JP4800864B2 - コンプレッサ - Google Patents
コンプレッサ Download PDFInfo
- Publication number
- JP4800864B2 JP4800864B2 JP2006183918A JP2006183918A JP4800864B2 JP 4800864 B2 JP4800864 B2 JP 4800864B2 JP 2006183918 A JP2006183918 A JP 2006183918A JP 2006183918 A JP2006183918 A JP 2006183918A JP 4800864 B2 JP4800864 B2 JP 4800864B2
- Authority
- JP
- Japan
- Prior art keywords
- mass
- aluminum alloy
- cast aluminum
- compressor
- housing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B39/00—Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
- F04B39/12—Casings; Cylinders; Cylinder heads; Fluid connections
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/02—Alloys based on aluminium with silicon as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/04—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
- C22F1/043—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with silicon as the next major constituent
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B27/00—Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
- F04B27/08—Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
- F04B27/10—Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis having stationary cylinders
- F04B27/1036—Component parts, details, e.g. sealings, lubrication
- F04B27/1081—Casings, housings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05C—INDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
- F05C2201/00—Metals
- F05C2201/02—Light metals
- F05C2201/021—Aluminium
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05C—INDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
- F05C2201/00—Metals
- F05C2201/90—Alloys not otherwise provided for
- F05C2201/903—Aluminium alloy, e.g. AlCuMgPb F34,37
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Compressor (AREA)
- Applications Or Details Of Rotary Compressors (AREA)
Description
例えば自動車に搭載されるコンプレッサとしては、軽量化を目的として、鋼製ではなく、鋳造アルミニウム合金製のハウジングが採用されることが多い。
AlとSiの過共晶系合金において耐熱性を高めたものとしては、例えばピストン用アルミニウム鋳造合金に関する特許文献1に記載の技術がある。
また、AlとSiの亜共晶系合金において延性や靱性向上を図ったものとしては、例えば非特許文献1に記載の技術がある。
少なくとも一つの上記ハウジング部材は、
Si:9〜17質量%、
Cu:3.5〜6質量%、
Mg:0.2〜1.2質量%、
Fe:0.2〜1.5質量%、及び
Mn:0〜1質量%を含有し、
Ni含有量が0.5質量%以下であり、
残部がAl及び不可避的不純物よりなる耐リラクセーション特性に優れた鋳造アルミニウム合金よりなることを特徴とするコンプレッサにある(請求項1)。
少なくとも一つの上記ハウジング部材は、
Si:9〜17質量%、
Cu:3.5〜6質量%、
Mg:0.3〜1.2質量%、
Fe:0.2〜1質量%、
Mn:0.1〜1質量%、及び
Ti:0.15〜0.3質量%を含有し、
Ni含有量が0.5質量%以下であり、
残部がAl及び不可避的不純物よりなる耐リラクセーション特性に優れた鋳造アルミニウム合金よりなることを特徴とするコンプレッサにある(請求項5)。
Si:9〜17質量%、
Siは、鋳造性の確保、熱膨張の抑制、及び耐リラクセーション特性の確保のために必須の元素である。Si添加量が9質量%未満の場合には、共晶Si量が少なく、リラクセーションを抑制するためのネットワーク骨格が十分に形成されない。また、Si含有量が17質量%を超えると、液相線温度が著しく高くなり、鋳造温度を高くしなければならないので、ガス吸収、酸化、型の消耗などの問題が生じ好ましくない。
好ましくは、Si含有量は9〜12質量%とし、初晶Siが存在しない亜共晶組織とするのがよい(請求項4)。さらに最適なSi含有量の範囲は10〜11質量%である。Si含有量が12質量%を超えると、粗大な初晶Siが生成し、高い引張平均応力下での疲労において、粗大な初晶Siが破壊して疲労強度が低下する場合がある。
Cuは、Cuを含有する析出物を生成させ、合金の強度を向上させるのに有効な元素である。特に高温での強度向上に寄与が大きい。3.5%未満では強度向上効果が小さく、6%を超えると凝固偏析が大きく均質な材料ができない。また、延性が著しく低下し引張平均応力下での疲労強度が低下する懸念がある。好ましくは、Cu含有量は4〜5質量%とするのがよい。
Mgは、Mg2Si系の析出物を生成させ、その析出強化によって強度を改善する。またMg2Siの晶出物を生成し、晶出物による分強化によって強度を改善する。Mg含有量が1.2質量%を超えると、Mg2Siの晶出量が多すぎるため靭性が低下して、疲労強度が低くなるデメリットが生じる。0.2質量%以下では析出量が少なく疲労強度が十分でない。好ましくは、Mg含有量は0.6〜1質量%とするのがよい。
Feは、耐熱性の高い晶出物を形成し、これが晶出Siと共に均一分散又はネットワーク状に分散することによってリラクセーションを抑制するという効果を発揮する。Fe含有量が0.2%未満ではその効果は小さく、Fe含有量が1.5%を超えると粗大な晶出物を形成し、その晶出物が破壊起点となって引張平均応力下の疲労強度が低下する懸念がある。また、鋳型への耐焼付き性を向上に寄与する。好ましくは、Fe含有量は0.3〜1質量%とするのがよい。
Mnは、必須添加元素ではないが、Feと同様に耐熱性の高い晶出物を形成し、基地アルミ相の耐熱性を向上してリラクセーションの抑制に寄与すると共に、鋳型への耐焼付き性の向上に寄与するので添加することが好ましい。Mn含有量が0.2質量%未満ではその効果は小さく、Mn含有量が1質量%を超えると粗大な晶出物を形成し、その晶出物が破壊起点となって引張平均応力下の疲労強度が低下する懸念がある。好ましくは、Mn含有量は0.2〜0.7質量%とするのがよい。
Niは、粗大な晶出物を形成し、組織を不均質にするためリラクセーションが生じ易いので0.5質量%以下の範囲に制限する。特にCu含有量が高い場合にはCuとNiを含有する粗大晶を形成しやすいのでNi添加は好ましくない。また、Ni添加は、合金の密度を著しく増大させてしまう。そして、Ni含有量が0.5質量%を超える場合には粗大な晶出部が形成され、リラクセーションが生じ易くなると共に密度が高くなり製品が重くなるという問題がある。
上記平均硬さがHV130未満の場合には、強度が低く、部品に急激な負荷が生じた際に変形し易いという問題があり、一方、HV170を超える場合にはリラクセーションが生じ易いという問題がある。好ましくは、上記平均硬さはHV140〜HV160とするのがよく、より好ましくは、上記平均硬さはHV150〜HV160とするのがよい。
リラクセーションは、高温での保持に伴って応力が低下する現象であり、CuやMgを含有する本発明の合金では熱処理で生成した析出物が基地アルミ相中に存在し、この析出物が基地アルミ相内の滑り変形を抑制し、リラクセーションが生じ難い効果を持つと考えられる。また、この析出物はより微細で緻密に分布するほど、すべり変形を抑制する効果が大きいため、ピーク時効で硬さを高くした合金ほど析出物が微細でかつ分布が緻密であるので、リラクセーションが生じ難いと従来は考えられていた。
しかし、高温で保持されると、析出物の粗大化が生じるが、応力が負荷された状態ではこの析出物の粗大化が、応力が低減するように生じることが考えられる。これを応力時効という。一方、過時効処理によってピーク時効よ硬さを下げた合金では、同じ温度で加熱されても析出物の変化が小さい。すなわち、硬さを少し下げた合金の方が、析出物の組織変化が小さく、組織変化に伴う応力低減が生じ難いので、リラクセーションが生じ難いと考えられる。
すなわち、上記の合金成分および組織形態の制御によって、高温変形を抑制する強固な分散強化組織が形成されるとともに、基地Al相中に存在する耐熱性向上成分によって高温変形が抑制されるため、合金の耐リラクセーション特性が向上すると考えられる。また、晶出物が等方的に分散して強化されるため、応力分布が均一になり疲労強度が向上すると考えられる。
さらに、高価なNiを殆ど含有しないので、材料コストの低減が図れる。また、Niを殆ど含有しないことで粗大晶出物の生成が抑制され、微細な大きさの揃った晶出物を等方的に分散させることにより、晶出物を無駄なく疲労強度および耐リラクセーション特性の向上に寄与できる。特に200℃以下の高温環境においてその効果が顕著となる。
より好ましく、上記整列デンドライト組織の面積率を10%以下とするのがよく、最も好ましくは、上記整列デンドライト組織の面積率を5%以下とするのがよい。
Si:9〜17質量%、
Siは、共晶Siのネットワーク骨格を形成するのに必須の元素である。Si含有量が9.5%未満では共晶Si量が少なく、ネットワークが不完全となるため、リラクセーション特性が低下する懸念がある。また、Si含有量が17質量%を超えると、液相線温度が著しく高くなり、鋳造温度を高くしなければならないので、ガス吸収、酸化、型の消耗などの問題が生じ好ましくない。好ましくは、Si含有量は9〜12質量%とするのがよい。さらに最適なSi含有量の範囲は10〜11質量%である。Si含有量が12質量%を超えると、粗大な初晶Siが生成し、高い引張平均応力下での疲労において、粗大な初晶Siが破壊して疲労強度が低下する場合がある。
Cuは、Cuを含有する析出物を生成させ、合金の強度を向上させるのに有効な元素である。特に高温での強度向上に寄与が大きい。3.5%未満では強度向上効果が小さく、6%を超えると凝固偏析が大きく均質な材料ができない。また、延性が著しく低下し引張平均応力下での疲労強度が低下する懸念がある。好ましくは、Cu含有量は4〜5質量%とするのがよい。
Mgは、Mg2Si系の析出物を生成させ、その析出強化によって強度を改善する。またMg2Siの晶出物を生成し、晶出物による分強化によって強度を改善する。Mg含有量が1.2質量%を超えると、Mg2Siの晶出量が多すぎるため靭性が低下して、疲労強度が低くなるデメリットが生じる。0.3質量%以下では析出量が少なく疲労強度が十分でない。好ましくは、Mg含有量は0.4〜1質量%とするのがよく、さらに好ましくは、Mg含有量は0.6〜1質量%とするのがよい。
Feは、耐熱性の高い晶出物を形成し、晶出物からなるネットワーク骨格を強化し、耐リラクセーション特性の向上に寄与する。Fe含有量が0.1%未満ではその効果は小さく、Fe含有量が1%を超えると粗大な晶出物を形成し、その晶出物が破壊起点となって引張平均応力下の疲労強度が低下する懸念がある。また、鋳型への耐焼付き性を向上に寄与する。好ましくは、Fe含有量は0.3〜1質量%とするのがよい。
Mnは、添加することによって耐熱性の高い晶出物を形成し、晶出物からなるネットワーク骨格を強化し、耐リラクセーション特性の向上に寄与すると共に、鋳型への耐焼付き性を向上に寄与する。Mn含有量が0.1%未満ではその効果は小さく、Mn含有量が1%を超えると粗大な晶出物を形成し、その晶出物が破壊起点となって引張平均応力下の疲労強度が低下する懸念がある。好ましくは、Mn含有量は0.2〜1質量%とするのがよい。
Tiにはα−Al相の結晶粒を微細化して、デンドライトセルの整列を抑制し凝固組織を均質化する効果と、基地アルミ相の耐熱性を改善し、同相の耐リラクセーション特性を改善する効果がある。
Ti含有量が0.15質量%未満の場合、凝固組織を均質化し、亜共晶組織の場合には晶出物からなるネットワーク状骨格組織が等方的に形成されない。また、過共晶組織の場合、晶出物の等方均一分散組織が形成されない。さらに、基地アルミ相中のTi量が低く、同相の耐リラクセーション特性が十分に得らない。
Ti含有量が0.3質量%を超える場合、粗大なTi化合物が生成し靭性が低下するとともに、その化合物が疲労破壊の起点となり引張平均応力下の疲労強度を低下させるおそれがある。
Niは、粗大な晶出物を形成し、組織を不均質にするためリラクセーションが生じ易いので0.5質量%以下の範囲に制限する。特にCu含有量が高い場合にはCuとNiを含有する粗大晶を形成しやすいのでNi添加は好ましくない。また、Ni添加は、合金の密度を著しく増大させてしまう。そして、Ni含有量が0.5質量%を超える場合には粗大な晶出部が形成され、リラクセーションが生じ易くなると共に密度が高くなり製品が重くなるという問題がある。
ZrもTiと同様にα−Al相の結晶粒を微細化して、デンドライトセルの整列を抑制し凝固組織を均質化する効果と、基地アルミ相の耐熱性を高め耐リラクセーション特性を向上させる効果がある。Zrを0.05質量%以上含有することが十分な凝固組織の均質化と耐熱性を得る上で好ましい。Zr含有量が0.05質量%未満の場合、凝固組織を均質化するに十分な結晶粒の微細化が達成できないおそれがある。また、基地アルミ相中の含有量が低く、十分な耐熱性が得られないおそれがある。Zr含有量が0.3質量%を超える場合、粗大なZr化合物が生成し疲労起点になる恐れがある。さらに、Tiと併用するとさらにその効果が高まる。
Vは主に基地アルミ相内に存在して耐熱性向上により耐リラクセーション特性の向上に効果がある。0.02質量%以上含有するとその効果が明確に現れるので好ましい。Vを0.15質量%を超えて含有させるには溶解温度が高くなりガス吸収の問題などが生じるので望ましくない。また、粗大なV化合物が生成し疲労破壊の起点になるおそれがある。好ましくは、V含有量は、0.02〜0.12質量%とするのがよい。さらに、Tiと併用すると基地アルミ相の耐熱性が最も高まり、最適である。
また、Ti、Zr、Vを共に含むと、上記の相乗効果により、最も優れた耐リラクセーション特性が得られる。
Pを多く含有すると合金の共晶点がずれて、本発明の合金の成分範囲において、粗大な初晶Siを生成し、それが疲労破壊の起点となって引張平均応力下の疲労強度が低下する懸念がある。そのため、P含有量は0.001質量%以下とし、理想的には0とすることが好ましい。
Caは、共晶Siを微細化し、微細Siからなる広幅のネットワーク骨格を形成し、リラクセーションを抑制するという効果が得られるので添加することが好ましい。Ca含有量が0.0005質量%未満の場合には共晶Siの微細化が不十分であるという問題があり、一方、0.01質量%を超える場合には溶湯が酸化しやすく、鋳物中に酸化物が混入したり、ガス吸収が増えて気孔欠陥が多くなるという問題がある。
Naは、共晶Siを微細化し、Caと同様の効果が得られるので添加することが好ましい。Na含有量が0.0005質量%未満の場合には共晶Siの微細化が不十分であるという問題があり、一方、0.003質量%を超える場合にはガス吸収が増えて気孔欠陥が多くなるという問題がある。
Srは、共晶Siを微細化し、Caと同様の効果が得られるので添加することが好ましい。Sr含有量が0.003質量%未満の場合には共晶Siの微細化が不十分であるという問題があり、一方、0.03質量%を超える場合にガス吸収が増えて気孔欠陥が多くなるという問題がある。
Sbは、共晶Siを微細化し、Caと同様の効果が得られるので添加することが好ましい。Sb含有量が0.05質量%未満の場合には共晶Siの微細化が不十分であるという問題があり、一方、0.2質量%を超える場合にはガス吸収が増えて気孔欠陥が多くなるという問題がある。
また、上記鋳造アルミニウム合金は、鋳造後に、450〜510℃の処理温度に0.5時間以上保持する溶体化加熱を行った後、水焼入れを行い、その後170〜230℃の処理温度に1〜24時間保持する時効処理を行うことにより上記平均硬さを調整してあることが好ましい(請求項12)。
これにより、上述した等方均質組織の実現と相俟って、より一層耐リラクセーション特性を向上させることができる。
Snは、その含有を許容することにより、再生塊を原料として用いることができるためリサイクル性が向上するので含有を許容することが好ましい。Sn含有量が0.01質量%未満に規制するとリサイクル合金を使用できず原料の範囲が限定されるという問題があり、一方、0.1質量%を超える場合には耐熱性が低下してリラクセーションが生じ易くなるという問題がある。
Pbは、Snと同様にリサイクル性が向上するという効果が得られるので含有を許容することが好ましい。Pb含有量が0.02質量%未満の場合には使用原料の範囲が制限されるという問題があり、一方、0.15質量%を超える場合には耐熱性が低下してリラクセーションが生じ易くなるという問題がある。
Znは、Sn,Pbと同様にリサイクル性を向上させることができるので含有を許容することが好ましい。Zn含有量が0.1質量%未満の場合には使用原料の範囲が限定されるという問題があり、一方、1質量%を超える場合には耐熱性が低下してリラクセーションが生じ易くなるという問題がある。
リラクセーションとはクリープと表裏をなす現象であるので、クリープ特性が優れる材料がリラクセーション特性にも優れると考えられてきた。すなわち、一般的には耐力や強度が高い材料がリラクセーション特性にも優れると推定される。
これに対して、本発明のコンプレッサに使用する鋳造アルミニウム合金では、まず、強度や耐力が最大の材料がリラクセーション特性に最も優れるのではないことを初めて見出した。すなわち、通常の強度がピークとなるT6熱処理よりも強度がやや低下する過時効処理を行い硬さをやや低くした材料の方が、ピーク硬さの従来材よりもリラクセーションが生じ難いことを初めて見出したのである。
さらに、リラクセーションが生じ易く、それが実用上の大きな課題である耐熱マグネシウム合金の研究においてこれまでに得られている知見として、耐熱粒子が連続的に連なったネットワーク骨格により粒内の変形が拘束され、リラクセーションが抑制されることが知られている。しかし、本発明では、その骨格は連続的でなくてよく、微細粒子の集合体が幅広のネットワーク骨格領域を形成することによって、より効果的にリラクセーションが抑制できることを初めて見出した。
加えて、そのネットワークが等方的であり、さらにネットワークで囲まれた基地アルミ相を耐熱元素の含有によってすべり難くすることで、ミクロ組織制御とマクロ組織制御を融合したマルチスケール組織制御により、組織全体をリラクセーションが生じ難いように最適設計することにより、従来にない高い耐リラクセーション特性をを初めて実現できた。
また、このような最適設計により、低融点金属でリラクセーションを生じ易くする有害元素であるSn、Pb、Znなどの成分を含有してもその害が無害化され優れた耐リラクセーション特性を維持できる効果が得られることも初めて見出した。なおこの無害化効果により、合金のリサイクル性が飛躍的に高まることになり、環境負荷が極めて低く実用価値が極めて高い合金を提供できるため、産業上の利用価値が極めて高い。
本発明のコンプレッサに適用可能な鋳造アルミニウム合金にかかる実施例について説明する。
本例では、表1〜表3に示す各種の鋳造アルミニウム合金(実施例1〜9、比較例1〜10)を作製し、その特性を評価した。
表1に示す群は上述した第1の発明に関する例であり、表2に示す群は上述した第2の発明に関する例であり、表3に示す群は上述した第2の発明のうち、さらに、再生地金を利用することを想定して必須成分を増やしたものに関する例である。
各試験片の詳細及び試験方法は次の通りである。
耐リラクセーション特性評価試験片は、幅10mm×厚さ1.3mm×長さ55mmであり、舟型底面部から幅方向が舟型素材の上下方向による様に採取した。
耐リラクセーション特性の評価は、図1〜図4に示すごとく、以下に示すリラクセーション試験治具1を用いて行った。
リラクセーション試験治具1は、図1に示すごとく、一対の試験片11、12の間に挟持させる支持部材3と、試験片11、12の両端部111、112、121、122を拘束する拘束部材4と、試験片11、12に生じた歪み変位を検出する変位検出手段としての高温ひずみゲージ21、22とを有している。
また、拘束部材4としては、2本のボルト41、42及びボルト41、42に螺合するナット413、423で構成されている。また、ナット413、423の締め付け安定化、緩み防止のためのワッシャー415、416、425、426も用いた。なお、拘束部材4は、全ての部材が支持部材3と同じ耐熱性に優れたSUS304製である。
そして、本例では、図1〜図3に示すごとく、変位測定部を外方に向けた状態で試験片11、12を対面させると共に両者の間の中央部110、120に支持部材3を挟持させた後、拘束部材4により試験片11、12を拘束して所定の曲げ応力を付与させると共に該曲げ応力によって試験片11、12に生じた歪み変位を一定に保つ。
組織観察は、疲労試験片の平行部と同じ舟型底から高さ14mmの位置で実施した。5個以上のデンドライトセルが略一方向に整列しているデンドライト組織(整列デンドライト組織)の面積率Adp(%)は、具体的には、100倍の光学顕微鏡で観察した視野約1.4×1mm角の組織写真において、デンドライトセルが5個以上一方向に整列したデンドライト組織の部分を全て塗りつぶし、その塗りつぶした部分の面積率を画像処理ソフトにより求めた。
また、晶出Siの平均長径DsL(μm)は、粒子の重心を通り粒子の外周上の2点を結ぶ最も長い直線の長さを、観察される全粒子について求め、その平均値により算出した。
硬さ試験の試験片は、舟形鋳物の底部から約14mm高さの位置から切り出し、表面を鏡面研磨仕上げとした。そして、鋳造欠陥のない部分に荷重10kgf、負荷時間30secの条件で圧痕を打ち、鋳造欠陥の影響を受けた異常値を除く5点以上の正常測定値の平均をとるという手順で、平均硬さとしてのビッカース硬さHVを求めた。
表4には、表1に示した第1の発明に関する例の結果を示す。
表1、表4に示すごとく、実施例1の合金は、Cu含有量が高く高強度となりやすいものであるが、200℃5h(200℃に5時間保持)という時効処理を採用することにより、平均硬さHVが160以下に調整されており、上記耐リラクセーション特性評価試験による180℃300時間保持後に残留する応力(残留応力σr)が高い。
実施例2、3の合金は、Cu含有量が本発明の上下限地に近い合金であるが、硬さが第1の発明の範囲内にあり、残留応力σrも高い。
比較例2の合金は同様にCu含有量が高いが、210℃300hの熱処理により平均硬さHVが160を超えており、その結果、残留応力σrが低い。
比較例3〜5の合金は、Cu含有量が低くNiを含有するため、残留応力σrが低い。
比較例6の合金は、Cu含有量が低く、Mg含有量が高いため、残留応力σrが低い。
また、比較例2、5、6の合金は平均硬さHVが160を超えており、残留応力σrが低い。
比較例7の合金は、Cu含有量が6%を超えており、平均硬さHVが160を超えており、残留応力σrが低い。また、密度も2.8g/cm3より高い。
以上の結果から、Cuが3.5〜5mass%で、Niが0.5mass%以下で、熱処理によりHV130〜160に硬さが調整された第1の発明の鋳造アルミニウム合金が優れた耐リラクセーション特性を示すことが分かる。
表2、表5に示すごとく、実施例4〜8の合金は、上記第2の発明に属する合金であり、適量のTi、Zr、Vを含有し、上記整列デンドライト組織の領域の面積率が20%以下である均質な組織を有する。また、熱処理により、硬さが適度に調整されている。その結果として、Ti、Zr、V等を含有しない実施例1の合金に比べて、さらに高い耐リラクセーション特性を示している。
さらに、比較例9の合金は密度が2.8g/cm3以上と実施例1〜8の合金に比べて高く、鋳物の重量が増加するデメリットがある。
表3、表6に示すごとく、実施例9の合金は、再生地金を配合して作製した合金であるが、適量のPb、Sn、Znを含有するように調整してある。含有量が適度であるので残留応力σrは比較例1〜9の合金に比べて高い値が得られている。さらに実施例9の合金はSn、Pb、Znを含有するので、上記のごとく再生地金を原料に利用できるので、リサイクル性に優れる特徴がある。これにより合金の製造にかかるエネルギを画期的に低減でき、CO2削減効果が極めて大きい。
次に、本発明の実施例に係るコンプレッサにつき、図15を用いて説明する。
本例のコンプレッサ5は、同図に示すごとく、複数のアルミニウム合金よりなるハウジング部材511、512、514を連結してハウジング51を形成し、該ハウジング51内において冷媒の圧縮を行って外部に吐出するよう構成されたコンプレッサである。
そして、本例では、ハウジング部材511、512、514に使用する鋳造アルミニウム合金として、上述した第1実施例で示した合金を3種類代表して採用し、その耐リラクセーション特性を調べた。
図15に示すごとく、コンプレッサ5のハウジング51は、フロントハウジング512、シリンダブロック511、及びリアハウジング514という3つのハウジング部材を順次繋いで構成されている。すなわち、フロントハウジング512は、シリンダブロック511の前端に接合され、リヤハウジング514は、シリンダブロック511の後端に弁・ポート形成体513を介して固定されている。
第2のコンプレッサは、従来合金である比較例7の合金を3つのハウジング部材に採用したものである(試料C1とする)。
第3のコンプレッサは、従来合金である比較例2の合金を3つのハウジング部材に採用したものである(試料C2とする)。
いずれの試料E1、C1、C2も、上記のごとくボルト6の軸力によりシール性を維持する構成とした。
オーブンへ一定時間コンプレッサを放置し,取り出して20℃でボルト長さを測定し,またオーブンへ入れることを繰り返してボルト軸力の時間に対する推移を測定した。
なお、このタイプのコンプレッサにおいて冷媒を二酸化炭素とした場合には、目標時間Tmにおいてボルト軸力が60以上を維持していることが望ましい。
図16から知られるごとく、本発明の試料E1は、非常に優れた耐リラクセーション特性を示すことがわかる。
11、12 試験片、
21、22 高温歪みゲージ、
3 支持部材、
4 拘束部材
5 コンプレッサ
51 ハウジング
511 ハウジング部材(シリンダブロック)
512 ハウジング部材(フロントハウジング)
514 ハウジング部材(リアハウジング)
6 ボルト
Claims (18)
- 複数のアルミニウム合金よりなるハウジング部材にてハウジングを形成し、該ハウジング内において冷媒の圧縮を行って外部に吐出するよう構成されたコンプレッサであって、
少なくとも一つの上記ハウジング部材は、
Si:9〜17質量%、
Cu:3.5〜6質量%、
Mg:0.2〜1.2質量%、
Fe:0.2〜1.5質量%、及び
Mn:0〜1質量%を含有し、
Ni含有量が0.5質量%以下であり、
残部がAl及び不可避的不純物よりなる耐リラクセーション特性に優れた鋳造アルミニウム合金よりなることを特徴とするコンプレッサ。 - 請求項1において、上記鋳造アルミニウム合金は、平均硬さがHV130〜HV170である耐リラクセーション特性に優れた鋳造アルミニウム合金よりなることを特徴とするコンプレッサ。
- 請求項1又は2において、上記鋳造アルミニウム合金は、鋳造後に、450〜510℃の処理温度に0.5時間以上保持する溶体化加熱を行った後、水焼入れを行い、その後170〜230℃の処理温度に1〜24時間保持する時効処理を行うことにより上記平均硬さを調整してあることを特徴とするコンプレッサ。
- 請求項1〜3のいずれか1項において、上記鋳造アルミニウム合金は、Si含有量が9〜12質量%であり、初晶Siが存在しない亜共晶組織を有することを特徴とするコンプレッサ。
- 複数のアルミニウム合金よりなるハウジング部材にてハウジングを形成し、該ハウジング内において冷媒の圧縮を行って外部に吐出するよう構成されたコンプレッサであって、
少なくとも一つの上記ハウジング部材は、
Si:9〜17質量%、
Cu:3.5〜6質量%、
Mg:0.3〜1.2質量%、
Fe:0.2〜1質量%、
Mn:0.1〜1質量%、及び
Ti:0.15〜0.3質量%を含有し、
Ni含有量が0.5質量%以下であり、
残部がAl及び不可避的不純物よりなる耐リラクセーション特性に優れた鋳造アルミニウム合金よりなることを特徴とするコンプレッサ。 - 請求項5において、上記鋳造アルミニウム合金は、さらに、
Zr:0.05〜0.15質量%、及び
V:0.02〜0.15質量%を含有していることを特徴とするコンプレッサ。 - 請求項5又は6において、上記鋳造アルミニウム合金は、Si含有量が9〜12質量%であり、さらに、P含有量が0.001質量%以下であり、初晶Siが存在しない亜共晶組織を有することを特徴とするコンプレッサ。
- 請求項7において、上記鋳造アルミニウム合金は、さらに、
Ca:0.0005〜0.01質量%、
Na:0.0005〜0.003質量%、
Sr:0.003〜0.03質量%、及び
Sb:0.05〜0.2質量%、
のうち1種以上を含有することを特徴とするコンプレッサ。 - 請求項5〜8のいずれか1項において、上記鋳造アルミニウム合金は、5個以上のデンドライトセルが略一方向に整列するデンドライトの割合が面積率で20%以下であって実質的にデンドライトの整列が無い等方均質組織を有することを特徴とするコンプレッサ。
- 請求項9において、上記鋳造アルミニウム合金は、密度が2.8g/cm3以下であることを特徴とするコンプレッサ。
- 請求項5〜10のいずれか1項において、上記鋳造アルミニウム合金は、平均硬さがHV130〜HV170であることを特徴とするコンプレッサ。
- 請求項5〜11のいずれか1項において、上記鋳造アルミニウム合金は、鋳造後に、450〜510℃の処理温度に0.5時間以上保持する溶体化加熱を行った後、水焼入れを行い、その後170〜230℃の処理温度に1〜24時間保持する時効処理を行うことにより上記平均硬さを調整してあることを特徴とするコンプレッサ。
- 請求項7〜12のいずれか1項において、上記鋳造アルミニウム合金における晶出Siの平均長径が5μm以下であることを特徴とするコンプレッサ。
- 請求項1〜13のいずれか1項において、上記鋳造アルミニウム合金は、さらに、
Sn:0.01〜0.1質量%、
Pb:0.02〜0.15質量%、
Zn:0.1〜1質量%、
のうち1種以上を含有することを特徴とするコンプレッサ。 - 請求項1〜14のいずれか1項において、上記鋳造アルミニウム合金における基地Al相中のSi量が0.95質量%以上であることを特徴とするコンプレッサ。
- 請求項1〜15のいずれか1項において、上記ハウジングは、複数の上記ハウジング部材を鋼製のボルトを用いた締め付けにより締結してあることを特徴とするンプレッサ。
- 請求項16おいて、上記ハウジングは、上記ボルトの軸力により上記ハウジング部材間の当接部における面圧を発生させ、内部における上記冷媒が漏れ出ることを防止するシール構造を有していることを特徴とするコンプレッサ。
- 請求項1〜17のいずれか1項において、上記冷媒は二酸化炭素であることを特徴とするコンプレッサ。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006183918A JP4800864B2 (ja) | 2006-07-03 | 2006-07-03 | コンプレッサ |
EP20070111531 EP1876251A3 (en) | 2006-07-03 | 2007-07-02 | Compressor with aluminium alloy housing |
US11/824,858 US20080006149A1 (en) | 2006-07-03 | 2007-07-03 | Compressor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006183918A JP4800864B2 (ja) | 2006-07-03 | 2006-07-03 | コンプレッサ |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008013791A JP2008013791A (ja) | 2008-01-24 |
JP4800864B2 true JP4800864B2 (ja) | 2011-10-26 |
Family
ID=38626806
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006183918A Expired - Fee Related JP4800864B2 (ja) | 2006-07-03 | 2006-07-03 | コンプレッサ |
Country Status (3)
Country | Link |
---|---|
US (1) | US20080006149A1 (ja) |
EP (1) | EP1876251A3 (ja) |
JP (1) | JP4800864B2 (ja) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2934607B1 (fr) * | 2008-07-30 | 2011-04-29 | Alcan Int Ltd | Piece moulee en alliage d'aluminium a hautes resistances a la fatigue et au fluage a chaud |
JP2010138709A (ja) * | 2008-12-09 | 2010-06-24 | Sanden Corp | 流体機械のための締結装置及び流体機械 |
CN101921933B (zh) * | 2010-06-03 | 2012-07-25 | 怡球金属资源再生(中国)股份有限公司 | 一种高纯度稳定型铝合金锭的生产方法 |
JP5175905B2 (ja) | 2010-08-31 | 2013-04-03 | トヨタ自動車株式会社 | 軽合金の鋳造方法 |
DE102015201291A1 (de) * | 2015-01-26 | 2016-07-28 | Magna Powertrain Bad Homburg GmbH | Kompressorgehäuse mit Druckbegrenzung sowie Verfahren für den Betrieb |
CN104745897A (zh) * | 2015-03-25 | 2015-07-01 | 薛元良 | 一种高硅变形铝合金材料及其生产方法 |
JP2017179600A (ja) * | 2016-03-29 | 2017-10-05 | アイシン軽金属株式会社 | アルミニウム合金材の製造方法 |
CN108486427A (zh) * | 2018-03-27 | 2018-09-04 | 宁波优适捷传动件有限公司 | 一种新型铝合金材料及其制备方法 |
DE102018210007A1 (de) * | 2018-06-20 | 2019-12-24 | Federal-Mogul Nürnberg GmbH | Aluminiumlegierung, Verfahren zur Herstellung eines Motorbauteils, Motorbauteil und Verwendung einer Aluminiumlegierung zur Herstellung eines Motorbauteils |
EP4028564A4 (en) * | 2019-09-10 | 2023-09-13 | Magna International Inc. | ALUMINUM ALLOY FOR HIGH PRESSURE DIE CASTING APPLICATIONS |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4055417A (en) * | 1974-03-13 | 1977-10-25 | Toyota Jidosha Kogyo Kabushiki Kaisha | Hyper-eutectic aluminum-silicon based alloys for castings |
JPS5569234A (en) * | 1978-11-17 | 1980-05-24 | Nikkei Giken:Kk | Heat resistant, high tensile aluminum alloy |
JPS6050142A (ja) * | 1983-08-26 | 1985-03-19 | Ryobi Ltd | ダイカスト用高力アルミニウム合金 |
JPS61291941A (ja) * | 1985-06-19 | 1986-12-22 | Taiho Kogyo Co Ltd | Si含有量が高いAl鋳造合金 |
JP2506115B2 (ja) * | 1987-07-11 | 1996-06-12 | 株式会社豊田自動織機製作所 | シャ−切断性の良い高強度・耐摩耗性アルミニウム合金とその製造法 |
BE1001819A3 (nl) * | 1988-06-17 | 1990-03-13 | Picanol Nv | Inrichting en werkwijze voor de toevoer van inslagdraden bij weefmachines. |
JP3378342B2 (ja) * | 1994-03-16 | 2003-02-17 | 日本軽金属株式会社 | 耐摩耗性に優れたアルミニウム鋳造合金及びその製造方法 |
JP3448990B2 (ja) * | 1994-11-02 | 2003-09-22 | 日本軽金属株式会社 | 高温強度及び靭性に優れたダイカスト製品 |
JP3684247B2 (ja) * | 1995-01-24 | 2005-08-17 | 株式会社豊田自動織機 | スクロール型圧縮機及びその製造方法 |
JPH08232036A (ja) * | 1995-02-23 | 1996-09-10 | Kobe Steel Ltd | 耐摩耗性高強度アルミニウム合金 |
JP3261056B2 (ja) * | 1997-01-14 | 2002-02-25 | 住友軽金属工業株式会社 | 陽極酸化皮膜の形成容易性および皮膜厚の均一性に優れた高強度耐摩耗性アルミニウム合金押出材およびその製造方法 |
JP2001279358A (ja) * | 2000-03-30 | 2001-10-10 | Toyota Autom Loom Works Ltd | 斜板式圧縮機用ピストンおよびその製造方法 |
JP2003021066A (ja) * | 2001-07-10 | 2003-01-24 | Toyota Industries Corp | 圧縮機 |
DE10339705B4 (de) * | 2002-08-29 | 2008-03-13 | Nippon Light Metal Co. Ltd. | Hochfester Aluminiumlegierungsguss und Verfahren zu dessen Herstellung |
JP2004278458A (ja) * | 2003-03-18 | 2004-10-07 | Nippon Light Metal Co Ltd | 斜板式コンプレッサ用片頭ピストンの製造方法及び斜板式コンプレッサ用片頭ピストン |
US7051785B2 (en) * | 2004-06-16 | 2006-05-30 | Delphi Technologies, Inc. | As cast and trimmed bores in a front head member of an air conditioning compressor assembly |
-
2006
- 2006-07-03 JP JP2006183918A patent/JP4800864B2/ja not_active Expired - Fee Related
-
2007
- 2007-07-02 EP EP20070111531 patent/EP1876251A3/en not_active Withdrawn
- 2007-07-03 US US11/824,858 patent/US20080006149A1/en not_active Abandoned
Also Published As
Publication number | Publication date |
---|---|
EP1876251A2 (en) | 2008-01-09 |
JP2008013791A (ja) | 2008-01-24 |
EP1876251A3 (en) | 2010-07-14 |
US20080006149A1 (en) | 2008-01-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4800864B2 (ja) | コンプレッサ | |
JP4187018B2 (ja) | 耐リラクセーション特性に優れた鋳造アルミニウム合金とその熱処理方法 | |
JP5300118B2 (ja) | アルミニウム合金鋳物の製造方法 | |
EP2112242A1 (en) | Heat treatable L12 aluminium alloys | |
EP2110452A1 (en) | High strength L12 aluminium alloys | |
US6511555B2 (en) | Cylinder head and motor block castings | |
JP5703881B2 (ja) | 高強度マグネシウム合金およびその製造方法 | |
EP2110453A1 (en) | L12 Aluminium alloys | |
US9388481B2 (en) | High strength, oxidation and wear resistant titanium-silicon based alloy | |
JP5860873B2 (ja) | 鋳造可能な耐熱性アルミニウム合金 | |
JP6028546B2 (ja) | アルミニウム合金 | |
JP2010150624A (ja) | 鋳造用アルファ+ベータ型チタン合金及びこれを用いたゴルフクラブヘッド | |
Kaiser | Effect of solution treatment on the age-hardening behavior of Al-12Si-1Mg-1Cu piston alloy with trace-Zr addition | |
JP4341438B2 (ja) | 耐摩耗性に優れたアルミニウム合金及び同合金を用いた摺動部材 | |
JP2006283124A (ja) | 耐磨耗性冷間鍛造用アルミニウム合金 | |
KR20070084246A (ko) | 알루미늄 합금 및 이 합금으로 이루어진 주형 부품 | |
JP4676906B2 (ja) | 展伸加工用耐熱アルミニウム合金 | |
Mathai et al. | Effect of silicon on microstructure and mechanical properties of Al-Si piston alloys | |
JP5607960B2 (ja) | 疲労強度特性に優れた耐熱マグネシウム合金およびエンジン用耐熱部品 | |
JPH09209069A (ja) | 展伸用耐磨耗性Al合金及び展伸用耐磨耗性Al合金よりなるスクロール、並びにそれらの製造方法 | |
JP5449754B2 (ja) | エンジンまたはコンプレッサーのピストンの鍛造方法 | |
JP7126915B2 (ja) | アルミニウム合金押出材及びその製造方法 | |
Garza-Elizondo et al. | Role of Ni and Zr in preserving the strength of 354 aluminum alloy at high temperature | |
Kaiser et al. | HEAT TREATMENT EFFECT ON THE PHYSICAL AND MECHANICAL PROPERTIES OF Fe, Ni AND Cr ADDED HYPER-EUTECTIC Al-Si AUTOMOTIVE ALLOY. | |
JP5910206B2 (ja) | アルミニウム合金 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20081107 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110721 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110802 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110804 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140812 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313532 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140812 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |