JP2007286494A - 画像形成装置 - Google Patents

画像形成装置 Download PDF

Info

Publication number
JP2007286494A
JP2007286494A JP2006115712A JP2006115712A JP2007286494A JP 2007286494 A JP2007286494 A JP 2007286494A JP 2006115712 A JP2006115712 A JP 2006115712A JP 2006115712 A JP2006115712 A JP 2006115712A JP 2007286494 A JP2007286494 A JP 2007286494A
Authority
JP
Japan
Prior art keywords
light
color
toner
wavelength
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006115712A
Other languages
English (en)
Inventor
Hideki Kashimura
秀樹 樫村
Nobumasa Furuya
信正 古谷
Taku Hino
卓 日野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP2006115712A priority Critical patent/JP2007286494A/ja
Publication of JP2007286494A publication Critical patent/JP2007286494A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Dry Development In Electrophotography (AREA)
  • Color Electrophotography (AREA)
  • Developing Agents For Electrophotography (AREA)

Abstract

【課題】異なる波長の光を露光することにより異なる色に発色させることが可能なトナーを用いた画像形成装置において、このトナーの発色濃度を調整可能な画像形成装置を提供することを目的とする。
【解決手段】本発明の画像形成装置10によれば、発色情報を付与するために光源53から出射される光の波長が、目的とする波長からずれた場合であっても、目的とする波長の光が露光されたときの発色後のトナーの濃度と同一となるように、発色情報付与装置28の光源53による光量、及び露光装置の光源15から出射される光の露光量を調整することができるので、光源53から出射される光の波長が、目的とする波長からずれた場合であっても、目的とする波長の光が露光されたときの発色濃度と同一の濃度にトナーを発色させることができるため、容易に発色後のトナー濃度を調整することができる。
【選択図】図1

Description

本発明は静電記録方式を採用した画像形成装置に関するものであり、詳しくは、異なる波長の光を露光することにより異なる色に発色させることが可能なトナーを用いた画像形成装置に関するものである。
従来から電子写真方式でカラー画像を得る記録装置においては、基本三原色をそれぞれの画像情報に応じて現像し、これらのトナー像を順次重ね合わせることでカラー画像を得ている。具体的な装置構成としては、画像形成の方法によって潜像形成された一つの感光体ドラムに、各色トナー像を現像し、それらを転写部材に転写することを繰り返してカラー画像を得る所謂4サイクル機、あるいは各色の画像形成手段ごとに感光体ドラム、現像装置を具備して転写部材が移動することにより順次連続してトナー像を転写してカラー画像を得るタンデム機などが知られている。
これらは少なくとも、色毎に複数の現像装置を持つことで共通している。そのため、通常のカラー画像形成では三原色に黒色を加えた4つの現像装置が必要であり、さらにタンデム機ではそれぞれの4つの現像装置に応じて4つの感光体ドラムが必要であり、それら4つの画像形成手段の同期を整合する手段が必要になるなど、装置の大型化やコストの増大は避けられないものとなっている。
これに対し、単一の現像装置でカラー画像を得る方法が提案されている(例えば、特許文献1参照)。しかしながら、ここで開示されている方法では、異なる波長により異なる色に発色するトナーを使用し、1つの現像器でカラー画像を得るプロセスは提案されているものの、トナーの発色メカニズムの記載などがなくほとんど実現性がないものとなっている。
また、1つの現像器でカラー画像を得るプロセスとして、トナーの発色メカニズムを開示した方法も提案されている(例えば、特許文献2参照)。ここで開示されているプロセスで使用しているトナーは、外部刺激を受けて物質透過性が変化するカプセル壁を有する複数のマイクロカプセルを、常温下でゲル状態となるトナー樹脂中に分散混合して成る粒子である。この粒子中のマイクロカプセル内には、互いに混合されて発色反応を起こす2種類の反応性物質のうちの一方(各色染料前駆体)が含まれ、マイクロカプセルの外相となる上記トナー樹脂中には、該反応性物質の内の他方(顕色剤)が含まれるものである。
このトナーでは、カプセル壁として特定波長の光を照射した際に物質透過性が増大する光異性化物質を用い、このシス−トランス遷移を利用して光の照射や超音波を印加(光記録)してカプセル壁の物質透過性を変化させる。この光の照射としては、具体的には、画像情報中の色成分情報に対応した波長の光を照射することによって、マイクロカプセル壁の物質透過性を増大させることによって、特定色に発色をさせている。この光記録されたトナーを用紙に転写した後に、この用紙に転写されたトナーを定着器などにより加熱定着することで、加熱によりゲル状態のトナー樹脂を低粘度することによって、反応性物質の双方(各色染料前駆体と顕色剤)がカプセル壁を介して相互に拡散を開始する。この染料前駆体と顕色剤との科学反応によって色素が形成され、用紙上にカラー画像が形成される。
このような構成のトナーを用いることによって、1つの現像器でカラー画像を得ることできる。
特開昭63−311364号公報 特開2003−330228号公報
上記従来技術によれば、発色対象となる色に応じた波長の光を照射することによって、1つの現像器でカラー画像を得ることが可能であるものの、特定の波長の光を照射するための光源から出射される光の波長は、温度変動等に応じて変動すると共に、各光源毎に波長特性にばらつきを有する。このため、所望の色に対応する波長とは異なる波長の光が照射されると、特定色を発色させるためにピーク分光感度に対応する波長でトナーを露光するときに、ピーク分光感度からずれた感度に対応する波長の光が照射されることから、所望の色を発色させるための発色反応が十分に進行せず、所望の濃度が得られないおそれがあった。
本発明は、上記従来技術の問題点を解決するためになされたものであって、異なる波長の光を露光することにより異なる色に発色させることが可能なトナーを用いた画像形成装置において、このトナーの発色濃度を調整可能な画像形成装置を提供することを目的とする。
請求項1の画像形成装置は、露光された光の波長変化に対して異なる感度を有し、発色対象の色または非発色対象の色に応じて予め定められた波長の光が露光されることにより、露光された光の波長に対応する色に発色可能な状態または非発色状態を維持するトナーを用いる画像形成装置であって、像担持体を所定の帯電電位に帯電する帯電手段と、前記帯電手段によって帯電された前記像担持体を露光することにより該像担持体上に画像データに応じた静電潜像を形成する潜像形成手段と、前記像担持体に形成された静電潜像を前記トナーによって現像し、該像担持体上にトナー像を形成するトナー像形成手段と、前記画像データ中の色成分情報に基づいて、発色対象の色または非発色対象の色に対応して予め定められた波長の光を出射する光源を含み、該光源から出射された光を前記トナー像に露光することにより、該トナー像を構成するトナーに発色情報を付与する発色情報付与手段と、前記光源から出射された光の波長を検出する検出手段と、前記トナー像を記録媒体に転写する転写手段と、前記記録媒体に転写されたトナー像を熱及び圧力の何れか一方または双方により前記記録媒体に定着する定着手段と、前記記録媒体に転写されたトナー像に熱を加えることにより、前記トナー像を構成する各トナーを前記発色情報付与手段によって付与された発色情報に応じた色または該発色情報に応じた色以外の色に発色させる発色手段と、前記トナーの分光感度情報として、予め定めた基準光量で該トナーを露光したときの光の波長に対応する感度を示す感度情報を予め記憶した記憶手段と、前記基準光量で前記分光感度情報に基づいた所定波長の光を出射するように前記光源を制御したときに、前記検出手段によって検出された波長に基づいて露光されたトナーの発色後の濃度が、前記基準光量で前記所定波長の光が露光されたトナーの発色後の濃度となるように、前記所定波長の光を露光するときの光量及び前記潜像形成手段による露光量の少なくとも一方を調整するように、前記発色情報付与手段及び前記潜像形成手段の少なくとも一方を制御する制御手段と、を備えている。
請求項1の画像形成装置は、露光された光の波長変化に対して異なる感度を有し、発色対象の色または非発色対象の色に応じて予め定められた波長の光が露光されることにより、露光された光の波長に対応する色に発色可能な状態または非発色状態を維持するトナーを用いる。すなわち、本発明の画像形成装置で用いられるトナーは、露光された光の波長に応じた色に発色可能な状態または非発色可能な状態とされるとともに、露光された光の波長に応じた感度を有する。
帯電手段によって所定の帯電電位に帯電された像担持体は、潜像形成手段により露光される。この潜像形成手段による露光によって、像担持体上には、画像データに応じた静電潜像が形成される。現像手段は、像担持体に形成された静電潜像を上記トナーによって現像することで、像担持体上にトナー像を形成する。
発色情報付与手段は、画像データ中の色成分情報に基づいて、発色対象の色または非発色対象の色に対応して予め定められた波長の光を出射する光源を含み、該光源から出射された光をトナー像に露光することにより、該トナー像を構成するトナーに発色情報を付与する。この光源から出射された光の波長は、検出手段によって検出される。
発色情報を付与されたトナー像は、転写手段によって転写された後に、定着手段によって記録媒体に定着される。発色手段は、発色情報が付与されたトナー像を構成する各トナーを加熱することにより、発色情報が付与されたトナー像を構成する各トナーを発色させる。
露光された光の波長変化に対する感度は、トナーを構成する材料等によって異なるものとなる。そこで、記憶手段は、トナーの分光感度情報として、予め定めた基準光量で該トナーを露光したときの光の波長に対応する感度を示す感度情報を予め記憶する。
トナーは、分光感度情報に示される感度を有する領域の波長の光が露光されると、露光された波長に応じた感度が高いほど、また露光された光の光量が大きいほど、発色手段による発色後の濃度が大きくなる。
制御手段は、記憶手段に記憶された分光感度情報に基づいて、基準光量で、且つ分光感度情報に基づいた所定波長の光を出射するように光源を制御する。光源は、制御手段の制御によって、所定波長の光を基準光量で出射する。制御手段は、検出手段によって検出された波長を読取り、読み取った波長に基づいて露光されたトナーの発色後の濃度が、基準光量で所定波長の光が露光されたトナーの発色後の濃度となるように、この所定波長の光を露光するときの光量及び潜像形成手段による露光量の少なくとも一方を調整するように、前記発色情報付与手段の光源及び前記潜像形成手段の少なくとも一方を制御する。
このように、所定波長の光を出射するように光源を制御したときに、検出手段によって検出された波長に基づき露光されたトナーの発色後の濃度が、基準光量で所定波長の光が露光されたトナーの発色後の濃度となるように、光量及び露光量の何れか一方を調整するように発色情報付与手段及び潜像形成手段の少なくとも一方を制御するので、発色情報を付与するための光の波長が目的とする波長からずれた場合であっても、目的とする波長の光を照射したときの発色後のトナーの濃度と同一となるように調整することができる。
従って、トナーの発色濃度を容易に調整することができる。
本発明の画像形成装置において、前記検出手段は、前記光源から出射された光を該光の波長に応じた方向に回折させる回折手段と、回折手段によって回折された光が入射されると共に該光の入射位置を検出する位置検出手段と、予め記憶した前記位置検出手段への光の入射位置を示す位置情報に対応する光の波長を示す波長情報に基づいて、前記位置検出手段によって検出された入射位置の入射位置情報に対応する波長情報の波長を、前記光源から出射された光の波長として検出する検出制御手段と、を含むことができる。
光源から出射された光は、回折手段によって、この光の波長に応じた方向に回折され、この光の波長に応じて、位置検出手段の異なる位置に入射される。位置検出手段によって、入射された光の入射位置が検出されると、検出制御手段は、予め記憶した入射位置を示す位置情報に対応する波長情報に基づいて、位置検出手段によって検出された入射位置を示す位置情報に対応する波長情報を読み取ることにより、発色情報付与手段の光源から露光された光の波長を検出する。
このため、光源から出射された光の波長を容易に検出することができる。
前記記憶手段は、前記トナー像形成手段と一体的に設けることができる。分光感度情報は、トナーを構成する材料によって異なるものとなる。このため、分光感度情報を記憶した記憶手段を現像手段に設けることにより、トナー像形成手段を画像形成装置に対して着脱可能に設けることで、像担持体上の静電潜像を現像するトナーの分光感度を正確に得ることが可能となる。
前記発色手段は、前記定着手段と一体的に設けることができる。
本発明の画像形成装置で用いられる、トナーの発色には、熱を加える事が好ましい。このため、発色手段と定着手段とを一体的に設ければ、定着手段によりトナーに加えられる熱を同時にトナー発色のために用いることができ、エネルギーを効率良く利用することができると共に、画像形成装置の小型化を図ることができる。
本発明の画像形成装置は、定着後の記録媒体上に光を照射する定着後光照射手段を更に備えることができる。
発色手段によって発色されたトナー中では、発色反応がさらに継続される場合がある。これに対して光照射を行うことにより、トナーの発色されるべき領域中に残存する発色反応に関与する反応性物質を分解または失活させることができ、画像形成後のカラーバランスの変動をより確実に制御したり、背景色の除去及び漂白を行うことが可能となる。
本発明の画像形成装置において、前記トナーが、互いに隔離された状態で存在し、互いに反応した際に発色する第1の成分及び第2の成分と、該第1の成分及び第2の成分のいずれかを含む光硬化性組成物と、を有し、光による発色情報の付与により前記光硬化性組成物が硬化または未硬化の状態を維持することにより、発色可能な状態または非発色の状態を維持するトナーとすることができる。
本発明の画像形成装置によれば、所定波長の光を出射するように光源を制御したときに、検出手段によって検出された波長に基づき露光されたトナーの発色後の濃度が、基準光量で所定波長の光が露光されたトナーの発色後の濃度となるように、光量及び露光量の何れか一方を調整するように発色情報付与手段及び潜像形成手段の少なくとも一方を制御するので、発色情報を付与するための光の波長が目的とする波長からずれた場合であっても、目的とする波長の光を照射したときの発色後のトナーの濃度と同一となるように調整することができ、トナーの発色濃度を容易に調整することができる、という効果が得られる。
以下、本発明を詳細に説明する。
本発明の画像形成装置は、露光された光の波長変化に対して異なる感度を有し、発色対象の色または非発色対象の色に応じて予め定められた波長の光が露光されることにより、露光された光の波長に対応する色に発色可能な状態または非発色状態を維持するトナーを用いる。
なお、本実施の形態では、発色対象の色または非発色対象の色に応じて予め定められた波長の光をトナー像を構成する各トナーに露光することを、適宜「発色情報の付与」と称して説明する。
この光の露光により発色情報が付与されると、トナー像を構成する各トナーは、露光された波長の光に応じた色に発色可能な状態を維持、または露光された波長の光に応じた色を発色しない非発色の状態を維持した状態となる。また、トナー像を構成する各トナーは、露光された光の波長変化に対して異なる感度を有し、発色情報の付与時に露光される光の波長及び強度(光量)に応じた濃度に発色可能な状態または非発色可能な状態に維持される。
トナーは、発色性物質として、互いに反応した際に発色する2種類の反応性成分(第1の成分及び第2の成分と称する)と、この発色性物質を含む発色部(詳細後述)と、を少なくとも含んで構成され、光による発色情報の付与により発色可能な状態または非発色の状態に維持された後に、熱が加えられることにより発色する。
本発明で用いるトナーでは、この第1の成分と第2の成分とは、発色情報が付与されない限り互いの領域への物質拡散が困難な異なるマトリックス内に含まれていること、すなわち互いに隔離された状態で存在する。
具体的には、2種類の反応性成分の第1の成分が第1のマトリックスに含まれ、第2の成分が第1のマトリックス外(第2のマトリックス)に含まれ、第1のマトリックスと第2のマトリックスとの間には、両マトリックス間の物質の拡散が阻害されると共に、熱等の外部刺激が付与された際には、刺激の種類、強度や、組み合わせに応じて両マトリックス間の物質の拡散を可能とするような機能を持つ隔壁が設けられることが好ましい。
このような隔壁を利用して2種類の反応性成分をトナー中に配置するには、マイクロカプセルを利用することが好適であり、トナー内において2種類の反応性成分のうち、第1の成分及び第2の成分の内の何れか一方をマイクロカプセル内に含み、他方をマイクロカプセル外に含むようにすればよい。
なお、第1の成分がマイクロカプセル内に含まれ、第2の成分がマイクロカプセル外に含まれる場合には、マイクロカプセル内部が前記第1のマトリックス、マイクロカプセル外が前記第2のマトリックスに相当する。
このマイクロカプセルは、芯部と、該芯部を被覆する外殻とを有するものであり、熱等の外部刺激が付与されない限りマイクロカプセル内外の物質の拡散を阻害すると共に、外部刺激が付与された際には、刺激の種類、強度や、組み合わせに応じてマイクロカプセル内外の物質の拡散を可能とする機能を有するものであれば特に限定されない。なお芯部には、前記反応性成分の一方が少なくとも含まれる。
また、マイクロカプセルは、光の照射や圧力などの刺激の付与によってマイクロカプセル内外の物質拡散を可能とするものでもよいが、加熱処理によりマイクロカプセル内外の物質拡散を可能とする(外殻の物質透過性が増大する)熱応答性マイクロカプセルであることが特に好ましい。
刺激が付与された際のマイクロカプセル内外の物質拡散は、画像形成時の発色濃度の低下を抑制したり、高温環境下に放置された画像のカラーバランスの変化を抑制する観点からは、不可逆的なものであることが好ましい。
それゆえ、マイクロカプセルを構成する外殻は、加熱処理や光照射等の刺激の付与による軟化、分解、溶解(周囲の部材への相溶)、変形等により、物質透過性が不可逆的に増大する機能を有することが好ましい。
本発明において用いられるトナーとしては、上記機能を発揮できるものであれば特に制限されず、例えば前記特許文献1、2に記載のトナーを挙げることができるが、マイクロカプセルをトナー中に多く存在させ且つマイクロカプセルの偏在を抑制するという観点から、下記トナーを用いることが好ましい。
本発明置では、上述のように、光による発色情報の付与により発色可能な状態または非発色の状態を維持するトナーとして、互いに隔離された状態で存在し、互いに反応した際に発色する第1の成分及び第2の成分と、該第1の成分及び第2の成分のいずれかを含む光硬化性組成物と、を有し、光による発色情報の付与により前記光硬化性組成物が硬化または未硬化の状態を維持することにより、発色可能な状態または非発色の状態を維持するトナー(以下、「Fトナー」という場合がある)を用いることが好ましい。
まず、本発明で用いられるFトナーの発色のメカニズムについて説明する。
本発明におけるトナーは、後述するように、バインダー樹脂中に発色部と呼ばれる光による発色情報が付与されることで、特定の一つの色に発色可能な状態を維持、または特定の一つの色を発色しないような状態(即ち、非発色の状態)を維持することが可能な連続した領域を1つ以上有する。
なお、トナー中に複数の発色部が含まれる場合には、複数の発色部は互いに内部に含まれる材料が混在することのないように隔離された状態で設けられている。
このように、本発明のトナーは、1または複数の、互いに異なる色に発色可能な状態または非発色可能な状態を維持することが可能な連続した領域としての発色部を1または複数有し、図7(A)に示すように、各発色部60は、発色剤を含有するマイクロカプセル50とそれを取り巻く光硬化性組成物58とから構成されている。すなわち、発色部60において、マイクロカプセル50は、光硬化性組成物58中に分散されている。
発色部60の拡大部を示す図7(B)に示されるように、発色部60は、少なくとも、マイクロカプセル50と、発色剤(第1の成分)52と、この発色剤52と近接または接触することで発色させる重合性官能基を有した顕色剤モノマー(第2の成分)54と、光重合開始剤56と、を含んで構成されている。
マイクロカプセル50は、カプセル内部に少なくとも発色剤(第1の成分)52を含有している。このマイクロカプセル50を取り巻く光硬化性組成物58中には、発色剤(第1の成分)52と近接または接触することで発色させる重合性官能基を有した顕色剤モノマー(第2の成分)54と光重合開始剤56とが含まれている。
発色剤(第1の成分)52としては、発色色相の鮮やかさに優れたトリアリール系ロイコ化合物などが好適である。
このロイコ化合物(電子供与性)等の発色剤52を発色させる顕色剤モノマー54としては電子受容性化合物が好ましい。顕色剤モノマー54としては、特にフェノール系化合物が一般的であり、感熱、感圧紙などに利用されている顕色剤から適宜選択できる。
このような電子供与性の発色剤52と、電子受容性の顕色剤モノマー54と、が酸塩基反応することで発色剤52が発色する。
光重合開始剤56としては、可視光により感光し顕色剤モノマー54を重合させるためのトリガーとなる重合性ラジカルを発生する分光増感色素が用いられる。
例えば、R色、G色、B色の如き三原色露光に対して、顕色剤モノマー54が十分な重合反応を進行させることができるように光重合開始剤56の反応促進剤が用いられる。例えば、露光光を吸収する分光増感色素(カチオン)とホウ素化合物(アニオン)からなるイオンコンプレックスを用いることにより、露光により分光増感色素が光励起されホウ素化合物に電子移動することで重合性ラジカルが生成し重合を開始する。
これらの材料を組み合わせることにより、感光性の発色部60として、0.1〜0.2mJ/cm程度の発色記録感度を得ることができる。
上記構成の発色部60に対する発色情報付与のための光照射の有無により、発色部60によっては重合された顕色剤化合物と重合されなかった顕色剤モノマー54とを有するものが存在することになる。
発色情報が付与された後に、加熱などの処理によって、重合されなかった顕色剤モノマー54を有する発色部60では、この顕色剤モノマー54が熱などによって泳動し、マイクロカプセル50の隔壁の空孔を泳動通過してマイクロカプセル中に拡散する。マイクロカプセル50中に拡散された顕色剤モノマー54と発色剤52とは、前述のように発色剤52が塩基性であり、顕色剤モノマー54が酸性であることにより発色剤52を酸塩基反応によって発色させることになる。
一方、重合反応を生じた顕色剤化合物は、この後の加熱などによる発色工程では重合による嵩高さによりマイクロカプセル50の隔壁の空孔を拡散通過できず、マイクロカプセル中の発色剤52と反応ができないため発色することができない。したがって、マイクロカプセル50は無色のままで残ることとなる。すなわち、特定波長光を照射された発色部60は発色されに存在することになる。
発色後、適当な段階で再度全面を白色光源で露光することにより、残留している重合未了の顕色剤モノマー54を全て重合させて安定した画像定着がなされるとともに、残留分光増感色素を分解することで地色の消色が行われる。なお、可視光域に対応する光重合開始剤56の分光増感色素はその色調が最後まで地色として残留してしまうが、この分光増感色素の消色には色/ホウ素化合物の光消色現象を利用することができる。すなわち、光励起された分光増感色素からホウ素化合物に電子移動することで重合性ラジカルが生成するが、このラジカルはモノマーの重合を引き起こす一方で、励起された色素ラジカルと反応して色素の色分解を起し、結果的に色素を消色させることができる。
前記Fトナーでは、このような異なる発色を行なう発色部60(例えば、Y色、M色、C色に発色する)を、それぞれの顕色剤モノマー54が目的とする発色剤52以外の発色剤と干渉し合わない状態(互いに隔離された状態)にして一つのマイクロカプセルとして構成し用いることができる。すなわち、同一のトナー中に、互いに異なる色に発色する発色剤52が含まれる複数の発色部が含まれる場合には、複数の発色部は互いに内部に含まれる材料が混在することのないように隔離された状態で設けられている。
そしてこのトナーでは、発色部60中の、電子供与性の発色剤52を含むマイクロカプセル50以外の空間は、電子受容性の顕色剤モノマー54及び光硬化性組成物58によって埋められており、このような発色部60に光が照射されるため、一粒のトナー粒子における受光効率のよさは、前記特許文献2に開示されたトナーに比べ圧倒的に高い。
さらに、前記のように発色情報付与メカニズムが可逆反応ではないことより、加熱による発色までに時間的制約がないというメリットを有する結果、低速域までのプリントも可能、すなわち、広いスピードレンジに対応可能となり、加えて、加熱による発色が行なわれる定着器等の配置場所についても自由度が高いというメリットも有している。
本発明で用いられるFトナーについて、更に詳細に説明する。
本発明で用いられるFトナーとしては、以下の3つの態様が挙げられる。
Fトナーは、互いに反応した際に発色する第1の成分および第2の成分と、光硬化性組成物と、この光硬化性組成物中に分散するマイクロカプセルとを含み、第1の成分がマイクロカプセルに含まれ、第2の成分が光硬化性組成物中に含まれる態様(第1の態様)、互いに反応した際に発色する第1の成分および第2の成分と、光硬化性組成物を含むマイクロカプセルとを含み、第1の成分がマイクロカプセル外に含まれ、第2の成分が光硬化性組成物内に含まれる態様(第2の態様)、あるいは、互いに反応した際に発色する第1の成分および第2の成分と、第1の成分を含む一のマイクロカプセルと、第2の成分を分散させた光硬化性組成物を含む他のマイクロカプセルとを含む態様(第3の態様)のいずれかであることが好ましい。
これら3つの態様の中では、特に第1の態様が、光による発色情報付与前の安定性、発色の制御等の観点から好ましい。なお、以下のトナーの説明においては、基本的に第1の態様のトナーを前提としてより詳細に説明するが、以下に説明する第1の態様のトナーの構成、材料、製法等は、第2の態様や第3の態様のトナーにおいても、勿論、利用/転用可能である。
なお、上述した熱応答性マイクロカプセルと光硬化性組成物とを組み合わせて用いたFトナーは、以下の2つのタイプのいずれかであることが特に好ましい。
(1)光硬化性組成物が未硬化の状態で加熱処理しても、未硬化の光硬化性組成物中に含まれる第2の成分の物質拡散が抑制され、発色情報付与光の照射によって光硬化性組成物が硬化した後に加熱処理すると、硬化後の光硬化性組成物中に含まれる第2の成分の物質拡散が促進されるタイプのトナー(以下、「光発色型トナー」と称す場合がある)。
(2)光硬化性組成物が未硬化の状態(第2の成分が重合していない状態)で加熱処理すると、未硬化の光硬化性組成物中に含まれる第2の成分の物質拡散が促進され、発色情報付与光の照射によって光硬化性組成物が硬化した後(第2の成分が重合した後)に加熱処理すると、硬化後の光硬化性組成物中に含まれる第2の成分の物質拡散が抑制されるタイプのトナー(以下、「光非発色型トナー」と称す場合がある)。
前記光発色型トナーと光非発色型トナーとの主たる違いは、光硬化性組成物を構成する材料にあり、光発色型トナーでは、光硬化性組成物中に(光重合性を有さない)第2の成分と光重合性化合物とが少なくとも含まれるのに対して、光非発色型トナーは、光硬化性組成物中に、分子中に光重合性基を有する第2の成分が少なくとも含まれる。
なお、光発色型トナーおよび光非発色型トナーに用いられる光硬化性組成物中には、光重合開始剤が含まれていることが特に好ましく、必要に応じてその他種々の材料が含まれていてもよい。
上記光発色型トナーに用いられる光重合性化合物および第2の成分としては、光硬化組成物が未硬化の状態で両者の間に相互作用が働き、光硬化性組成物中での第2の成分の物質拡散が抑制され、発色情報付与光の照射による光硬化性組成物の硬化(光重合性化合物の重合)後の状態で両者の間の相互作用が減少して、光硬化性組成物中での第2の成分の拡散が容易となる材料が用いられる。
従って、光発色型トナーにおいては、加熱処理によりトナーを発色させる工程を経る前に、発色情報の付与として、予め光硬化性組成物を硬化させる波長の光を照射しておくことによって、光硬化性組成物中に含まれる第2の成分の物質拡散が容易な状態となる。このため、加熱処理された際に、マイクロカプセルの外殻の溶解等によって、マイクロカプセル内の第1の成分と光硬化性組成物中の第2の成分との反応(発色反応)が起こる。
逆に、発色情報の付与として、光硬化性組成物を硬化させる波長の光を照射せずに、そのまま加熱処理しても第2の成分は光重合性化合物にトラップされ、マイクロカプセル中の第1の成分と接触することができず、第1の成分と第2の成分との反応(発色反応)が起こらない。
以上説明したように、光発色型トナーでは、発色情報の付与として、光硬化性組成物を硬化させる特定の波長領域内の波長の光の照射の有無と、加熱処理とを組み合わせて付与することによって、第1の成分と第2の成分との反応(発色反応)を制御できるため、トナーの発色を制御できる。
また、光非発色型トナーにおいては、第2の成分自体が光重合性を有するため、発色情報の付与として光を照射したとしても、この光の波長が光硬化性組成物を硬化させる特定波長領域内の波長でなければ、光硬化性組成物中に含まれる第2の成分の物質拡散が容易な状態を保てるため、この状態で加熱処理するとマイクロカプセルの外殻の溶解等によって、マイクロカプセル内の第1の成分と光硬化性組成物中の第2の成分との反応(発色反応)が起こる。
逆に、加熱処理前に光硬化性組成物を硬化させる特定波長領域内の波長の光が照射されると、光硬化性組成物中に含まれる第2の成分同士が重合してしまうため、光硬化性組成物中に含まれる第2の成分の物質拡散が困難となる。それゆえ、加熱処理しても第2の成分は、マイクロカプセル中の第1の成分と接触することができず、第1の成分と第2の成分との反応(発色反応)が起こらない。
以上説明したように、光非発色型トナーでは、発色情報の付与として、光硬化性組成物を硬化させる特定波長領域内の波長の光の照射の有無と、加熱処理とを組み合わせて付与することによって、第1の成分と第2の成分との反応(発色反応)を制御できるため、トナーの発色を制御できる。
次に、前記Fトナーの好適な構造について、トナーが、前記光硬化性組成物と、この光硬化性組成物中に分散するマイクロカプセルと、を含む場合についてより詳細に説明する。
この場合、トナーは光硬化性組成物と、この光硬化性組成物中に分散するマイクロカプセルとを含む発色部を1つのみ有するものであってもよいが、2つ以上有することが好ましい。
ここで、上記「発色部」とは、前述のように外部刺激が付与された際に、特定のひとつの色に発色可能な連続した領域を意味する。
なお、トナーに2以上の発色部が含まれる場合、同じ色に発色可能な1種類の発色部のみがトナー中に含まれていてもよいが、互いに異なる色に発色可能な2種類以上の発色部が同一のトナー中に含まれることが特に好ましい。その理由は、ひとつのトナー粒子の発色可能な色が、前者の場合は1種類のみに限定されるが、後者の場合は2種類以上とすることができるからである。
例えば、互いに異なる色に発色可能な2種類以上の発色部としては、イエロー色に発色可能なイエロー発色部と、マゼンタ色に発色可能なマゼンタ発色部と、シアン色に発色可能なシアン発色部とを含むような組み合わせが挙げられる。
この場合、例えば、外部刺激の付与によりいずれか1種類の発色部のみが発色した場合には、トナーは、イエロー、マゼンタ、あるいは、シアンのいずれかの色に発色することができ、いずれか2種類の発色部が発色した場合には、これら2種類の発色部の発色した色を組み合わせた色に発色することができ、ひとつのトナー粒子で、多様な色を表現することが可能となる。
なお、トナー中に互いに異なる色に発色可能な2種類以上の発色部が含まれる場合の発色する色の制御は、各々の種類の発色部に含まれる第1の成分および第2の成分の種類や組み合わせを異なるものとすることの他に、各々の種類の発色部に含まれる光硬化性組成物の硬化に用いる光の波長を異なるものとすることにより実現できる。
すなわち、この場合、発色部の種類毎に発色部に含まれる光硬化性組成物の硬化に必要な光の波長が異なるため、発色情報の付与には、発色部(詳細には、発色部の光硬化性組成物)の種類に応じた波長の異なる複数種の光を用いればよい。
発色部に含まれる光硬化性組成物の硬化に必要な光の波長を異なるものとするには、発色部の種類毎に異なる波長の光に感応する光重合開始剤を光硬化性組成物中に含有させることが好適である。
例えば、イエロー、マゼンタ、および、シアンに発色可能な3種類の発色部がトナー中に含まれる場合、各々の種類の発色部に含まれる光硬化性組成物として、同一の光量で波長のみを除々に変化させたときに、光の波長が405nm、532nmおよび657nmのいずれかの波長の光が照射されたときに最も硬化された状態となる材料を用いれば、照射する光の波長を変化させることによって、トナーを所望の色に発色させることができる。なお、このトナーに照射する光の波長は、可視域から選択することもできるが、紫外域から選択してもよい。
具体的には、図6に示すように、互いに異なる色(Y、M、C)各々に発色可能な3種類の発色部(以下、適宜Y発色部、M発色部、C発色部と称する)が1つのトナーに含まれる場合、例えば、Y発色部は、400nm〜530nmの波長の光について感度を有し、405nmの波長に対する最大分光感度を有する。
なお、本発明では「感度」とは、予め定めた光量(以下、基準光量と称する)でトナーの発色部が露光されたときの、この露光された光の波長変化に対する光硬化性組成物の硬化の進行度合いを示している。すなわち、Y発色部に含まれる光硬化性組成物は、400nm〜530nmの波長の光が照射されると硬化するが、最大分光感度に対応する波長(405nm)の光が照射されたときに、最も硬化した状態となる。
このため、光発色型のトナーである場合には、Y発色部に、所定の光量で455nmの光を照射した後に、熱を加えてトナーを発色させたときのY色の濃度は、この光量で405nmの光を照射した後に、熱を加えてトナーを発色させたときの濃度に比べて低くなる。これは、455nmの光に比べて、405nmの光が露光されたときのY発色部の感度の方が高いためである。
従って、光発色型のトナーを用いた場合において、一定の光量でトナーを露光する場合には、同一の発色部における第1の成分と第2の成分による発色反応の反応量は、この発色部に含まれる光硬化性組成物の最大分光感度に対応する波長に近い波長の光が照射されるほど大きくなる。なお、照射する光の波長が一定の場合には、光量が大きくなるほど発色反応の反応量が大きくなる。この第1の成分と第2の成分による発色反応によって、トナーは発色することから、反応量が大きいほど濃い色に発色可能とすることができる。
反対に、光非発色型のトナーを用いた場合において、一定の光量でトナーを露光する場合には、同一の発色部における第1の成分と第2の成分による発色反応の反応量は、この発色部に含まれる光硬化性組成物の最大分光感度に対応する波長に近い波長の光が照射されるほど小さくなる。なお、照射する光の波長が一定の場合には、光量が大きくなるほど発色反応の反応量が小さくなる。この第1の成分と第2の成分による発色反応によって、トナーは発色することから、反応量が小さいほど薄い色に発色可能とすることができる。
同様に、図6に示すように、M発色部に含まれる光硬化性組成物は、500nm〜630nmの波長の光が照射されると硬化するが、最大分光感度に対応する波長(532nm)の光が照射されたときに、最も硬化した状態となる。また、C発色部に含まれる光硬化型組成物は、560nm〜730nmの波長の光が照射されると硬化するが、最大分光感度に対応する波長(657nm)の光が照射されたときに、最も硬化した状態となる。
このように、本発明の画像形成装置で用いられるトナーは、トナーに含まれる発色部内の光硬化性組成物が、露光された光の波長変化に対して異なる感度を有し、発色対象の色または非発色対象の色に応じて予め定められた波長の光が露光されることにより、露光された光の波長に対応する色及び濃度に発色可能な状態または非発色状態を維持することができる。
なお、このような発色情報を付与するためにFトナーに照射される光の波長は、使用されるFトナーの材料設計により決まる。
具体的には、Fトナーに含まれる各色発色部内の光硬化性組成物の材料によって定まり、Fトナーに含まれる発色部内の光硬化性組成物の分光感度特性に応じた波長の光が照射されることによって、複数の発色部の内の、照射された光の波長に応じた感度を有する光硬化性組成物が含有された発色部内において、該光硬化性組成物の硬化が起こり、照射された波長に応じた色に発色可能な状態に維持、または露光された光の波長に応じた色を非発色可能な状態に維持される。
本発明に用いるトナーは、従来の顔料等の着色剤を用いたトナーに用いられるのと同様な結着樹脂を主成分とする母材を含むものであってもよい。この場合、母材中に、前記2以上の発色部の各々が粒子状のカプセルとして分散していることが好ましい(以下、カプセル状のひとつの発色部を「感光・感熱カプセル」と称する場合がある)。また、母材中には、従来の顔料等の着色剤を用いたトナーと同様に離型剤や、種々の添加剤が含まれていてもよい。
感光・感熱カプセルは、マイクロカプセルや光硬化性組成物を含む芯部と、該芯部を被覆する外殻とを有し、この外殻は、後述するトナーの製造過程や、トナーの保管時において、感光・感熱カプセル内のマイクロカプセルや光硬化性組成物を感光・感熱カプセル外に漏れないように安定して保持できるものであれば特に限定されない。
しかしながら、本発明においては、後述するトナーの製造過程において、第2の成分が外殻を透過して感光・感熱カプセル外のマトリックスへ流出したり、他の色に発色可能な感光・感熱カプセル中の第2の成分が外殻を透過して流入したりするのを防ぐために、非水溶性樹脂からなる結着樹脂や離型材等の非水溶性材料を主成分として含むものであることが好ましい。
次に、前記Fトナーに用いられるトナー構成材料や、各トナー構成材料を調整する際に用いる材料・方法等について以下により詳細に説明する。
この場合、トナーには、上記第1の成分、上記第2の成分、上記第1の成分を含むマイクロカプセル、上記第2の成分を含む光硬化性組成物が少なくとも用いられ、光硬化性組成物中には光重合開始剤が含まれることが特に好ましく、種々の助剤等が含まれていてもよい。また、マイクロカプセル内(芯部)には第1の成分が固体状態で存在していてもよいが、溶媒と共に存在していてもよい。
なお、前記光非発色型トナーにおいては、第1の成分として電子供与性無色染料又はジアゾニウム塩化合物等が用いられ、第2の成分として光重合性基を有する電子受容性化合物又は光重合性基を有するカプラー化合物等が用いられる。また、前記光発色型トナーにおいては、第1の成分としては、電子供与性無色染料が用いられ、第2の成分としては電子受容性化合物(「電子受容性顕色剤」あるいは「顕色剤」と称す場合がある)が用いられ、光重合性化合物としてはエチレン性不飽和結合を有する重合可能な化合物が用いられる。
以上に列挙した材料に加えて、更に、従来の着色剤を用いたトナーを構成する材料と同様の各種材料;結着樹脂、離型剤、内添剤、外添剤等を必要に応じて適宜利用することができる。以下、各材料等についてより詳細に説明する。
−第1の成分および第2の成分−
第1の成分および第2の成分の組合せとしては、下記(ア)〜(ツ)の組合せを好適に挙げることができる(下記例において、それぞれ前者が第1の成分、後者が第2の成分を表す。)。
(ア)電子供与性無色染料と電子受容性化合物との組合せ。
(イ)ジアゾニウム塩化合物とカップリング成分(以下、適宜「カプラー化合物」と称する。)との組合せ。
(ウ)ベヘン酸銀、ステアリン酸銀等の有機酸金属塩と、プロトカテキン酸、スピロインダン、ハイドロキノン等の還元剤との組合せ。
(エ)ステアリン酸第二鉄、ミリスチン酸第二鉄等の長鎖脂肪酸鉄塩と、タンニン酸、没食子酸、サリチル酸アンモニウム等のフェノール類との組合せ。
(オ)酢酸、ステアリン酸、パルミチン酸等のニッケル、コバルト、鉛、銅、鉄、水銀、銀塩のような有機酸重金属塩と、硫化カルシウム、硫化ストロンチウム、硫化カリウム等のアルカリ金属またはアルカリ土類金属硫化物との組合せ、又は前記有機酸重金属塩と、s−ジフェニルカルバジド、ジフェニルカルバゾン等の有機キレート剤との組合せ。
(カ)銀、鉛、水銀、ナトリウム等の硫酸塩等の重金属硫酸塩と、ナトリウムテトラチオネート、チオ硫酸ソーダ、チオ尿素等の硫黄化合物との組合せ。
(キ)ステアリン酸第二鉄等の脂肪族第二鉄塩と、3,4−ヒドロキシテトラフェニルメタン等の芳香族ポリヒドロキシ化合物との組合せ。
(ク)シュウ酸銀、シュウ酸水銀等の有機酸金属塩と、ポリヒドロキシアルコール、グリセリン、グリコール等の有機ポリヒドロキシ化合物との組合せ。
(ケ)ペラルゴン酸第二鉄、ラウリン酸第二鉄等の脂肪酸第二鉄塩と、チオセシルカルバミドやイソチオセシルカルバミド誘導体との組合せ。
(コ)カプロン酸鉛、ペラルゴン酸鉛、ベヘン酸鉛等の有機酸鉛塩と、エチレンチオ尿素、N−ドデシルチオ尿素等のチオ尿素誘導体との組合せ。
(サ)ステアリン酸第二鉄、ステアリン酸銅等の高級脂肪族重金属塩とジアルキルジチオカルバミン酸亜鉛との組合せ。
(シ)レゾルシンとニトロソ化合物との組合せのようなオキサジン染料を形成するもの。
(ス)ホルマザン化合物と還元剤および/又は金属塩との組合せ。
(セ)保護された色素(又はロイコ色素)プレカーサーと脱保護剤との組合せ。
(ソ)酸化型発色剤と酸化剤との組合せ。
(タ)フタロニトリル類とジイミノイソインドリン類との組合せ。(フタロシアニンが生成する組合せ。)
(チ)イソシアナート類とジイミノイソインドリン類との組合せ(着色顔料が生成する組合せ)。
(ツ)顔料プレカーサーと酸または塩基との組合せ(顔料が形成する組合せ)。
上記に列挙した第1の成分としては、実質的に無色の電子供与性無色染料又はジアゾニウム塩化合物が好ましい。
前記電子供与性無色染料としては、従来より公知のものを使用することができ、前記第2の成分と反応して発色するものであれば全て使用することができる。具体的には、フタリド系化合物、フルオラン系化合物、フェノチアジン系化合物、インドリルフタリド系化合物、ロイコオーラミン系化合物、ローダミンラクタム系化合物、トリフェニルメタン系化合物、トリアゼン系化合物、スピロピラン系化合物、ピリジン系、ピラジン系化合物、フルオレン系化合物等の各種化合物を挙げることができる。
前記第2の成分としては、前記光非発色型トナーの場合は同一分子内に光重合性基および第1の成分と反応して発色する部位とを有する実質的に無色化合物であり、光重合性基を有する電子受容性化合物又は光重合性基を有するカプラー化合物等の第1の成分と反応して発色し、かつ光に反応して重合し、硬化するという両機能を有するものであれば全て使用することができる。
前記光重合性基を有する電子受容性化合物、即ち、同一分子中に電子受容性基と光重合性基とを有する化合物としては、光重合性基を有し、かつ第1の成分の一つである電子供与性無色染料と反応して発色し、かつ光重合して硬化しうるものであれば全て使用することができる。
また、光発色型トナーの場合の第2の成分である電子受容性顕色剤としては、フェノール誘導体、含硫フェノール誘導体、有機のカルボン酸誘導体(例えば、サリチル酸、ステアリン酸、レゾルシン酸等)、及びそれらの金属塩等、スルホン酸誘導体、尿素もしくはチオ尿素誘導体等、酸性白土、ベントナイト、ノボラック樹脂、金属処理ノボラック樹脂、金属錯体等が挙げられる。
さらに、光発色型トナーには、光重合性化合物としてエチレン性不飽和結合を有する重合可能な化合物が用いられ、これはアクリル酸及びその塩、アクリル酸エステル類、アクリルアミド類などの分子中に少なくとも1個のエチレン性不飽和二重結合を有する重合性化合物である。
次に、前記光重合開始剤について説明する。前記光重合開始剤は、発色情報付与光を照射することによりラジカルを発生して光硬化性組成物内で重合反応を起こし、かつその反応を促進させることができる。この重合反応により光硬化性組成物が硬化する。
前記光重合開始剤は、公知のものの中から適宜選択することができ、中でも、300〜1000nmに最大吸収波長を有する分光増感化合物と、該分光増感化合物と相互作用する化合物と、を含有するものであることが好ましい。
但し、前記分光増感化合物と相互作用する化合物が、その構造内に300〜1000nmに最大吸収波長を有する色素部とボレート部との両構造を併せ持つ化合物であれば、前記分光増感色素を用いなくてもよい。
前記分光増感化合物と相互作用する化合物としては、前記第2の成分中の光重合性基と光重合反応を開始しうる公知の化合物の中から、1種又は2種以上の化合物を適宜選択して使用することができる。
この化合物を前記の分光増感化合物と共存させることにより、その分光吸収波長領域の照射光に敏感に感応し、高効率にラジカルを発生させうることから、高感度化が図れ、かつ紫外〜赤外領域にある任意の光源を用いてラジカルの発生を制御することができる。
前記「分光増感化合物と相互作用する化合物」としては、有機系ボレート塩化合物、ベンゾインエーテル類、トリハロゲン置換メチル基を有するS−トリアジン誘導体、有機過酸化物又はアジニウム塩化合物が好ましく、有機系ボレート塩化合物がより好ましい。この「分光増感化合物と相互作用する化合物」を前記分光増感化合物と併用して用いることにより、露光した露光部分に局所的に、かつ効果的にラジカルを発生させることができ、高感度化を達成することができる。
また、光硬化性組成物には重合反応を促進する目的で、さらに助剤として、酸素除去剤(oxygen scavenger)又は活性水素ドナーの連鎖移動剤等の還元剤や連鎖移動的に重合を促進するその他の化合物を添加することもできる。
前記酸素除去剤としては、ホスフィン、ホスホネート、ホスファイト、第1銀塩又は酸素により容易に酸化されるその他の化合物が挙げられる。具体的には、N−フエニルグリシン、トリメチルパルビツール酸、N,N−ジメチル−2,6−ジイソプロピルアニリン、N,N,N−2,4,6−ペンタメチルアニリン酸が挙げられる。さらに、チオール類、チオケトン類、トリハロメチル化合物、ロフィンダイマー化合物、ヨードニウム塩類、スルホニウム塩類、アジニウム塩類、有機過酸化物、アジド類等も重合促進剤として有用である。
Fトナーでは、電子供与性無色染料やジアゾニウム塩化合物のような第1の成分をマイクロカプセルに内包して使用する。
マイクロカプセル化する方法としては、従来公知の方法を用いることができる。例えば、米国特許第2800457号、同28000458号に記載の親水性壁形成材料のコアセルベーションを利用した方法、米国特許第3287154号、英国特許第990443号、特公昭38−19574号公報、同42−446号公報、同42−771号公報等に記載の界面重合法、米国特許第3418250号、同3660304号に記載のポリマー析出による方法、米国特許第3796669号に記載のイソシアネートポリオール壁材料を用いる方法、米国特許第3914511号に記載のイソシアネート壁材料を用いる方法、米国特許第4001140号、同4087376号、同4089802号に記載の尿素−ホルムアルデヒド系、尿素ホルムアルデヒド−レゾルシノール系壁形成材料を用いる方法、米国特許第4025455号に記載のメラミン−ホルムアルデヒド樹脂、ヒドロキシブロビルセルロース等の壁形成材料を用いる方法、特公昭36−9168号、特開昭51−9079号に記載のモノマーの重合によるin situ法、英国特許第952807号、同965074号に記載の電解分散冷却法、米国特許第3111407号、英国特許第930422号に記載のスプレードライング法、特公平7−73069号公報、特開平4−101885号公報、特開平9−263057号公報に記載の方法等が挙げられる。
使用しうるマイクロカプセル壁の材料は、油滴内部及び/又は油滴外部に添加される。前記マイクロカプセル壁の材料としては、例えば、ポリウレタン、ポリウレア、ポリアミド、ポリエステル、ポリカーボネート、尿素−ホルムアルデヒド樹脂、メラミン樹脂、ポリスチレン、スチレンメタクリレート共重合体、スチレン−アクリレート共重合体等が挙げられる。中でも、ポリウレタン、ポリウレア、ポリアミド、ポリエステル、ポリカーボネートが好ましく、ポリウレタン、ポリウレアがより好ましい。前記高分子物質は、2種以上併用して用いることもできる。
マイクロカプセルの体積平均粒径は0.1〜3.0μmの範囲内となるように調整することが好ましく、0.3〜1.0μmの範囲内となるように調整することが更に好ましい。
前記感光・感熱カプセルにはバインダーが含まれていてもよく、これは、1つの発色部を有するトナーにおいても同様である。
バインダーとしては、前記光硬化性組成物の乳化分散に用いるバインダーと同様のもの、第1の反応性物質をカプセル化する際に用いる水溶性高分子のほか、ポリスチレン、ポリビニルホルマール、ポリビニルブチラール、ポリメチルアクリレート,ポリブチルアクリレート,ポリメチルメタクリレート,ポリブチルメタクリレートやそれらの共重合体等のアクリル樹脂、フェノール樹脂、スチレン−ブタジエン樹脂、エチルセルロース、エポキシ樹脂、ウレタン樹脂等の溶剤可溶性高分子、或いは、これらの高分子ラテックスを用いることもできる。中でも、ゼラチン及びポリビニルアルコールが好ましい。また、バインダーとして後述する結着樹脂を用いてもよい。
また、Fトナーには、従来のトナーに用いられている結着樹脂を用いることができる。結着樹脂は、例えば、母材中に感光・感熱カプセルが分散した構造を有するトナーでは、母材を構成する主成分や感光・感熱カプセルの外殻を構成する材料として利用することができるがこれに限定されるものではない。
結着樹脂としては特に限定されず、公知の結晶性や非晶性の樹脂材料を用いることができる。特に低温定着性を付与するには、シャープメルト性がある結晶性ポリエステル樹脂が有用である。また、無定形高分子(非晶質樹脂)としては、スチレンアクリル系樹脂、ポリエステル樹脂など公知の樹脂材料を用いることができるが、非結晶性ポリエステル樹脂が特に好ましい。
その他、Fトナーは、上記に列挙した以外のその他の成分を含んでいてもよい。その他の成分としては、特に制限はなく、目的に応じて適宜選択でき、例えば、離型剤、無機微粒子、有機微粒子、帯電制御剤等の従来のトナーに用いられている公知の各種添加剤等が挙げられる
なお、本発明のFトナーの前記第1成分、第2成分は、発色する前の状態において予め着色していてもよいが、実質的に無色の物質であることが特に好ましい。
次に、Fトナーの製造方法について簡単に説明する。
Fトナーは、凝集合一法等の公知の湿式製法を利用して作製されることが好ましい。特に、互いに反応した際に発色する第1の成分および第2の成分と、光硬化性組成物と、該光硬化性組成物中に分散するマイクロカプセルとを含み、前記第1の成分が前記マイクロカプセルに含まれ、前記第2の成分が前記光硬化性組成物中に含まれる構造を有するトナーの作製に湿式製法は好適である。
なお、上記構造を有するトナーに用いられるマイクロカプセルは熱応答性マイクロカプセルであることが特に好ましいが、光等、その他の刺激に応答するマイクロカプセルであってもよい。
トナーの製造には、公知の湿式製法が利用できるが、湿式製法の中でも最高プロセス温度を低く抑えることができると共に、様々な構造を有するトナーの作製が容易であることから凝集合一法を利用することが特に好ましい。
また、従来の顔料や結着樹脂を主成分とするトナーと比べると、上記構造を有するトナーは、低分子成分を主成分として含む光硬化性組成物が多く含まれるため、トナーの造粒過程で得られる粒子の強度は不十分となりやすいが、凝集合一法では、高いせん断力を必要としないため、この点でも凝集合一法を利用することは好適である。
一般的に、凝集合一法は、トナーを構成する各種材料の分散液を調製した後、2種類以上の分散液を混合した原料分散液中で凝集粒子を形成する凝集工程と、原料分散液に形成された凝集粒子を融合する融合工程とを含むものであり、必要に応じて凝集工程と融合工程との間に、凝集粒子の表面に被覆層を形成する成分を付着させて被覆層を形成する付着工程(被覆層形成工程)とが実施されるものである。
Fトナーの製造においても、原料として使用する各種分散液の種類や組み合わせは異なるものの、凝集工程、融合工程の他に、必要に応じて付着工程を適宜組み合わせることによりトナーを作製することができる。
例えば、樹脂中に感光・感熱カプセル分散構造を有するトナーの場合には、まず、(a1)第1の成分を含むマイクロカプセルを分散させたマイクロカプセル分散液と、第2の成分を含む光硬化性組成物を分散させた光硬化性組成物分散液とを含む原料分散液中にて第1の凝集粒子を形成する第1の凝集工程と、(b1)前記第1の凝集粒子が形成された原料分散液に、樹脂粒子を分散させた第1の樹脂粒子分散液を添加して、前記凝集粒子表面に前記樹脂粒子を付着させる付着工程と、(c1)前記樹脂粒子をその表面に付着させた凝集粒子を含む原料分散液を加熱して融合させ、第1の融合粒子(感光・感熱カプセル)を得る第1の融合工程とを経ることにより、互いに異なる色に発色可能な1種類以上の感光・感熱カプセル分散液を調製する。
続いて、(d1)前記1種類以上の感光・感熱カプセル分散液と、樹脂粒子を分散させた第2の樹脂粒子分散液とを混合した混合溶液中にて、第2の凝集粒子を形成する第2の凝集工程と、(e1)前記第2の凝集粒子を含む混合溶液を加熱して、第2の融合粒子を得る第2の融合工程とを経ることにより、感光・感熱カプセル分散構造を有するトナーを得ることができる。
なお、第2の凝集工程で用いる感光・感熱カプセル分散液の種類は2種類以上が好ましい。また、(a1)〜(c1)工程を経て得られた感光・感熱カプセルをそのままトナー(すなわち1つの発色部のみを含むトナー)として利用してもよい。
また、1つの発色部のみを含むトナーを作製する場合、上述した付着工程の代わりに、前記第1の凝集粒子が形成された原料分散液に、離型剤を分散させた離型剤分散液を添加して、凝集粒子表面に離型剤を付着させる第1の付着工程と、第1の付着工程を経た後の原料分散液に、樹脂粒子を分散させた第1の樹脂粒子分散液を添加して、この離型剤を表面に付着させた凝集粒子表面に樹脂粒子を付着させる第2の付着工程とを実施してもよい。
本発明に用いることが可能なFトナーの体積平均粒径は、特に限定されず、トナーの構造や、トナー中に含まれる発色部の種類・数に応じて適宜調整することができる。
しかしながら、トナー中に含まれる互いに異なる色に発色可能な発色部の種類が2〜4種類前後(例えば、トナーがイエロー、シアン、マゼンタの各々に発色可能な3種類の発色部を含むような場合)であれば、各々のトナー構造に応じた体積平均粒径は以下の範囲内であることが好ましい。
例えば、トナーの構造が樹脂中に感光・感熱カプセル(発色部)分散構造の場合には、トナーの体積平均粒径は5〜40μmの範囲内が好ましく、10〜20μmの範囲内がより好ましい。また、このような粒径を有する感光・感熱カプセル分散構造型のトナー中に含まれる感光・感熱カプセルの体積平均粒径は1〜5μmの範囲内であることが好ましく、1〜3μmの範囲内であることが好ましい。
トナーの体積平均粒径が5μm未満では、トナー中に含まれる発色成分量が少なくなるため色再現性が悪化したり、画像濃度が低下してしまう場合がある。また、体積平均粒径が40μmを超えると、画像表面の凹凸が大きくなり、画像表面の光沢ムラが発生してしまう場合があり、また画質が低下する場合がある。
なお、その内部に複数の感光・感熱カプセルを分散させた感光・感熱カプセル分散構造型のトナーは、従来の着色剤を用いた小径トナー(体積平均粒径5〜10μm程度)と比べると粒径が大きくなる傾向にあるものの、画像の解像度は、トナーの粒径ではなく感光・感熱カプセルの粒径により決定されるため、より高精細な画像を得ることができる。加えて、粉体流動性にも優れるため、外添剤の量が少なくても十分な流動性が確保できると共に、現像性やクリーニング性も向上させることができる。
一方、1つの発色部のみを有するトナーの場合には、上述した場合と比べると小径化がより容易であり、その体積平均粒径は3〜8μmの範囲内が好ましく、4〜7μmの範囲内が好ましい。体積平均粒径が3μm未満の場合には粒径が小さすぎるために粉体流動性が十分に得られなくなったり、十分な耐久性が得られない場合がある。また、体積平均粒径が8μmを超えると、高精細な画像が得られなくなる場合がある。
本発明には、以上説明したFトナーをはじめ、光照射により(あるいは光が照射されないことにより)発色または非発色の状態を維持するように制御されるトナーであれば、用いる構成材料、トナーの構造、発色機構等によらず用いることができる。
本発明に用いることができるトナーは、体積平均粒度分布指標GSDvが1.30以下であり、且つ、体積平均粒度分布指標GSDvと数平均粒度分布指標GSDpとの比(GSDv/GSDp)が、0.95以上であることが好ましい。
更に好ましくは、体積平均粒度分布指標GSDvが1.25以下であり、且つ、体積平均粒度分布指標GSDvと数平均粒度分布指標GSDpとの比(GSDv/GSDp)が、0.97以上であることが更に好ましい。
体積分布指標GSDvが1.30を超えた場合には、画像の解像性が低下する場合があり、また、体積平均粒度分布指標GSDvと数平均粒度分布指標GSDpの比(GSDv/GSDp)が0.95未満の場合、トナーの帯電性低下やトナーの飛散、カブリ等が発生し画像欠陥を招く場合がある。
なお、本発明において、トナーの体積平均粒径や、上記した体積平均粒度分布指標GSDv、及び数平均粒度分布指標GSDpの値は、次のようにして測定し算出した。
まず、コールターカウンターマルチサイザーII(ベックマン−コールター社製)等の測定器を用いて測定されたトナーの粒度分布を分割された粒度範囲(チャンネル)に対し、個々のトナー粒子の体積および数について小径側から累積分布を描き、累積16%となる粒径を、体積平均粒子径D16v、および、数平均粒子径D16pと定義し、累積50%となる粒径を、体積平均粒子径D50v、および、数平均粒子径D50pと定義する。同様に、累積84%となる粒径を、体積平均粒子径D84v、および、数平均粒子径D84pと定義する。この際、体積平均粒度分布指標(GSDv)は、(D84v/D16v)1/2として定義され、数平均粒度指標(GSDp)は、(D84p/D16p)1/2として定義されるこれらの関係式を用いて、体積平均粒度分布指標(GSDv)および数平均粒度指標(GSDp)を算出できる。
また、前記マイクロカプセルや感光・感熱カプセルの体積平均粒径は、例えば、レーザー回折式粒度分布測定装置(LA−700、堀場製作所製)を用いて測定することができる。
また、本発明のトナーは、下式(1)で表される形状係数SF1が、110〜130の範囲内であることが好ましい。
SF1=(ML/A)×(π/4)×100 ・・・ 式(1)
〔但し、上記式(1)において、MLはトナーの最大長(μm)を表し、Aはトナーの投影面積(μm)を表す。〕
形状係数SF1が110未満の場合には、画像形成の際に転写工程で、像担持体上にトナーが残留しやすくなるため、この残留トナーの除去が必要となるが、残留トナーをブレード等によりクリーニングする際のクリーニング性を損ないやすく、結果として画像欠陥を生じる場合がある。
一方、形状係数SF1が130を超える場合には、トナーを現像剤として使用する場合に、現像器内でのキャリアとの衝突によりトナーが破壊される場合がある。この際、結果として微粉が増加したり、これによってトナー表面に露出した離型剤成分により像担持体上等が汚染され帯電特性を損なうことがあるばかりでなく、微粉に起因するかぶりの発生等の問題を起こすことがある。
形状係数SF1はルーゼックス画像解析装置(株式会社ニレコ製、FT)を用いて以下のように測定した。まず、スライドグラス上に散布したトナーの光学顕微鏡像を、ビデオカメラを通じてルーゼックス画像解析装置に取り込み、50個以上のトナーについて最大長(ML)と投影面積(A)を測定し、個々のトナーについて、最大長の2乗、投影面積を算出し、上記式(1)により形状係数SF1を求めた。
本発明に用いられるトナーは、そのまま一成分現像剤として用いてもよいが、本発明では、キャリアとトナーとからなる二成分現像剤におけるトナーとして使用することが好ましい。
ここで、1種類の現像剤でカラー画像が形成できるという点からは、現像剤は、(1)前記光硬化性組成物と、該光硬化性組成物中に分散するマイクロカプセルとを含む発色部を2種類以上有するトナーを1種類有し、且つ、前記トナー中に含まれる2種類以上の発色部が互いに異なる色に発色可能であるタイプの現像剤、あるいは、(2)前記光硬化性組成物と、該光硬化性組成物中に分散するマイクロカプセルとを含む発色部を1つ有するトナーを2種類以上混合した状態で有し、且つ、前記2種類以上のトナーの発色部が互いに異なる色に発色可能であるタイプの現像剤であることが好ましい。
例えば、前者のタイプの現像剤では、トナー中に3種類の発色部が含まれ、且つ、3種類の発色部が、イエロー色に発色可能なイエロー発色部、マゼンタ色に発色可能なマゼンタ発色部及びシアン色に発色可能なシアン発色部からなることが好ましく、後者のタイプの現像剤では、発色部がイエロー色に発色可能なイエロー発色性トナーと、発色部がマゼンタ色に発色可能なマゼンタ発色性トナーと、発色部がシアン色に発色可能なシアン発色性トナーとが混合した状態で現像剤中に含まれることが好ましい。
二成分現像剤に使用し得るキャリアとしては、芯材表面に樹脂を被覆してなることが好ましい。キャリアの芯材としては、上記条件を満たしていれば特に規定されないが、例えば、鉄、鋼、ニッケル、コバルト等の磁性金属、これらとマンガン、クロム、希土類等との合金、及びフェライト、マグネタイト等の磁性酸化物等が挙げられるが、芯材表面性、芯材抵抗の観点から、好ましくはフェライト、特にマンガン、リチウム、ストロンチウム、マグネシウム等との合金が挙げられる。
また、 芯材表面を被覆する樹脂としては、マトリックス樹脂として使用できるものであれば特に制限はなく、目的に応じて適宜選択することができる。
上記二成分現像剤における、本発明のトナーと上記キャリアとの混合比(質量比)としては、トナー:キャリア=1:100〜30:100程度の範囲が好ましく、3:100〜20:100程度の範囲がより好ましい。
次に、本発明の画像形成装置について説明する。
本発明の画像形成装置は、上記Fトナーを用い、電子写真方式を応用してカラー画像を得るものである。
本発明の画像形成装置における画像形成プロセスは、いわゆる電子写真プロセス、誘電体上にイオンなどで静電潜像を形成するプロセス(イオノグラフィ)、または、一様帯電した誘電体に、サーマルヘッドの熱により画像情報に応じて静電潜像を形成するプロセス、さらに、静電潜像を利用するものではなく、たとえば、磁気潜像を形成してトナー画像を形成するプロセス、粘着性のインク滴を像担持体に画像情報に応じて形成し、トナー画像を形成するプロセス、など特に制限されない。
図1に示すように、本発明の画像形成装置10は、通常の電子写真プロセスに用いる感光体(像担持体)11を含んで構成されている。感光体11は、所定方向(図1中、矢印A方向)に回転可能に設けられている。感光体11の近傍には、感光体11の回転方向に添って、帯電装置(帯電手段)12、露光装置(露光手段)14、現像装置(現像手段)16、発色情報付与装置28、及び転写装置(転写手段)18が設けられている。
感光体11としては、公知のいかなるものも用いることができる。例えば、導電性基体上にSe、a−Si等の無機の感光層、あるいは単層若しくは多層の有機感光層を形成したものである。ベルト状感光体の場合は、基体としてPET、PC等の透明樹脂が使用でき、その厚みはベルト状感光体を張架するロールの径、張力等の設計事項から決められ、おおよそ10〜500μm程度の範囲である。その他の層構成等はドラムの場合と同様である。
なお、後述する発色情報付与装置28による露光が、感光体11の背面(感光体の内側)から行われる場合には、前記基体を透明な樹脂等とした透明感光体を用いることができる。透明感光体の場合には、感光体基体として露光光に対して透明な材質を用いる。
ここで、「透明」とは入射した光のエネルギーに対して基材材料を通過して感光層またはトナーに作用するために十分なエネルギーが与えることが可能となる透過率を有することを示し、例えば、感光層へ0.1mWの出力が必要な場合、基材に入射する光が0.3mWであれば33%の透過率であっても、本画像形成装置においては「透明」であると考えられる。
透明な感光体11は、ガラス、プラスチック等の透明材料を基体とし、その表面に感光層等を設けてなる。基体の肉厚は必要とされる機械強度から決められ、おおよそ0.1〜5mm程度の範囲が好ましい。透明の基体上には透明電極が設けられることが好ましく、該透明電極としては、ITO、SnO2などの金属酸化物を微粒化しバインダー樹脂と混合したものや、ポリピロールなどの導電性ポリマーなどを塗布したもの等が使用できる。透明電極の厚みは、必要とされる導電度と透過性から決められ、おおよそ0.01〜10μm程度の範囲が好ましい。
前記感光層としては、例えば、Se、a−Si等の無機の感光層、あるいは単層若しくは多層(電荷発生層、電荷輸送層等)の有機感光層を挙げることができる。また、前記入射した光の散乱をより起こさせるため、金属酸化物やフッ素樹脂粒子等の有機粒子などの粒径が数十ナノメーターから数ミクロンのものを感光層に分散させることが好ましい。
ただし、前記のように感光層を光が通過しトナーまでも露光することが必要とされるので、光透過性のよいものがよい。透過性の目安としては、感光層そのもので透過率が50%以上であることが好ましく、70%以上であることがより好ましい。
また、発色情報を付与するための露光は、通常の潜像形成のための露光よりかなり強い強度で行われる。具体的には、発色情報付与に供する光のエネルギー量は、通常の電子写真プロセスに使用される感光体の光量(2mJ/m2)の約1000倍程度必要である。このため、発色情報の付与による感光体11へのダメージが心配されるが、例えば、感光体11の電荷発生層の光感度を従来の1/1000とすれば、バランスが取れるので問題とはならない。
なお、感光層の厚みは、前記透過性と、経時による膜減りと、を勘案した帯電電位に耐えられる絶縁性から決められ、おおよそ5〜50μmの範囲が好ましい。
また、ベルト状感光体の場合は、透明基体としてPET、PC等の透明樹脂が使用でき、その厚みはベルト状感光体を張架するロールの径、張力等の設計事項から決められ、おおよそ10〜500μm程度の範囲である。その他の層構成等はドラムの場合と同様である。
一方、イオノグラフィによりトナー像を形成する場合は、感光体11の代わりに誘電体をもちいる。誘電体としても、同様の理由から透明誘電体を用いることが好ましい。
上記透明誘電体としては、前記透明感光体における感光層の代わりに透明誘電体層、例えば、PET、PC等の透明プラスチックを用いたものを使用することができる。
帯電装置12は、感光体11の表面を所定電位となるように帯電させる。
感光体11の帯電を行う帯電装置12としては、公知の帯電装置を使用することができる。接触方式である場合は、ロール、ブラシ、磁気ブラシ、ブレード等が使用でき、非接触の場合は、コロトロン、スコロトロン等が使用できる。帯電装置12としてはこれらに限られるものではない。
これらの中でも、帯電補償能力とオゾン発生量とのバランスから、接触型帯電器が好ましく用いられる。接触帯電方式は、感光体11表面に接触させた導電性部材に電圧を印加することにより感光体11表面を帯電させるものである。すなわち、この場合には、帯電装置12は、図示は省略するが、導電性部材と、この導電性部材に電圧を印加するための電圧印加部と、を含んで構成するようにすればよい。
この導電性部材の形状はブラシ状、ブレード状、ピン電極状、あるいはロール状等何れでもよいが、特にロール状部材が好ましい。通常、ロール状部材は外側から抵抗層とそれらを支持する弾性層と芯材から構成される。さらに必要に応じて、抵抗層の外側に保護層を設けることができる。
これらの導電性部材を用いて感光体11を帯電させる方法としては、導電性部材に電圧印加部によって電圧を印加するが、印加電圧は直流電圧、あるいは直流電圧に交流電圧を重畳したものが好ましい。電圧の範囲としては、直流のみで帯電させる場合は、絶対値で所望の表面電位+500V程度の正または負が好ましく、その値は、700〜1500Vの範囲である。交流電圧を重畳する場合は、その直流値はおおよそ所望の表面電位±50V程度とし、交流のピーク間電圧(Vpp)が400〜1800V、好ましくは800〜1600V、交流電圧の周波数は50〜20000Hz、好ましくは100〜5000Hzであり、サイン波、方形波、三角波がいずれも使用可能である。
帯電電位は、電位の絶対値で150〜700Vの範囲に設定することが好ましい。
露光装置14は、帯電装置12によって帯電された感光体11を露光することによって、感光体11上に画像データに応じた静電潜像を形成する。
感光体11上に静電潜像を形成するための露光装置14としては、公知の露光装置を使用することができる。露光装置14としては、例えばレーザスキャニングシステム、LEDイメージバーシステム、アナログ露光手段、さらにはイオン流制御ヘッド等などを用いることができ、感光体11表面に露光を行うことが可能である。これ以外にも今後開発される新規な露光手段が本発明の効果を達成する限り使用できる。
露光装置14から感光体11表面を露光するための光源(図示省略)の波長は、感光体11の分光感度領域にあるものが使用される。これまで、半導体レーザーの波長として780nmm付近に発振波長を有する近赤外が主流であるが、600nm台の発振波長レーザーや青色レーザーとして400〜450nm近傍に発振波長を有するレーザーも利用が可能である。また、カラー画像形成のためにはマルチビーム出力が可能なタイプの面発光型のレーザー光源も有効である。
感光体11に対する露光は、反転現像の場合は後述するトナーを現像する位置に、正規現像の場合はトナーを現像する以外の位置に、例えば3つの色(YMC)の画像形成情報の論理和として行なわれる。
露光スポット径は、解像度が600〜1200dpiの範囲となるように、40〜80μmの範囲となるようにすることが好ましい。光量としては、感光体11上の露光された領域の電位(以下、適宜、露光後電位という)が前記帯電電位の5〜30%程度の範囲となるようにすることが好ましいが、本実施の形態では、画像の濃度に応じてトナーの現像量を変化させるために、露光位置ごとに濃度(階調値)に応じて光量を変化させる。
一方、前記イオノグラフィの場合には、イオン書込みヘッドにより像担持体上に潜像を形成する。イオン書込みヘッドとしては、例えば、イオン流を画像信号によりOn/Off制御するもの(特開平4−122654号公報)や、イオン流の発生そのものをOn/Off制御するもの(特開平6−99610号公報)などを用いることができる。
なお、この方式の場合、像担持体としては誘電体のみでなく感光体も使用することが可能である。
現像装置16は、感光体11上に形成された静電潜像を、トナーによって現像することで、感光体11上に静電潜像に応じたトナー像を形成する。
現像装置16には、上記Fトナーが貯留されている。この現像装置16は、現像装置16内に貯留されたトナーを担持すると共に感光体11表面へ供給するための現像ロール16Aと、記憶部20と、を含んで構成されている。
記憶部20は、この現像装置16内に貯留されているトナーの分光感度特性を示す分光感度情報と、光量補正情報と、基準光量としての基準光量情報と、を予め記憶する。
この分光感度情報とは、現像装置16内に貯留されているトナーの発色部に予め定められた基準光量の光が露光されたときの、この光の波長変動に対する感度変化を示す情報である。
光量補正情報とは、分光感度情報によって示される最大分光感度に対応する波長からのずれ量に対応して、最大分光感度に対応する波長からずれた波長の光が露光された後のトナーの発色後の濃度が、最大分光感度に対応する波長の光が基準光量で照射された後のトナーの発色後の濃度と略同一となるようにするために該トナーに露光する光の光量を示す光量情報を示すものである。
すなわち、最大分光感度に対応する波長の光が基準光量で露光された後に発色したトナーの濃度と、最大分光感度に対応する波長からずれた波長の光が露光された後に発色したトナーの濃度と、が同一となるように、最大分光感度に対応する波長からのずれ量に対応する光量情報が、光量補正情報として予め定められている。
これらの分光感度情報及び光量補正情報は、トナーに含まれる発色部の種類を示す情報に対応して記憶部20に記憶される。
発色部の種類を示す情報とは、現像装置16内に貯留されているトナー内に含まれる発色部の色を識別可能な情報であり、例えば、トナー中に、イエロー、マゼンタ、及びシアンに発色可能な3種類の発色部が含まれる場合には、イエローを示す情報、マゼンタを示す情報、及びシアンを示す情報が発色部の種類を示す情報であってもよい。
本実施の形態では、現像装置16内に貯留されているトナーは、イエロー、マゼンタ、及びシアンに発色可能な3種類の発色部を含み、各々の種類の発色部に含まれる光硬化性組成物は、基準光量で波長のみを除々に変化させたときに、各々光の波長が405nm、532nm、及び657nmの波長の光で露光されたときに、最も硬化された状態、すなわち最大分光感度を示す材料が含まれているものとして説明する。
詳細には、図6に示すように、トナーに含まれる3種類の発色部各々に対応する分光感度情報として、各色の発色部に含まれる光硬化性組成物が硬化可能な範囲の波長(Y発色部は400nm〜530nm、C発色部は560nm〜730nm)と、各色の発色部を示す情報毎に、各波長に対応する感度を示す情報が、分光感度情報として予め記憶部20に記憶される。
また、例えば、Y色発色部の最大分光感度に対応する波長405nmからの波長のずれ量に対応して、405nmの光が基準光量で露光された後に発色したトナーの濃度と、405nmからずれた波長の光が露光された後に発色したトナーの濃度と、が同一となるように調整するための光量情報が、光量補正情報として予め定められている。
このように、現像装置16に分光感度情報及び光量補正情報が記憶された記憶部20を設けるので、分光感度は現像装置16内に貯留されているトナーの発色部の材料構成により異なることから、現像装置16が画像形成装置10に対して着脱可能に設けられた場合であっても、現像装置16内に貯留されているトナーの正確な分光感度情報及び光量補正情報を把握することができる。
現像装置16としては、公知の現像装置16を使用することができる。現像法としては、キャリアと呼ばれるトナーを担持するための微小粒子とトナーからなる二成分現像法、またはトナーのみからなる一成分現像法、またこれらの現像法においてさらに現像その他の特性改善のために別の構成物質が添加される場合もある全ての現像方法が使用できる。
また、現像方法によっては感光体11へ現像剤が接触または非接触で現像を行なうもの、あるいはそれらの組み合わせのいずれもが使用可能である。さらに、前記一成分現像法と二成分現像法とを組み合わせたハイブリッド現像方法も使用可能である。これ以外にも、今後開発される新規な現像手段が本発明の効果を達成する限り使用できる。
なお、前記現像剤に含まれるトナーとしては、例えばY色に発色可能な発色部(Y発色部)、M色に発色可能な発色部(M発色部)及びC色に発色可能な発色部(C発色部)を1つのトナー粒子中に含むものであってもよいし、前記Y発色部、M発色部、C発色部を各々トナーごとに別々に含むものであってもよい。
また、形成されたトナー像において、後述する発色情報付与のための光が、当該照射された部分全体に行き渡らなければならないため、トナー層厚は一定以下に抑えることが好ましい。具体的には、例えばべた画像においてトナー層は3層以下であることが好ましく、2層以下であることがより好ましい。なお、上記トナー層厚は、実際の感光体11表面に形成されたトナー層の厚さを測定し、これをトナーの個数平均粒径で除した値である。
発色情報付与装置28は、画像データ中の色成分情報に基づいて、発色対象の色または非発色対象の色に対応して予め定められた波長の光を出射する光源53(図2参照、詳細後述)を含み、この光源53から出射された光を、感光体11上に形成されたトナー像を構成する各トナーに露光することにより、このトナー像を構成する各トナーに発色情報を付与する。
なお、図1では、発色情報付与装置28は、現像装置16と、現像装置16から感光体11の回転方向下流側に設けられた転写装置18と、との間に設けられている場合を説明するが、転写装置18より記録媒体26の搬送方向下流側に設けられるようにしてもよい。
発色情報付与装置28は、図2に示すように、感光体11の回転軸方向に添った方向に光を走査露光する。
発色情報付与装置28は、特定波長の光を出射する光源53を含んで構成される光照射部51と、光源53から出射された光を反射するための反射ミラー59と、反射ミラー59によって反射された光の一部を透過し、一部を反射させるハーフミラー61と、ハーフミラー61を透過した光を反射して感光体11上に光を露光する回転多面鏡62と、プリズムや回折格子で構成され入射された光を、該光の波長に応じた方向に回折するための回折分光器64と、位置検出部66と、fθレンズ68と、を含んで構成されている。
光照射部51は、現像装置16内に貯留されているトナーに含まれる発色部の種類に応じた数の光照射部を含んで構成されている。本実施の形態では、YMC各々に対応する3種類の発色部を含む場合を説明するので、光照射部51は、Y発色部に対応するY光照射部51Y、M発色部に対応するM光照射部51M、及びC発色部に対応するC光照射部51Cを含んで構成されているものとして説明するが、このような形態に限られるものではない。
Y光照射部51Yは、Y色光源53Yを含んで構成されている。Y色光源は、画像データ中のY色を示す色成分情報に基づいて、発色対象の色としてのY色または非発色対象の色としてのY色に対応して予め定められた波長の光を出射する。Y色光源53Yから出射される光の波長としては、Y色発色部の最大発色濃度に対応する波長の光が予め定められているものとする。また、Y光照射部51Yは、さらに、Y色光源53Yから出射された光の進行方向に向かってコリメータレンズ54Y、及びシリンダレンズ56Yが順に配設されている。Y色光源53Yは、システム制御部32の制御によって画像データ中のY色を示す色成分情報に基づいてその点灯がON/OFF制御され、画像データに基づいて変調された光ビームが出射される。Y色光源53Yから出射された光は、コリメータレンズ54Yにより略平行化されシリンダレンズ56Yにより集束された後に、反射ミラー59及びハーフミラー61を介して回転多面鏡62に入射されると共に、反射ミラー59、ハーフミラー61、及びは回折分光器64を介して位置検出部66に入射される。
同様に、M光照射部51Mは、M色光源53Mを含んで構成されている。M色光源は、画像データ中のM色を示す色成分情報に基づいて、発色対象の色としてのM色または非発色対象の色としてのM色に対応して予め定められた波長の光を射出する。M色光源53Mから出射される光の波長としては、M色発色部の最大発色濃度に対応する波長の光が予め定められているものとする。また、M光照射部51Mは、さらに、M色光源53Mから出射された光の進行方向に向かってコリメータレンズ54M、及びシリンダレンズ56Mが順に配設されている。M色光源53Mは、システム制御部32の制御によって画像データに含まれるM色を示す色成分情報に基づいてその点灯がON/OFF制御され、画像データに基づいて変調された光ビームが出射される。M色光源53Mから出射された光は、コリメータレンズ54Mにより略平行化されシリンダレンズ56Mにより集束された後に、反射ミラー59及びハーフミラー61を介して回転多面鏡62に入射されると共に、反射ミラー59、ハーフミラー61、及びは回折分光器64を介して位置検出部66に入射される。
同様に、C光照射部51Cは、C色光源53Cを含んで構成されている。C色光源は、画像データ中のC色を示す色成分情報に基づいて、発色対象の色としてのC色または非発色対象の色としてのC色に対応して予め定められた波長の光を射出する。C色光源53Cから出射される光の波長としては、C色発色部の最大発色濃度に対応する波長の光が予め定められているものとする。また、C光照射部51Cは、さらに、C色光源53Cから出射された光の進行方向に向かってコリメータレンズ54C、及びシリンダレンズ56Cが順に配設されている。C色光源53Cは、システム制御部32の制御によって画像データに基づいてその点灯がON/OFF制御され、画像データに含まれるC色を示す色成分情報に基づいて変調された光ビームが出射される。C色光源53Cから出射された光は、コリメータレンズ54Cにより略平行化されシリンダレンズ56Cにより集束された後に、反射ミラー59及びハーフミラー61を介して回転多面鏡62に入射されると共に、反射ミラー59、ハーフミラー61、及びは回折分光器64を介して位置検出部66に入射される。
なお、以下の説明では、Y色光源53Y、M色光源53M、及びC色光源53Cを総称する場合には、上記のように光源53と称して説明する。
回転多面鏡62は、側面に複数の反射面62Aが設けられた正多角形状(本実施の形態では正六角形)に形成されている。この回転多面鏡62は、図示を省略するモータの駆動により、回転軸Oを回転中心にして矢印C方向に所定速度で回転されている。
回転多面鏡62に入射される光は、回転多面鏡62の反射面62Aに集束されて入射されるようになっており、回転多面鏡62の回転によって、各反射面62Aへの光の入射角が連続的に変化して変更される。これにより、光ビームが感光体11の軸線方向に走査されて感光体11に走査露光される。
回転多面鏡62により反射された光の進行方向には、走査レンズ系として、第1レンズ68A及び第2レンズ68Bから構成されたfθレンズ68が設けられている。回転多面鏡68により反射された光ビームは、fθレンズ68を透過することにより、感光体11の主走査方向に集束されて図示を省略したシリンダレンズにより副走査方向に集束されることで、感光体11上に結像点が結ばれるようになっている。
回折分光器64は、Y色光源53Y、M色光源53M、及びC色光源53C各々から出射された光を、該光の波長に応じた方向に回折する。回折分光器64としては、回折格子やプリズムを用いることができる。
回折分光器64に入射された光は、特定波長の反射光が特定の方向で強め合うことから、入射された波長に応じて異なる方向に出射される。
このため、位置検出部66には、回折分光器64に到達した光の波長に応じた位置に、光スポットが入射される。
位置検出部66は、PSD(Position Sensitive Detector)、すなわち半導体位置検出素子として構成され、入射されたスポット状の位置を検出することができる。
位置検出部66は、PIN構造となっており、図3に示すように、N型高抵抗シリコン基板74上に、受光面と抵抗層とを兼ねたP型抵抗層72が順に積層されて構成されている。このP型抵抗層72の両端部には、一対の電極70A及び70Bが形成されている。この電極70A及び電極70Bは、各々システム制御部32に信号授受可能に接続されている。
N型高抵抗シリコン基板74のP型抵抗層72が設けられた面に対向面には、N層76が形成されている。N層76には、共通電極78が設けられ得いる。このように、位置検出部66は、表面のP型抵抗層72を除けばPINフォトダイオードと同様の構造となっている。
この位置検出部66のP型抵抗層72にスポット状の光Lが入射されると、入射位置には光量に比例した電荷が発生する。この発生した電荷は、光電流として両端の電極(電極70A及び電極70B)に到達する。この電極70A及び電極70Bに到達した電荷の量は、スポット光の位置から電極までの距離に反比例する。このため、詳細を後述するシステム制御部32では、電極70A及び電極70Bから取り出された電流の差または比を求めることにより、光の入射位置を算出することができる。
Y色光源53Y、M色光源53M、及びC色光源53Cとしては、トナー像上の発色させる領域に位置するトナー粒子が特定色に発色するための波長の光を所定の解像度と強度とで照射することができるものであれば何でもよい。Y色光源53Y、M色光源53M、及びC色光源53Cとしては、例えば、LED、レーザー等を使用することが可能である。なお、感光体11のトナー像に照射される光の照射スポット径は、形成される画像の解像度が100〜2400dpiの範囲となるよう、10〜300μmの範囲となるように調整されることが好ましく、20〜200μmの範囲とすることがより好ましい。
Fトナーに発色情報を付与しうる光の波長は、上述のように、使用されるトナーの材料設計により決まるが、例えば、Fトナーが光発色型トナーである場合には、例えば、図6に示すように、イエロー(Y色)に発色させるときは、Y光照射部51Yを点灯させて405nmの光(以下、λA光とする)を、マゼンタ(M色)に発色させるときはM光照射部51Mを点灯させて535nmの光(以下、λB光とする)を、シアン(C色)に発色させるときはC光照射部51Cを点灯させて657nmの光(以下、λC光とする)を、感光体11上のトナー像の、画像データに対応してYMC各々の色に発色させる位置にそれぞれ露光する。
また、二次色に発色させる時には、前記光の組み合わせになり、Y光照射部51Y、M光照射部51M、及びC光照射部51C各々の点灯及び非点灯を調整することにより、レッド(R色)に発色させる時はλA光及びλB光を、グリーン(G色)に発色させる時はλA光及びλC光を、ブルー(B色)に発色させる時はλB光及びλC光を、その発色させる所望の位置にそれぞれ露光する。さらに、三次色であるブラック(K色)に発色させるときは上記λA光、λB光及びλC光をその発色させる所望の位置に重ねて露光する。
一方、光非発色型トナーの場合には、例えば、イエロー(Y色)を発色させないようにするときは405nmの光(λA光)を、マゼンタ(M色)に発色させないようにするときは535nmの光(λB光)を、シアン(C色)に発色させないようにするときは657nmの光(λC光)を、その発色させる所望の位置にそれぞれ照射する。したがって、Y色に発色させる時はλB光及びλC光を、M色に発色させる時はλA光及びλC光を、C色に発色させる時はλA光及びλB光を、その発色させる所望の位置にそれぞれ照射することとなる。
また、二次色に発色させる時には、前記光の組み合わせになり、レッド(R色)に発色させる時はλC光を、グリーン(G色)に発色させる時はλB光を、ブルー(B色)に発色させる時はλA光を、その発色させる所望の位置にそれぞれ照射する。さらに、三次色であるブラック(K色)に発色させるときはその発色させる所望の位置には露光しないようにする。
発色情報付与装置28からの光は、必要に応じてパルス巾変調、強度変調、左記2つを組み合わせたものなど、公知の画像変調方法が使用可能である。また、トナーに発色情報を付与するために必要な光の露光量は、0.05〜0.8mJ/cmの範囲とすることが好ましく、0.1〜0.6mJ/cmの範囲とすることがより好ましい。特にこの光量に関しては、必要光量は現像されたトナーの量と相関があり、例えば、トナー現像量(べた)が約5.5g/mに対し0.2〜0.4mJ/mの範囲の露光を行うことが好ましい。
なお、上記に関連して、発色情報付与装置28は前記潜像形成のための露光装置14と同一の筐体に配置してもよい。これにより、光学系を含む露光手段を部分的に共通化、簡略化することができ、装置全体のさらなる小型化を可能とすることができる。
以上、本発明における発色情報付与装置28について、フルカラー画像形成を行う場合の機構について説明したが、本発明における発色情報付与装置28による発色情報を付与する工程は、イエロー、マゼンタ及びシアンのうちのいずれか1色を発色させるモノカラー画像形成のための工程であってもよい。この場合は、発色情報付与装置28からは、前記イエロー、マゼンタ及びシアンのうちの所望の発色に対応する特定波長の光のみを照射する。その他の好ましい条件等については、フルカラー画像形成時における条件等と同様である。
図1に示す画像形成装置10では、発色情報の付与は、現像装置16によって静電潜像の現像が行われた後で、且つトナー像の記録媒体26への転写前に行われているが、少なくとも記録媒体26上に転写されたトナー像が定着される前に行われれば良く、例えば発色情報の付与は、記録媒体26に転写されたトナー像に行うようにしてもよい。
ただし、発色情報の付与を、記録媒体26に転写されたトナー像について行う場合には、記録媒体26表面の平滑性や所望画像の発色位置精度の正確性等が問題となることから、発色情報の付与は、現像装置16によって静電潜像の現像が行われた後で、且つトナー像の記録媒体26への転写前に行われることが好ましい。
なお、発色情報が付与された直後のトナー像は、未発色の本来の色調のままの未発色の状態にあり、例えば、増感色素が含まれている場合にはその色素の色調を帯びているに過ぎない。
転写装置18は、感光体11上のトナー像を記録媒体26に転写する。
転写装置18としては、公知の転写装置を使用することができる。例えば、接触方式である場合は、ロール、ブラシ、ブレード等が使用でき、非接触方式の場合は、コロトロン、スコロトロン、ピンコロトロン等が使用できる。また、圧力、若しくは圧力及び熱による転写も可能である。
転写バイアスは300〜1000V(絶対値)の範囲とすることが好ましく、さらに交流(Vpp:400V〜4kV、400〜3kHz)を重畳してもよい。
図示を省略する記録媒体供給部に貯留された記録媒体26が感光体11と転写装置18とによって挟持される位置まで達すると共に、感光体11と転写装置18とによって挟持搬送されることで、感光体11上のトナー像は記録媒体26に転写される。
定着装置22は、記録媒体26に転写されたトナー像を記録媒体26上に定着する。
なお、定着装置22は、トナー像を発色させる発色装置(発色手段)を兼ねており、さらに、後述する光照射装置24を発色装置として共に機能するようにしてもよい。
発色情報の付与により、発色(あるいは非発色状態維持)可能な状態におかれたトナーにより構成されるトナー像は、定着装置22によって熱が加えられることで発色する。
定着装置22としては公知の定着手段が使用できる。例えば、加熱部材及び加圧部材としてロール、ベルトのそれぞれが選択可能であり、熱源としては、ハロゲンランプ、IH等が使用可能である。その配置も、種々の紙パス、例えばストレートパス、リアCパス、フロントCパス、Sパス、サイドCパス等に対応可能である。
本実施形態では、定着装置22が、記録媒体26上に転写されたトナー像の発色及び記録媒体26への定着の双方を行うが、発色と定着とを別々に行うようにしてもよい。
この場合には、記録媒体26に転写されたトナー像を構成する各トナーを発色させるための発色装置を別途設けるようにすればよい。
この発色装置を配置する位置は特に制限されないが、例えば、定着装置22によってトナー像が記録媒体26に定着される前に、トナー像を発色可能な位置に設けることができる。
このように、記録媒体26に転写されたトナー像の発色と、記録媒体26への定着とを別の装置により行うことにより、発色のための加熱温度と、記録媒体26へのトナー定着のための加熱温度とが別途制御可能となるため、発色材料、トナーバインダー材料等の設計度の自由度を向上させることができる。
この場合、発色の方法についてはトナー粒子の発色メカニズムに応じて様々の方法が考えられるため、発色装置としては、例えば、上記特定波長領域外の波長の光を用いてトナー中の発色関与物質を硬化させ、あるいは光分解させるなどの方法で発色をさせるには、特定の波長の光を照射する発光装置や、加圧してカプセル化した発色粒子を破壊する加圧装置等によりFトナーを発色させればよい。などの方法で発色をさせればよい。
しかしながら、発色情報が付与されたFトナーを発色させるためにFトナー内で発生する化学的な反応は、一般的に泳動、拡散による反応速度が遅いため、上記いずれの方法をとるにしても充分な拡散エネルギーを与える必要があることから、Fトナーの発色には、加熱により発色反応を促す方法が最も優れているといえる。このため、定着装置22により、記録媒体26上に転写されたトナー像の発色及び記録媒体26への定着の双方を行うことが、省スペース化も含めて好ましい。
光照射装置24は、記録媒体26上に定着されたトナーの発色を固定化する。
光照射装置24は、発色不可能な状態に制御された発色部中に残存する反応性物質を分解又は失活させることができるため、画像形成後のカラーバランスの変動をより確実に抑制したり、バックグランド色の除去・漂白を行ったりすることができる。
なお、本実施形態においては、上記光照射は、トナー像を記録媒体26に定着させた後に行うが、定着方法として、加熱溶融しない定着方法、例えば圧力を用いて定着させる圧力定着を用いる場合には、記録媒体26へのトナー像の定着を行う前に、光照射装置24によって光照射を行うようにしてもよい。
光照射装置24としては、トナーの発色が進行することを抑制すること可能な光を照射可能な構成であればよく、公知のランプ、例えば、蛍光灯、LED、EL等を使用することができる。
この光照射装置24の波長は、前記Fトナーを発色させるための光に三波長を含み、照度は2000〜200000luxの範囲程度とすることが好ましく、露光時間は0.5〜60secの範囲とすることが好ましい。
なお、本実施の形態では、画像形成装置10は、感光体11に形成されたトナー像を記録媒体26に転写する場合を説明したが、感光体11に形成されたトナー像を中間転写ベルト等の中間転写体へ転写した後に、この中間転写体上に転写されたトナー像を記録媒体26に転写するようにしてもよい。
本発明の画像形成装置10では、前述のように、発色情報付与装置28によって、トナー像を構成する各トナーに発色情報が付与されてから、定着装置22によってトナーが発色するまでの間、トナーにおいて付与された発色情報が安定して保持されるため、発色情報が付与されてから発色するまでの時間を考慮する必要がなく、広いスピードレンジの設計に対応することが可能である。
具体的には、線速を10〜500mm/秒の範囲とすることが好ましく、50〜300mm/秒の範囲とすることがより好ましい。ただし、上記のような線速で画像形成を行う場合でも、前記発色情報付与のための露光時間は線速と解像度とから決まる値に設定すればよい。
また、このようなトナーによる発色情報の安定的な保持は、画像における色調安定性やハイライト画像の再現性にも優れた効果を有するため、入力画像情報を高画質で忠実に再現できるフルカラー画像形成に大きく寄与する。
画像形成装置10は、さらに、画像形成装置10全体を制御するためのシステム制御部32を含んで構成されている。システム制御部32は、露光装置14、露光装置14内に設けられ感光体11上に静電潜像を形成するための光源(図示省略)、記憶部20、発色情報付与装置28、位置検出部66、及び光照射部51にデータや授受可能に接続されると共に、画像形成装置10に設けられた各種機器に信号授受可能に接続されている。
システム制御部32は、図4に示すように、変換回路40、論理和回路42、発色制御回路44、記憶部48、及び制御部46を含んで構成されている。
上記変換回路40、発色制御回路44、及び記憶部48は、各々制御部46にデータや信号を授受可能に接続されている。また、露光装置14、露光装置14内に設けられ感光体11上に静電潜像を形成するための光源(図示省略)、記憶部20、発色情報付与装置28、位置検出部66、光照射部51、及び画像形成装置10に設けられた各種機器もまた、制御部46に信号授受可能に接続されている。
記憶部48は、後述する処理ルーチンを予め記憶するとともに、位置検出部66の電極70A及び電極70Bから出力される電流の比に対応する光の入射位置を示す位置情報と、入射位置に対応する光の波長を示す波長情報と、を対応付けて予め記憶する。
なお、記憶部48には、現像装置16に設けられている記憶部20に記憶された分光感度情報及び光量補正情報を予め記憶するようにしてもよいが、これらの分光感度情報及び光量補正情報は、トナーの種類(具体的には、トナーを構成する材料)によって異なることから、現像装置16が画像形成装置10に対して着脱可能に設けられる場合には、情報の正確性の観点から、現像装置16の記憶部20に設けられることが好ましい。なお、現像装置16の記憶部20に分光感度情報及び光量補正情報を記憶する処理は、例えば、現像装置16の製造工程等において行われるようにすればよい。
制御部46は、画像形成装置10に含まれる装置各部を制御する。
変換回路40は、図示を省略するパーソナルコンピュータ等の外部装置から通信部(図示省略)を介して入力された、画像形成装置10で形成する画像の画像データがRGBデータの場合には、YMCデータに変換すると共に、色変換した画像データを、記録媒体26に記録したときの画像の各画素の画素データ(Y画素データ、M画素データ、及びC画素データ)として論理和回路42に出力する。
論理和回路42では、変換回路40に画素データが入力されると、CMYの論理和を各色の画素毎に計算し、露光装置14に出力する。すなわち、CMYの全ての画素データを含む論理和データが、露光装置14に出力される。
露光装置14は、入力された論理和のデータに基づいて、感光体11表面を露光する。
変換回路40から論理和回路42に出力されるYMCの画素データは、発色制御回路44にも出力される。このため、発色制御回路44には、画像データに含まれる色成分を示す色成分情報が入力される。
発色制御回路44は、マゼンタ色の発色を制御するためのマゼンタ発色制御回路44M、シアン色の発色を制御するためのシアン発色制御回路44C、及びイエロー色の発色を制御するためのイエロー発色制御回路44Yを含んで構成されている。
マゼンタ発色制御回路44M、シアン発色制御回路44C、及びイエロー発色制御回路44Y各々に入力された、M画素データ、C画素データ、及びY画素データは、制御部46の制御によって、発色情報付与装置28に出力される。
発色情報付与装置28の光源53は、制御部46の制御によって、入力された各色の画素データと、制御部46から入力された色毎の光量を示す情報に基づいて、入力された光量で且つ各画素の色情報の色に応じた波長の光を射出するように制御される。
次に、画像形成装置10のシステム制御部32の制御部46で実行される処理を説明する。
制御部46では、図示を省略する操作部のユーザによる操作指示や、外部装置からの入力によって濃度調整を示す指示信号が入力されると、図5に示す処理ルーチンが実行されてステップ100に進む。
ステップ100では、YMCの内の何れかの色を調整対象となる調整対象色として設定する。
次に、ステップ102では、上記ステップ100または後述するステップ118の処理によって設定された調整対象色を示す調整対象色情報を記憶部48に記憶する。
次のステップ104では、記憶部20に記憶されている基準光量情報を読み取る。
次にステップ106では、調整対象色として設定した色に対応する発色部を示す情報に対応する分光感度情報を記憶部20から読取り、読み取った分光感度情報に基づいて、調整対象色の発色部の最大分光感度に対応する波長λ1を読み取る。
次のステップ108では、設定した調整対象色に対応する色の光源を上記ステップ104で読み取った基準光量で、上記ステップ106で読み取った波長λ1の光を露光するように、光照射部51を制御する。
例えば、設定した調整対象色がイエローであり、Y色発色部の最大分光感度に対応する波長が405nmの場合には、波長405nmの光を出射するY色光源53Yを、上記ステップ104で読み取った基準光量で点灯するように制御する。
次のステップ110では、位置検出部66から、位置検出部66に入射された光スポットの位置を示す位置検知結果として、位置検出部66の電極70A及び電極70B各々から電流値を示す情報が入力されるまで否定判断を繰り返し、肯定されると、ステップ112へ進む。
ステップ112では、上記ステップ110において位置検出部66の電極70A及び電極70B各々から入力された電流値の比に対応する光の入射位置情報に対応する、光の波長を示す波長情報を読み取ることによって、光源53から出射された光の波長を算出する。
次のステップ114では、上記ステップ112で算出した波長λ2が、上記ステップ106で読み取ったλ1と等しいか否かを判別し、肯定されると、ステップ116へ進む。
ステップ116では、YMC全ての色について調整済であるか否かを判別し、肯定されると、ステップ112へ進み、調整対象色を示す調整対象色情報を記憶部48から削除した後に、本ルーチンを終了する。
ステップ116の判断は、記憶部48にYMC全ての色を示す情報が、調整対象色を示す情報として記憶されているか否かを判別することによって判断可能である。
上記ステップ116において否定されると、ステップ118へ進み、YMCの内、未調整の色を次の調整対象色として設定した後に、上記ステップ104へ戻る。
一方、上記ステップ114で否定されて、ステップ112で算出した波長λ2が、上記ステップ106で読取り上記ステップ108で点灯するように制御した波長λ1と同一ではない場合には、ステップ124へ進む。
ステップ124では、上記ステップ112で算出した波長は、重複波長領域外であるか否かを判別する。
この重複波長領域とは、1つのトナー内に複数の発色部が含まれる場合に、各発色部同士の分光感度が重複する波長の領域を示している。
具体的には、図6に示すように、Y発色部が400nmから530nmの波長の光について感度を有し、M発色部が500nm〜630nmの波長の光について感度を有し、C発色部が560nm〜730nmの波長の光について感度を有するとすると、500nm〜530nmの領域の波長が露光されると、Y発色部とM発色部の双方が発色する。同様に、560nm〜630nmの領域の波長が露光されると、M発色部とC発色部の双方が発色する。このように複数の発色部が同時に発色情報を付与されうる波長領域を、重複波長領域を称して説明する。
ここで、上述のように、記憶部20に記憶されている光量補正情報は、分光感度情報によって示される最大分光感度に対応する波長からのずれ量に対応する、最大分光感度に対応する波長からずれた波長の光が露光された後のトナーの発色後の濃度が、最大分光感度に対応する波長の光が基準光量で照射された後のトナーの発色後の濃度と略同一となるようにするために該トナーに露光する光の光量を示す光量情報を示すものである。
このため、トナーに露光される光の波長が目的とする波長からずれた場合には、ずれ量に応じて光源53から出射される光量を調整すれば、発色したときの濃度を同一となるように調整することができる。
しかし、目的とする波長からずれた波長が、上記重複波長領域内にある場合には、目的とする発色部とは異なる色に発色する発色部についても感度を有する波長の光が露光される状態にあることから、ずれた波長のまま露光を行うと、目的とする色とは異なる色に発色されるという問題があり、色相が変化するという問題がある。
そこで、ステップ124で否定されると、ステップ126へ進み、光源波長エラーを示す情報を、図示を省略する表示部に表示、または画像形成装置10外部へ送信した後に、本ルーチンを終了する。
上記ステップ124で肯定されると、ステップ128へ進み、記憶部20に記憶されている光量補正情報に基づいて、上記ステップ112で算出した波長(λ2)と上記ステップ106で読み取った波長(λ1)との差に対応する、光量情報を読み取る。
次のステップ130では、ステップ128で読み取った光量情報の、記憶部20に記憶されている基準光量からのずれ(ステップ128で読み取った光量情報から基準光量情報を減算した結果)を算出する。ステップ132では、上記ステップ130で算出した算出結果を、上記ステップ102において記憶した、調整対象色の色を示す色情報に対応する光量調整情報として記憶部48に記憶した後に、上記ステップ116へ進む。
ここで、上述のように、発色情報付与装置28は、制御部46の制御によって、制御部46から入力された光量情報に基づいた光量で、画像データに含まれる色成分情報に応じた光照射部51Y、光照射部51M、光照射部51Cから光を出射する。このため、画像形成装置10における画像形成時には、制御部46は、画像データに含まれる色成分情報に応じた光照射部51Y、光照射部51M、及び光照射部51C各々のY色光源53Y、M色光源53M、及びC色光源53Cから、記憶部48に記憶されている各光源が担当する色の色情報に対応する光量調整情報を基準光量情報に加算した光量の光を出射するように、光照射部51を制御する。
このため、上記図5に示す処理ルーチンが実行されることによって、光源53から出射された光の波長が、トナーに含まれる各発色部の最大分光感度に対応する波長からずれている場合であっても、発色後のトナーの濃度が、最大分光感度に対応する波長の光が露光されたときの濃度と同一となるように、発色情報付与装置28の光源53から出射される光の光量を調整することができる。
なお、上記実施の形態では、光源53から出射される光の波長が、トナーに含まれる各発色部の最大分光感度に対応する波長からずれている場合であっても、発色後のトナーの濃度が、最大分光感度の波長の光が露光されたときの濃度と同一となるように、光源53から出射される光の光量を調整する場合を説明したが、光源53から出射される光の波長が目的とする波長からずれた場合についても同様に、目的とする波長の光が露光されたときの発色後のトナーの濃度と同一となるように、発色情報付与装置28の光源53から出射される光の光量を調整するようにしてもよい。
この場合には、記憶部20または記憶部48に、光量補正情報として、上述のような最大分光感度に対応する波長のみではなく、分光感度情報により示される、各発色部が感度を有する波長領域内の各波長に対応して、各波長からのずれ量に対応する光量情報を予め記憶するようにすればよい。そして、この光量情報を、上述と同様に、分光感度情報により示される、各発色部が感度を有する波長領域内の各波長からずれた波長の光が露光されたときのトナーの発色後の濃度が、ずれる前の該各波長の光が基準光量で露光されたトナーの発色後の濃度と同一となる光量を示す情報とすればよい。
このようにすれば、任意の波長の光を目的とする波長として定め、実際にトナーに露光される光の波長が、目的とする波長からずれた場合にも、目的とする波長の露光が行われたときと同一の濃度を得ることが可能となるように、発色情報付与装置28の光源53による光量を調整することができる。
ただし、この方法は、波長の変動により色相が変化することを抑制するために、上記「目的とする波長」は、上記重複波長領域の範囲外である場合のみに適用することが好ましい。
以上説明したように、本発明の画像形成装置10によれば、発色情報を付与するために光源53から出射される光の波長が、目的とする波長からずれた場合であっても、目的とする波長の光が露光されたときの発色後のトナーの濃度と同一となるように、発色情報付与装置28の光源53による光量を調整する。
このため、光源53から出射される光の波長が、目的とする波長からずれた場合であっても、目的とする波長の光が露光されたときの発色濃度と同一の濃度にトナーを発色させることができるため、容易に発色後のトナー濃度を調整することができる。
なお、上記図5に示す処理ルーチンでは、発色情報付与装置28の光源53から出射される光の波長が目的とする波長からずれた場合であっても、目的とする波長の光が露光されたときの発色濃度と同一の濃度にトナーを発色させるように、発色情報付与装置28の光源53から出射される光量を調整する場合を説明したが、露光装置14から感光体11に露光される光の露光量を調整するようにしてもよい。
この場合には、予め記憶部48に、光量補正情報として、分光感度情報によって示される最大分光感度に対応する波長からのずれ量に対応して、最大分光感度に対応する波長からずれた波長の光を露光されたトナーの発色後の濃度が、最大分光感度に対応する波長の基準光量の光を露光されたトナーの発色後の濃度とするために、対応する色のトナー付着量を増加または現象させるために必要な光量として、上記発色情報付与装置28の光源53に換えて、露光装置の光源15(図4参照)から感光体11に向かって照射される光の露光量を示す情報(以下、露光量情報という)を、記憶すればよい。
また、上記図5に示す処理ルーチンにおける光照射部51の「光量情報」を、露光装置の光源15の露光量情報とすると共に、予め記憶部48に、波長の差(λ2-λ1)に対応する上記露光量情報を記憶し、上記ステップ128の処理に換えて、波長の差(λ2-λ1)に対応する露光量情報を読み取るようにすればよい。
上述のように、露光装置14では、システム制御部32から入力された論理和データに基づいて、露光位置ごとに濃度(階調値)に応じて光量を変化させるが、さらに、波長のずれが発生した光源53(Y色光源53Y、M色光源53M、C色光源53Cの何れか1つまたは複数)で露光する領域において、濃度に応じた光量に、該ステップ128の処理に換えた処理で読み取った露光量情報を加算した露光量で露光を行うようにすればよい。
このようにすれば、発色情報を付与するために光源53から出射される光の波長が、目的とする波長からずれた場合であっても、目的とする波長の光が露光されたときの発色後のトナーの濃度と同一となるように、露光装置の光源15から出射される光の露光量を調整することができる。
従って、本発明の画像形成装置10によれば、発色情報を付与するために光源53から出射される光の波長が、目的とする波長からずれた場合であっても、目的とする波長の光が露光されたときの発色後のトナーの濃度と同一となるように、発色情報付与装置28の光源53による光量、及び露光装置の光源15から出射される光の露光量を調整することができるので、光源53から出射される光の波長が、目的とする波長からずれた場合であっても、目的とする波長の光が露光されたときの発色濃度と同一の濃度にトナーを発色させることができるため、容易に発色後のトナー濃度を調整することができる。
<参考例>
上記実施形態の作用を確認するため、以下のような試験を行った。
なお、以下の実施例中の「部」及び「%」は、それぞれ「質量部」、「質量%」を表す。
(トナーの作製)
まず、下記実施例に用いたトナーについて説明する。なお、以下のトナーの作製において、光硬化性組成物分散液の調整およびこれを用いた一連のトナーの作製は全て暗所で実施した。
A.光非発色型トナー
(マイクロカプセル分散液の調製)
−マイクロカプセル分散液(1)−
酢酸エチル16.9質量部に、イエローに発色可能な電子供与性無色染料(1)8.9質量部を溶解し、さらに、カプセル壁材(商品名:タケネートD−110N,武田薬品工業(株)製)20質量部とカプセル壁材(商品名:ミリオネートMR200,日本ポリウレタン工業(株)製)2質量部とを添加した。
得られた溶液を、8質量%フタル化ゼラチン42質量部と、水14質量部と、10質量%ドデシルベンゼンルスルホン酸ナトリウム溶液1.4質量部との混合液中に添加した後、温度20℃で乳化分散し、乳化液を得た。次いで、得られた乳化液に2.9質量%テトラエチレンペンタミン水溶液72質量部を加え、攪拌しながら60℃に加温し、2時間経過後、電子供与性無色染料(1)を芯部に含む、平均粒径0.5μmのマイクロカプセル分散液(1)を得た。
なお、このマイクロカプセル分散液(1)に含まれるマイクロカプセルの外殻を構成する材料(上記とほぼ同様の条件でタケネートD−110NおよびミリオネートMR200を反応させて得られた材料)のガラス転移温度は100℃であった。
−マイクロカプセル分散液(2)−
電子供与性無色染料(1)を電子供与性無色染料(2)に変更した以外は、マイクロカプセル分散液(1)を調製する場合と同様にしてマイクロカプセル分散液(2)を得た。この分散液中のマイクロカプセルの平均粒径は0.5μmであった。
−マイクロカプセル分散液(3)−
電子供与性無色染料(1)を電子供与性無色染料(3)に変更した以外は、マイクロカプセル分散液(1)を調整する場合と同様にしてマイクロカプセル分散液(3)を得た。この分散液中のマイクロカプセルの平均粒径は0.5μmであった。
なお、マイクロカプセル分散液の調製に用いた電子供与性無色染料(1)〜(3)の化学構造式を以下に示す。
Figure 2007286494

(光硬化性組成物分散液の調製)
−光硬化性組成物分散液(1)−
重合性基を有する電子受容性化合物(1)および(2)の混合物100.0質量部(混合比率50:50)と熱重合禁止剤(ALI)0.1質量部とを酢酸イソプロピル(水への溶解度約4.3%)125.0質量部中で42℃にて溶解し混合溶液Iとした。
この混合溶液I中に、ヘキサアリールビイミダゾール(1)〔2,2’−ビス(2−クロロフェニル)−4,4’,5,5’テトラフェニルー1,2’−ビイミダゾール〕18.0質量部と、ノニオン性有機色素0.5質量部と、有機ホウ素化合物6.0質量部とを添加し42℃にて溶解し、混合溶液IIとした。
上記混合溶液IIを、8質量%ゼラチン水溶液300.1質量部と、10質量%界面活性剤(1)水溶液17.4質量部との混合溶液中に添加し、ホモジナイザー(日本精機(株)製)を用いて回転数10000回転で5分間乳化し、その後、40℃で3時間脱溶媒処理を行った後、固形分が30質量%の光硬化性組成物分散液(1)を得た。
なお、光硬化性組成物分散液(1)の調製に用いた重合性基を有する電子受容性化合物(1)、重合性基を有する電子受容性化合物(2)、熱重合禁止剤(ALI)、ヘキサアリールビイミダゾール(1)、界面活性剤(1)、ノニオン性有機色素、および、有機ホウ素化合物の構造式を以下に示す。
Figure 2007286494

Figure 2007286494
−光硬化性組成物分散液(2)−
下記有機ボレート化合物(I)0.6質量部と、前記に示した分光増感色素系ボレート化合物(I)0.1質量部と、高感度化を目的とした下記助剤(1)0.1質量部と、酢酸イソプロピル(水への溶解度約4.3%)3質量部と、の混合溶液中に、重合性基を有する下記電子受容性化合物(3)5質量部を添加した。
Figure 2007286494
得られた溶液を、13質量%ゼラチン水溶液13質量部と、下記2質量%界面活性剤(2)水溶液0.8質量部と、下記2質量%界面活性剤(3)水溶液0.8質量部と、の混合溶液中に添加し、ホモジナイザー(日本精機(株)製)を用いて回転数10000回転で5分間乳化し、光硬化性組成物分散液(2)を得た。
なお、光硬化性組成物分散液(2)の調整に用いた重合性基を有する電子受容性化合物(3)、助剤(1)、界面活性剤(2)、および界面活性剤(3)の構造式を以下に示す。
Figure 2007286494

Figure 2007286494

−光硬化性組成物分散液(3)−
分光増感色素系ボレート化合物(I)に代えて、前記に示した分光増感色素系ボレート化合物(II)0.1質量部を用いた以外は、光硬化性組成物分散液(2)を調製する場合と同様にして光硬化性組成物分散液(3)を得た。
(樹脂粒子分散液の調製)
・スチレン:460質量部
・nブチルアクリレート:140質量部
・アクリル酸:12質量部
・ドデカンチオール:9質量部
以上の成分を混合溶解して溶液を調製した。続いて、アニオン性界面活性剤(ローディア社製、ダウファックス)12質量部をイオン交換水250質量部に溶解したものに、前記溶液を加えてフラスコ中で分散し乳化した乳化液(単量体乳化液A)を調製した。
また、アニオン性界面活性剤(ローディア社製、ダウファックス)1質量部を555質量部のイオン交換水に溶解し、重合用フラスコに仕込んだ。重合用フラスコを密栓し、還流管を設置し、窒素を注入しながら、ゆっくりと攪拌しながら、75℃まで重合用フラスコをウオーターバスで加熱し、保持した。
次に、過硫酸アンモニウム9質量部をイオン交換水43質量部に溶解した溶液を、重合用フラスコ中に定量ポンプを介して、20分かけて滴下した後、単量体乳化液Aをやはり定量ポンプを介して200分かけて滴下した。
その後、ゆっくりと攪拌を続けながら重合用フラスコを75℃に、3時間保持して重合を終了した。
これにより粒子のメジアン径が210nm、ガラス転移点が51.5℃、重量平均分子量が31000、固形分量が42%の樹脂粒子分散液を得た。
(トナー1(発色部分散構造タイプ)の作製)
−感光・感熱カプセル分散液(1)の調製−
・マイクロカプセル分散液(1):150質量部
・光硬化性組成物分散液(1):300質量部
・ポリ塩化アルミニウム:0.20質量部
・イオン交換水:300質量部
以上の成分を混合した原料溶液に硝酸を加えてpHを3.5に調整し、ホモジナイザー(IKA社製、ウルトラタラックスT50)で十分に混合・分散した後、フラスコに移し加熱用オイルバスで、スリーワンモーターで攪拌しながら40℃まで加熱し、40℃で60分間保持した後、さらに樹脂粒子分散液を300質量部追加して、60℃にて2時間緩やかに攪拌した。これにより感光・感熱カプセル分散液(1)を得た。
なお、この分散液中に分散する感光・感熱カプセルの体積平均粒径は3.53μmであった。また、この分散液の調整時に、分散液の自発的な発色は確認されなかった。
−感光・感熱カプセル分散液(2)の調製−
・マイクロカプセル分散液(2):150質量部
・光硬化性組成物分散液(2):300質量部
・ポリ塩化アルミニウム:0.20質量部
・イオン交換水:300質量部
原料溶液として以上の成分を用いた以外は、感光・感熱カプセル分散液(1)を調整する場合と同様にして感光・感熱カプセル分散液(2)を得た。
なお、この分散液中に分散する感光・感熱カプセルの体積平均粒径は3.52μmであった。また、この分散液の調整時に、分散液の自発的な発色は確認されなかった。
−感光・感熱カプセル分散液(3)の調製−
・マイクロカプセル分散液(3):150質量部
・光硬化性組成物分散液(3):300質量部
・ポリ塩化アルミニウム:0.20質量部
・イオン交換水:300質量部
原料溶液として以上の成分を用いた以外は、感光・感熱カプセル分散液(1)を調整する場合と同様にして感光・感熱カプセル分散液(3)を得た。
なお、この分散液中に分散する感光・感熱カプセルの体積平均粒径は3.47μmであった。また、この分散液の調整時に、分散液の自発的な発色は確認されなかった。
−トナーの作製−
・感光・感熱カプセル分散液(1):750質量部
・感光・感熱カプセル分散液(2):750質量部
・感光・感熱カプセル分散液(3):750質量部
以上の成分を混合した溶液をフラスコに移し、フラスコ内を攪拌しながら加熱用オイルバス42℃まで加熱し、42℃で60分間保持した後、さらに樹脂粒子分散液を100質量部追加して、緩やかに攪拌した。
その後、0.5モル/リットルの水酸化ナトリウム水溶液でフラスコ内のpHを5.0に調整した後、攪拌を継続しながら55℃まで加熱した。55℃までの昇温の間、通常の場合、フラスコ内のpHは、5.0以下まで低下するが、ここでは水酸化ナトリウム水溶液を追加滴下し、pHが4.5以下とならない様に保持した。この状態で、55℃で3時間保持した
反応終了後、冷却し、濾過し、イオン交換水で十分に洗浄した後、ヌッチェ式吸引濾過で固液分離した。そして、5リットルビーカー中で40℃のイオン交換水3リットル中に再分散し、15分間、300rpmで攪拌、洗浄した。この洗浄操作を5回繰り返し、ヌッチェ式吸引濾過で固液分離し、次いで、凍結真空乾燥を12時間行い、スチレン系樹脂中に感光・感熱カプセルが分散したトナー粒子を得た。このトナー粒子の粒径をコールターカウンターで測定したところ、体積平均粒径D50vは15.2μmであった。
続いて、上記トナー粒子50質量部に対し、疎水性シリカ(キャボット社製、TS720)1.0質量部を添加し、サンプルミルで混合して外添トナー1を得た。
(トナー2(同心円構造のタイプ)の作製)
−トナーの作製−
・マイクロカプセル分散液(1):150質量部
・光硬化性組成物分散液(1):300質量部
・ポリ塩化アルミニウム:0.20質量部
・イオン交換水:300質量部
以上の成分を混合した溶液を硝酸でpHを3.5に調整し、ホモジナイザー(IKA社製、ウルトラタラックスT50)で十分に混合・分散した後、フラスコに移し加熱用オイルバスで、スリーワンモーターで攪拌しながら40℃まで加熱し、40℃で60分間保持した後、さらに樹脂粒子分散液を300質量部追加して、緩やかに撹拌した。
その後、0.5モル/リットルの水酸化ナトリウム水溶液でフラスコ内のpHを7.5に調整した後、攪拌を継続しながら60℃まで加熱し、60℃にて2時間緩やかに攪拌し、これをフラスコから一旦取り出して放置冷却し、感光・感熱カプセル分散液を得た。
なお、この分散液中に分散する感光・感熱カプセルの体積平均粒径は4.50μmであった。また、この分散液の調整時に、分散液の自発的な発色は確認されなかった。
続いて、感光・感熱カプセル分散液に、下記成分の混合溶液を添加して、硝酸でpH=3.5に調整し、ホモジナイザー(IKA社製、ウルトラタラックスT50)で十分に混合・分散した。
・マイクロカプセル分散液(2):150質量部
・光硬化性組成物分散液(2):300質量部
・ポリ塩化アルミニウム:0.20質量部
・イオン交換水:300質量部
次に、上記の混合・分散した後の溶液を、再びフラスコに移し加熱用オイルバスでスリーワンモーターで攪拌しながら40℃まで加熱し、40℃で60分間保持した後、さらに樹脂粒子分散液を200質量部追加して、緩やかに攪拌した。
その後、0.5モル/リットルの水酸化ナトリウム水溶液でフラスコ内のpHを7.5に調整した後、攪拌を継続しながら60℃まで加熱し、60℃にて2時間緩やかに攪拌し、これをフラスコから一旦取り出して放置冷却し、感光・感熱カプセル分散液を得た。
なお、この分散液中に分散する感光・感熱カプセルの体積平均粒径は6.0μmであった。また、この分散液の調整時に、分散液の自発的な発色は確認されなかった。
続いて、感光・感熱カプセル分散液に、下記成分の混合溶液を添加して、硝酸でpHを3.5に調整し、ホモジナイザー(IKA社製、ウルトラタラックスT50)で十分に混合・分散した。
・マイクロカプセル分散液(3) 150質量部
・光硬化性組成物分散液(3) 300質量部
・ポリ塩化アルミニウム 0.20質量部
・イオン交換水 300質量部
次に、上記の混合・分散した後の溶液を、再びフラスコに移し加熱用オイルバスでスリーワンモーターで攪拌しながら40℃まで加熱し、40℃で60分間保持した後、さらに樹脂粒子分散液を100質量部追加して60℃にて2時間緩やかに攪拌した。
その後、0.5モル/リットルの水酸化ナトリウム水溶液でフラスコ内のpHを5.0に調整した後、攪拌を継続しながら55℃まで加熱した。55℃までの昇温の間、通常の場合、フラスコ内のpHは、5.0以下まで低下するが、ここでは水酸化ナトリウム水溶液を追加滴下し、pHが4.5以下とならない様に保持した。この状態で55℃で3時間保持した。なお、この分散液の調製時に、分散液の自発的な発色は確認されなかった。
反応終了後、冷却し、濾過し、イオン交換水で十分に洗浄した後、ヌッチェ式吸引濾過で固液分離した。そして、5リットルビーカー中で40℃のイオン交換水3リットル中に再分散し、15分間、300rpmで攪拌、洗浄した。この洗浄操作を5回繰り返し、ヌッチェ式吸引濾過で固液分離し、次いで、凍結真空乾燥を12時間行いトナー粒子を得た。
このトナー粒子の粒径をコールターカウンターで測定したところ、体積平均粒径D50vが7.5μmであった。上記トナー粒子50質量部に対し、疎水性シリカ(キャボット社製、TS720)1.0質量部を添加し、サンプルミルで混合して外添トナー2を得た。
B.光発色型トナー
(マイクロカプセル分散液の調製)
−マイクロカプセル分散液(1)−
前記電子供与性無色染料(1)12.1質量部を酢酸エチル10.2質量部に溶解し、ジシクロヘキシルフタレート12.1質量部とタケネートD−110N(武田薬品工業株式会社製)26質量部とミリオネートMR200(日本ポリウレタン工業株式会社製)2.9質量部とを添加した溶液を準備した。
続いて、この溶液を、ポリビニルアルコール5.5質量部および水73質量部の混合液に添加し、20℃で乳化分散し、平均粒径0.5μmの乳化液を得た。得られた乳化液に水80質量部を加え、攪拌しながら60℃に加温し、2時間後に電子供与性無色染料(1)を芯材とするマイクロカプセルを分散させたマイクロカプセル分散液(1)を得た。
なお、このマイクロカプセル分散液(1)に含まれるマイクロカプセルの外殻を構成する材料(上記とほぼ同様の条件でジシクロヘキシルフタレート、タケネートD−110NおよびミリオネートMR200を反応させて得られた材料)のガラス転移温度は130℃であった。
−マイクロカプセル分散液(2)−
電子供与性無色染料(1)を前記電子供与性無色染料(2)に変更した以外は、マイクロカプセル分散液(1)を調製する場合と同様にしてマイクロカプセル分散液(2)を得た。
−マイクロカプセル分散液(3)−
電子供与性無色染料(1)を前記電子供与性無色染料(3)に変更した以外は、マイクロカプセル分散液(1)を調製する場合と同様にしてマイクロカプセル分散液(3)を得た。
(光硬化性組成物分散液の調製)
−光硬化性組成物分散液(1)−
光重合開始剤(1−a)1.62部と、(1−b)0.54部とを、酢酸エチル4部に溶解させた溶液に、電子受容性化合物(1)9部およびトリメチロールプロパントリアクリレートモノマー(3官能アクリレート、分子量約300)7.5部を添加した。
このようにして得られた溶液を、15%PVA(ポリビニルアルコール)水溶液19部と水5部と2%界面活性剤(1)水溶液0.8部と2%界面活性剤(2)水溶液0.8部とを混合した混合溶液中に添加し、ホモジナイザー(日本精機株式会社製)にて8000rmpで7分間乳化して、乳化液とした光硬化性組成物分散液(1)を得た。
−光硬化性組成物分散液(2)−
光重合開始剤(1−a)及び(1−b)を、光重合開始剤(2−a)0.08部、(2−b)0.18部、(2−c)0.18部に変更した以外は、光硬化性組成物分散液(1)を調製する場合と同様にして光硬化性組成物分散液(2)を得た。
−光硬化性組成物分散液(3)−
前記光硬化性組成物分散液(2)で用いた光重合開始剤(2−b)を、光重合開始剤(3−b)に変更した以外は、光硬化性組成物分散液(1)を調製する場合と同様にして光硬化性組成物分散液(3)を得た。
なお、光硬化性組成物分散液の調整に用いた光重合開始剤(1−a)、(1−b)、(2−a)、(2−b)、(2−c)、(3−b)、電子受容性化合物(1)、及び、界面活性剤(1)〜(2)の化学構造式を以下に示す。
Figure 2007286494

Figure 2007286494

Figure 2007286494

−樹脂粒子分散液(1)の調製−
・スチレン:360部
・nブチルアクリレート:40部
・アクリル酸:4部
・ドデカンチオール:24部
・四臭化炭素:4部
以上を混合し、溶解した溶液を、非イオン性界面活性剤(三洋化成(株)製:ノニポール400)6部及びアニオン性界面活性剤(第一工業製薬(株)製:ネオゲンSC)10部をイオン交換水560部に溶解した溶液に、フラスコ中で分散・乳化し、10分ゆっくりと混合しながら、これに過硫酸アンモニウム4部を溶解したイオン交換水50部を投入した。
続いて、フラスコ内の窒素置換を行った後、フラスコ内を攪拌しながら内容物が70℃になるまでオイルバスで加熱し、5時間そのまま乳化重合を継続した。こうして、体積平均粒径が200nm、ガラス転移温度が50℃、重量平均分子量(Mw)が16200、比重が1.2である樹脂粒子を分散させてなる樹脂粒子分散液(1)(樹脂粒子濃度:30%)を得た。
−感光・感熱カプセル分散液(1)の調製−
・マイクロカプセル分散液(1)24部
・光硬化性組成物分散液(1)232部
以上を丸型ステンレス製フラスコ中においてIKA製ウルトラタラックスT50で十分に混合・分散した。
そして、硝酸でpH3に調整し、次いで、これにポリ塩化アルミニウム0.20部を加え、ウルトラタラックスで回転数6000rpmで10分間の分散操作を継続した。 加熱用オイルバスでフラスコをゆっくり攪拌しながら40℃まで加熱した。
ここで、樹脂粒子分散液(1)60部を緩やかに追加した。
これにより、感光・感熱カプセル分散液(1)を得た。なお、この分散液中に分散する感光・感熱カプセルの体積平均粒経は約2μmであった。また、得られた分散液の自発的な発色は確認されなかった。
−感光・感熱カプセル分散液(2)の調製−
マイクロカプセル分散液(1)をマイクロカプセル分散液(2)に、光硬化性組成物分散液(1)を光硬化性組成物分散液(2)に変更した以外は、感光・感熱カプセル分散液(1)と同様に作製し、感光・感熱カプセル分散液(2)を得た。なお、この分散液中に分散する感光・感熱カプセルの体積平均粒経は約2μmであった。また、得られた分散液の自発的な発色は確認されなかった。
−感光・感熱カプセル分散液(3)の調製−
マイクロカプセル分散液(1)をマイクロカプセル分散液(3)に、光硬化性組成物分散液(1)を光硬化性組成物分散液(3)に変更した以外は、感光・感熱カプセル分散液(1)と同様に作製し、感光・感熱カプセル分散液(3)を得た。なお、この分散液中に分散する感光・感熱カプセルの体積平均粒経は約2μmであった。また、得られた分散液の自発的な発色は確認されなかった。
(トナー3(発色部分散構造タイプ)の作製)
−トナーの作製−
・感光・感熱カプセル分散液(1):80部
・感光・感熱カプセル分散液(2):80部
・感光・感熱カプセル分散液(3):80部
・樹脂粒子分散液(1):80部
以上を丸型ステンレス製フラスコ中においてIKA製ウルトラタラックスT50で十分に混合・分散した。
次いで、これにポリ塩化アルミニウム0.1部を加え、ウルトラタラックスで回転数6000rpmで10分間の分散操作を継続した。加熱用オイルバスでフラスコを攪拌しながら48℃まで加熱した。48℃で60分保持した後、ここに樹脂粒子分散液(1)を緩やかに20部追加した。
その後、0.5mol/lの水酸化ナトリウム水溶液で系内のpHを8.5にした後、ステンレス製フラスコを密閉し、磁力シールを用いて攪拌を継続しながら55℃まで加熱し、10時間保持した。
反応終了後、冷却し、濾過、イオン交換水で十分に洗浄した後、ヌッチェ式吸引濾過により固液分離を施した。これを更に40℃のイオン交換水1Lに再分散し、15分300rpmで攪拌・洗浄した。
これを更に5回繰り返し、濾液のpHが7.5、電気伝導度7.0μS/cmtとなったところで、ヌッチェ式吸引濾過によりNo5Aろ紙を用いて固液分離を行った。次いで12時間の真空乾燥を行うことにより、母材中に3種類の感光・感熱カプセルが分散した構造を有するトナー粒子を得た。
この時の粒子径をコールターカウンターにて測定したところ体積平均粒径D50vは約15μmであった。また、得られたトナーの自発的な発色は確認されなかった。
次に、このトナー(1)100部と、n−デシルトリメトキシシランで表面処理した平均粒子径15nmの疎水性チタニア0.3部と、平均粒子径30nmの疎水性シリカ(NY50、日本アエロジル社製)0.4部とをヘンシェルミキサーを用い周速32m/sで10分間ブレンドをおこなった後、目開き45μmのシーブを用いて粗大粒子を除去し、外添剤を添加した外添トナー3を得た。
<現像剤の作製>
次に、キャリア芯材の表面を、ポリメチルメタアクリレート(総研化学社製)で被覆した平均粒径50μmのフェライトキャリア(キャリア全質量に対するポリメチルメタアクリレートの使用量:1質量%)を用い、トナー濃度が5質量%になるように前記の外添トナー1〜3を秤量し、両者をボールミルで5分間攪拌・混合して現像剤(1)〜(3)を調製した。なお、現像剤(1)及び現像剤(2)は、上述のように、光非発色型トナーを用いた現像剤であり、現像剤(3)は、上述のように、光発色型トナーを用いた現像剤である。
(画像形成)
図1に示したような画像形成装置を用意し、現像剤として現像剤(1)を用いた。
感光体11としては、アルミドラムの周りに、電荷発生層が塩化ガリウムフタロシアニン、電荷輸送層がN,N’−ジフェニル−N,N’−ビス(3−メチルフェニル)−[1,1’]ビフェニル−4,4’−ジアミンを含む膜厚25μmの多層有機感光層を塗布形成したものを用いた。また、帯電装置12としてはスコロトロンを用いた。
露光装置14としては、解像度600dpiで潜像形成が行える波長780nmのLEDイメージバーを用いた。現像装置16は、二成分磁気ブラシ現像用の金属スリーブを備え反転現像を行うことが可能なものである。
発色情報付与装置28は、ピーク波長405nm(基準露光量:0.2mJ/cm)、532nm(基準露光量:0.2mJ/cm)、657nm(基準露光量:0.4mJ/cm)の光を照射可能な解像度600dpiのLEDイメージバーである。転写装置18は、導電性芯材の外周に導電性弾性体を被覆してなる半導電性ロールを転写ロールとして有する。導電性弾性体は、NBRとEPDMを混合してなる非相溶性のブレンド物に、ケッチェンブラックとサーマルブラックからなる2種類のカーボンブラックを分散させてなり、ロール抵抗が108.5Ωcm、アスカーC硬度が35度のものである。
定着装置22は、富士ゼロックス社製DPC1616に使用されている定着器を使用し、発色情報付与のポイントから30cmの位置に配置した。また、光照射装置24としては、前記発色情報付与装置の三波長を含む高輝度シャーカステンを用い、照射幅を5mmとした。
以上の構成の画像形成装置により印字条件を下記のように設定した。
・感光体線速:10mm/秒。
・帯電条件:スコロトロンのスクリーンに−400V、ワイヤーには直流−6kVを印加。このとき感光体の表面電位は−400Vとなった。
・現像バイアス:直流−330Vに交流Vpp1.2kV(3kHz)の矩形波を重畳。
・現像剤接触条件:周速比(現像ロール/感光体)2.0、現像ギャップ0.5mmとし、現像ロール上の現像剤重量は400g/mとし、感光体上のトナー現像量がべた画像で5g/mとなるようにした。
・転写バイアス:直流+800V印加。
・定着温度:定着ロール表面温度を180℃に設定。
・光照射装置光源:Y光照射部51Y:405nmの光を露光。M光照射部51M:535nmの光を露光。C光照射部51C:657nmの光を露光。
以上の条件により、現像器に前記現像剤(1)、現像剤(2)、及び現像剤(3)各々を装填し、上記図5に示す処理ルーチンを制御部46において実行し、濃度50%のY色画像、M色画像、及びC色画像各々について、A4サイズの記録媒体100000枚に形成する処理を、行った。その結果、何れの現像剤を用いた場合においても、Y色画像、M色画像、及びC色画像の各々において、濃度変動は見られなかった。
本発明の画像形成装置の一例を示す概略構成図である。 本発明の画像形成装置の発色情報付与装置の構成の一例を示す模式図である。 位置検出部の構成を示す模式図である。 画像形成装置10の電気的構成を示す模式図である。 制御部で実行される処理を示すフローチャートである。 トナーに含まれる発色部の分光感度の一例を示す模式図である。 トナーの発色機構を説明するための模式図であり、(A)は発色部、(B)はその拡大状態を示す。
符号の説明
10 画像形成装置
11 感光体
12 帯電装置
14 露光装置
16 現像装置
18 転写装置
20 記憶部
22 定着装置
24 光照射装置
28 発色情報付与装置
46 制御部
48 記憶部
50 光照射部
54 顕色剤モノマー
64 分光光学系
66 位置検出部
70A 電極
70B 電極

Claims (6)

  1. 露光された光の波長変化に対して異なる感度を有し、発色対象の色または非発色対象の色に応じて予め定められた波長の光が露光されることにより、露光された光の波長に対応する色に発色可能な状態または非発色状態を維持するトナーを用いる画像形成装置であって、
    像担持体を所定の帯電電位に帯電する帯電手段と、
    前記帯電手段によって帯電された前記像担持体を露光することにより該像担持体上に画像データに応じた静電潜像を形成する潜像形成手段と、
    前記像担持体に形成された静電潜像を前記トナーによって現像し、該像担持体上にトナー像を形成するトナー像形成手段と、
    前記画像データ中の色成分情報に基づいて、発色対象の色または非発色対象の色に対応して予め定められた波長の光を出射する光源を含み、該光源から出射された光を前記トナー像に露光することにより、該トナー像を構成するトナーに発色情報を付与する発色情報付与手段と、
    前記光源から出射された光の波長を検出する検出手段と、
    前記トナー像を記録媒体に転写する転写手段と、
    前記記録媒体に転写されたトナー像を熱及び圧力の何れか一方または双方により前記記録媒体に定着する定着手段と、
    前記記録媒体に転写されたトナー像に熱を加えることにより、前記トナー像を構成する各トナーを前記発色情報付与手段によって付与された発色情報に応じた色または該発色情報に応じた色以外の色に発色させる発色手段と、
    前記トナーの分光感度情報として、予め定めた基準光量で該トナーを露光したときの光の波長に対応する感度を示す感度情報を予め記憶した記憶手段と、
    前記基準光量で前記分光感度情報に基づいた所定波長の光を出射するように前記光源を制御したときに、前記検出手段によって検出された波長に基づいて露光されたトナーの発色後の濃度が、前記基準光量で前記所定波長の光が露光されたトナーの発色後の濃度となるように、前記所定波長の光を露光するときの光量及び前記潜像形成手段による露光量の少なくとも一方を調整するように、前記発色情報付与手段及び前記潜像形成手段の少なくとも一方を制御する制御手段と、
    を備えた画像形成装置。
  2. 前記検出手段は、前記光源から出射された光を該光の波長に応じた方向に回折させる回折手段と、回折手段によって回折された光が入射されると共に該光の入射位置を検出する位置検出手段と、予め記憶した前記位置検出手段への光の入射位置を示す位置情報に対応する光の波長を示す波長情報に基づいて、前記位置検出手段によって検出された入射位置の入射位置情報に対応する波長情報の波長を、前記光源から露光された光の波長として検出する検出制御手段と、を含む請求項1に記載の画像形成装置。
  3. 前記記憶手段は、前記トナー像形成手段と一体的に設けられる請求項1に記載の画像形成装置。
  4. 前記発色手段は、前記定着手段と一体的に設けられる請求項1に記載の画像形成装置。
  5. 定着後の記録媒体上に光を照射する定着後光照射手段を更に備えることを特徴とする請求項1に記載の画像形成装置。
  6. 前記トナーが、互いに隔離された状態で存在し、互いに反応した際に発色する第1の成分及び第2の成分と、該第1の成分及び第2の成分のいずれかを含む光硬化性組成物と、を有し、光による発色情報の付与により前記光硬化性組成物が硬化または未硬化の状態を維持することにより、発色可能な状態または非発色の状態を維持するトナーであることを特徴とする請求項1に記載の画像形成装置。
JP2006115712A 2006-04-19 2006-04-19 画像形成装置 Pending JP2007286494A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006115712A JP2007286494A (ja) 2006-04-19 2006-04-19 画像形成装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006115712A JP2007286494A (ja) 2006-04-19 2006-04-19 画像形成装置

Publications (1)

Publication Number Publication Date
JP2007286494A true JP2007286494A (ja) 2007-11-01

Family

ID=38758292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006115712A Pending JP2007286494A (ja) 2006-04-19 2006-04-19 画像形成装置

Country Status (1)

Country Link
JP (1) JP2007286494A (ja)

Similar Documents

Publication Publication Date Title
JP4743026B2 (ja) 画像形成装置及び画像形成方法
JP4807118B2 (ja) 画像形成装置及び画像形成方法
JP4784357B2 (ja) 画像形成装置
JP5163086B2 (ja) 画像形成装置
JP4765767B2 (ja) 画像形成装置及び画像形成方法
JP2007264204A (ja) 画像形成装置及び画像形成方法
US20070274747A1 (en) Image-forming apparatus, image-forming method and toner
JP2007328172A (ja) 画像形成装置及び画像形成方法
JP4797755B2 (ja) 画像形成装置
JP4747962B2 (ja) カラー画像記録装置およびカラー画像記録方法
JP2007316139A (ja) 画像形成装置
JP5200455B2 (ja) 画像形成装置
JP5088053B2 (ja) テストパターン画像、色ずれ補正方法、及び画像形成装置
JP2007286494A (ja) 画像形成装置
JP4876771B2 (ja) 画像形成方法及び画像形成装置
JP4867496B2 (ja) 定着方法および画像形成方法
JP4654980B2 (ja) 画像形成装置及び画像形成方法
JP4779980B2 (ja) 画像形成装置
JP2007286505A (ja) 画像形成装置
JP2007286493A (ja) 画像形成装置
JP4844266B2 (ja) 画像形成装置
JP2007316324A (ja) 画像形成装置及び画像形成方法
JP2007316326A (ja) 画像形成装置及び画像形成方法
JP2007264212A (ja) 画像形成装置及び画像形成方法
JP2008181002A (ja) 画像形成装置