加熱処理を終えた後は外殻構造の分解、消失、破壊等が起こり恒久的(不可逆的)にマイクロカプセル内外の物質拡散が容易な状態が維持できるような材料(例えば、加熱により分解する熱分解性材料、熱可塑性樹脂等の熱可塑性材料や、加熱により周囲の部材と相溶する熱溶解性材料等)を用いることが好ましい。
これにより、発色工程時には、マイクロカプセル外殻の物質透過性が不可逆的に増大し、且つ、その状態が維持されるために、制御刺激の付与(発色情報付与光の照射)後に反応可能な状態となった(又は、制御刺激の付与後においても反応可能な状態を維持し続けている)第1成分と第2成分とが十分に反応し尽くすことが容易となる。それゆえ、発色工程時においては、十分な発色濃度を確保することができると共に、画像形成後に、高温環境下で印刷物を放置しても、一旦形成された画像の変色によってカラーバランスが崩れてしまうことを抑制することもできる。
(トナーの発色タイプ(光発色型、光非発色型))
なお、上述した熱応答性マイクロカプセルと光硬化性組成物とを組み合わせて用いた本発明におけるトナーは、以下の2つのタイプのいずれかであることが特に好ましい。
(1)光硬化性組成物が未硬化状態の時に発色不可能な状態を維持し、光硬化性組成物を硬化させる特定波長の光の照射により光硬化性組成物を硬化させることによって、発色不可能な状態から発色可能な状態へ不可逆的に制御されるタイプのトナー(以下、「光発色型トナー」と称す場合がある)。(2)光硬化性組成物が未硬化状態の時に発色可能な状態を維持し、光硬化性組成物を硬化させる特定波長の光の照射により前記光硬化性組成物を硬化させることによって、発色可能な状態から発色不可能な状態へ不可逆的に制御されるタイプのトナー(以下、「光非発色型トナー」と称す場合がある)。
前記光発色型トナーと光非発色型トナーとの主たる違いは、光硬化性組成物を構成する材料にあり、光発色型トナーでは、光硬化性組成物中に(光重合性を有さない)第2成分と光重合性化合物とが少なくとも含まれるのに対して、光非発色型トナーは、光硬化性組成物中に、分子中に光重合性基を有する第2成分が少なくとも含まれる。
なお、光発色型トナーおよび光非発色型トナーに用いられる光硬化性組成物中には、光重合開始剤が含まれていることが特に好ましく、必要に応じてその他種々の材料が含まれていてもよい。
上記光発色型トナーに用いられる光重合性化合物および第2成分としては、光硬化組成物が未硬化の状態で両者の間に相互作用が働き、光硬化性組成物中での第2成分の物質拡散が抑制され、発色情報付与光の照射による光硬化性組成物の硬化(光重合性化合物の重合)後の状態で両者の間の相互作用が減少して、光硬化性組成物中での第2成分の拡散が容易となる材料が用いられる(なお、光硬化性組成物を構成するこれらの材料の詳細については後述する)。
従って、光発色型トナーにおいては、発色情報付与光を照射せず、光硬化性組成物が未硬化状態の時には、第2成分は光重合性化合物にトラップされたままである。それゆえ、この状態でマイクロカプセル外殻の物質透過性の物質透過性を増大させるような刺激を付与しても、第2成分はマイクロカプセル中の第1成分と接触することができず、第1成分と第2成分との反応(発色反応)が不可能な状態(発色不可能な状態)が維持される。
これに対して、光硬化性組成物を硬化させる波長の発色情報付与光を照射して光硬化性組成物を硬化させると、光硬化性組成物中に含まれる第2成分の物質拡散が容易となる。それゆえ、この状態で加熱処理等の発色刺激の付与によりマイクロカプセル外殻の物質透過性が増大すれば、マイクロカプセル内の第1成分と光硬化性組成物中の第2成分との反応(発色反応)が可能な状態(発色可能な状態)となる。
なお、光硬化性組成物の硬化反応は不可逆的であるため、一旦、発色可能な状態に制御されるとこの状態が永続的に維持される。
従って、例えば、マイクロカプセルとして熱応答性マイクロカプセルを用いている場合には、発色情報付与光を照射して光硬化性組成物を硬化させて、トナーを発色可能な状態に制御し、続いて加熱処理すれば熱応答性マイクロカプセル外殻の物質透過性が増大して第1成分と第2成分とが反応し、トナーが所定の色に発色し、この発色状態を安定的に維持できる。これに対して光硬化性組成物を硬化させる発色情報付与光を照射しなければ光硬化性組成物は未硬化の状態を維持し続け、加熱処理して熱応答性マイクロカプセル外殻の物質透過性が増大しても第1成分と第2成分とは反応できない。従って、例えば、発色前のトナーの色が無色透明であれば、この状態が安定的に維持されることになる。
以上に説明した光発色型トナーにおいて、第1成分と第2成分との発色反応は、(1)光硬化性組成物を硬化させる波長の発色情報付与光の照射による光硬化性組成物の硬化という反応と、(2)加熱処理等の発色刺激の付与によるマイクロカプセル外殻の物質透過性の増大という2段階のプロセスにより制御される。
これに対して特許文献2に記載されたカプセル壁として光応答性の2分子膜を利用したトナーの発色反応も、光照射によって発色反応(物質拡散)を可能な状態とした後、加熱による物質拡散を促進させて反応させる2段階のプロセスからなる。
しかし、発色不可能な状態から発色可能な状態へと制御するか否かを決定する1段階目のプロセス(光硬化性組成物の硬化)が、光発色型トナーでは不可逆的であるのに対して、特許文献2に記載されたトナーでは1段階目のプロセス(2分子膜の光異性化反応)は可逆的である。
従って、特許文献2に記載されたトナーでは、1段階目のプロセスが可逆的であるために、2段階目の発色反応が1段階目のプロセスの影響を大なり小なり受け続けることになり、発色反応の制御が困難である。それゆえ、画像形成時の発色濃度にばらつきが生じたりしてしまう。
これに対して、光発色型トナーでは1段階目のプロセスの影響を受けずに、2段階目の発色反応を制御できるため、発色反応の制御が容易で画像形成時の発色濃度の確保や、画像形成後のカラーバランスの変化の抑制が容易である。加えて、マイクロカプセル外殻の物質透過性の増大も不可逆的なものとすることにより、より一層精緻な制御が可能となる。更に、発色濃度の階調は、不可逆的な反応である光硬化性組成物の硬化(重合)度合いにより制御できるため、発色濃度の階調制御も極めて容易である。
なお、光発色型トナーとしては、光重合性化合物として上述したように光硬化性組成物が未硬化状態の時に第2成分をトラップする特性を有する光重合性化合物を用いるタイプ(以下、「第1の光発色型トナー」と称す場合がある)以外にも、分子内に第1成分と反応することにより第1成分と第2成分との発色反応を阻害する消色反応基を含む光重合性化合物を用いるタイプ(以下、「第2の光発色型トナー」と称す場合がある)であってもよい。
第2の光発色型トナーでは、例えば、マイクロカプセルとして熱応答性マイクロカプセルを用いている場合には、光硬化性組成物を硬化させる波長の発色情報付与光が照射されると、光硬化性組成物が硬化(すなわち、消色反応基を含む光重合性化合物が重合)するため、続いて加熱処理が実施されても、第1成分と第2成分との発色反応が、(重合により加熱されても物質拡散できなくなった)消色反応基により阻害されないために、発色することができる。これに対して、光硬化性組成物を硬化させる波長の発色情報付与光を照射することなく加熱処理を実施した場合には、消色反応基が第1成分と反応して、第1成分と第2成分との発色反応を阻害するために発色できない。
このように第2の光発色型トナーにおいても、光硬化性組成物が未硬化状態の時に発色不可能な状態を維持し、光硬化性組成物を硬化させる特徴波長の光の照射により光硬化性組成物を硬化させることによって、発色不可能な状態から発色可能な状態に制御される。
また、光非発色型トナーにおいては、第2成分自体が光重合性を有するため、発色情報付与光を照射したとしても、この光の波長が光硬化性組成物を硬化させる波長でなければ、光硬化性組成物中に含まれる第2成分の物質拡散が容易な状態を維持できる。従って、この状態で加熱処理等の発色刺激の付与によりマイクロカプセル外殻の物質透過性が増大すれば、マイクロカプセル内の第1成分と光硬化性組成物中の第2成分との反応(発色反応)が可能な状態(発色可能な状態)となる。
これに対して、光硬化性組成物を硬化させる波長の発色情報付与光を照射して光硬化性組成物を硬化させると光硬化性組成物中に含まれる第2成分同士が重合してしまうため、光硬化性組成物中に含まれる第2成分の物質拡散が極めて困難となる。それゆえ、この状態でマイクロカプセル外殻の物質透過性の物質透過性を増大させるような刺激を付与しても、第2成分はマイクロカプセル中の第1成分と接触することができず、第1成分と第2成分との反応(発色反応)が不可能な状態(発色不可能な状態)が維持される。
なお、光硬化性組成物の硬化反応は不可逆的であるため、一旦、発色不可能な状態に制御されるとこの状態が永続的に維持される。
従って、例えば、マイクロカプセルとして熱応答性マイクロカプセルを用いている場合には、発色情報付与光を照射して光硬化性組成物を硬化させて、トナーを発色不可能な状態に制御すれば、続いて加熱処理して熱応答性マイクロカプセル外殻の物質透過性が増大しても第1成分と第2成分とが反応できない。従って、例えば、発色前のトナーの色が無色透明であれば、この状態が安定的に維持されることになる。
一方、光硬化性組成物が未硬化の状態、すなわちトナーが発色可能な状態で加熱処理すれば熱応答性マイクロカプセル外殻の物質透過性が増大して第1成分と第2成分とが反応し、トナーが所定の色に発色し、この発色状態を安定的に維持できる。
以上に説明した光非発色型トナーにおいて、第1成分と第2成分との発色反応は、光硬化性組成物が未硬化の状態(光硬化性組成物を硬化させる波長の発色情報付与光を照射するプロセスを経ない状態)で、加熱処理等の発色刺激の付与によるマイクロカプセル外殻の物質透過性を増大させるという実質的に1段階のプロセスにより制御される。
それゆえ、発色反応の制御が容易で画像形成時の発色濃度の確保や、画像形成後のカラーバランスの変化の抑制が容易である。加えて、マイクロカプセル外殻の物質透過性の増大も不可逆的なものとすることにより、より一層精緻な制御が可能となる。更に、発色濃度の階調は、不可逆的な反応である光硬化性組成物の硬化(重合)度合いにより制御できるため、発色濃度の階調制御も極めて容易である。
また、トナーを発色させたくない場合には、加熱処理等の発色刺激の付与によりマイクロカプセル外殻の物質透過性の増大させる前に、発色情報付与光を照射して光硬化性組成物を硬化させれば、発色不可能な状態を安定して維持できる。
これに対して特許文献2に記載されたカプセル壁として光応答性の2分子膜を利用したトナーの発色反応も、光照射によって発色反応(物質拡散)を可能な状態とした後、加熱による物質拡散を促進させて反応させる2段階のプロセスからなり、発色制御が複雑である。さらに、特許文献3に記載されたトナーでは、1段階目のプロセスが可逆的であるために、2段階目の発色反応が1段階目のプロセスの影響を大なり小なり受け続けることになり、発色反応の制御が困難である。それゆえ、画像形成時の発色濃度にばらつきが生じたりしてしまう。
次に、本発明におけるトナーの好適な構造について、トナーが、前記光硬化性組成物と、この光硬化性組成物中に分散するマイクロカプセルとを含む場合についてより詳細に説明する。
この場合、トナーは光硬化性組成物と、この光硬化性組成物中に分散するマイクロカプセルとを含む発色部を1つのみ有するものであってもよいが、2つ以上有することが好ましい。ここで、上記「発色部」とは、前述のように外部刺激が付与された際に、特定のひとつの色に発色可能な連続した領域を意味する。
なお、トナーに2以上の発色部が含まれる場合、同じ色に発色可能な1種類の発色部のみがトナー中に含まれていてもよいが、互いに異なる色に発色可能な2種類以上の発色部がトナー中に含まれることが特に好ましい。その理由は、ひとつのトナー粒子の発色可能な色が、前者の場合は1種類のみに限定されるが、後者の場合は2種類以上とすることができるからである。
例えば、互いに異なる色に発色可能な2種類以上の発色部としては、イエロー色に発色可能なイエロー発色部と、マゼンタ色に発色可能なマゼンタ発色部と、シアン色に発色可能なシアン発色部とを含むような組み合わせが挙げられる。
この場合、例えば、外部刺激の付与によりいずれか1種類の発色部のみが発色した場合には、トナーは、イエロー、マゼンタ、あるいは、シアンのいずれかの色に発色することができ、いずれか2種類の発色部が発色した場合には、これら2種類の発色部の発色した色を組み合わせた色に発色することができ、ひとつのトナー粒子で、多様な色を表現することが可能となる。
なお、トナー中に互いに異なる色に発色可能な2種類以上の発色部が含まれる場合の発色する色の制御は、各々の種類の発色部に含まれる第1成分および第2成分の種類や組み合わせを異なるものとすることの他に、各々の種類の発色部に含まれる光硬化性組成物の硬化に用いる光の波長を異なるものとすることにより実現できる。
すなわち、この場合、発色部の種類毎に発色部に含まれる光硬化性組成物の硬化に必要な光の波長が異なるため、制御刺激として、発色部の種類に応じた波長の異なる複数種の発色情報付与光を用いればよい。なお、発色部に含まれる光硬化性組成物の硬化に必要な光の波長を異なるものとするには、発色部の種類毎に異なる波長の光に感応する光重合開始剤を光硬化性組成物中に含有させることが好適である。
例えば、イエロー、マゼンタ、および、シアンに発色可能な3種類の発色部がトナー中に含まれる場合、各々の種類の発色部に含まれる光硬化性組成物として、光の波長が405nm、532nmおよび657nmのいずれかに応答して硬化する材料を用いれば、これら3つの異なる波長の発色情報付与光(特定波長を有する光)を使い分けることによって、トナーを所望の色に発色させることができる。
なお、発色情報付与光の波長としては、可視域の波長から選択することもできるが、紫外域の波長から選択してもよい。短波長であることよりビーム径が絞りやすいメリットを有する(高精細が可能)。このような波長の光源としては、波長変換固体SHGレーザ(基本波長を1/2に変換する)や、ガスレーザがある。
また、発色情報付与光の波長を可視域からではなく赤外域から選択することによって従来から知られるごとく発光素子自体の値段が安く、高出力のものが得られやすいメリットがある。
本発明に用いるトナーは、従来の顔料等の着色剤を用いたトナーに用いられるのと同様な結着樹脂を主成分とする母材を含むものであってもよい。この場合、母材中に、前記2以上の発色部の各々が粒子状のカプセルとして分散していることが好ましい(以下、カプセル状のひとつの発色部を「感光・感熱カプセル」と称する場合がある)。また、母材中には、従来の顔料等の着色剤を用いたトナーと同様に離型剤や、種々の添加剤が含まれていてもよい。
感光・感熱カプセルは、マイクロカプセルや光硬化性組成物を含む芯部と、該芯部を被覆する外殻とを有し、この外殻は、後述するトナーの製造過程や、トナーの保管時において、感光・感熱カプセル内のマイクロカプセルや光硬化性組成物を感光・感熱カプセル外に漏れないように安定して保持できるものであれば特に限定されない。
しかしながら、本発明においては、後述するトナーの製造過程において、第2成分が外殻を透過して感光・感熱カプセル外のマトリックスへ流出したり、他の色に発色可能な感光・感熱カプセル中の第2成分が外殻を透過して流入したりするのを防ぐために、非水溶性樹脂からなる結着樹脂や離型材等の非水溶性材料を主成分として含むものであることが好ましく、スチレン−アクリル共重合体、ポリエステル等の非水溶性樹脂を用いることが好ましい。
なお、本発明に用いるトナーは、上述した母材中に感光・感熱カプセル(発色部)が分散した構造(以下、「発色部分散構造」と称す場合がある)以外にも、2以上の発色部が層状に形成された構造であってもよい(以下、層状に形成されたひとつの発色部を、「感光・感熱層」と称す場合がある)。
ここで、2以上の発色部が層状を成す場合の態様としては、例えば、(1)コア層を形成する感光・感熱層と、このコア層を被覆するように、コア層上に順次積層された1以上の感光・感熱層とからなる態様(以下、「同心円構造」と称す場合がある)や、(2)トナーを所定の方向から切断した場合に得られた断面が、帯状に積層された2以上の感光・感熱層からなる態様(以下、「ストライプ構造」と称す場合がある)、あるいは、(3)トナーを所定の方向から切断した場合に得られた断面が、トナーの中心を基点に扇状に区分され、各々の扇状のエリアが感光・感熱層からなる態様(以下、「扇構造」と称す場合がある)が挙げられる。
なお、同心円構造、ストライプ構造、扇構造のいずれにおいても、隣接する2つの感光・感熱層の間には、上述した感光・感熱カプセルの外殻を構成する材料を含む中間層が設けられていることが特に好ましい。また、中間層には従来の顔料等の着色剤を用いたトナーと同様に離型剤や、種々の添加剤が含まれていてもよい。また、これら3種のトナーの最表面には、結着樹脂を含む被覆層が設けられていることが好ましい。
図6は、本発明におけるトナーが、母材と、該母材に分散した発色部とを含む場合の一例について示した模式断面図であり、図7は、本発明におけるトナーの構造が同心円構造である場合の一例について示した模式断面図であり、図8は、本発明におけるトナーの構造がストライプ構造である場合の一例について示した模式断面図であり、図9は、本発明におけるトナーの構造が扇構造である場合の一例について示した模式断面図である。
図6〜9中、70、72、74、76はトナー、80は第1の発色部、82は第2の発色部、84は第3の発色部、86は母材、90は第1の感光・感熱層、92は第2の感光・感熱層、94は第3の感光・感熱層を表す。なお、図6〜9は、トナーの主要部のみを示したものであり、隣接する2つの感光・感熱層の間に設けられる中間層、トナーの最表面に設けられる被覆層などについては記載を省略してある。
図6に示すトナー70では、母材86中に3種類の発色部80,82,84が分散しており、各々が例えば、イエロー、マゼンタ、シアンに発色可能である。
また、図7に示すトナー72は、コア層を形成する第1の感光・感熱層90と、このコア層を成す第1の感光・感熱層90上に順次積層された第2の感光・感熱層92および第3の感光・感熱層94からなり、図8に示すトナー74は、帯状の第2の感光・感熱層92と、この第2の感光・感熱層92を両側に配置された帯状の第1の感光・感熱層90および第3の感光・感熱層94とからなり、図9に示すトナー76は、トナー76の中心部を基点として扇状に3等分された3つの領域の各々が、3つの感光・感熱層90、92、94からなるものである。図7〜9に示すトナー72,74,76においては、3つの感光・感熱層90、92、94の各々が、例えば、イエロー、マゼンタ、シアンに発色可能である。
なお、母材に発色部を分散させた構造や、同心円構造を有するトナーは、例えば、後述する凝集合一法を利用して作製することができ、同心円構造や、ストライプ構造、あるいは、扇構造を有するトナーは、マイクロリアクターを用いた湿式製法を利用して作製することができる。
また、本発明におけるトナーは、図6〜図9に例示したような発色部分散構造や、同心円構造、ストライプ構造、扇構造のように、2つ以上の発色部を含むトナー以外に、1つの発色部のみを含むトナーであってもよい。このような場合、1つの発色部そのものをトナーとして用いることができる。
(光非発色型トナーの構成材料等)
次に、本発明におけるトナーが光非発色型トナーである場合に用いられるトナー構成材料や、各トナー構成材料を調整する際に用いる材料・方法等について以下により詳細に説明する。
この場合、トナーには、第1成分、第2成分、第1成分を含むマイクロカプセル、第2成分を含む光硬化性組成物が少なくとも用いられ、光硬化性組成物中には光重合開始剤が含まれることが特に好ましく、種々の助剤等が含まれていてもよい。また、マイクロカプセル内(芯部)には第1成分が固体状態で存在していてもよいが、溶媒と共に存在していてもよい。
なお、光非発色型トナーにおいては、第1成分として電子供与性無色染料又はジアゾニウム塩化合物等が用いられ、第2成分として光重合性基を有する電子受容性化合物又は光重合性基を有するカプラー化合物等が用いられる。
以上に列挙した材料に加えて、更に、従来の着色剤を用いたトナーを構成する材料と同様の各種材料;結着樹脂、離型剤、内添剤、外添剤等を必要に応じて適宜利用することができる。以下、各材料等についてより詳細に説明する。
−第1成分および第2成分−
第1成分および第2成分の組合せとしては、下記(ア)〜(ツ)の組合せを好適に挙げることができる(下記例において、それぞれ前者が第1成分、後者が第2成分を表す。)。
(ア)電子供与性無色染料と電子受容性化合物との組合せ。
(イ)ジアゾニウム塩化合物とカップリング成分(以下、適宜「カプラー化合物」と称する。)との組合せ。
(ウ)ベヘン酸銀、ステアリン酸銀等の有機酸金属塩と、プロトカテキン酸、スピロインダン、ハイドロキノン等の還元剤との組合せ。
(エ)ステアリン酸第二鉄、ミリスチン酸第二鉄等の長鎖脂肪酸鉄塩と、タンニン酸、没食子酸、サリチル酸アンモニウム等のフェノール類との組合せ。
(オ)酢酸、ステアリン酸、パルミチン酸等のニッケル、コバルト、鉛、銅、鉄、水銀、銀塩のような有機酸重金属塩と、硫化カルシウム、硫化ストロンチウム、硫化カリウム等のアルカリ金属またはアルカリ土類金属硫化物との組合せ、又は前記有機酸重金属塩と、s−ジフェニルカルバジド、ジフェニルカルバゾン等の有機キレート剤との組合せ。
(カ)銀、鉛、水銀、ナトリウム等の硫酸塩等の重金属硫酸塩と、ナトリウムテトラチオネート、チオ硫酸ソーダ、チオ尿素等の硫黄化合物との組合せ。
(キ)ステアリン酸第二鉄等の脂肪族第二鉄塩と、3,4−ヒドロキシテトラフェニルメタン等の芳香族ポリヒドロキシ化合物との組合せ。
(ク)シュウ酸銀、シュウ酸水銀等の有機酸金属塩と、ポリヒドロキシアルコール、グリセリン、グリコール等の有機ポリヒドロキシ化合物との組合せ。
(ケ)ペラルゴン酸第二鉄、ラウリン酸第二鉄等の脂肪酸第二鉄塩と、チオセシルカルバミドやイソチオセシルカルバミド誘導体との組合せ。
(コ)カプロン酸鉛、ペラルゴン酸鉛、ベヘン酸鉛等の有機酸鉛塩と、エチレンチオ尿素、N−ドデシルチオ尿素等のチオ尿素誘導体との組合せ。
(サ)ステアリン酸第二鉄、ステアリン酸銅等の高級脂肪族重金属塩とジアルキルジチオカルバミン酸亜鉛との組合せ。
(シ)レゾルシンとニトロソ化合物との組合せのようなオキサジン染料を形成するもの。
(ス)ホルマザン化合物と還元剤および/又は金属塩との組合せ。
(セ)保護された色素(又はロイコ色素)プレカーサーと脱保護剤との組合せ。
(ソ)酸化型発色剤と酸化剤との組合せ。
(タ)フタロニトリル類とジイミノイソインドリン類との組合せ。(フタロシアニンが生成する組合せ。)
(チ)イソシアナート類とジイミノイソインドリン類との組合せ(着色顔料が生成する組合せ)。
(ツ)顔料プレカーサーと酸または塩基との組合せ(顔料が形成する組合せ)。
上記に列挙した本発明に用いられる第1成分としては、実質的に無色の電子供与性無色染料又はジアゾニウム塩化合物が好ましい。
前記電子供与性無色染料としては、従来より公知のものを使用することができ、前記第2成分と反応して発色するものであれば全て使用することができる。 具体的には、フタリド系化合物、フルオラン系化合物、フェノチアジン系化合物、インドリルフタリド系化合物、ロイコオーラミン系化合物、ローダミンラクタム系化合物、トリフェニルメタン系化合物、トリアゼン系化合物、スピロピラン系化合物、ピリジン系、ピラジン系化合物、フルオレン系化合物等の各種化合物を挙げることができる。本発明に使用することができる電子供与性無色染料は、これらに限定されるものではない。
本発明においてフルカラー画像を形成する場合、シアン、マゼンタ、イエローの各発色色素用の電子供与性無色染料を使用することが特に好ましい。
シアン、マゼンタ、イエロー発色色素としては、米国特許第4,800,149号等に記載の各色素を使用することができる。さらに、イエロー発色色素用電子供与性無色染料としては、米国特許第4,800,148号等に記載の色素も使用することができ、シアン発色色素用電子供与性無色染料としては、特開平63−53542号公報等に記載の色素も使用することができる。
前記電子供与性無色染料の使用量としては、例えば、トナーが図6〜9に例示したような構造を有する場合には、感光・感熱カプセル(又は感光・感熱層)中に、0.01〜3g/m2 が好ましく、0.1〜1g/m2 がより好ましい。前記使用量が、0.01g/m2 未満であると、十分な発色濃度を得ることができないことがあり、3g/m2 を超えると、感光・感熱カプセル(又は感光・感熱層)の形成が困難になることがある。電子供与性無色染料の使用量については、本発明のトナーが、1つの発色部のみを含む構造を有する場合も同様である。
前記ジアゾニウム塩化合物としては、下記式(1)で表される化合物を挙げることができる。
Ar−N2 + - ・・・ 式(1)
〔式中、Arは芳香族環基を表し、X- は酸アニオンを表す。〕
このジアゾニウム塩化合物は加熱によりカプラーとカップリング反応を起こして発色したり、また光によって分解したりする化合物である。これらはAr部分の置換基の位置や種類によって、その最大吸収波長を制御することが可能である。
本発明に用いるジアゾニウム塩化合物の最大吸収波長λmax としては、効果の点から450nm以下であることが好ましく、290〜440nmであることがより好ましい。また、本発明に用いるジアゾニウム塩化合物としては、炭素数12以上で、水に対する溶解度が1質量%以下かつ酢酸エチルに対する溶解度が5質量%以上のジアゾニウム塩化合物が好ましい。
前記ジアゾニウム塩化合物は、単独で用いてもよいし、色相調整等の諸目的に応じて2種以上併用して使用してもよい。
前記ジアゾニウム塩化合物の使用量としては、例えば、本発明のトナーが図6〜9に例示したような構造を有する場合には、感光・感熱カプセル(又は感光・感熱層)中に0.01〜3g/m2 が好ましく、0.02〜1.0g/m2 がより好ましい。前記使用量が、0.01g/m2 未満であると、十分な発色性を得ることができないことがあり、3g/m2 を超えると、感度が低下したり、定着後に必要に応じて実施される光照射の時間を長くする必要が生じることがある。なお、ジアゾニウム塩化合物の使用量については、トナーが1つの発色部のみを含む構造を有する場合も同様である。
本発明に用いる第2成分は、同一分子内に光重合性基および第1成分と反応して発色する部位とを有する実質的に無色化合物であり、光重合性基を有する電子受容性化合物又は光重合性基を有するカプラー化合物等の第1成分と反応して発色し、かつ光に反応して重合し、硬化するという両機能を有するものであれば全て使用することができる。
前記光重合性基を有する電子受容性化合物、即ち、同一分子中に電子受容性基と光重合性基とを有する化合物としては、光重合性基を有し、かつ第1成分の一つである電子供与性無色染料と反応して発色し、かつ光重合して硬化しうるものであれば全て使用することができる。
前記電子受容性化合物としては、特開平4−226455号公報に記載の3−ハロ−4−ヒドロキシ安息香酸、特開昭63−173682号公報に記載のヒドロキシ基を有する安息香酸のメタアクリロキシエチルエステル、アクリロキシエチルエステル、同59−83693号公報、同60−141587号公報、同62−99190号公報に記載のヒドロキシ基を有する安息香酸とヒドロキシメチルスチレンとのエステル、欧州特許29323号に記載のヒドロキシスチレン、特開昭62−167077号公報、同62−16708号公報に記載のハロゲン化亜鉛のN−ビニルイミダゾール錯体、同63−317558号公報に記載の電子受容性化合物等を参考にして合成できる化合物等が挙げられる。
これらの電子受容性基と重合性基とを同一分子内に有する化合物のうち、下記一般式で表される3−ハロ−4−ヒドロキシ安息香酸が好ましい。
Figure 0004807118
〔式中、Xは、ハロゲン原子を表し、中でも、塩素原子が好ましい。Yは、重合性エチレン基を有する1価の基を表し、中でも、ビニル基を有するアラルキル基、アクリロイルオキシアルキル基又はメタクリロイルオキシアルキル基が好ましく、炭素数5〜11のアクリロイルオキシアルキル基又は炭素数6〜12のメタクリロイルオキシアルキル基がより好ましい。Zは、水素原子、アルキル基又はアルコキシル基を表す。〕
前記光重合性基を有する電子受容性化合物は、前記電子供与性無色染料と組合わせて用いられる。この場合、電子受容性化合物の使用量としては、使用する電子供与性無色染料1質量部に対して、0.5〜20質量部が好ましく、3〜10質量部がより好ましい。0.5質量部未満であると、十分な発色濃度を得ることができないことがあり、20質量部を超えると、感度の低下や、感光・感熱カプセル(又は感光・感熱層)の形成が困難になる場合がある。
また、前記光重合性基を有するカプラー化合物としては、光重合性基を有し、かつ前記第1成分の一つであるジアゾニウム塩化合物と反応して発色し、かつ光重合して硬化しうるものであれば全て使用することができる。カプラー化合物は、塩基性雰囲気及び/又は中性雰囲気でジアゾ化合物とカップリングして色素を形成するものであり、色相調整等種々の目的に応じて、複数種を併用して用いることができる。
前記カプラー化合物は、ジアゾニウム塩化合物と組合せて用いる。前記カプラー化合物の使用量としては、例えば、本発明のトナーが図6〜9に例示したような構造を有する場合には感光・感熱カプセル(又は感光・感熱層)中に、0.02〜5g/m2 が好ましく、効果の点から、0.1〜4g/m2 がより好ましい。前記添加量が、0.02g/m2 未満であると、発色性に劣ることがあり、5g/m2 を越えると、感光・感熱カプセル(又は感光・感熱層)の形成が困難になる場合がある。なお、カプラー化合物の使用量については、本発明のトナーが、1つの発色部のみを含む構造を有する場合も同様である。
また、カプラー化合物の使用量としては、ジアゾニウム塩化合物1質量部に対し、0.5〜20質量部が好ましく、1〜10質量部がより好ましい。前記使用量が、0.5質量部未満であると、十分な発色性を得られないことがあり、20質量部を超えると、感光・感熱カプセル(又は感光・感熱層)の形成が困難になる場合がある。
カプラー化合物は、その他の成分とともに水溶性高分子を添加して、サンドミル等により固体分散して用いることもできるが、適当な乳化助剤とともに乳化し、乳化物として用いることもできる。ここで、固体分散又は乳化する方法としては、特に限定されるものではなく、公知の方法の中から適宜選択することができる。方法の詳細については、特開昭59−190886号公報、特開平2−141279号公報、特開平7−17145号公報に記載されている。
また、カップリング反応を促進する目的で、第3級アミン類、ピペリジン類、ピペラジン類、アミジン類、フォルムアミジン類、ピリジン類、グアニジン類、モルホリン類等の有機塩基を用いることが好ましい。
上記有機塩基は、特開昭57−123086号公報、特開昭60−49991号公報、特開昭60−94381号公報、特願平7−228731号公報、特願平7−235157号公報、特願平7−235158号公報等に記載されている。
前記有機塩基の使用量としては、特に限定されるものではないが、ジアゾニウム塩1モルに対し、1〜30モルが好ましい。前記有機塩基は、単独で用いてよいし、2種以上併用して用いてもよい。
さらに、発色反応を促進させる目的で、発色助剤を加えることもできる。前記発色助剤としては、フェノール誘導体、ナフトール誘導体、アルコキシ置換ベンゼン類、アルコキシ置換ナフタレン類、ヒドロキシ化合物、カルボン酸アミド化合物、スルホンアミド化合物等が挙げられる。これらの化合物は、カプラー化合物又は塩基性物質の融点を低下させる、或いは、マイクロカプセル壁(外殻)の熱透過性を向上させる作用を有することから、高い発色濃度が得られるものと考えられる。
−光重合開始剤−
次に、本発明に用いる光重合開始剤について説明する。前記光重合開始剤は、発色情報付与光を照射することによりラジカルを発生して光硬化性組成物内で重合反応を起こし、かつその反応を促進させることができる。この重合反応により光硬化性組成物が硬化する。
前記光重合開始剤は、公知のものの中から適宜選択することができ、中でも、300〜1000nmに最大吸収波長を有する分光増感化合物と、該分光増感化合物と相互作用する化合物と、を含有するものであることが好ましい。
但し、前記分光増感化合物と相互作用する化合物が、その構造内に300〜1000nmに最大吸収波長を有する色素部とボレート部との両構造を併せ持つ化合物であれば、前記分光増感色素を用いなくてもよい。
公知の光重合開始剤として、例えば、米国特許第4950581号(第20欄、第35行〜第21欄、第35行)に記載のものを挙げることができる。また、例えば、EP−A−137452、DE−A−2718254、DE−A−2243621、米国特許第4950581号(第14欄第60行〜第18欄第44行)に記載のトリアジン;2,4−ビス(トリクロロメチル)−6−(4−スチルフェニル)−s−トリアジン等のトリハロメチルトリアジン等のトリアジン化合物が挙げられる。
前記光重合開始剤をハイブリッド系で使用する場合には、フリーラジカル硬化剤に加えて、カチオン系光重合開始剤を挙げることもできる。前記カチオン系光重合開始剤としては、例えば、ベンゾイルパーオキサイド、米国特許第4950581号(第19欄、第17〜25行)に記載のパーオキサイド等のパーオキサイド化合物;米国特許第4950581号(第18欄、第60行〜第19欄10行)に記載の芳香族スルホニウム若しくはヨードニウム塩;(η6 −イソプロピルベンゼン)−(η5 −シクロペンタジエニル)−鉄(II)ヘキサフルオロホスフェート等のシクロペンタジエニル−アレーン鉄(II)錯塩等を好適に挙げることができる。
さらに、前記色素/ホウ素化合物の例としては、特開昭62−143044号公報、特開平1−138204号公報、特表平6−505287号公報、特開平4−261406号公報等に記載のものも好適に挙げられる。
前記300〜1000nmに最大吸収波長を有する分光増感化合物としては、この波長領域に最大吸収波長を有する分光増感色素が好ましい。前記波長領域にある分光増感色素から所望の任意の色素を選択し、発色情報付与光の照射に用いる光源に適合するよう感光波長を調整することにより、高感度を得ることができる。
前記分光増感色素としては、公知の化合物の中から適宜選択することができ、例えば、「Research Disclogure,Vol.200,1980年12月、Item 20036」や「増感剤」(p.160〜p.163、講談社;徳丸克己・大河原信/編、1987年)等に記載のものが挙げられる。
具体的には、特開昭58−15603号公報に記載の3−ケトクマリン化合物、特開昭58−40302号公報に記載のチオピリリウム塩、特公昭59−28328号公報、同60−53300号公報に記載のナフトチアゾールメロシアニン化合物、特公昭61−9621号公報、同62−3842号、特開昭59−89303号公報、同60−60104号公報に記載のメロシアニン化合物等が挙げられる。
また、「機能性色素の化学」(1981年、CMC出版社、p.393〜p.416)や「色材」(60〔4〕212−224(1987))等に記載された色素も挙げることができ、具体的には、カチオン性メチン色素、カチオン性カルボニウム色素、カチオン性キノンイミン色素、カチオン性インドリン色素、カチオン性スチリル色素等が挙げられる。
前記分光増感色素には、クマリン(ケトクマリン又はスルホノクマリンを含む。)色素、メロスチリル色素、オキソノール色素、ヘミオキソノール色素等のケト色素;非ケトポリメチン色素、トリアリールメタン色素、キサンテン色素、アントラセン色素、ローダミン色素、アクリジン色素、アニリン色素、アゾ色素等の非ケト色素;アゾメチン色素、シアニン色素、カルボシアニン色素、ジカルボシアニン色素、トリカルボシアニン色素、ヘミシアニン色素、スチリル色素等の非ケトポリメチン色素;アジン色素、オキサジン色素、チアジン色素、キノリン色素、チアゾール色素等のキノンイミン色素等が含まれる。
前記分光増感色素を適宜使用することにより、トナーに用いる光重合開始剤の分光感度を紫外〜赤外域に得ることが可能となる。また、前記各種分光増感色素は、一種単独で用いてもよいし、二種以上を組み合わせて用いてもよい。
前記分光増感化合物の使用量としては、例えば、本発明におけるトナーが図6〜9に例示したような構造を有する場合には、感光・感熱カプセル(又は感光・感熱層)を構成する材料の総重量に対し、0.1〜5質量%が好ましく、0.5〜2質量%がより好ましい。これは、本発明におけるトナーが、1つの発色部のみを含む構造を有する場合も同様である。
前記分光増感化合物と相互作用する化合物としては、前記第2成分中の光重合性基と光重合反応を開始しうる公知の化合物の中から、1種又は2種以上の化合物を適宜選択して使用することができる。
この化合物を前記の分光増感化合物と共存させることにより、その分光吸収波長領域の照射光に敏感に感応し、高効率にラジカルを発生させうることから、高感度化が図れ、かつ紫外〜赤外領域にある任意の光源を用いてラジカルの発生を制御することができる。
前記「分光増感化合物と相互作用する化合物」としては、有機系ボレート塩化合物、ベンゾインエーテル類、トリハロゲン置換メチル基を有するS−トリアジン誘導体、有機過酸化物又はアジニウム塩化合物が好ましく、有機系ボレート塩化合物がより好ましい。この「分光増感化合物と相互作用する化合物」を前記分光増感化合物と併用して用いることにより、露光した露光部分に局所的に、かつ効果的にラジカルを発生させることができ、高感度化を達成することができる。
前記有機系ボレート塩化合物としては、特開昭62−143044号公報、特開平9−188685号公報、特開平9−188686号公報、特開平9−188710号公報等に記載の有機ボレート化合物(以下、「ボレート化合物I」という場合がある。)、又は前記「機能性色素の化学」(1981年、CMC出版社、p.393〜p.416)や「色材」(60〔4〕212−224(1987))等に記載のカチオン性色素から得られる分光増感色素系ボレート化合物(以下、「ボレート化合物II」という場合がある。)等が挙げられる。
このボレート化合物IIは、その構造内に色素部とボレート部とを併せ持つ化合物であり、露光時に、色素部の光吸収機能により効果的に光源エネルギーを吸収し、かつボレート部のラジカル放出機能により重合反応を促進すると同時に、併存する分光増感化合物を消色するという3つの機能を有するものである。
具体的には、300nm以上の波長領域、好ましくは400〜1100nmの波長領域に最大吸収波長を有するカチオン性色素であれば、いずれも好適に用いることができる。中でも、カチオン性のメチン色素、ポリメチン色素、トリアリールメタン色素、インドリン色素、アジン色素、キサンテン色素、シアニン色素、ヘミシアニン色素、ローダミン色素、アザメチン色素、オキサジン色素又はアクリジン色素等が好ましく、カチオン性のシアニン色素、ヘミシアニン色素、ローダミン色素又はアザメチン色素がより好ましい。
前記有機カチオン性色素から得られるボレート化合物IIは、有機カチオン性色素と有機ホウ素化合物アニオンとを用い、欧州特許第223,587A1号に記載の方法を参考にして得ることができる。
前記ボレート化合物IIは、上記の通り、多機能な化合物であるが、高い感度と十分な消色性を得る観点から、本発明では、前記光重合開始剤には、分光増感化合物と、該分光増感化合物と相互作用する化合物と、を適宜組合わせて構成することが好ましい。この場合、光重合開始剤としては、前記分光増感化合物とボレート化合物Iとを組合わせた光重合開始剤(1)、又は前記ボレート化合物Iとボレート化合物IIとを組合わせた光重合開始剤(2)であることがより好ましい。
この時、光重合開始剤中に存在する分光増感色素と有機ボレート化合物との使用比率が、高感度化と、画像形成時の定着時の加熱処理による発色後に必要に応じて実施される光照射工程の光照射による十分な消色性(未反応の反応性物質の失活、分解等)を得る点で非常に重要となる。
前記光重合開始剤(1)の場合、光重合開始剤中には、光重合反応に必要な分光増感化合物/ボレート化合物Iの比(=1/1:モル比)に加え、さらにトナー内に残存する分光増感化合物を十分に消色するのに必要な量のボレート化合物Iを添加することが十分な高感度化と消色性能を得る点から特に好ましい。
即ち、分光増感色素/ボレート化合物Iの比は、1/1〜1/50の範囲で使用することが好ましく、1/1.2〜1/30の範囲で使用することがより好ましいが、1/1.2〜1/20の範囲で使用することが最も好ましい。前記の比が、1/1未満では十分な重合反応性と消色性を得ることができず、1/50を越えると、感光・感熱カプセル(又は感光・感熱層)の形成が困難になる場合があるため好ましくない。
また、前記光重合開始剤(2)の場合には、ボレート化合物Iとボレート化合物IIとを、ボレート部位が色素部位に対して等モル比以上となるように組合せて用いることが、十分な高感度化と消色性能を得る点から特に好ましい。ボレート化合物I/ボレート化合物IIの比は、1/1〜50/1の範囲で使用することが好ましく、1.2/1〜30/1の範囲で使用することがより好ましいが、1.2/1〜20/1の範囲で使用することが最も好ましい。前記の比が、1/1未満ではラジカルの発生が少なく、十分な重合反応性と消色性能が得られず、50/1を越えると、十分な感度を得られなくなるため好ましくない。
光重合開始剤中の分光増感色素と有機ボレート化合物との総量は、光重合性基を有する化合物(第2成分)の使用量に対し、0.1〜10質量%の範囲で使用することが好ましく、0.1〜5質量%の範囲で使用することがより好ましいが、0.1〜1質量%の範囲で使用することが最も好ましい。前記使用量が、0.1質量%未満では本発明の効果を得ることができず、10質量%を越えると、トナーの保存安定性が低下するとともに、感光・感熱カプセル(又は感光・感熱層)の形成が困難になる場合がある。
−助剤−
また、光硬化性組成物には重合反応を促進する目的で、さらに助剤として、酸素除去剤(oxygen scavenger)又は活性水素ドナーの連鎖移動剤等の還元剤や連鎖移動的に重合を促進するその他の化合物を添加することもできる。
前記酸素除去剤としては、ホスフィン、ホスホネート、ホスファイト、第1銀塩又は酸素により容易に酸化されるその他の化合物が挙げられる。具体的には、N−フエニルグリシン、トリメチルパルビツール酸、N,N−ジメチル−2,6−ジイソプロピルアニリン、N,N,N−2,4,6−ペンタメチルアニリン酸が挙げられる。さらに、チオール類、チオケトン類、トリハロメチル化合物、ロフィンダイマー化合物、ヨードニウム塩類、スルホニウム塩類、アジニウム塩類、有機過酸化物、アジド類等も重合促進剤として有用である。
(マイクロカプセル化)
本発明では、電子供与性無色染料やジアゾニウム塩化合物のような第1成分をマイクロカプセルに内包して使用する。
マイクロカプセル化する方法としては、従来公知の方法を用いることができる。例えば、米国特許第2800457号、同28000458号に記載の親水性壁形成材料のコアセルベーションを利用した方法、米国特許第3287154号、英国特許第990443号、特公昭38−19574号公報、同42−446号公報、同42−771号公報等に記載の界面重合法、米国特許第3418250号、同3660304号に記載のポリマー析出による方法、米国特許第3796669号に記載のイソシアネートポリオール壁材料を用いる方法、米国特許第3914511号に記載のイソシアネート壁材料を用いる方法、米国特許第4001140号、同4087376号、同4089802号に記載の尿素−ホルムアルデヒド系、尿素ホルムアルデヒド−レゾルシノール系壁形成材料を用いる方法、米国特許第4025455号に記載のメラミン−ホルムアルデヒド樹脂、ヒドロキシブロビルセルロース等の壁形成材料を用いる方法、特公昭36−9168号、特開昭51−9079号に記載のモノマーの重合によるin situ法、英国特許第952807号、同965074号に記載の電解分散冷却法、米国特許第3111407号、英国特許第930422号に記載のスプレードライング法、特公平7−73069号公報、特開平4−101885号公報、特開平9−263057号公報に記載の方法等が挙げられる。
マイクロカプセル化する方法としては、これらに限定されるものではないが、本発明においては、特に、第1成分をカプセルの芯部となる疎水性の有機溶媒に溶解又は分散させ調製した油相を、水溶性高分子を溶解した水相と混合し、ホモジナイザー等の手段により乳化分散した後、加温することによりその油滴界面で高分子形成反応を起こし、高分子物質のマイクロカプセル壁を形成させる界面重合法を採用することが好ましい。前記界面重合法は、短時間内に均一な粒径のカプセルを形成することができ、生保存性に優れたトナーを得ることができる。
本発明において好ましいマイクロカプセルは、常温では、マイクロカプセル壁(外殻)の物質隔離作用によりカプセル内外の物質の接触が妨げられ、ある値以上に熱及び/又は圧力が加えられた場合のみ、カプセル内外の物質の接触が可能となるようなものである。この現象は、マイクロカプセル壁の材料、マイクロカプセルの芯部に含まれる物質、添加剤等を適宜選択することにより、カプセルの物性の変化として自由にコントロールすることができる。
本発明において使用しうるマイクロカプセル壁の材料は、油滴内部及び/又は油滴外部に添加される。前記マイクロカプセル壁の材料としては、例えば、ポリウレタン、ポリウレア、ポリアミド、ポリエステル、ポリカーボネート、尿素−ホルムアルデヒド樹脂、メラミン樹脂、ポリスチレン、スチレンメタクリレート共重合体、スチレン−アクリレート共重合体等が挙げられる。中でも、ポリウレタン、ポリウレア、ポリアミド、ポリエステル、ポリカーボネートが好ましく、ポリウレタン、ポリウレアがより好ましい。前記高分子物質は、2種以上併用して用いることもできる。
第1成分をはじめとする全ての含有成分は、例えば、水溶性高分子、増感剤及びその他の発色助剤等とともに、サンドミル等の手段により固体分散して用いることもできるが、予め水に難溶性又は不溶性の高沸点有機溶剤に溶解した後、これを界面活性剤及び/又は水溶性高分子を保護コロイドとして含有する高分子水溶液(水相)と混合し、ホモジナイザー等で乳化した乳化分散物として用いることが好ましい。この場合、必要に応じて、低沸点溶剤を溶解助剤として用いることができる。さらに、第1成分をはじめとする全ての含有成分は、それぞれ別々に乳化分散することも、予め混合してから高沸点溶媒及び/又は低沸点溶媒に溶解し、乳化分散することも可能である。乳化分散して形成する乳化分散粒子径としては、1μm以下が好ましい。
乳化後は、マイクロカプセル壁形成反応を促進させる目的で、乳化物を30〜70℃に加温する。また、反応中はカプセル同士の凝集を防止するために、加水してカプセル同士の衝突確率を低下させたり、十分な攪拌を行う等の必要がある。一方、反応中に、別途凝集防止用の分散物を添加することもできる。前記マイクロカプセル壁形成反応の終点は、重合反応の進行に伴って炭酸ガスの発生が観測され、その発生の終息をもっておよその終点とみなすことができる。通常、数時間反応を行うことにより、第1成分を内包するマイクロカプセルを得ることができる。
マイクロカプセルの体積平均粒径は0.1〜3.0μmの範囲内となるように調整することが好ましく、0.3〜1.0μmの範囲内となるように調整することが更に好ましい。
図6〜9に例示したような構造有するトナーにおいては、感光・感熱カプセル(又は感光・感熱層)にバインダーが含まれていてもよく、これは、1つの発色部を有するトナーにおいても同様である。
バインダーとしては、前記光硬化性組成物の乳化分散に用いるバインダーと同様のもの、第1の反応性物質をカプセル化する際に用いる水溶性高分子のほか、ポリスチレン、ポリビニルホルマール、ポリビニルブチラール、ポリメチルアクリレート,ポリブチルアクリレート,ポリメチルメタクリレート,ポリブチルメタクリレートやそれらの共重合体等のアクリル樹脂、フェノール樹脂、スチレン−ブタジエン樹脂、エチルセルロース、エポキシ樹脂、ウレタン樹脂等の溶剤可溶性高分子、或いは、これらの高分子ラテックスを用いることもできる。中でも、ゼラチン及びポリビニルアルコールが好ましい。また、バインダーとして後述する結着樹脂を用いてもよい。
さらに、必要に応じ、例えば、染料、紫外線吸収剤、可塑剤、蛍光増白剤、硬化剤、帯電防止剤等の添加剤を使用することもできる。前記添加剤の具体例は、「Research Disclosure,Vol.176」(1978年12月、Item 17643)及び「同Vol.187」(1979年11月、Item 18716)に記載されている。
−硬化剤−
図6〜9に例示したような構造を有する本発明におけるトナーにおいては、感光・感熱カプセル(又は感光・感熱層)、中間層等の各層に硬化剤を併用することもできる。
前記硬化剤としては、例えば、写真感光材料の製造に用いられる「ゼラチン硬化剤」が有用であり、例えば、ホルムアルデヒド、グルタルアルデヒド等のアルデヒド系の化合物、米国特許第3635718号等に記載の反応性のハロゲン化合物、米国特許第3635718号等に記載の反応性のエチレン性不飽和基を有する化合物、米国特許第3017280号等に記載のアジリジン系化合物、米国特許第3091537号等に記載のエポキシ系化合物、ムコクロル酸等のハロゲノカルボキシアルデヒド類、ジヒドロキシジオキサン、ジクロロジオキサン等のジオキサン類、米国特許第3642486号や米国特許第3687707号に記載のビニルスルホン類、米国特許第3841872号に記載のビニルスルホンブレカーサー類、米国特許第3640720号に記載のケトビニル類が挙げられる。また、無機硬化剤として、クロム明ばん、硫酸ジルコニウム、硼酸等も用いることができる。
−結着樹脂−
本発明におけるトナーには、従来のトナーに用いられている結着樹脂を用いることができる。結着樹脂は、例えば、図6に例示したような母材中に感光・感熱カプセルが分散した構造を有するトナーでは、母材を構成する主成分や感光・感熱カプセルの外殻を構成する材料として、また、図7〜図9に例示したような同心円構造、ストライプ構造、扇構造等の層状の発色部を2以上有するような構造からなるトナーでは、トナー最表面を被覆する被覆層や、隣接する2つの発色部の間に設けられる中間層を構成する材料として利用することができるがこれに限定されるものではない。
結着樹脂としては特に限定されず、公知の結晶性や非晶性の樹脂材料を用いることができる。特に低温定着性を付与するには、シャープメルト性がある結晶性ポリエステル樹脂が有用である。
結晶性樹脂の融点としては、好ましくは50〜110℃であり、より好ましくは60〜90℃である。前記融点が50℃より低いとトナーの保存性や、定着後のトナー画像の保存性が問題となる場合がある一方、110℃より高いと従来のトナーに比べて十分な低温定着が得られない場合がある。
また結晶性の樹脂には、複数の融解ピークを示す場合があるが、本発明においては、最大のピークをもって融点とみなす。
また、無定形高分子(非晶質樹脂)としては、スチレンアクリル系樹脂、ポリエステル樹脂など公知の樹脂材料を用いることができるが、非結晶性ポリエステル樹脂が特に好ましい。本発明において用いる非結晶性ポリエステル樹脂とは、主として多価カルボン酸類と多価アルコール類との縮重合により得られるものである。
非結晶性ポリエステル樹脂を用いる場合には、樹脂の酸価の調整やイオン性界面活性剤などを用いて乳化分散することにより、樹脂粒子分散液を容易に調製することができる点で有利である。
トナーに使用できる無定形高分子は、テトラヒドロフラン(THF)可溶分のゲルパーミエーションクロマトグラフイー(GPC)法による分子量測定で、質量平均分子量(Mw)が5000〜1000000であることが好ましく、更に好ましくは7000〜500000であり、数均分子量(Mn)は2000〜10000であることが好ましく、分子量分布Mw/Mnが1.5〜100であることが好ましく、更に好ましくは2〜60である。
本発明に使用することができる無定形高分子のガラス転移温度は、35〜100℃であることが好ましく、貯蔵安定性とトナーの定着性のバランスの点から、50〜80℃であることがより好ましい。ガラス転移温度が35℃未満であると、トナーが貯蔵中又は現像機中でブロッキング(トナーの粒子が凝集して塊になる現象)を起こしやすい傾向にある。一方、ガラス転移温度が100℃を超えると、トナーの定着温度が高くなってしまい好ましくない。
また無定形高分子の軟化点は80〜130℃の範囲に存在することが好ましい。より好ましくは90〜120℃の範囲である。軟化点が80℃以下の場合は、定着後及び保管時のトナー及びトナーの画像安定性が著しく悪化する。また軟化点が130℃以上の場合は、低温定着性が悪化してしまう。
無定形高分子の軟化点の測定はフローテスター(島津製作所社製:CFT−500C)、予熱:80℃/300sec,プランジャー圧力:0.980665MPa,ダイサイズ:1mmφ×1mm,昇温速度:3.0℃/minの条件下における溶融開始温度と溶融終了温度との中間温度を指す。
−離型剤−
本発明におけるトナーは、離型剤を含むことができる。離型剤は、一般に、離型性を向上させる目的で使用される。
トナーに使用できる離型剤の例としては、特に限定されるものではなく、モンタンワックス、オゾケライト、セレシン、パラフィンワックス、マイクロクリスタリンワックス、マイクロクリスタリンワックス、フィッシャートロプシュワックス等のような鉱物、石油系ワックス、天然ガス系ワックス及びそれらの変性物や、ポリエチレン、ポリプロピレン、ポリブテン等の低分子量ポリオレフィン類、加熱により軟化点を示すシリコーン類、オレイン酸アミド、エルカ酸アミド、リシノール酸アミド、ステアリン酸アミド等のような脂肪酸アミド類や、カルナウバワックス、ライスワックス、キャンデリラワックス、木ロウ、ホホバ油等のような植物系ワックス、ミツロウのような動物系ワックス、などを挙げることができ、また改質助剤成分として、炭素数10から18である高級アルコールやその混合物、及び炭素数16から22の高級脂肪酸モノグリセライドやその混合物を挙げることができ、これらのものから組み合わせて用いることができる。
−その他の添加剤−
本発明におけるトナーは、上記に列挙した以外のその他の成分を含んでいてもよい。その他の成分としては、特に制限はなく、目的に応じて適宜選択でき、例えば、無機微粒子、有機微粒子、帯電制御剤等の従来のトナーに用いられている公知の各種添加剤等が挙げられる。また、本発明のトナーは、それ自体が発色するため、従来のトナーに用いられている顔料等の着色剤は基本的に不要であるが、発色した時の色調を微調整するために、必要に応じて、公知の着色剤を少量用いることもできる。
帯電制御剤は、帯電性をより向上安定化させる目的で使用される。帯電制御剤としては4級アンモニウム塩化合物、ニグロシン系化合物、アルミ、鉄、クロムなどの錯体からなる染料やトリフェニルメタン系顔料など通常使用される種々の帯電制御剤を使用することが出来るが、後述する凝集合一法によりトナーを作製する場合において、溶液中で形成された凝集粒子の安定性に影響するイオン強度の制御と廃水汚染減少の点から水に溶解しにくい材料が好適である。
また、流動性付与やクリーニング性向上の目的で通常のトナーと同様に乾燥後、シリカ、アルミナ、チタニア、炭酸カルシウムなどの無機粒子やビニル系樹脂、ポリエステル、シリコーンなどの樹脂粒子を流動性助剤やクリーニング助剤として、乾燥状態でせん断をかけてトナー表面へ添加することができる。
(光発色型トナーのトナー構成材料等)
次に、本発明におけるトナーが光発色型トナーである場合に用いられるトナー構成材料や、各トナー構成材料を調整する際に用いる材料・方法等について以下により詳細に説明する。
この場合、トナーには、第1成分、第2成分、第1成分を含むマイクロカプセル、第2成分および光重合性化合物を含む光硬化性組成物が少なくとも用いられ、光硬化性組成物中には光重合開始剤(又は光重合開始剤系)が含まれることが特に好ましく、分光増感色素や種々の助剤等が含まれていてもよい。また、マイクロカプセル内(芯部)には第1成分が固体状態で存在していてもよいが、溶媒と共に存在していてもよい。
なお、光発色型トナーにおいては、第1成分としては、電子供与性無色染料が用いられ、第2成分としては電子受容性化合物(「電子受容性顕色剤」あるいは「顕色剤」と称す場合がある)が用いられ、光重合性化合物としては第1の光発色型トナーの場合にはエチレン性不飽和結合を有する重合可能な化合物が用いられる。上記第1成分としての電子供与性無色染料、分光増感色素や種々の助剤等の構成材料、さらにマイクロカプセル化の方法は、前述の光非発色型トナーにおいて説明したものと同様である。
また、以上に列挙した材料に加えて、更に、従来の着色剤を用いたトナーを構成する材料と同様の各種材料;結着樹脂、離型剤、内添剤、外添剤等を必要に応じて適宜利用することができるのも、前記光非発色型トナーと同様である。
−エチレン性不飽和結合を有する重合可能な化合物(光重合性化合物)−
本発明に用いることのできるエチレン性不飽和結合を有する重合可能な化合物は、分子中に少なくとも1個のエチレン性不飽和二重結合を有する重合性化合物である。
例えばアクリル酸及びその塩、アクリル酸エステル類、アクリルアミド類;メタクリル酸及びその塩、メタクリル酸エステル類、メタクリルアミド類;無水マレイン酸、マレイン酸エステル類;イタコン酸、イタコン酸エステル類;スチレン類;ビニルエーテル類;ビニルエステル類;N−ビニル複素環類;アリールエーテル類;アリルエステル類等を用いることができる。この内、分子内に少なくとも1個の孤立電子対を有するヘテロ原子を含む重合性化合物が好ましい。
ここで言う孤立電子対を有するヘテロ原子とは、酸素、窒素、硫黄、燐、ハロゲン等の各原子を指す。具体的には、エステル結合、アミド結合、カルボニル結合、チオカルボニル結合、エーテル結合、チオエーテル結合、及びアミン、アルコール、チオアルコール、ホスフィン、ハロゲン等の基を有するものが含まれる。これらの内、電子受容性顕色剤との相互作用が強いエステル結合、アミド結合、アミン、カルボニル結合及び/またはエーテル結合を分子内に少なくとも1個有する、エチレン性不飽和結合を有する重合可能な化合物が好ましく、光重合性を有するエステル結合、アミド結合を有する化合物が特に好ましい。
また、重合効率(硬化速度)を有利にするためには、分子内に複数のエチレン性不飽和2重結合を有する重合性化合物が好ましく、例えば、トリメチロールプロパンヤペンタエリスリトール等のような多価アルコールのアクリル酸エステルやメタクリル酸エステル;およびアクリレートもしくはメタクリレート末端エポキシ樹脂、アクリレートもしくはメタリレート末端ポリエステル等がある。
−光重合開始剤(又は光重合開始剤系)−
本発明に好適に用いられる光重合開始剤としては、前記のエチレン性不飽和結合を含有する化合物の光重合を開始し得る化合物の中から1種または2種以上の化合物を組み合わせて選ぶことができる。
光重合開始剤の好ましい具体例として、次の化合物を挙げることができる。芳香族ケトン類:例えば、ベンゾフェノン、4,4’−ビス(ジメチルアミノ)ベンゾフェノン、4−メトキシ−4’−ジメチルアミノベンゾフェノン、4,4’−ジメトキシベンゾフェノン、4−ジメチルアミノベンゾフェノン、4−ジメチルアミノアセトフェノン、ベンジル、アントラキノン、2−tert−ブチルアントラキノン、2−メチルアントラキノン、キサントン、チオキサントン、2−クロルチオキサントン、2,4−ジエチルチオキサントン、フルオレノン、アクリドン;およびベンゾインおよびベンゾインエーテル類:例えばベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインフェニルエーテル;および2,4,5−トリアリールイミダゾール二量体:例えば2−(o−クロロフェニル)−4,5−ジフェニルイミダゾール二量体、2−(o−クロロフェニル)−4,5−ジ(m−メトキシフェニル)イミダゾール二量体、2−(o−フルオロフェニル)−4,5−ジフェニルイミダゾール二量体、2−(o−メトキシフェニル)−4,5−ジフェニルイミダゾール二量体、2−(p−メトキシフェニル)−4,5−ジフェニルイミダゾール二量体;およびポリハロゲン化合物、例えば四臭化炭素、フェニルトリプロモメチルスルホン、フェニルトリクロロメチルケトンおよび特開昭53−133428号、特公昭57−1819号、特公昭57−6096号、米国特許第3615455号の各明細書中に記載の化合物、特開昭58−29803号記載のトリハロゲン置換メチル基を有するS−トリアジン誘導体:例えば、2,4,6−トリス(トリクロロメチル)−S−トリアジン、2−メトキシ−4,6−ビス(トリクロロメチル)−S−トリアジン、2−アミノ−4,6−ビス(トリクロロメチル)−S−トリアジン、2−(P−メトキシスチリル)−4,6−ビス(トリクロロメチル)−S−トリアジン等の化合物。;および例えば特開昭59−189340号記載の有機過酸化物:例えばメチルエチルケトンパーオキサイド、シクロヘキサノンパーオキサイド、3,3,5−トリメチルシクロヘキサノンパーオキサイド、ベンゾイルパーオキサイド、ジターシャリーブチルジパーオキシイソフタレート、2,5−ジメチル−2,5−ジ(ベンゾイルパーオキシ)ヘキサン、ターシャリーブチルパーオキシベンゾエート、a,a’−ビス(ターシャリーブチルパーオキシイソプロピル)ベンゼン、ジクミルパーオキサイド、3,3’,4,4’−テトラ−(ターシャリイブチルパーオキシカルボニル)ベンゾフェノン等の化合物;および例えば米国特許第4743530号に記載のアジニウム塩化合物;および例えばヨーロッパ特許第0223587号に記載の有機ホウ素化合物:例えばトリフェニルブチールボレートのテトラメチルアンモニウム塩、トリフェニルブチールボレートのテトラブチルアンモニウム塩、トリ(P−メトキシフェニル)ブチールボレートのテトラメチルアンモニウム塩等;その他ジアリールヨードニウム塩類や鉄アレン錯体等、感光感熱記録材料分野では周知の光重合開始剤等を有用に使用できる。
光重合開始剤の含有量は、光硬化性組成物の全重量基準で、好ましくは0.01〜20質量%、そしてより好ましくは0.2〜15質量%であり、最も好ましい含有量は1〜10質量%である。0.01質量%未満では感度が不足し、10質量%を越えても感度の増加が期待できない場合がある。
−電子受容性顕色剤(第2成分)−
電子受容性顕色剤としては、フェノール誘導体、含硫フェノール誘導体、有機のカルボン酸誘導体(例えば、サリチル酸、ステアリン酸、レゾルシン酸等)、及びそれらの金属塩等、スルホン酸誘導体、尿素もしくはチオ尿素誘導体等、酸性白土、ベントナイト、ノボラック樹脂、金属処理ノボラック樹脂、金属錯体等が挙げられる。
これらの例は、紙パルプ技術タイムス(1985年)49〜54頁及び65〜70頁に記載の他、特公昭40−9309号公報、同45−14039号公報、特開昭52−140483号公報、同48−51510号公報、同57−210886号公報、同58−87089号公報、同59−11286号公報、同60−176795号公報、同61−95988号公報等に記載されている。
これらの電子受容性化合物は単独もしくは2種以上併用することができる。電子受容性化合物の使用量は、電子供与性無色染料に対して10〜4000質量%の範囲が好ましく、100〜2000質量%が特に好ましい。
更に、これらの化合物の他に、光硬化性組成物の中には熱重合禁止剤を必要に応じて添加する事ができる。熱重合禁止剤は、光硬化性組成物の熱的な重合や経時的な重合を防止するために添加するもので、これにより光硬化性組成物の調製時や保存時の化学的な安定性を高めることができる。熱重合禁止剤の例として、p−メトキシフェノール、ハイドロキノン、t−ブチルカテコール、ピロガロール、2−ヒドロキシベンゾフェノン、4−メトキシ−2−ヒドロキシベンゾフェノン、塩化第一銅、フェノチアジン、クロラニル、ナフチルアミン、β−ナフトール、2,6−ジ−t−ブチル−p−クレゾール、ニトロベンゼン、ジニトロベンゼン、ピクリン酸、p−トルイジン等が挙げられる。熱重合禁止剤の好ましい添加量は、光硬化性組成物の全重量基準で0.001〜5質量%であり、より好ましくは、0.01〜1質量%である。0.001質量%未満では熱安定性が劣り、5質量%を越えると感度が低下する。
なお、光硬化性組成物は必要に応じてマイクロカプセルに内包して使用してもよい。例えばヨーロッパ特許第0223587号や上記特許を参考にマイクロカプセルに内包させることができる。
マイクロカプセルの体積平均粒径は、光発色型トナーの場合と同様に0.1〜3μmの範囲内となるように調整することが好ましく、0.3〜1.0μmの範囲内となるように調整することが更に好ましい。
さらに、電子供与性無色染料はマイクロカプセル中に溶液状態で存在してもよく、また、固体の状態で存在してもよい。溶媒を併用する場合、カプセル内に併用する溶媒の量は電子供与性無色染料100質量部に対して1〜500質量部の割合が好ましい。
また、本発明のトナーには、画像の耐光性改善等を目的として必要に応じて紫外線吸収剤を用いることができる。紫外線吸収剤としてはペンゾトリアゾール系化合物、桂皮酸エステル系化合物、アミノアリリデンマロンニトリル系化合物、ベンゾフェノン系化合物等業界公知の化合物を使用できる。
本発明におけるトナーを、後述する凝集合一法等の湿式製法により作製する場合には、マイクロカプセルを分散させた分散液や、光硬化性組成物を分散させた分散液が調製される。これらの分散液の調製に使用される溶媒としては、水、アルコール:例えばメタノール、エタノール,n−プロパノール、イソプロパノール、n−ブタノール、sec−ブタノール、メチルセロソルブ、1−メトキシ−2−プロパノール;ハロゲン系の溶剤:例えばメチレンクロライド、エチレンクロライド;ケトン:例えばアセトン、シクロヘキサノン、メチルエチルケトン;エステル:例えば、酢酸メチルセロソルプ、酢酸エチル、酢酸メチル;トルエン、キシレン等の単独物及びそれらの2種以上の混合物が例として挙げられる。これらの中では水が特に好ましい。
−その他−
以上に説明した材料以外で、光発色型トナーに用いられる結着樹脂、離型剤、その他の添加剤については、既述した光非発色型トナーと同様のものを用いることができる。また、トナーの粒径・形状等についても光非発色型トナーと同様とすることができる。
また、発色特性や発色制御に悪影響を与えないのであれば、光発色型トナー用として列挙した材料等を光非発色型トナーに用いてもよく、光非発色型トナー用として列挙した材料等を光発色型トナーに用いてもよい。
(トナー製造方法)
次に、トナー製造方法について具体的に説明する。
本発明に用いるトナーは、凝集合一法等の公知の湿式製法を利用して作製されることが好ましい。湿式製法は、トナーが少なくとも加熱時の物質拡散を利用して発色する構成(例えば、既述した2種類以上の反応性成分が、異なるマトリックスに含まれている場合等)を有する場合において特に好適である。また、湿式製法を利用すれば、トナーを作製する場合における最高プロセス温度を低く抑えることできるため、トナー製造過程における発色を防止することが容易である。
なお、トナー製造過程における発色防止という観点からは、湿式製法を利用した場合における最高プロセス温度は90℃以下であることが好ましく、80℃以下であることが更に好ましい。但し、プロセス温度が低すぎる場合はトナー自体の作製が困難になるため最高プロセス温度は40℃以上であることが好ましい。
また、湿式製法の利用は、特に、互いに反応した際に発色する第1成分および第2成分と、光硬化性組成物と、該光硬化性組成物中に分散するマイクロカプセルとを含み、前記第1成分が前記マイクロカプセルに含まれ、前記第2成分が前記光硬化性組成物中に含まれる構造を有するトナーの作製に好適である。
なお、上記構造を有するトナーに用いられるマイクロカプセルは熱応答性マイクロカプセルであることが特に好ましいが、光等、その他の刺激に応答するマイクロカプセルであってもよい。
トナーの製造には、公知の湿式製法が利用できるが、湿式製法の中でも最高プロセス温度を低く抑えることができると共に、図6や図7等に例示したような様々な構造を有するトナーの作製が容易であることから凝集合一法を利用することが特に好ましい。
また、従来の顔料や結着樹脂を主成分とするトナーと比べると、上記構造を有するトナーは、低分子成分を主成分として含む光硬化性組成物が多く含まれるため、トナーの造粒過程で得られる粒子の強度は不十分となりやすいが、凝集合一法では、高いせん断力を必要としないため、この点でも凝集合一法を利用することは好適である。
次に、凝集合一法を利用したトナーの製造方法についてより詳細に説明する。一般的に、凝集合一法は、トナーを構成する各種材料の分散液を調整した後、2種類以上の分散液を混合した原料分散液中で凝集粒子を形成する凝集工程と、原料分散液に形成された凝集粒子を融合する融合工程とを含むものであり、必要に応じて凝集工程と融合工程との間に、凝集粒子の表面に被覆層を形成する成分を付着させて被覆層を形成する付着工程(被覆層形成工程)とが実施されるものである。
本発明に用いるトナーの製造においても、原料として使用する各種分散液の種類や組み合わせは異なるものの、凝集工程、融合工程の他に、必要に応じて付着工程を適宜組み合わせることによりトナーを作製することができる。
以下に、図6に例示したような発色部分散構造を有するトナーや、図7に例示したような同心円構造を有するトナーの凝集合一法を利用した製造方法についてより詳細に説明する。
A.発色部分散構造を有するトナーの製造方法
まず、発色部分散構造を有するトナーの凝集合一法を利用した製造方法について説明する。
この場合、まず、(a1)第1成分を含むマイクロカプセルを分散させたマイクロカプセル分散液と、第2成分を含む光硬化性組成物を分散させた光硬化性組成物分散液とを含む原料分散液中にて第1の凝集粒子を形成する第1の凝集工程と、(b1)前記第1の凝集粒子が形成された原料分散液に、樹脂粒子を分散させた第1の樹脂粒子分散液を添加して、前記凝集粒子表面に前記樹脂粒子を付着させる付着工程と、(c1)前記樹脂粒子をその表面に付着させた凝集粒子を含む原料分散液を加熱して融合させ、第1の融合粒子(感光・感熱カプセル)を得る第1の融合工程とを経ることにより、互いに異なる色に発色可能な1種類以上の感光・感熱カプセル分散液を調製する。
続いて、(d1)前記1種類以上の感光・感熱カプセル分散液と、樹脂粒子を分散させた第2の樹脂粒子分散液とを混合した混合溶液中にて、第2の凝集粒子を形成する第2の凝集工程と、(e1)前記第2の凝集粒子を含む混合溶液を加熱して、第2の融合粒子を得る第2の融合工程とを経ることにより、発色部分散構造を有するトナーを得ることができる。
なお、第2の凝集工程で用いる感光・感熱カプセル分散液の種類は2種類以上が好ましい。また、(a1)〜(c1)工程を経て得られた感光・感熱カプセルをそのままトナー(すなわち1つの発色部のみを含むトナー)として利用してもよい。
−各種分散液の調製−
以下、上述した凝集合一法を利用したトナー製造方法に用いられる各種分散液の調製方法について説明する。
樹脂粒子分散液は、乳化重合などによって作製した樹脂粒子をイオン性界面活性剤を用いて溶媒中に分散させることにより調製する。或いは樹脂を溶解可能な溶媒に溶かして転相乳化によって調製する。なお、樹脂粒子分散液における分散媒としては、例えば水系媒体や有機溶剤などが挙げられる。
また、離型剤分散液は、離型剤を、水中にイオン性界面活性剤や高分子酸や高分子塩基などの高分子電解質とともに分散し、融点以上に加熱するとともに強い剪断をかけられる装置により微粒子化することにより調製する。
上記機械的手段により微分散させるための装置としては、マントンゴーリン高圧ホモジナイザー(ゴーリン社)、連続式超音波ホモジナイザー(日本精機株式会社)、ナノマイザー(ナノマイザー社)、マイクロフルイダイザー(みずほ工業株式会社)、ハレル型ホモジナイザー、スラッシャ(三井鉱山株式会社)、キャビトロン(株式会社ユーロテック)などが挙げられる。
マイクロカプセル分散液としては、記述したような各種のマイクロカプセル化法を利用して作製したマイクロカプセルを水溶性バインダー等を含む溶液に分散させた乳化液が利用できる。
また、光硬化性組成物分散液は、光硬化性組成物を構成する各種成分に、水溶性バインダー等の樹脂成分、水等の溶媒成分に界面活性剤等を加えて混合した後、強い剪断をかけられる装置により微粒子化することにより得られる。
なお、マイクロカプセル分散液を除く各種分散液中に含まれる微粒子の粒子径は、トナー径および粒度分布を所望の値に調整するのを容易とするために、1μm以下であることが好ましく、100〜300nmの範囲内であることがより好ましい。
−(a1)第1の凝集工程−
第1の凝集工程では、第1成分を含むマイクロカプセルを分散させたマイクロカプセル分散液と、第2成分を含む光硬化性組成物を分散させた光硬化性組成物分散液とを含む原料分散液中にて第1の凝集粒子を形成する。
第1の凝集工程では、原料分散液に凝集剤を加えた後、必要に応じて加熱することにより、原料分散液中の微粒子を凝集させ、第1の凝集粒子を形成する。
なお、加熱の温度は、室温から40℃、さらに必要であれば60℃近辺まで上げてもよい。
凝集粒子の形成は、回転せん断型ホモジナイザー等で攪拌下、室温で凝集剤を添加し、原料分散液のpHを酸性(pH=2〜4程度)にすることによってなされる。
第1の凝集工程に用いられる凝集剤は、原料分散液に添加される分散剤として用いる界面活性剤と逆極性の界面活性剤、すなわち無機金属塩の他、2価以上の金属錯体を好適に用いることができる。特に、金属錯体を用いた場合には界面活性剤の使用量を低減でき、帯電特性が向上するため特に好ましい。
−(b1)付着工程−
付着工程では、第1の凝集粒子が形成された原料分散液に、樹脂粒子を分散させた第1の樹脂粒子分散液を添加して、凝集粒子表面に樹脂粒子を付着させる。これにより、感光・感熱カプセルの外殻部分に相当する被覆層を形成することができる。
被覆層の形成は、凝集工程において凝集粒子(コア粒子)を形成した分散液中に、第1の樹脂粒子分散液を追添加することにより行うことができる。第1の樹脂粒子分散液に用いる結着樹脂成分としては、結晶性樹脂、非晶質樹脂のいずれでもよく、第1の樹脂粒子分散液と共に離型剤分散液を併用することもできる。また、第1の樹脂粒子分散液の代わりに離型剤分散液を用いてもよい。
なお、結着樹脂の乳化重合、各種微粒子成分の分散、微粒子の凝集、凝集粒子の安定化などに界面活性剤を用いることができる。具体的には硫酸エステル塩系、スルホン酸塩系、リン酸エステル系、せっけん系等のアニオン界面活性剤、アミン塩型、4級アンモニウム塩型等のカチオン系界面活性剤、またポリエチレングリコール系、アルキルフェノールエチレンオキサイド付加物系、多価アルコール系等の非イオン性界面活性剤を併用することも効果的であり、分散手段としては、回転せん断型ホモジナイザーやメデイアを有するボールミル、サンドミル、ダイノミルなどの一般的なものを使用できる。
−(c1)第1の融合工程−
第1の融合工程では、樹脂粒子をその表面に付着させた凝集粒子を含む原料分散液を加熱して融合させ、第1の融合粒子(感光・感熱カプセル)を得る。
第1の融合工程は、第1の凝集工程と付着工程とを経て得られた凝集粒子を含む懸濁液のpHを6.5〜8.5程度の範囲にすることにより、凝集の進行を止めた後、加熱を行うことにより凝集粒子を融合させる。
加熱は、被覆層の形成に用いた結着樹脂(および/または離型剤)のガラス転移温度または融点以上の温度で行う。
なお、加熱温度は、マイクロカプセルの外殻を構成する材料を溶解等させ、外殻構造を消失させない程度に設定され、一般的には、マイクロカプセルの外殻を構成する材料の耐熱性と、感光・感熱カプセルの外殻を形成する材料の融合可能な温度とを考慮して決定されるが、一般的には、40〜90℃の範囲内であることが好ましく、50〜80℃の範囲内であることがより好ましい。
加熱温度が90℃を超えると、マイクロカプセルの外殻が消失して発色してしまう場合がある。また、加熱温度が40℃未満の場合には、十分な融合が行われず、後工程において、感光・感熱カプセル粒子が分解してしまう場合がある。
−(d1)第2の凝集工程−
以上の(a1)〜(c1)の工程を、トナー中に分散させる感光・感熱カプセルの種類(発色可能な色)毎に実施し、互いに異なる色に発色可能な2種類以上の感光・感熱カプセル分散液を準備する。
続いて、第2の凝集工程では、2種類以上の感光・感熱カプセル分散液と、樹脂粒子を分散させた第2の樹脂粒子分散液とを混合した混合溶液中にて、第2の凝集粒子を形成する。なお、上記の混合溶液には、必要に応じて離型剤分散液等、その他の成分の分散液も添加することができる。
第2の凝集工程も、凝集に用いる液の組成が異なる以外は、基本的に第1の凝集工程と同様に行われる。すなわち、混合分散液に凝集剤を加えた後、加熱することにより、混合中の感光・感熱カプセル粒子や樹脂粒子を凝集させ、第2の凝集粒子を形成する。なお、第2の凝集粒子を形成する過程や、形成し終えた後に、非晶質樹脂粒子を分散させた樹脂粒子分散液を追添加し、第2の凝集粒子表面を非晶質樹脂粒子で被覆することが好ましい。
なお、加熱の温度は、非晶質樹脂粒子が加熱によって非晶質樹脂粒子同士、または他の材料に対して融合が可能な温度が好ましく、具体的には非晶質樹脂粒子のガラス転移温度より数℃から数十℃高い温度が好ましい。
−(e1)第2の融合工程−
第2の融合工程では、第2の凝集粒子を含む混合溶液を加熱して、第2の融合粒子(潤湿状態のトナー)を得る。
第2の融合工程は、第2の凝集工程を経て得られた凝集粒子を含む懸濁液のpHを6.5〜8.5程度の範囲にすることにより、凝集の進行を止めた後、加熱を行うことにより凝集粒子を融合させる。
加熱は、第2の凝集粒子の形成に用いた結着樹脂のガラス転移温度または融点以上の温度で行う。
なお、加熱温度は、マイクロカプセルの外殻を構成する材料の耐熱性、感光・感熱カプセルの外殻を形成する材料の耐熱性、および、第2の凝集粒子の形成に用いた結着樹脂の融合可能な温度を考慮して決定されるが、一般的には、40〜90℃の範囲内であることが好ましく、50〜70℃の範囲内であることがより好ましい。
加熱温度が90℃を超えると、マイクロカプセルの外殻が消失して発色してしまったり、一の色に発色可能な感光・感熱カプセル中に分散する第2成分が、感光・感熱カプセル外に拡散したり、更には他の色に発色可能な感光・感熱カプセル中に拡散してしまい、画像形成時に十分な発色が得られなくなる場合がある。
また、加熱温度が40℃未満の場合には、十分な融合が行われず、洗浄・乾燥等の後工程において、トナー粒子が分解してしまう場合がある。
−洗浄、乾燥工程等−
第2の融合工程を経た後、任意の洗浄工程、固液分離工程、乾燥工程を経て所望のトナー粒子を得るが、洗浄工程は帯電性を考慮すると、イオン交換水で十分に置換洗浄することが望ましい。また、固液分離工程には特に制限はないが、生産性の点から吸引濾過、加圧濾過等が好適である。さらに、乾燥工程も特に制限はないが、生産性の点から凍結乾燥、フラッシュジェット乾燥、流動乾燥、振動型流動乾燥等が好ましく用いられる。また、乾燥後のトナー粒子には、既述したような種々の外添剤を必要に応じて添加することができる。
B.同心円構造を有するトナーの製造方法
次に、同心円構造を有するトナーの凝集合一法を利用した製造方法について説明する。
この場合、まず、(a2)第1成分を含むマイクロカプセルを分散させた第1のマイクロカプセル分散液と、第2成分を含む光硬化性組成物を分散させた第1の光硬化性組成物分散液とを含む原料分散液中にて第1の凝集粒子を形成する第1の凝集工程と、(b2)前記凝集粒子が形成された原料分散液に、樹脂粒子を分散させた第1の樹脂粒子分散液を添加して、前記凝集粒子表面に前記樹脂粒子を付着させる付着工程と、(c2)前記樹脂粒子をその表面に付着させた凝集粒子を含む原料分散液を加熱して融合させ、感光・感熱カプセルを得る第1の融合工程とを経ることにより、感光・感熱カプセル分散液を調製する。
続いて、(d2)前記感光・感熱カプセル分散液に、第1成分を含むマイクロカプセルを分散させた第2のマイクロカプセル分散液と、第2成分を含む光硬化性組成物を分散させた第2の光硬化性組成物分散液とを含む原料分散液を添加して、前記感光・感熱カプセル表面に、前記感光・感熱カプセルと異なる色に発色可能な感光・感熱層を形成する感光・感熱層形成工程と、(e2)該感光・感熱層形成工程を経た後の原料分散液に、樹脂粒子を分散させた第2の樹脂粒子分散液を添加して、前記感光・感熱層表面に前記樹脂粒子を付着させて被覆層を形成する被覆層形成工程と、(f2)前記感光・感熱層表面に前記樹脂粒子を付着させて被覆層が形成された第2の凝集粒子を含む原料分散液を加熱して、融合粒子を得る第2の融合工程と、を経ることにより、同心円構造を有するトナーを得ることができる。
なお、互いに異なる色に発色可能な3種類以上の発色部を含む同心円構造を有するトナーを作製する場合には、(d2)感光・感熱層形成工程、(e2)被覆層形成工程および(f2)第2の融合工程をこの順に順次実施するプロセスを、更に1回以上繰り返す。これにより、各々の感光・感熱層形成工程を経て形成された2以上の感光・感熱層および感光・感熱カプセルの発色可能な色を互いに異なるものとすることができる。
また、各工程では必要に応じてその他の成分を含む分散液を併用することもでき、例えば、第1の凝集工程や、付着工程、感光・感熱層形成工程、被覆層形成工程では離型剤分散液を利用してもよい。
次に、各工程についてより詳細に説明する。まず、各工程で用いる各種分散液の調製方法については、前記感光・感熱カプセル分散構造を有するトナーを作製する場合と同様である。
また、(a2)〜(c2)工程についても、基本的に上述した(a1)〜(c1)工程と同様に行うことができる。但し、(a2)〜(c2)工程を経て調製する感光・感熱カプセル分散液は1種類のみである。
続いて実施される(d2)感光・感熱層形成工程、および、(e2)被覆層形成工程では、コア層(コア粒子)となる感光・感熱カプセル粒子に、感光・感熱層と被覆層とを順次積層形成する以外は、上述の(a1)および(b1)に示した工程と同様に行うことができる。これにより感光・感熱カプセル粒子をコア層とし、このコア層を被覆するように順次感光・感熱層と被覆層とが積層された第2の凝集粒子を得る。
なお、(e2)被覆層形成工程で形成される被覆層は、最終的にトナーとした場合のトナー表面を被覆する表面層、あるいは、互いに隣接する2つの感光・感熱層の間に設けられる中間層を構成するものである。ここで、この被覆層が、トナーとした際に表面層を構成する場合には、(e2)被覆層形成工程では、非晶質樹脂を用いた樹脂粒子分散液が用いられることが特に好ましい。
(f2)第2の融合工程も、基本的に上述した(e1)に示す工程と同様に行うことができる。なお、第2の融合工程における加熱温度は、マイクロカプセルの外殻を構成する材料の耐熱性、感光・感熱カプセルの外殻や、((d2)〜(f2)を2回以上繰り返して実施した場合には)中間層を形成する材料の耐熱性、および、第2の凝集粒子の形成に用いた結着樹脂の融合可能な温度を考慮して決定されるが、一般的には、40〜90℃の範囲内であることが好ましく、50〜80℃の範囲内であることがより好ましい。
加熱温度が90℃を超えると、マイクロカプセルの外殻が消失して発色してしまったり、一の色に発色可能な発色部(感光・感熱カプセルおよび/または感光・感熱層)中に分散する第2成分が、発色部(感光・感熱カプセルおよび/または感光・感熱層)外に拡散したり、更には他の色に発色可能な発色部(感光・感熱カプセルおよび/または感光・感熱層)中に拡散してしまい、画像形成時に十分な発色が得られなくなる場合がある。
また、加熱温度が40℃未満の場合には、十分な融合が行われず、洗浄・乾燥等の後工程において、トナー粒子が分解してしまう場合がある。
以上説明した一連の工程を経た後は、上述と同様に洗浄、乾燥工程等を実施してトナーを得ることができる。
本発明に用いるトナーの体積平均粒径は、特に限定されず、トナーの構造や、トナー中に含まれる発色部の種類・数に応じて適宜調整することができる。
しかしながら、トナー中に含まれる互いに異なる色に発色可能な発色部の種類が2〜4種類前後(例えば、トナーがイエロー、シアン、マゼンタの各々に発色可能な3種類の発色部を含むような場合)であれば、各々のトナー構造に応じた体積平均粒径は以下の範囲内であることが好ましい。
すなわち、図6に例示したような、トナーの構造が発色部分散構造の場合には、トナーの体積平均粒径は5〜40μmの範囲内が好ましく、10〜20μmの範囲内がより好ましい。また、このような粒径を有する感光・感熱カプセル分散構造型のトナー中に含まれる感光・感熱カプセルの体積平均粒径は1〜5μmの範囲内であることが好ましく、1〜3μmの範囲内であることが好ましい。
体積平均粒径が5μm未満では、トナー中に含まれる発色成分量が少なくなるため色再現性が悪化したり、画像濃度が低下してしまう場合がある。また、体積平均粒径が40μmを超えると、画像表面の凹凸が大きくなり、画像表面の光沢ムラが発生してしまう場合があり、また画質低下する場合がある。
なお、その内部に複数の感光・感熱カプセルを分散させた感光・感熱カプセル分散構造型のトナーは、従来の着色剤を用いた小径トナー(体積平均粒径5〜10μm程度)と比べると粒径が大きくなる傾向にあるものの、画像の解像度は、トナーの粒径ではなく感光・感熱カプセルの粒径により決定されるため、より高精細な画像を得ることができる。加えて、粉体流動性にも優れるため、外添剤の量が少なくても十分な流動性が確保できると共に、現像性やクリーニング性も向上させることができる。
また、図7〜9に例示したような同心円構造型、ストライプ構造型、あるいは扇構造型のトナーの場合には、感光・感熱カプセル分散構造型のトナーと比べて、感光・感熱カプセルの粒子化を考える必要がないため、小径化が容易である。このトナーの体積平均粒径は3〜40μmの範囲内が好ましく、5〜15μmの範囲内が好ましい。体積平均粒径が3μm未満の場合にはトナーの作製自体が困難となる場合がある。また、体積平均粒径が40μmを超えると、画像表面の凹凸が大きくなり、画像表面の光沢ムラが発生してしまう場合があり、また、画質低下する場合がある。
また、本発明におけるトナーは、体積平均粒度分布指標GSDvが1.30以下であり、且つ、体積平均粒度分布指標GSDvと数平均粒度分布指標GSDpとの比(GSDv/GSDp)が、0.95以上であることが好ましい。
更に好ましくは、体積平均粒度分布指標GSDvが1.25以下であり、且つ、体積平均粒度分布指標GSDvと数平均粒度分布指標GSDpとの比(GSDv/GSDp)が、0.97以上であることが更に好ましい。
体積分布指標GSDvが1.30を超えた場合には、画像の解像性が低下する場合があり、また、体積平均粒度分布指標GSDvと数平均粒度分布指標GSDpの比(GSDv/GSDp)が0.95未満の場合、トナーの帯電性低下やトナーの飛散、カブリ等が発生し画像欠陥を招く場合がある。
なお、本発明において、トナーの体積平均粒径や、上記した体積平均粒度分布指標GSDv、及び数平均粒度分布指標GSDpの値は、次のようにして測定し算出した。
まず、コールターマルチサイザーII(ベックマン−コールター社製)等の測定器を用いて測定されたトナーの粒度分布を分割された粒度範囲(チャンネル)に対し、個々のトナー粒子の体積および数について小径側から累積分布を描き、累積16%となる粒径を、体積平均粒子径D16v、および、数平均粒子径D16pと定義し、累積50%となる粒径を、体積平均粒子径D50v、および、数平均粒子径D50pと定義する。同様に、累積84%となる粒径を、体積平均粒子径D84v、および、数平均粒子径D84pと定義する。この際、体積平均粒度分布指標(GSDv)は、(D84v/D16v)1/2として定義され、数平均粒度指標(GSDp)は、(D84p/D16p)1/2として定義されるこれらの関係式を用いて、体積平均粒度分布指標(GSDv)および数平均粒度指標(GSDp)を算出できる。
また、前記マイクロカプセルや感光・感熱カプセルの体積平均粒径は、例えば、レーザー回折式粒度分布測定装置(LA−700、堀場製作所製)を用いて測定することができる。
また、本発明のトナーは、下式(2)で表される形状係数SF1が、110〜130の範囲内であることが好ましい。
SF1=(ML2/A)×(π/4)×100 ・・・ 式(2)
〔但し、上記式(2)において、MLはトナーの最大長(μm)を表し、Aはトナーの投影面積(μm2)を表す。〕
形状係数SF1が110未満の場合には、画像形成の際に転写工程で、像担持体表面にトナーが残留しやすくなるため、この残留トナーの除去が必要となるが、残留トナーをブレード等によりクリーニングする際のクリーニング性を損ないやすく、結果として画像欠陥を生じる場合がある。
一方、形状係数SF1が130を超える場合には、トナーを現像剤として使用する場合に、現像器内でのキャリアとの衝突によりトナーが破壊される場合がある。この際、結果として微粉が増加したり、これによってトナー表面に露出した離型剤成分により像担持体表面等が汚染され帯電特性を損なうことがあるばかりでなく、微粉に起因するかぶりの発生等の問題を起こすことがある。
形状係数SF1はルーゼックス画像解析装置(株式会社ニレコ製、FT)を用いて以下のように測定した。まず、スライドグラス上に散布したトナーの光学顕微鏡像をビデオカメラを通じてルーゼックス画像解析装置に取り込み、50個以上のトナーについて最大長(ML)と投影面積(A)を測定し、個々のトナーについて、最大長の2乗、投影面積を算出し、上記式(2)により形状係数SF1として求めた。
なお、流動性付与やクリーニング性向上の目的で通常のトナーと同様に乾燥後、シリカ、アルミナ、チタニア、炭酸カルシウムなどの無機粒子やビニル系樹脂、ポリエステル、シリコーンなどの樹脂粒子を流動性助剤やクリーニング助剤として、乾燥状態でせん断をかけて本発明のトナー表面へ添加することができる。
トナーに添加される無機酸化物微粒子としては、SiO2,TiO2,Al23,CuO,ZnO,SnO2,CeO2,Fe23,MgO,BaO,CaO,K2O,Na2O,ZrO2,CaO・SiO2,K2O・(TiO2)n,Al23・2SiO2,CaCO3,MgCO3,BaSO4,MgSO4等を例示することができる。これらのうち、特にシリカ微粒子、チタニア微粒子が好ましい。該無機酸化物微粒子は、表面が予め疎水化処理されていることが望ましい。この疎水化処理によりトナーの粉体流動性改善のほか、帯電の環境依存性、耐キャリア汚染性に対してより効果的である。
<現像剤>
本発明に用いられるトナーは、そのまま一成分現像剤として用いてもよいが、本発明では、キャリアとトナーとからなる二成分現像剤におけるトナーとして使用することが好ましい。
ここで、1種類の現像剤でカラー画像が形成できるという点からは、現像剤は、(1)前記光硬化性組成物と、該光硬化性組成物中に分散するマイクロカプセルとを含む発色部を2種類以上有するトナーを1種類有し、且つ、前記トナー中に含まれる2種類以上の発色部が互いに異なる色に発色可能であるタイプの現像剤、あるいは、(2)前記光硬化性組成物と、該光硬化性組成物中に分散するマイクロカプセルとを含む発色部を1つ有するトナーを2種類以上混合した状態で有し、且つ、前記2種類以上のトナーの発色部が互いに異なる色に発色可能であるタイプの現像剤であることが好ましい。
例えば、前者のタイプの現像剤では、トナー中に3種類の発色部が含まれ、且つ、3種類の発色部が、イエロー色に発色可能なイエロー発色部、マゼンタ色に発色可能なマゼンタ発色部及びシアン色に発色可能なシアン発色部からなることが好ましく、後者のタイプの現像剤では、発色部がイエロー色に発色可能なイエロー発色性トナーと、発色部がマゼンタ色に発色可能なマゼンタ発色性トナーと、発色部がシアン色に発色可能なシアン発色性トナーとが混合した状態で現像剤中に含まれることが好ましい。
二成分現像剤に使用し得るキャリアとしては、芯材表面に樹脂を被覆してなることが好ましい。キャリアの芯材としては、上記条件を満たしていれば特に規定されないが、例えば、鉄、鋼、ニッケル、コバルト等の磁性金属、これらとマンガン、クロム、希土類等との合金、及びフェライト、マグネタイト等の磁性酸化物等が挙げられるが、芯材表面性、芯材抵抗の観点から、好ましくはフェライト、特にマンガン、リチウム、ストロンチウム、マグネシウム等との合金が挙げられる。
また、 芯材表面を被覆する樹脂としては、マトリックス樹脂として使用できるものであれば特に制限はなく、目的に応じて適宜選択することができる。
上記二成分現像剤における、本発明のトナーと上記キャリアとの混合比(質量比)としては、トナー:キャリア=1:100〜30:100程度の範囲が好ましく、3:100〜20:100程度の範囲がより好ましい。
以下、本発明を実施例を挙げてより具体的に説明するが、本発明は以下の実施例にのみ限定されるものではない。尚、以下の実施例中の「部」及び「%」は、それぞれ「質量部」、「質量%」を表す。
<トナーの作製>
まず、下記実施例に用いたトナーについて説明する。なお、以下のトナーの作製において、光硬化性組成物分散液の調整およびこれを用いた一連のトナーの作製は全て暗所で実施した。
A.光非発色型トナー
(マイクロカプセル分散液の調製)
−マイクロカプセル分散液(1)−
酢酸エチル16.9部に、イエローに発色可能な電子供与性無色染料(1)8.9部を溶解し、さらに、カプセル壁材(商品名:タケネートD−110N,武田薬品工業(株)製)20部とカプセル壁材(商品名:ミリオネートMR200,日本ポリウレタン工業(株)製)2部とを添加した。
得られた溶液を、8%フタル化ゼラチン42部と、水14部と、10%ドデシルベンゼンルスルホン酸ナトリウム溶液1.4部との混合液中に添加した後、温度20℃で乳化分散し、乳化液を得た。次いで、得られた乳化液に2.9%テトラエチレンペンタミン水溶液72部とを加え、攪拌しながら60℃に加温し、2時間経過後、電子供与性無色染料(1)を芯部に含む、平均粒径0.5μmのマイクロカプセル分散液(1)を得た。
なお、このマイクロカプセル分散液(1)に含まれるマイクロカプセルの外殻を構成する材料(上記とほぼ同様の条件でタケネートD−110NおよびミリオネートMR200を反応させて得られた材料)のガラス転移温度は100℃であった。
−マイクロカプセル分散液(2)−
電子供与性無色染料(1)を電子供与性無色染料(2)に変更した以外は、マイクロカプセル分散液(1)を調製する場合と同様にしてマイクロカプセル分散液(2)を得た。この分散液中のマイクロカプセルの平均粒径は0.5μmであった。
−マイクロカプセル分散液(3)−
電子供与性無色染料(1)を電子供与性無色染料(3)に変更した以外は、マイクロカプセル分散液(1)を調製する場合と同様にしてマイクロカプセル分散液(3)を得た。この分散液中のマイクロカプセルの平均粒径は0.5μmであった。
なお、マイクロカプセル分散液の調製に用いた電子供与性無色染料(1)〜(3)の化学構造式を以下に示す。
Figure 0004807118
(光硬化性組成物分散液の調製)
−光硬化性組成物分散液(1)−
重合性基を有する電子受容性化合物(1)および(2)の混合物100.0部(混合比率50:50)と熱重合禁止剤(ALI)0.1部とを酢酸イソプロピル(水への溶解度約4.3%)125.0部中で42℃にて溶解し混合溶液Iとした。
この混合溶液I中に、ヘキサアリールビイミダゾール(1)〔2,2’−ビス(2−クロロフェニル)−4,4’,5,5’テトラフェニル−1,2’−ビイミダゾール〕18.0部と、ノニオン性有機色素0.5部と、有機ホウ素化合物6.0部とを添加し42℃にて溶解し、混合溶液IIとした。
上記混合溶液IIを、8%ゼラチン水溶液300.1部と、10%界面活性剤(1)水溶液17.4部との混合溶液中に添加し、ホモジナイザー(日本精機(株)製)を用いて回転数10000回転で5分間乳化し、その後、40℃で3時間脱溶媒処理を行った後、固形分が30%の光硬化性組成物分散液(1)を得た。
なお、光硬化性組成物分散液(1)の調製に用いた重合性基を有する電子受容性化合物(1)、重合性基を有する電子受容性化合物(2)、熱重合禁止剤(ALI)、ヘキサアリールビイミダゾール(1)、界面活性剤(1)、ノニオン性有機色素、および、有機ホウ素化合物の構造式を以下に示す。
Figure 0004807118
Figure 0004807118
−光硬化性組成物分散液(2)−
下記有機ボレート化合物(I)(ボレート化合物II)0.6部と、下記分光増感色素系ボレート化合物(I)(ボレート化合物II)0.1部と、高感度化を目的とした下記助剤(1)0.1部と、酢酸イソプロピル(水への溶解度約4.3%)3部と、の混合溶液中に、重合性基を有する下記電子受容性化合物(3)5部を添加した。
Figure 0004807118
得られた溶液を、13%ゼラチン水溶液13部と、下記2%界面活性剤(2)水溶液0.8部と、下記2%界面活性剤(3)水溶液0.8部と、の混合溶液中に添加し、ホモジナイザー(日本精機(株)製)を用いて回転数10000回転で5分間乳化し、光硬化性組成物分散液(2)を得た。
なお、光硬化性組成物分散液(2)の調製に用いた重合性基を有する電子受容性化合物(3)、助剤(1)、界面活性剤(2)、および界面活性剤(3)の構造式を以下に示す。
Figure 0004807118
Figure 0004807118
−光硬化性組成物分散液(3)−
分光増感色素系ボレート化合物(I)に代えて、前記に示した分光増感色素系ボレート化合物(II)(ボレート化合物II)0.1部を用いた以外は、光硬化性組成物分散液(2)を調製する場合と同様にして光硬化性組成物分散液(3)を得た。
(樹脂粒子分散液の調製)
・スチレン:460部
・nブチルアクリレート:140部
・アクリル酸:12部
・ドデカンチオール:9部
以上の成分を混合溶解して溶液を調製した。続いて、アニオン性界面活性剤(ローディア社製、ダウファックス)12部をイオン交換水250部に溶解したものに、前記溶液を加えてフラスコ中で分散し乳化した乳化液(単量体乳化液A)を調製した。
また、アニオン性界面活性剤(ローディア社製、ダウファックス)1部を555部のイオン交換水に溶解し、重合用フラスコに仕込んだ。重合用フラスコを密栓し、還流管を設置し、窒素を注入しながら、ゆっくりと攪拌しながら、75℃まで重合用フラスコをウオーターバスで加熱し、保持した。
次に、過硫酸アンモニウム9部をイオン交換水43部に溶解した溶液を、重合用フラスコ中に定量ポンプを介して、20分かけて滴下した後、単量体乳化液Aをやはり定量ポンプを介して200分かけて滴下した。
その後、ゆっくりと攪拌を続けながら重合用フラスコを75℃に、3時間保持して重合を終了した。
これにより粒子のメジアン径が210nm、ガラス転移点が51.5℃、重量平均分子量が31000、固形分量が42%の樹脂粒子分散液を得た。
(トナー1(発色部分散構造タイプ)の作製)
−感光・感熱カプセル分散液(1)の調製−
・マイクロカプセル分散液(1):150部
・光硬化性組成物分散液(1):300部
・ポリ塩化アルミニウム:0.20部
・イオン交換水:300部
以上の成分を混合した原料溶液に硝酸を加えてpHを3.5に調整し、ホモジナイザー(IKA社製、ウルトラタラックスT50)で十分に混合・分散した後、フラスコに移し加熱用オイルバスでスリーワンモーターで攪拌しながら40℃まで加熱し、40℃で60分間保持した後、さらに樹脂粒子分散液を300部追加して60℃にて2時間緩やかに攪拌した。これにより感光・感熱カプセル分散液(1)を得た。
なお、この分散液中に分散する感光・感熱カプセルの体積平均粒径は3.53μmであった。また、この分散液の調製時に、分散液の自発的な発色は確認されなかった。
−感光・感熱カプセル分散液(2)の調製−
・マイクロカプセル分散液(2):150部
・光硬化性組成物分散液(2):300部
・ポリ塩化アルミニウム:0.20部
・イオン交換水:300部
原料溶液として以上の成分を用いた以外は、感光・感熱カプセル分散液(1)を調製する場合と同様にして感光・感熱カプセル分散液(2)を得た。
なお、この分散液中に分散する感光・感熱カプセルの体積平均粒径は3.52μmであった。また、この分散液の調製時に、分散液の自発的な発色は確認されなかった。
−感光・感熱カプセル分散液(3)の調製−
・マイクロカプセル分散液(3):150部
・光硬化性組成物分散液(3):300部
・ポリ塩化アルミニウム:0.20部
・イオン交換水:300部
原料溶液として以上の成分を用いた以外は、感光・感熱カプセル分散液(1)を調製する場合と同様にして感光・感熱カプセル分散液(3)を得た。
なお、この分散液中に分散する感光・感熱カプセルの体積平均粒径は3.47μmであった。また、この分散液の調製時に、分散液の自発的な発色は確認されなかった。
−トナーの作製−
・感光・感熱カプセル分散液(1):750部
・感光・感熱カプセル分散液(2):750部
・感光・感熱カプセル分散液(3):750部
以上の成分を混合した溶液をフラスコに移し、フラスコ内を攪拌しながら加熱用オイルバス42℃まで加熱し、42℃で60分間保持した後、さらに樹脂粒子分散液を100部追加して緩やかに攪拌した。
その後、0.5モル/リットルの水酸化ナトリウム水溶液でフラスコ内のpHを5.0に調整した後、攪拌を継続しながら55℃まで加熱した。55℃までの昇温の間、通常の場合、フラスコ内のpHは、5.0以下まで低下するが、ここでは水酸化ナトリウム水溶液を追加滴下し、pHが4.5以下とならない様に保持した。この状態で55℃で3時間保持した。
反応終了後、冷却し、濾過し、イオン交換水で十分に洗浄した後、ヌッチェ式吸引濾過で固液分離した。そして、5リットルビーカー中で40℃のイオン交換水3リットル中に再分散し、15分間、300rpmで攪拌、洗浄した。この洗浄操作を5回繰り返し、ヌッチェ式吸引濾過で固液分離し、次いで、凍結真空乾燥を12時間行い、スチレン系樹脂中に感光・感熱カプセルが分散したトナー粒子を得た。このトナー粒子の粒径をコールターカウンターで測定したところ、体積平均粒径D50vは15.2μmであった。
続いて、上記トナー粒子50部に対し、疎水性シリカ(キャボット社製、TS720)1.0部を添加し、サンプルミルで混合して外添トナー1を得た。
(トナー2(同心円構造のタイプ)の作製)
−トナーの作製−
・マイクロカプセル分散液(1):150部
・光硬化性組成物分散液(1):300部
・ポリ塩化アルミニウム:0.20部
・イオン交換水:300部
以上の成分を混合した溶液を硝酸でpHを3.5に調整し、ホモジナイザー(IKA社製、ウルトラタラックスT50)で十分に混合・分散した後、フラスコに移し加熱用オイルバスでスリーワンモーターで攪拌しながら40℃まで加熱し、40℃で60分間保持した後、さらに樹脂粒子分散液を300部追加して緩やかに攪拌した。
その後、0.5モル/リットルの水酸化ナトリウム水溶液でフラスコ内のpHを7.5に調整した後、攪拌を継続しながら60℃まで加熱し、60℃にて2時間緩やかに攪拌し、これをフラスコから一旦取り出して放置冷却し、感光・感熱カプセル分散液を得た。
なお、この分散液中に分散する感光・感熱カプセルの体積平均粒径は4.50μmであった。また、この分散液の調整時に、分散液の自発的な発色は確認されなかった。
続いて、感光・感熱カプセル分散液に、下記成分の混合溶液を添加して、硝酸でpH=3.5に調整し、ホモジナイザー(IKA社製、ウルトラタラックスT50)で十分に混合・分散した。
・マイクロカプセル分散液(2):150部
・光硬化性組成物分散液(2):300部
・ポリ塩化アルミニウム:0.20部
・イオン交換水:300部
次に、上記の混合・分散した後の溶液を、再びフラスコに移し加熱用オイルバスでスリーワンモーターで攪拌しながら40℃まで加熱し、40℃で60分間保持した後、さらに樹脂粒子分散液を200質量部追加して緩やかに攪拌した。
その後、0.5モル/リットルの水酸化ナトリウム水溶液でフラスコ内のpHを7.5に調整した後、攪拌を継続しながら60℃まで加熱し、60℃にて2時間緩やかに攪拌し、これをフラスコから一旦取り出して放置冷却し、感光・感熱カプセル分散液を得た。
なお、この分散液中に分散する感光・感熱カプセルの体積平均粒径は6.0μmであった。また、この分散液の調整時に、分散液の自発的な発色は確認されなかった。
続いて、感光・感熱カプセル分散液に、下記成分の混合溶液を添加して、硝酸でpHを3.5に調整し、ホモジナイザー(IKA社製、ウルトラタラックスT50)で十分に混合・分散した。
・マイクロカプセル分散液(3):150部
・光硬化性組成物分散液(3):300部
・ポリ塩化アルミニウム:0.20部
・イオン交換水:300部
次に、上記の混合・分散した後の溶液を、再びフラスコに移し加熱用オイルバスでスリーワンモーターで攪拌しながら40℃まで加熱し、40℃で60分間保持した後、さらに樹脂粒子分散液を100質量部追加して60℃にて2時間緩やかに攪拌した。
その後、0.5モル/リットルの水酸化ナトリウム水溶液でフラスコ内のpHを5.0に調整した後、攪拌を継続しながら55℃まで加熱した。55℃までの昇温の間、通常の場合、フラスコ内のpHは、5.0以下まで低下するが、ここでは水酸化ナトリウム水溶液を追加滴下し、pHが4.5以下とならない様に保持した。この状態で55℃で3時間保持した。なお、この分散液の調製時に、分散液の自発的な発色は確認されなかった。
反応終了後、冷却し、濾過し、イオン交換水で十分に洗浄した後、ヌッチェ式吸引濾過で固液分離した。そして、5リットルビーカー中で40℃のイオン交換水3リットル中に再分散し、15分間、300rpmで攪拌、洗浄した。この洗浄操作を5回繰り返し、ヌッチェ式吸引濾過で固液分離し、次いで、凍結真空乾燥を12時間行いトナー粒子を得た。
このトナー粒子の粒径をコールターカウンターで測定したところ、体積平均粒径D50vが7.5μmであった。上記トナー粒子50質量部に対し、疎水性シリカ(キャボット社製、TS720)1.0質量部を添加し、サンプルミルで混合して外添トナー2を得た。
B.光発色型トナー
(マイクロカプセル分散液の調製)
−マイクロカプセル分散液(1)−
前記電子供与性無色染料(1)12.1部を酢酸エチル10.2部に溶解し、ジシクロヘキシルフタレート12.1部とタケネートD−110N(武田薬品工業株式会社製)26部とミリオネートMR200(日本ポリウレタン工業株式会社製)2.9部とを添加した溶液を準備した。
続いて、この溶液を、ポリビニルアルコール5.5部および水73部の混合液に添加し、20℃で乳化分散し、平均粒径0.5μmの乳化液を得た。得られた乳化液に水80部を加え、攪拌しながら60℃に加温し、2時間後に電子供与性無色染料(1)を芯材とするマイクロカプセルを分散させたマイクロカプセル分散液(1)を得た。
なお、このマイクロカプセル分散液(1)に含まれるマイクロカプセルの外殻を構成する材料(上記とほぼ同様の条件でジシクロヘキシルフタレート、タケネートD−110NおよびミリオネートMR200を反応させて得られた材料)のガラス転移温度は約130℃であった。
−マイクロカプセル分散液(2)−
電子供与性無色染料(1)を前記電子供与性無色染料(2)に変更した以外は、マイクロカプセル分散液(1)を調製する場合と同様にしてマイクロカプセル分散液(2)を得た。
−マイクロカプセル分散液(3)−
電子供与性無色染料(1)を前記電子供与性無色染料(3)に変更した以外は、マイクロカプセル分散液(1)を調製する場合と同様にしてマイクロカプセル分散液(3)を得た。
(光硬化性組成物分散液の調製)
−光硬化性組成物分散液(1)−
光重合開始剤(1−a)1.62部と、(1−b)0.54部とを、酢酸エチル4部に溶解させた溶液に、電子受容性化合物(1)9部およびトリメチロールプロパントリアクリレートモノマー(3官能アクリレート、分子量約300)7.5部を添加した。
このようにして得られた溶液を、15%PVA(ポリビニルアルコール)水溶液19部と水5部と2%界面活性剤(1)水溶液0.8部と2%界面活性剤(2)水溶液0.8部とを混合した混合溶液中に添加し、ホモジナイザー(日本精機株式会社製)にて8000rmpで7分間乳化して、乳化液とした光硬化性組成物分散液(1)を得た。
−光硬化性組成物分散液(2)−
光重合開始剤(1−a)及び(1−b)を、光重合開始剤(2−a)0.08部、(2−b)0.18部、(2−c)0.18部に変更した以外は、光硬化性組成物分散液(1)を調製する場合と同様にして光硬化性組成物分散液(2)を得た。
−光硬化性組成物分散液(3)−
前記光硬化性組成物分散液(2)で用いた光重合開始剤(2−b)を、光重合開始剤(3−b)に変更した以外は、光硬化性組成物分散液(1)を調製する場合と同様にして光硬化性組成物分散液(3)を得た。
なお、光硬化性組成物分散液の調整に用いた光重合開始剤(1−a)、(1−b)、(2−a)、(2−b)、(2−c)、(3−b)、電子受容性化合物(1)、及び、界面活性剤(1)〜(2)の化学構造式を以下に示す。
Figure 0004807118
Figure 0004807118
Figure 0004807118
−樹脂粒子分散液(1)の調製−
・スチレン:360部
・nブチルアクリレート:40部
・アクリル酸:4部
・ドデカンチオール:24部
・四臭化炭素:4部
以上を混合し、溶解した溶液を、非イオン性界面活性剤(三洋化成(株)製:ノニポール400)6部及びアニオン性界面活性剤(第一工業製薬(株)製:ネオゲンSC)10部をイオン交換水560部に溶解した溶液に、フラスコ中で分散・乳化し、10分ゆっくりと混合しながら、これに過硫酸アンモニウム4部を溶解したイオン交換水50部を投入した。
続いて、フラスコ内の窒素置換を行った後、フラスコ内を攪拌しながら内容物が70℃になるまでオイルバスで加熱し、5時間そのまま乳化重合を継続した。こうして、体積平均粒径が200nm、ガラス転移温度が50℃、重量平均分子量(Mw)が16200、比重が1.2である樹脂粒子を分散させてなる樹脂粒子分散液(1)(樹脂粒子濃度:30%)を得た。
−感光・感熱カプセル分散液(1)の調製−
・マイクロカプセル分散液(1)24部
・光硬化性組成物分散液(1)232部
以上を丸型ステンレス製フラスコ中においてIKA製ウルトラタラックスT50で十分に混合・分散した。
そして、硝酸でpH3に調整し、次いで、これにポリ塩化アルミニウム0.20部を加え、ウルトラタラックスで回転数6000rpmで10分間の分散操作を継続した。 加熱用オイルバスでフラスコをゆっくり攪拌しながら40℃まで加熱した。
ここで、樹脂粒子分散液(1)を緩やかに60部を追加した。
これにより、感光・感熱カプセル分散液(1)を得た。なお、この分散液中に分散する感光・感熱カプセルの体積平均粒経は約2μmであった。また、得られた分散液の自発的な発色は確認されなかった。
−感光・感熱カプセル分散液(2)の調製−
マイクロカプセル分散液(1)をマイクロカプセル分散液(2)に、光硬化性組成物分散液(1)を光硬化性組成物分散液(2)に変更した以外は、感光・感熱カプセル分散液(1)と同様に作製し、感光・感熱カプセル分散液(2)を得た。なお、この分散液中に分散する感光・感熱カプセルの体積平均粒経は約2μmであった。また、得られた分散液の自発的な発色は確認されなかった。
−感光・感熱カプセル分散液(3)の調製−
マイクロカプセル分散液(1)をマイクロカプセル分散液(3)に、光硬化性組成物分散液(1)を光硬化性組成物分散液(3)に変更した以外は、感光・感熱カプセル分散液(1)と同様に作製し、感光・感熱カプセル分散液(3)を得た。なお、この分散液中に分散する感光・感熱カプセルの体積平均粒経は約2μmであった。また、得られた分散液の自発的な発色は確認されなかった。
(トナー3(発色部分散構造タイプ)の作製)
−トナーの作製−
・感光・感熱カプセル分散液(1):80部
・感光・感熱カプセル分散液(2):80部
・感光・感熱カプセル分散液(3):80部
・樹脂粒子分散液(1):80部
以上を丸型ステンレス製フラスコ中においてIKA製ウルトラタラックスT50で十分に混合・分散した。
次いで、これにポリ塩化アルミニウム0.1部を加え、ウルトラタラックスで回転数6000rpmで10分間の分散操作を継続した。加熱用オイルバスでフラスコを攪拌しながら48℃まで加熱した。48℃で60分保持した後、ここに樹脂粒子分散液(1)を緩やかに20部追加した。
その後、0.5mol/lの水酸化ナトリウム水溶液で系内のpHを8.5にした後、ステンレス製フラスコを密閉し、磁力シールを用いて攪拌を継続しながら55℃まで加熱し、10時間保持した。
反応終了後、冷却し、濾過、イオン交換水で十分に洗浄した後、ヌッチェ式吸引濾過により固液分離を施した。これを更に40℃のイオン交換水1Lに再分散し、15分300rpmで攪拌・洗浄した。
これを更に5回繰り返し、濾液のpHが7.5、電気伝導度7.0μS/cmtとなったところで、ヌッチェ式吸引濾過によりNo5Aろ紙を用いて固液分離を行った。次いで12時間の真空乾燥を行うことにより、母材中に3種類の感光・感熱カプセルが分散した構造を有するトナー粒子を得た。
この時の粒子径をコールターカウンターにて測定したところ体積平均粒径D50vは約15μmであった。また、得られたトナーの自発的な発色は確認されなかった。
次に、このトナー(1)100部と、n−デシルトリメトキシシランで表面処理した平均粒子径15nmの疎水性チタニア0.3部と、平均粒子径30nmの疎水性シリカ(NY50、日本アエロジル社製)0.4部とをヘンシェルミキサーを用い周速32m/sで10分間ブレンドをおこなった後、目開き45μmのシーブを用いて粗大粒子を除去し、外添剤を添加した外添トナー3を得た。
<現像剤の作製>
次に、キャリア芯材の表面を、ポリメチルメタアクリレート(総研化学社製)で被覆した平均粒径50μmのフェライトキャリア(キャリア全質量に対するポリメチルメタアクリレートの使用量:1質量%)を用い、トナー濃度が5質量%になるように前記の外添トナー1〜3を秤量し、両者をボールミルで5分間攪拌・混合して現像剤(1)〜(3)を調製した。
<実施例1>
(画像形成)
図1に示したような画像形成装置を用意し、現像剤として現像剤1を用いた。
感光体10としては、アルミドラムの周りに、電荷発生層が塩化ガリウムフタロシアニン、電荷輸送層がN,N’−ジフェニル−N,N’−ビス(3−メチルフェニル)−[1,1’]ビフェニル−4,4’−ジアミンを含む膜厚25μmの多層有機感光層を塗布形成したものを用いた。また、帯電装置12としてはスコロトロンを用いた。
露光装置14としては、解像度600dpiで潜像形成が行える波長780nmのLEDイメージバーを用いた。現像装置16は、二成分磁気ブラシ現像用の金属スリーブを備え反転現像を行うことが可能なものである。なお、この現像器に前記現像剤1を装填したときのトナー帯電量は、−5〜−30μC/g程度であった。
発色情報付与装置28は、ピーク波長405nm(露光量:0.2mJ/cm2)、532nm(露光量:0.2mJ/cm2)、657nm(露光量:0.4mJ/cm2)の光を照射可能な解像度600dpiのLEDイメージバーである。転写装置18は、導電性芯材の外周に導電性弾性体を被覆してなる半導電性ロールを転写ロールとして有する。導電性弾性体は、NBRとEPDMを混合してなる非相溶性のブレンド物に、ケッチェンブラックとサーマルブラックからなる2種類のカーボンブラックを分散させてなり、ロール抵抗が108.5Ωcm、アスカーC硬度が35度のものである。
定着装置22は、富士ゼロックス社製DPC1616に使用されている定着器を使用し、発色情報付与のポイントから30cmの位置に配置した。また、光照射手段24としては、前記発色情報付与装置の三波長を含む高輝度シャーカステンを用い、照射幅を5mmとした。
以上の構成の画像形成装置により印字条件を下記のように設定した。
・感光体線速:10mm/秒。
・帯電条件:スコロトロンのスクリーンに−400V、ワイヤーには直流−6kVを印加。このとき感光体の表面電位は−400Vとなった。
・露光:Y、M、C、黒の4色分の画像情報の論理和で露光し、露光後の電位は約−50Vであった。
・現像バイアス:直流−330Vに交流Vpp1.2kV(3kHz)の矩形波を重畳。
・現像剤接触条件:周速比(現像ロール/感光体)2.0、現像ギャップ0.5mmとし、現像ロール上の現像剤重量は400g/m2とし、感光体上のトナー現像量がべた画像で5g/m2となるようにした。
・転写バイアス:直流+800V印加。
・定着温度:定着ロール表面温度を180℃に設定。
・光照射装置照度:130000lux。
以上の条件により、Y、M、C、R、G、B、Kの各色について階調画像部を有するチャートを印字した。なお、トナーへの発色情報付与は、下記表1に示す組み合わせで行なった(○印をつけたLEDが発光すると所望の色にトナーが発色することを示す)。また、発光強度もしくは発光時間で発色濃度を制御するため、1ドットの時間内を8分割した時間幅変調を採用した。
Figure 0004807118
(画像評価)
上記条件で得られたプリントサンプルについて、以下の評価を行った。
−発色濃度−
Y、M、Cの各色についてべた画像部分の画像濃度を濃度測定器X−Rite938(X−Rite社製)で調べたところ、いずれの色においても画像濃度が1.5以上と十分な発色が確認された。
−色再現性−
R、G、B、Y、M、Cの各色について、5%から100%の5%刻みの階調チャートにより色再現性を調べたが、いずれの色においてもカラーバランスがよく色再現性に優れていた。

−ハイライト画像部再現性−
ハイライト画像部の再現性を、プリント全面15%ハーフトーン画像により調べたが、ハイライト部の飛びがない良好なプリントであることが確認された。
<実施例2>
実施例1の画像形成において、感光体の線速を300mm/秒とした以外は、同様にして画像形成を行い、同様の画像評価を行った。また、この条件で定着装置、光照射装置を外して未定着像を出力し、そのまま10分間暗所で放置した後、同一速度、温度で定着、光照射を行い画像形成を行った。
その結果、放置の有無にかかわりなく、発色濃度、色再現性、ハイライト画像部再現性ともに実施例1におけるプリントと遜色ないものが得られた。
<実施例3>
実施例1の画像形成において、現像剤1の代わりに現像剤2を用いた以外は同様にして画像形成を行い、同様の画像評価を行った。
その結果、少なくとも初期の画像においては、発色濃度は実施例1と同等の濃度が得られ、さらに色再現性、ハイライト部再現性に関しては、目視レベルで実施例1よりもさらに良好な評価結果となった。
<実施例4>
実施例1の画像形成において、現像剤1の代わりに現像剤3を用い、トナーへの発色情報付与を、下記表2に示す組み合わせに変更した以外は同様にして画像形成を行い、同様の画像評価を行った。
その結果、発色濃度は1.5以上であり、色再現性、ハイライト再現性も目視レベルで実施例1と同等の結果であり、光発色型トナーを用いた場合でも、実施例1の光非発色型トナーの場合と同様に、発色濃度、色再現性、ハイライト部再現性に優れた特性が得られた。
Figure 0004807118
<比較例1>
(トナーの作製)
まず、特許第2979158号明細書に記載のマイクロカプセル含有シートを作製した。具体的には、マイクロカプセルの壁材としてはポリウレタンを用い、この壁材の微細孔に光異性化物質としてアゾベンゼンを会合させたリン脂質2分子膜を埋め込んだ。そして、このマイクロカプセル内部にロイコ染料を含有させ、これを顕色剤としてα−ナフトールを含むメチルセルロース中に分散させてシートとした。
上記シートを細かく裁断し、さらにジェットミルにて粉砕して、平均粒径が約20μmの粒子を作製した。これに前記と同様にして外添剤処理を施してトナーとし、さらに前記キャリアと混合して現像剤4とした。
なお、これらの工程はすべて暗所にて行った。
(評価)
実施例4において、現像剤3の代わりに現像剤4を用いた以外は同様にして画像形成を行い、同様の画像評価を行った。また、上記画像形成において、感光体の線速を300mm/秒として同様の画像形成、さらに未定着画像として10分間暗所に放置した後に定着、光照射を行う画像形成を行った。
その結果、採取したプリントサンプルは、感光体の線速が10mm/秒の時は、全体に濃度が薄い画像となり(画像濃度:平均0.8程度)、ハイライト部の飛びも顕著であった。また、感光体の線速が300mm/秒の時は、画像濃度、色調は回復したが(画像濃度:平均1.0程度)、ハイライト部に飛びが観察され、特に20%以下のハーフトーンでは飛びが顕著であった。さらに、暗所に10分間放置したプリントサンプルでは、ほとんど発色しておらず、画像としての判別は不可能であった。
以上のように、実施例の本発明におけるトナーを用いた画像形成装置(画像形成方法)では、感光体の線速を大きく変化させたときにも画像に変化はなく安定しており、またハイライト画像部における再現性もよく高画質画像を得ることができた。一方、発色機構が本発明とは異なる比較例のトナーを用いた場合には、同様の装置構成であっても安定した画像を得ることができなかった。
本発明の画像形成装置の一例を示す概略構成図である。 トナー像に発色情報付与露光時の状態を示す模式断面図である。 印字制御部の回路ブロック図である。 本発明の画像形成装置の他の一例を示す概略構成図である。 トナーの発色機構を説明するための模式図であり、(A)は発色部、(B)はその拡大状態を示す。 トナーの構造の一例を示す模式断面図である(母材と、該母材に分散した発色部とを含む場合)。 トナーの構造の他の一例を示す模式断面図である(同心円構造である場合)。 トナーの構造の他の一例を示す模式断面図である(ストライプ構造である場合)。 トナーの構造の他の一例を示す模式断面図である(扇構造である場合)。
符号の説明
2 感光層
4 反射手段
10 感光体
12 帯電装置
14 露光装置
16 現像装置
18 転写装置
20 クリーナ
22 定着装置
24 光照射装置
26 記録媒体
28 発色情報付与装置
32 光書込みヘッド
34 発色情報付与露光ヘッド
36 プリンタコントローラ
38 印字部
40 論理和回路
42 発振回路
44 発色制御回路
50 マイクロカプセル
52 発色剤
54 顕色剤モノマー
56 光重合開始剤
60、80、82、84 発色部(感光・感熱カプセル)
70、72、74、76 トナー
86 母材
90、92、94 感光・感熱層

Claims (10)

  1. 互いに隔壁で隔離された状態で存在し、互いに反応した際に発色する第1成分及び第2成分と、該第2成分を含み該第1成分を含まない光硬化性組成物と、を有し、光による発色情報の付与により前記光硬化性組成物が硬化または未硬化の状態を維持して、前記発色のための反応が制御されるトナーを用いる画像形成装置であって、
    像担持体と、該像担持体表面にトナー像を形成するトナー像形成手段と、前記像担持体表面に形成されたトナー像を記録媒体表面に転写する転写手段と、前記トナー像に光による発色情報を付与して、前記第2成分が拡散する領域と拡散しない領域とを形成する発色情報付与手段と、該記録媒体表面に転写されたトナー像を熱及び/または圧力により定着する定着手段と、加熱により前記隔壁の物質透過性を増大させて、前記発色情報を付与されたトナー像のうち、前記第2成分が拡散する領域において、前記第1成分と前記第2成分を反応させて発色させる発色手段と、を含むことを特徴とする画像形成装置。
  2. 前記定着手段が、前記発色手段を兼ねることを特徴とする請求項1に記載の画像形成装置。
  3. 前記像担持体が感光体であり、前記トナー像形成手段が、前記感光体表面を帯電する帯電手段と、該感光体表面に露光により静電潜像を形成する露光手段と、該静電潜像を前記トナーを含む現像剤によりトナー像とする現像手段とを含むことを特徴とする請求項1に記載の画像形成装置。
  4. さらに、定着後の記録媒体表面に前記第1成分及び前記第2成分を分解又は失活させるための光を照射する光照射手段を有することを特徴とする請求項1に記載の画像形成装置。
  5. 前記像担持体に、該像担持体表面に形成されたトナー像に発色情報を付与する光を、再び前記トナー像に向けて反射する反射手段を設けたことを特徴とする請求項1に記載の画像形成装置。
  6. 前記トナーが、前記隔壁として、前記光硬化性組成物中に分散されるマイクロカプセルを含み、前記第1成分が該マイクロカプセル内に含まれ、前記第2成分が前記光硬化性組成物中に含まれる構成からなることを特徴とする請求項1に記載の画像形成装置。
  7. 前記光硬化性組成物中に、前記第2成分と光重合性化合物とが含まれることを特徴とする請求項6に記載の画像形成装置。
  8. 前記第2成分が光重合性基を有することを特徴とする請求項6に記載の画像形成装置。
  9. 互いに隔壁で隔離された状態で存在し、互いに反応した際に発色する第1の反応性成分及び第2の反応性成分と、該第2成分を含み該第1成分を含まない光硬化性組成物と、を有し、光による発色情報の付与により前記光硬化性組成物が硬化または未硬化の状態を維持して、前記発色のための反応が制御されるトナーを用いる画像形成方法であって、
    像担持体表面にトナー像を形成するトナー像形成工程と、該発色情報を付与されたトナー像を記録媒体表面に転写する転写工程と、前記トナー像に光による発色情報を付与して、前記第2成分が拡散する領域と拡散しない領域とを形成する発色情報付与工程と、記録媒体表面に転写されたトナー像を熱及び/または圧力により定着する定着工程と、加熱により前記隔壁の物質透過性を増大させて、前記発色情報を付与されたトナー像のうち、前記第2成分が拡散する領域において、前記第1成分と前記第2成分を反応させて発色させる発色工程と、を含むことを特徴とする画像形成方法。
  10. 前記発色情報付与工程が、前記トナー像形成工程と前記転写工程との間に設けられることを特徴とする請求項9に記載の画像形成方法。
JP2006077360A 2006-03-20 2006-03-20 画像形成装置及び画像形成方法 Expired - Fee Related JP4807118B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006077360A JP4807118B2 (ja) 2006-03-20 2006-03-20 画像形成装置及び画像形成方法
US11/604,031 US7923183B2 (en) 2006-03-20 2006-11-24 Image forming apparatus and image forming method
CNB2006101645127A CN100514220C (zh) 2006-03-20 2006-12-06 成像装置和成像方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006077360A JP4807118B2 (ja) 2006-03-20 2006-03-20 画像形成装置及び画像形成方法

Publications (2)

Publication Number Publication Date
JP2007256359A JP2007256359A (ja) 2007-10-04
JP4807118B2 true JP4807118B2 (ja) 2011-11-02

Family

ID=38518244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006077360A Expired - Fee Related JP4807118B2 (ja) 2006-03-20 2006-03-20 画像形成装置及び画像形成方法

Country Status (3)

Country Link
US (1) US7923183B2 (ja)
JP (1) JP4807118B2 (ja)
CN (1) CN100514220C (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4743026B2 (ja) * 2006-07-05 2011-08-10 富士ゼロックス株式会社 画像形成装置及び画像形成方法
JP4730235B2 (ja) * 2006-07-13 2011-07-20 富士ゼロックス株式会社 画像形成装置
JP5163086B2 (ja) * 2007-12-12 2013-03-13 富士ゼロックス株式会社 画像形成装置
JP2009186655A (ja) * 2008-02-05 2009-08-20 Konica Minolta Business Technologies Inc ハイブリッド現像用キャリア、ハイブリッド現像用現像剤および画像形成装置
JP4903837B2 (ja) * 2009-06-01 2012-03-28 シャープ株式会社 画像形成装置
CN102073228A (zh) * 2009-11-23 2011-05-25 东芝泰格有限公司 色调剂以及色调剂的制备方法
US8221951B2 (en) * 2010-03-05 2012-07-17 Xerox Corporation Toner compositions and methods
US8603722B2 (en) * 2010-04-27 2013-12-10 Toshiba Tec Kabushiki Kaisha Toner producing method and toner
JP5954278B2 (ja) * 2013-08-09 2016-07-20 コニカミノルタ株式会社 静電荷像現像用トナー、その製造方法および画像形成方法
US9128442B2 (en) * 2013-08-27 2015-09-08 Kabushiki Kaisha Toshiba Cartridge, image forming apparatus and quality determining method of cartridge
RU2754890C1 (ru) * 2018-06-12 2021-09-08 Кэнон Кабусики Кайся Устройство формирования изображения, способ управления им и некратковременный считываемый компьютером носитель данных

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4624543A (en) * 1981-08-26 1986-11-25 Savin Corporation Method and apparatus for electrophotographically processing information
JPS63311364A (ja) * 1987-06-15 1988-12-20 Hitachi Ltd 多色記録装置
GB2223604B (en) 1988-09-06 1992-08-19 Mitsubishi Electric Corp Printer
JPH0297943A (ja) * 1988-10-04 1990-04-10 Mitsubishi Electric Corp 画像形成装置
JPH02293869A (ja) * 1989-05-09 1990-12-05 Seiko Epson Corp 多色再現カプセル化物
US6303259B1 (en) * 1998-11-26 2001-10-16 Mitsubishi Denki Kabushiki Kaisha Heat and light-sensitive recording material and recording method with the same
JP2003330228A (ja) * 2002-05-13 2003-11-19 Casio Electronics Co Ltd マイクロカプセル含有トナー粒子とそれを用いたカラー画像形成方法及び装置
JP4743026B2 (ja) * 2006-07-05 2011-08-10 富士ゼロックス株式会社 画像形成装置及び画像形成方法

Also Published As

Publication number Publication date
CN101042554A (zh) 2007-09-26
JP2007256359A (ja) 2007-10-04
US20070218375A1 (en) 2007-09-20
US7923183B2 (en) 2011-04-12
CN100514220C (zh) 2009-07-15

Similar Documents

Publication Publication Date Title
JP4807118B2 (ja) 画像形成装置及び画像形成方法
JP4743026B2 (ja) 画像形成装置及び画像形成方法
JP2007264215A (ja) 画像形成装置及び画像形成方法
JP2007264204A (ja) 画像形成装置及び画像形成方法
JP4784357B2 (ja) 画像形成装置
JP5163086B2 (ja) 画像形成装置
JP4765767B2 (ja) 画像形成装置及び画像形成方法
JP2007316325A (ja) 画像形成装置及び画像形成方法
JP2007316420A (ja) 画像形成方法
JP4797755B2 (ja) 画像形成装置
JP4747962B2 (ja) カラー画像記録装置およびカラー画像記録方法
JP2007264212A (ja) 画像形成装置及び画像形成方法
JP2007316139A (ja) 画像形成装置
JP5200455B2 (ja) 画像形成装置
JP4876771B2 (ja) 画像形成方法及び画像形成装置
JP4654980B2 (ja) 画像形成装置及び画像形成方法
JP2008015332A (ja) 静電潜像現像用導電性トナー、静電潜像現像用現像剤、画像形成方法および画像形成装置。
JP4779980B2 (ja) 画像形成装置
JP2007316324A (ja) 画像形成装置及び画像形成方法
JP2008181002A (ja) 画像形成装置
JP2007286493A (ja) 画像形成装置
JP2007316326A (ja) 画像形成装置及び画像形成方法
JP2007316419A (ja) 静電潜像現像用トナー、静電潜像現像用現像剤、画像形成方法及び画像形成装置
JP2007304143A (ja) 画像形成方法及び画像形成装置
JP2007286494A (ja) 画像形成装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110404

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110627

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110719

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110801

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140826

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees