JP4795861B2 - コンデンサ、配線基板 - Google Patents

コンデンサ、配線基板 Download PDF

Info

Publication number
JP4795861B2
JP4795861B2 JP2006166732A JP2006166732A JP4795861B2 JP 4795861 B2 JP4795861 B2 JP 4795861B2 JP 2006166732 A JP2006166732 A JP 2006166732A JP 2006166732 A JP2006166732 A JP 2006166732A JP 4795861 B2 JP4795861 B2 JP 4795861B2
Authority
JP
Japan
Prior art keywords
capacitor
layer
electrode
main surface
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006166732A
Other languages
English (en)
Other versions
JP2007335685A (ja
Inventor
計宏 林
元彦 佐藤
元信 倉橋
淳 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Spark Plug Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2006166732A priority Critical patent/JP4795861B2/ja
Publication of JP2007335685A publication Critical patent/JP2007335685A/ja
Application granted granted Critical
Publication of JP4795861B2 publication Critical patent/JP4795861B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA

Description

本発明は、コンデンサが内蔵されている配線基板、及び、その配線基板に用いられるコンデンサに関するものである。
コンピュータのマイクロプロセッサ等として使用される半導体集積回路素子(ICチップ)は、近年ますます高速化、高機能化しており、これに付随して端子数が増え、端子間ピッチも狭くなる傾向にある。一般的にICチップの底面には多数の端子が密集してアレイ状に配置されており、このような端子群はマザーボード側の端子群に対してフリップチップの形態で接続される。ただし、ICチップ側の端子群とマザーボード側の端子群とでは端子間ピッチに大きな差があることから、ICチップをマザーボード上に直接的に接続することは困難である。そのため、通常はICチップをICチップ搭載用配線基板上に搭載してなるパッケージを作製し、そのパッケージをマザーボード上に搭載するという手法が採用される。この種のパッケージを構成するICチップ搭載用配線基板においては、ICチップのスイッチングノイズの低減や電源電圧の安定化を図るために、コンデンサ(「キャパシタ」とも言う)を設けることが提案されている。その一例として、高分子材料製のコア基板内にチップ状のコンデンサを埋め込んでコア部を構成し、そのコア部の表面及び裏面にビルドアップ層を形成した配線基板が従来提案されている(例えば、特許文献1,2参照)。
ところで、上記の配線基板に内蔵するコンデンサとして、互いに電源系統が異なる複数のコンデンサ機能部を備えたものが提案されている。また、複数のコンデンサ機能部を備えるコンデンサとしては、誘電体層を介して内部電極層が積層配置された構造を有し、各コンデンサ機能部に、内部電極層同士を導通させる複数のビア導体と、各ビア導体の端部に接続される表層電極とが設けられ、各ビア導体が全体としてアレイ状に配置されたビアアレイタイプのコンデンサなどがある。このようなコンデンサは、コア基板の収容穴部内にコンデンサを収容する収容工程や、収容穴部の内面とコンデンサの側面との隙間に充填用樹脂を充填する充填工程などを経て配線基板に内蔵される。
特開2005−39217号公報(図3など) 特開2005−39243号公報(図4など)
ところが、複数のコンデンサ機能部を備えるコンデンサを厚さ方向から見ると、内部電極層が存在しない部分(内部電極層間のギャップ)と、表層電極が存在しない部分(表層電極間のギャップ)とが、同じ位置(隣接するコンデンサ機能部間)に配置されている。その結果、内部電極層が存在する部分と存在しない部分との間には大きな段差が生じるため、上記の充填工程を行う際にコンデンサの中央部(段差が生じた部分)に充填用樹脂が回り込みやすくなる。また、充填工程後にコンデンサの上に樹脂絶縁層を形成する場合、コンデンサの外表面に対する樹脂絶縁層の追従性が低下してしまう。ゆえに、コンデンサと樹脂絶縁層との密着強度が低下するため、熱膨張などに起因した樹脂絶縁層の浮きやデラミネーションが発生し、信頼性が低下してしまう。
本発明は上記の課題に鑑みてなされたものであり、その目的は、コンデンサ主面上やコンデンサ裏面上に生じた段差に起因する不具合を低減できるコンデンサを提供することにある。また、本発明の別の目的は、上記のコンデンサが内蔵された好適な配線基板を提供することにある。
そして上記課題を解決するための手段(手段1A)としては、コンデンサ主面及びコンデンサ裏面を有するとともに、誘電体層を介して電源用内部プレーン電極層とグランド用内部プレーン電極層とが交互に積層配置された構造を有するコンデンサ本体を備えたコンデンサであって、前記コンデンサ本体は複数のコンデンサ機能部を備え、前記複数のコンデンサ機能部は、前記電源用内部プレーン電極層同士を導通させかつ前記コンデンサ主面及び前記コンデンサ裏面間を貫通する複数の電源用ビア導体と、前記グランド用内部プレーン電極層同士を導通させかつ前記コンデンサ主面及び前記コンデンサ裏面間を貫通する複数のグランド用ビア導体と、前記複数の電源用ビア導体における少なくとも前記コンデンサ主面側の端部に接続する電源用表層電極と、前記複数のグランド用ビア導体における少なくとも前記コンデンサ主面側の端部に接続するグランド用表層電極とを含み、前記グランド用内部プレーン電極層は、前記複数のコンデンサ機能部において共通の電極層を含み、前記コンデンサ主面上及び前記コンデンサ裏面上の少なくとも一方において、前記コンデンサ本体の厚さ方向から見たときに、前記複数のコンデンサ機能部の前記電源用内部プレーン電極層間のギャップに対応する箇所に、前記電源用表層電極及び前記グランド用表層電極の少なくとも一方の面積を広げることによって形成された段差緩和層を配置したことを特徴とするコンデンサがある
また、上記課題を解決するための別の手段(手段1B)としては、コンデンサ主面及びコンデンサ裏面を有するとともに、誘電体層を介して電源用内部プレーン電極層とグランド用内部プレーン電極層とが交互に積層配置された構造を有するコンデンサ本体を備えたコンデンサであって、前記コンデンサ本体は複数のコンデンサ機能部を備え、前記複数のコンデンサ機能部は、前記電源用内部プレーン電極層同士を導通させかつ前記コンデンサ主面及び前記コンデンサ裏面間を貫通する複数の電源用ビア導体と、前記グランド用内部プレーン電極層同士を導通させかつ前記コンデンサ主面及び前記コンデンサ裏面間を貫通する複数のグランド用ビア導体と、前記複数の電源用ビア導体における少なくとも前記コンデンサ主面側の端部に接続する電源用表層電極と、前記複数のグランド用ビア導体における少なくとも前記コンデンサ主面側の端部に接続するグランド用表層電極とを含み、前記グランド用内部プレーン電極層は、前記複数のコンデンサ機能部において互いに電気的に独立した電極層であり、前記コンデンサ主面上及び前記コンデンサ裏面上の少なくとも一方において、前記コンデンサ本体の厚さ方向から見たときに、前記複数のコンデンサ機能部の前記電源用内部プレーン電極層間のギャップ及び前記複数のコンデンサ機能部の前記グランド用内部プレーン電極層間のギャップに対応する箇所に、前記電源用表層電極及び前記グランド用表層電極の少なくとも一方の面積を広げることによって形成された段差緩和層を配置したことを特徴とするコンデンサがある。
コンデンサ主面上やコンデンサ裏面上において、コンデンサ本体の厚さ方向から見たときに内部プレーン電極層間のギャップに対応する箇所には段差が生じやすいが、手段1A,1Bのコンデンサによると、上記のギャップに対応する箇所に段差緩和層を配置することにより上記の段差が緩和される。これにより、コンデンサ主面上やコンデンサ裏面上に生じた段差に起因する不具合を低減できる。
また、仮に、段差緩和層をコンデンサ本体内に配置しようとしても、段差緩和層の厚さを薄い内部プレーン電極層や誘電体層に合わせて設定する必要があるため、十分な厚さを確保することが困難である。この場合、段差緩和層を複数層に分けて形成するなどの工夫が必要となる。そこで、手段1A,1Bでは、コンデンサ本体内ではなく、コンデンサ主面上及びコンデンサ裏面上の少なくとも一方に段差緩和層を配置したため、段差緩和層の厚さを内部プレーン電極層や誘電体層に合わせなくて済む。よって、段差緩和層を厚く形成できるため、上記の段差をより効果的に緩和できる。また、段差緩和層がコンデンサ本体内に存在しないため、段差緩和層が内部プレーン導体層の邪魔にならない。
ここで、上記コンデンサは、コンデンサ主面及びコンデンサ裏面を有するとともに、誘電体層と内部プレーン電極層とが交互に積層配置された構造を持ち、複数のコンデンサ機能部を備えている。
また、好適なコンデンサの例としては、以下のものがある。例えば、前記内部プレーン電極層は、前記誘電体層を介して交互に配置される電源用内部プレーン電極層とグランド用内部プレーン電極層とからなり、前記ビア導体は、前記電源用内部プレーン電極層同士を導通させる複数の電源用ビア導体と、前記グランド用内部プレーン電極層同士を導通させる複数のグランド用ビア導体とからなり、前記表層電極は、前記複数の電源用ビア導体における少なくとも前記コンデンサ主面側の端部に接続する電源用表層電極と、前記複数のグランド用ビア導体における少なくとも前記コンデンサ主面側の端部に接続するグランド用表層電極とからなり、前記グランド用内部プレーン電極層は、前記複数のコンデンサ機能部において共通の電極層であり、前記ギャップは、前記複数のコンデンサ機能部の前記電源用内部プレーン電極層間のギャップであることを特徴とするコンデンサを挙げることができる。このような構造であると、グランド用内部プレーン電極層が複数のコンデンサ機能部において共通の電極層となるため、グランド用内部プレーン電極層をコンデンサ機能部ごとにそれぞれ形成しなくても済む。よって、コンデンサを容易に形成できる。また、前記内部プレーン電極層は、前記誘電体層を介して交互に配置される電源用内部プレーン電極層とグランド用内部プレーン電極層とからなり、前記ビア導体は、前記電源用内部プレーン電極層同士を導通させる複数の電源用ビア導体と、前記グランド用内部プレーン電極層同士を導通させる複数のグランド用ビア導体とからなり、前記表層電極は、前記複数の電源用ビア導体における少なくとも前記コンデンサ主面側の端部に接続する電源用表層電極と、前記複数のグランド用ビア導体における少なくとも前記コンデンサ主面側の端部に接続するグランド用表層電極とからなり、前記グランド用内部プレーン電極層は、前記複数のコンデンサ機能部において互いに電気的に独立した電極層であり、前記ギャップは、前記複数のコンデンサ機能部の前記電源用内部プレーン電極層間のギャップ、及び、前記複数のコンデンサ機能部の前記グランド用内部プレーン電極層間のギャップであることを特徴とするコンデンサを挙げることができる。このような構造であると、電源用内部プレーン電極層間だけでなく、グランド用内部プレーン電極層間にもギャップが生じる。そのため、本来的には、コンデンサ本体の厚さ方向から見たときに内部プレーン電極層間のギャップに対応する箇所により大きな段差が生じやすい。そこで、前記段差緩和層を設けることにより、コンデンサ主面上やコンデンサ裏面上に生じた段差に起因する不具合をより効果的に低減できる。
前記誘電体層としては、セラミック誘電体層、樹脂誘電体層、セラミック−樹脂複合材料からなる誘電体層などが挙げられる。前記セラミック誘電体層としては、アルミナ、窒化アルミニウム、窒化ほう素、炭化珪素、窒化珪素などといった高温焼成セラミックの焼結体が好適に使用されるほか、ホウケイ酸系ガラスやホウケイ酸鉛系ガラスにアルミナ等の無機セラミックフィラーを添加したガラスセラミックのような低温焼成セラミックの焼結体が好適に使用される。この場合、用途に応じて、チタン酸バリウム、チタン酸鉛、チタン酸ストロンチウムなどの誘電体セラミックの焼結体を使用することも好ましい。誘電体セラミックの焼結体を使用した場合、静電容量の大きなコンデンサを実現しやすくなる。また、前記樹脂誘電体層としては、エポキシ樹脂、接着剤を含んだ四フッ化エチレン樹脂(PTFE)などの樹脂が好適に使用される。さらに、前記セラミック−樹脂複合材料からなる誘電体層としては、セラミックとして、チタン酸バリウム、チタン酸鉛、チタン酸ストロンチウムなどが好適に使用され、樹脂材料として、エポキシ樹脂、フェノール、ウレタン、シリコン、ポリイミド、不飽和ポリエステルなどの熱硬化性樹脂、ポリカーボネート、アクリル、ポリアセタール、ポリプロピレンなどの熱可塑性樹脂、及び、ニトリルブタジエンゴム、スチレンブタジエンゴム、フッ素ゴムなどのラテックスが好適に使用される。
前記内部プレーン電極層、前記ビア導体、前記表層電極としては特に限定されないが、例えば誘電体層がセラミック誘電体層である場合にはメタライズ導体であることが好ましい。なお、メタライズ導体は、金属粉末を含む導体ペーストを従来周知の手法、例えばメタライズ印刷法で塗布した後に焼成することにより、形成される。同時焼成法によってメタライズ導体及びセラミック誘電体層を形成する場合、メタライズ導体中の金属粉末は、セラミック誘電体層の焼成温度よりも高融点である必要がある。例えば、セラミック誘電体層がいわゆる高温焼成セラミック(例えばアルミナ等)からなる場合には、メタライズ導体中の金属粉末として、ニッケル(Ni)、タングステン(W)、モリブデン(Mo)、マンガン(Mn)等やそれらの合金が選択可能である。セラミック誘電体層がいわゆる低温焼成セラミック(例えばガラスセラミック等)からなる場合には、メタライズ導体中の金属粉末として、銅(Cu)または銀(Ag)等やそれらの合金が選択可能である。
また、前記段差緩和層は、樹脂材料よりもコンデンサ本体との密着性が良好な金属材料によって形成することが可能である。段差緩和層を構成する金属材料としては、例えば、ニッケル、モリブデン、タングステン、チタン、銅、銀などが挙げられる。
なお、段差緩和層は、前記表層電極と同じ金属材料によって形成されていることが好ましい。このようにすれば、段差緩和層を形成する際に表層電極とは別の材料を準備しなくても済む。また、段差緩和層を表層電極と同じ工程で同時に形成することが可能となるため、工数が減る。従って、コンデンサを容易にかつ低コストで形成できる。
段差緩和層の厚さは特に限定されないが、例えば10μm以上50μm以下に設定されることがよい。即ち、この厚さが10μm未満であると、段差緩和層を配置したとしてもコンデンサ主面上やコンデンサ裏面上に生じた段差を十分に緩和することができない。また、この厚さが50μmを超えるような場合には、段差緩和層を形成しにくくなるおそれがある。
なお、段差緩和層が例えば金属材料からなる場合、段差緩和層の形成方法としては、コンデンサ本体のコンデンサ主面上やコンデンサ裏面上に金属ペーストを印刷して段差緩和層を形成する方法などが挙げられる。しかし、上記の方法以外にも、段差緩和層と同じ大きさの金属箔を貼付して段差緩和層を形成する方法や、段差緩和層よりも大きい金属箔を貼付した後、金属箔に対するエッチングを行って段差緩和層を形成する方法や、めっきによって段差緩和層を形成するなどの方法を採用することも可能である。
さらに、段差緩和層は、電流が流れるようになってもよいし、そうでなくてもよい。特に、段差緩和層に電流が流れる場合、前記段差緩和層は、前記電源用表層電極及び前記グランド用表層電極の少なくとも一方の面積を広げることによって形成されることが好ましい。このようにすれば、電源用表層電極及びグランド用表層電極の面積が大きくなって低抵抗化が図られる。従って、電源用表層電極及びグランド用表層電極を通る電気経路を用いた大電流の供給が容易になる。また、段差緩和層を、電源用表層電極やグランド用表層電極と同時に形成できる。ゆえに、段差緩和層を電源用表層電極やグランド用表層電極と別々に形成しなくても済むため、コンデンサを容易に形成できる。なお、この場合、コンデンサ主面(またはコンデンサ裏面)における段差緩和層を含む表層電極(電源用表層電極またはグランド用表層電極)の面積率は、50%以上75%以下に設定される。段差緩和層を含む表層電極の面積率が50%以上であれば、表層電極の面積が大きくなって低抵抗化が図られるため、表層電極を通る電気経路を用いた大電流の供給が容易になる。また、段差緩和層を含む表層電極の面積率が75%以下であると、残りのスペースが確保されるため、段差緩和層を含まない他の表層電極を形成しやすくなる。
また、本発明の課題を解決するための別の手段(手段2)としては、上記手段1A,1Bに記載のコンデンサが内蔵されていることを特徴とする配線基板がある。
従って、手段2の配線基板によると、上記手段1A,1Bに記載のコンデンサが内蔵された好適な配線基板を提供することができる。また、コンデンサと配線基板におけるコンデンサ以外の部分との密着強度が向上するため、例えば配線基板に半導体集積回路素子を搭載した場合に、半導体集積回路素子が誤作動なく機能する。ゆえに、信頼性の高い配線基板を得ることができる。
なお、配線基板は、コア主面及びコア裏面を有するコア基板と、層間絶縁層及び導体層を前記コア主面の上にて交互に積層した構造を有する配線積層部とを備え、前記コンデンサが、前記コア主面と前記コンデンサ主面とを同じ側に向けた状態で前記コア基板内に収容されているものであってもよい。このようにすれば、配線積層部においてコンデンサに邪魔されることなく電気回路を形成できるため、配線基板の機能を維持することができる。この場合、コンデンサは、コア基板内に収容された状態で、例えば高分子材料製の樹脂充填部により固定される。また、配線基板は、コア主面及びコア裏面を有するコア基板と、層間絶縁層及び導体層を前記コア主面の上にて交互に積層した構造を有する配線積層部とを備え、前記コンデンサが、前記配線積層部内に収容されているものであってもよい。このようにすれば、配線積層部上に半導体集積回路素子を搭載した場合に半導体集積回路素子とコンデンサとをつなぐ配線が短くなる。これにより、配線のインダクタンス成分の増加が防止されるため、コンデンサによる半導体集積回路素子のスイッチングノイズを確実に低減できるとともに、電源電圧の確実な安定化を図ることができる。
上記配線基板を構成するコア基板は、配線基板におけるコア部の一部分をなすものであって、例えばコア主面及びその反対側に位置するコア裏面を有する板状に形成される。前記コンデンサが前記コア基板内に収容されている場合、かかるコア基板は、コンデンサを収容するための収容穴部を1つまたは2つ以上有していてもよい。この収容穴部は、コア主面のみにて開口する非貫通穴であってもよく、あるいはコア主面及びコア裏面の両方にて開口する貫通穴であってもよい。また、コンデンサは、完全に埋設された状態で収容穴部に収容されていてもよいし、一部分が収容穴部の開口部から突出した状態で収容穴部に収容されていてもよい。
コア基板を形成する材料は特に限定されないが、好ましいコア基板は高分子材料を主体として形成される。コア基板を形成するための高分子材料の具体例としては、例えば、EP樹脂(エポキシ樹脂)、PI樹脂(ポリイミド樹脂)、BT樹脂(ビスマレイミド・トリアジン樹脂)、PPE樹脂(ポリフェニレンエーテル樹脂)などがある。そのほか、これらの樹脂とガラス繊維(ガラス織布やガラス不織布)やポリアミド繊維等の有機繊維との複合材料を使用してもよい。
上記配線基板を構成する配線積層部は、高分子材料を主体とする層間絶縁層及び導体層を交互に積層した構造を有している。配線積層部はコア主面の上にのみ形成されるが、さらにコア裏面の上にも配線積層部と同じ構造の積層部が形成されていてもよい。このように構成すれば、コア主面の上に形成された配線積層部のみではなく、コア裏面の上に形成された積層部にも電気回路を形成できるため、配線基板のよりいっそうの高機能化を図ることができる。
以下、本発明の配線基板を具体化した一実施形態を図面に基づき詳細に説明する。
図1に示されるように、本実施形態の配線基板10は、ICチップ搭載用の配線基板であって、略矩形板状のコア基板11と、コア基板11のコア主面12(図1では上面)上に形成される第1ビルドアップ層31(配線積層部)と、コア基板11のコア裏面13(図1では下面)上に形成される第2ビルドアップ層32とからなる。
コア基板11のコア主面12上に形成された第1ビルドアップ層31は、エポキシ樹脂からなる層間絶縁層(樹脂絶縁層33,35)と、銅からなる導体層42とを交互に積層した構造を有している。第2層の樹脂絶縁層35の表面上における複数箇所には、端子パッド44がアレイ状に形成されている。また、樹脂絶縁層35の表面は、ソルダーレジスト37によってほぼ全体的に覆われている。ソルダーレジスト37の所定箇所には、端子パッド44を露出させる開口部46が形成されている。端子パッド44の表面上には、複数のはんだバンプ45が配設されている。各はんだバンプ45は、ICチップ21(半導体集積回路素子)の面接続端子22に電気的に接続されている。ICチップ21は、矩形平板状をなし、シリコンからなっている。なお、各端子パッド44及び各はんだバンプ45は、第1ビルドアップ層31においてセラミックコンデンサ101の真上の領域内に位置しており、この領域がICチップ搭載領域23となる。ICチップ搭載領域23は、第1ビルドアップ層31の表面39上に設定されている。また、樹脂絶縁層33,35内には、それぞれビア導体43,47が設けられている。これらのビア導体43,47は、導体層42及び端子パッド44を相互に電気的に接続している。
図1に示されるように、コア基板11のコア裏面13上に形成された第2ビルドアップ層32は、上述した第1ビルドアップ層31とほぼ同じ構造を有している。即ち、第2ビルドアップ層32は、エポキシ樹脂からなる層間絶縁層(樹脂絶縁層34,36)と、導体層42とを交互に積層した構造を有している。第2層の樹脂絶縁層36の下面上における複数箇所には、ビア導体43を介して導体層42に電気的に接続されるBGA用パッド48が格子状に形成されている。また、樹脂絶縁層36の下面は、ソルダーレジスト38によってほぼ全体的に覆われている。ソルダーレジスト38の所定箇所には、BGA用パッド48を露出させる開口部40が形成されている。BGA用パッド48の表面上には、図示しないマザーボードとの電気的な接続を図るための複数のはんだバンプ49が配設されている。そして、各はんだバンプ49により、図1に示される配線基板10は図示しないマザーボード上に実装される。
図1に示されるように、コア基板11は、ガラスエポキシからなる基材201と、基材201の上面及び下面に形成され、シリカフィラーなどの無機フィラーを添加したエポキシ樹脂からなるサブ基材204と、同じく基材201の上面及び下面に形成され、銅からなる導体層203とによって構成されている。また、コア基板11には、複数のスルーホール導体16がコア主面12、コア裏面13及び導体層203を貫通するように形成されている。かかるスルーホール導体16は、コア基板11のコア主面12側とコア裏面13側とを接続導通するとともに、導体層203に電気的に接続している。なお、スルーホール導体16の内部は、例えばエポキシ樹脂などの閉塞体17で埋められている。スルーホール導体16の上端は、樹脂絶縁層33の表面上にある導体層42の一部に電気的に接続されており、スルーホール導体16の下端は、樹脂絶縁層34の下面上にある導体層42の一部に電気的に接続されている。また、コア基板11は、コア主面12の中央部及びコア裏面13の中央部にて開口する平面視で矩形状の収容穴部90を1つ有している。即ち、収容穴部90は貫通穴部である。
収容穴部90内には、図2〜図4等に示すセラミックコンデンサ101が、埋め込まれた状態で収容されている。なお、セラミックコンデンサ101は、コンデンサ主面102をコア基板11のコア主面12と同じ側に向けた状態で収容されている。本実施形態のセラミックコンデンサ101は、縦10.0mm×横10.0mm×厚さ0.8mmの平面視略矩形板状である。セラミックコンデンサ101は、コア基板11においてICチップ搭載領域23の真下の領域に配置されている。なお、ICチップ搭載領域23の面積(ICチップ21において面接続端子22が形成される面の面積)は、セラミックコンデンサ101のコンデンサ主面102の面積よりも小さくなるように設定されている。セラミックコンデンサ101の厚さ方向から見た場合、ICチップ搭載領域23は、セラミックコンデンサ101のコンデンサ主面102内に位置している。
図1等に示されるように、収容穴部90の内面とセラミックコンデンサ101の側面との隙間は、高分子材料(本実施形態ではエポキシ等の熱硬化性樹脂)からなる樹脂充填部92によって埋められている。この樹脂充填部92は、セラミックコンデンサ101をコア基板11に固定するとともに、セラミックコンデンサ101及びコア基板11の面方向や厚さ方向への変形を自身の弾性変形により吸収する機能を有している。なお、セラミックコンデンサ101は、平面視略正方形状をなしており、四隅に面取り寸法0.55mm以上(本実施形態では面取り寸法0.6mm)の面取り部を有している。これにより、温度変化に伴う樹脂充填部92の変形時において、セラミックコンデンサ101の角部への応力集中を緩和できるため、樹脂充填部92のクラックの発生を防止できる。
図1〜図4等に示されるように、本実施形態のセラミックコンデンサ101は、いわゆるビアアレイタイプのコンデンサである。セラミックコンデンサ101を構成するセラミック焼結体104(コンデンサ本体)は、コンデンサ主面102(図1では上面)及びコンデンサ裏面103(図1では下面)を有する板状物である。なお、セラミック焼結体104のコンデンサ主面102上には前記樹脂絶縁層33が形成され、セラミック焼結体104のコンデンサ裏面103上には前記樹脂絶縁層34が形成されている。セラミック焼結体104は、セラミック誘電体層105を介して電源用内部プレーン電極層141とグランド用内部プレーン電極層142とを交互に積層配置した構造を有している。セラミック誘電体層105は、高誘電率セラミックの一種であるチタン酸バリウムの焼結体からなり、電源用内部プレーン電極層141及びグランド用内部プレーン電極層142間の誘電体として機能する。電源用内部プレーン電極層141及びグランド用内部プレーン電極層142は、いずれもニッケルを主成分として形成された層であって、セラミック焼結体104の内部において一層おきに配置されている。
図1〜図4に示されるように、セラミック焼結体104は、2つのコンデンサ機能部107,108を有している。なお、セラミック誘電体層105は、コンデンサ機能部107,108において共通の誘電体層であり、グランド用内部プレーン電極層142は、コンデンサ機能部107,108において共通の電極層である。一方、電源用内部プレーン電極層141は、コンデンサ機能部107,108において互いに電気的に独立した電極層である(図2参照)。
コンデンサ機能部107には、多数のビアホール130が形成されている。これらのビアホール130は、コンデンサ機能部107をその厚さ方向に貫通するとともに、コンデンサ機能部107の全面にわたってアレイ状(例えば格子状)に配置されている。各ビアホール130内には、コンデンサ機能部107におけるセラミック焼結体104のコンデンサ主面102及びコンデンサ裏面103間を連通する複数のビア導体131,132が、ニッケルを主材料として形成されている。各第1電源用ビア導体131は、各電源用内部プレーン電極層141を貫通しており、それら同士を互いに電気的に接続している。各第1グランド用ビア導体132は、各グランド用内部プレーン電極層142を貫通しており、それら同士を互いに電気的に接続している。各第1電源用ビア導体131及び各第1グランド用ビア導体132は、全体としてアレイ状に配置されている。本実施形態では、説明の便宜上、ビア導体131,132を6列×3列で図示したが、実際にはさらに多くの列が存在している。
そして図2〜図4等に示されるように、コンデンサ機能部107におけるセラミック焼結体104のコンデンサ主面102上には、複数の第1上面側電源用表層電極111(電源用表層電極)と、第1上面側グランド用表層電極112(グランド用表層電極)とが突設されている。第1上面側電源用表層電極111は、複数の第1電源用ビア導体131におけるコンデンサ主面102側の端面に対して直接接続されており、第1上面側グランド用表層電極112は、複数の第1グランド用ビア導体132におけるコンデンサ主面102側の端面に対して直接接続されている。また、コンデンサ機能部107におけるセラミック焼結体104のコンデンサ裏面103上には、第1裏面側電源用表層電極121(電源用表層電極)と、複数の裏面側グランド用表層電極122(グランド用表層電極)とが突設されている。第1裏面側電源用表層電極121は、複数の第1電源用ビア導体131におけるコンデンサ裏面103側の端面に対して直接接続されており、裏面側グランド用表層電極122は、複数の第1グランド用ビア導体132におけるコンデンサ裏面103側の端面に対して直接接続されている。よって、第1電源用表層電極111,121は第1電源用ビア導体131及び電源用内部プレーン電極層141に導通しており、グランド用表層電極112,122は第1グランド用ビア導体132及びグランド用内部プレーン電極層142に導通している。
同様に、図2〜図4に示される前記コンデンサ機能部108にも、多数のビアホール130が形成されている。各ビアホール130内には、コンデンサ機能部108におけるセラミック焼結体104のコンデンサ主面102及びコンデンサ裏面103間を連通する複数のビア導体133,134が、ニッケルを主材料として形成されている。各第2電源用ビア導体133は、コンデンサ機能部107,108ごとに電気的に独立した電源用内部プレーン電極層141を貫通しているため、コンデンサ機能部107の第1電源用ビア導体131とは電気的に独立している。一方、各第2グランド用ビア導体134は、コンデンサ機能部107,108の両方で共通のグランド用内部プレーン電極層142を貫通しているため、コンデンサ機能部107の第1グランド用ビア導体132と電気的に接続されている。各第2電源用ビア導体133及び各第2グランド用ビア導体134は、全体としてアレイ状に配置されている。本実施形態では、説明の便宜上、ビア導体133,134を6列×3列で図示したが、実際にはさらに多くの列が存在している。
そして図2〜図4等に示されるように、コンデンサ機能部108におけるセラミック焼結体104のコンデンサ主面102上には、第2上面側電源用表層電極113(電源用表層電極)と、複数の第2上面側グランド用表層電極114(グランド用表層電極)とが突設されている。第2上面側電源用表層電極113は、複数の第2電源用ビア導体133のコンデンサ主面102側の端面に対して直接接続されている。第2上面側グランド用表層電極114は、コンデンサ機能部108の第2グランド用ビア導体134におけるコンデンサ主面102側の端面に対して直接接続されている。また、コンデンサ機能部108におけるセラミック焼結体104のコンデンサ裏面103上には、前記裏面側グランド用表層電極122と、複数の第2裏面側電源用表層電極123(電源用表層電極)とが突設されている。裏面側グランド用表層電極122は、コンデンサ機能部108の第2グランド用ビア導体134におけるコンデンサ裏面103側の端面に対して直接接続されており、コンデンサ機能部107,108の両方で共通の電極である。第2裏面側電源用表層電極123は、複数の第2電源用ビア導体133におけるコンデンサ裏面103側の端面に対して直接接続されている。よって、第2電源用表層電極113,123は第2電源用ビア導体133及び電源用内部プレーン電極層141に導通している。また、コンデンサ機能部108のグランド用表層電極114,122は、第2グランド用ビア導体134及びグランド用内部プレーン電極層142に導通している。また、コンデンサ機能部108を構成する電源用内部プレーン電極層141及びグランド用内部プレーン電極層142がコンデンサとして機能する有効面積は、コンデンサ機能部107を構成する電源用内部プレーン電極層141及びグランド用内部プレーン電極層142がコンデンサとして機能する有効面積と同じである(図3,図4等参照)ため、コンデンサ機能部107,108の容量は互いに等しくなっている。なお、コンデンサ機能部107,108の容量は互いに異なっていてもよい。
なお図3に示されるように、第1上面側グランド用表層電極112は、コンデンサ主面102の略半分を覆うプレーン状導体であり、前記第1上面側電源用表層電極111を避けるための孔を複数有している。第2上面側電源用表層電極113は、コンデンサ主面102の残り半分を覆うプレーン状導体であり、第2上面側グランド用表層電極114を避けるための孔を複数有している。各第1上面側電源用表層電極111及び各第2上面側グランド用表層電極114は、コンデンサ主面102において互いに平行に配置された帯状パターンである。一方、図4に示されるように、裏面側グランド用表層電極122は、コンデンサ裏面103の略全体を覆うプレーン状導体であり、裏面側電源用表層電極121,123を避けるための孔を有している。各裏面側電源用表層電極121,123は、コンデンサ裏面103において互いに平行に配置された帯状パターンである。また、上面側電源用表層電極111,114及び裏面側電源用表層電極121,123は、コンデンサ機能部107,108ごとに互いに電気的に独立している。
そして図1に示されるように、コンデンサ主面102側にある電極111〜114は、ビア導体47、導体層42、ビア導体43、端子パッド44、はんだバンプ45及びICチップ21の面接続端子22を介して、ICチップ21に電気的に接続される。一方、コンデンサ裏面103側にある電極121〜123は、図示しないマザーボードが有する電極(接触子)に対して、ビア導体47、導体層42、ビア導体43、BGA用パッド48及びはんだバンプ49を介して電気的に接続される。なお本実施形態では、一部の裏面側グランド用表層電極122が、ビア導体47、導体層42、ビア導体43、BGA用パッド48及びはんだバンプ49からなる配線基板側グランド接続用導体162(図1参照)に電気的に接続される。
図2等に示されるように、電極111〜114は、ニッケルを主材料として形成され、表面が図示しない銅めっき層によって全体的に被覆されている。同様に、電極121〜123も、ニッケルを主材料として形成され、表面が図示しない銅めっき層によって被覆されている。これら電極111〜114,121〜123及びビア導体131〜134は、ICチップ21の略直下に配置されている。
例えば、マザーボード側から電極121,122(または電極122,123)を介して通電を行い、電源用内部プレーン電極層141−グランド用内部プレーン電極層142間に電圧を加えると、電源用内部プレーン電極層141に例えばプラスの電荷が蓄積し、グランド用内部プレーン電極層142に例えばマイナスの電荷が蓄積する。その結果、セラミックコンデンサ101がコンデンサとして機能する。また、コンデンサ機能部107では、第1電源用ビア導体131及び第1グランド用ビア導体132がそれぞれ隣接して配置されている。同様に、コンデンサ機能部108では、第2電源用ビア導体133及び第2グランド用ビア導体134がそれぞれ隣接して配置されている。これにより、インダクタンス成分の低減化が図られている。
従って、本実施形態の配線基板10では、コンデンサ機能部107,108ごとに独立した電源系統が設定されている。ゆえに、各コンデンサ機能部107,108は、互いに電気的に独立している。よって、セラミックコンデンサ101内の電気経路は、コンデンサ機能部107とICチップ21とをつなぐ第1電気経路と、コンデンサ機能部108とICチップ21とをつなぐ第2電気経路とに分離されている。また、各コンデンサ機能部107,108の絶縁部分(セラミック誘電体層105)やグランド用内部プレーン電極層142は、互いに物理的に一体となっている。一方、各コンデンサ機能部107,108の電源用内部プレーン電極層141は、互いの設置領域が区分けされていて物理的に独立している。
図2〜図4等に示されるように、前記コンデンサ主面102上において、前記セラミック焼結体104の厚さ方向から見たときに電源用内部プレーン電極層141間のギャップ181に対応する箇所には、段差緩和層182が配置されている。さらに、前記コンデンサ裏面103上において、セラミック焼結体104の厚さ方向から見たときにギャップ181に対応する箇所には、段差緩和層183が配置されている。換言すると、ギャップ181及び段差緩和層182,183は、セラミック焼結体104の厚さ方向から見たときに重なるように配置されている。即ち、段差緩和層182はギャップ181の直上に配置され、段差緩和層183はギャップ181の直下に配置されている。これにより、第1上面側電源用表層電極111と段差緩和層182とのギャップや、第1上面側グランド用表層電極112と段差緩和層182とのギャップは、ギャップ181から敢えてオフセットして配置される。また、ギャップ181は、セラミック焼結体104の厚さ方向から見たときに、第1裏面側電源用表層電極121と裏面側グランド用表層電極122(段差緩和層183)とのギャップとも異なる箇所に配置される。なお、ギャップ181は、段差緩和層182,183の面積よりも小さくなるように設定されている(図3,図4参照)。よって、セラミック焼結体104の厚さ方向から見た場合、ギャップ181は段差緩和層182,183内に位置している。なお、ギャップ181は、各複数のコンデンサ機能部107,108間のギャップであると言うこともできる。
また、図2〜図4等に示される段差緩和層182,183は、前記電極111〜114,121〜123と同じニッケルを主成分として形成された層である。段差緩和層182は、第2上面側電源用表層電極113の面積を広げることによって形成されており、段差緩和層183は、裏面側グランド用表層電極122の面積を広げることによって形成されている。即ち、第2上面側電源用表層電極113は段差緩和層182を兼ねており、段差緩和層182は電源用導体層である。また、裏面側グランド用表層電極122は段差緩和層183を兼ねており、段差緩和層183はグランド用導体層である。
次に、本実施形態の配線基板10の製造方法について述べる。
準備工程では、コア基板11とセラミックコンデンサ101とを、それぞれ従来周知の手法により作製し、あらかじめ準備しておく。
コア基板11は以下のように作製される。まず、縦400mm×横400mm×厚み0.8mmの基材201の両面に銅箔202が貼付された銅張積層板(図5参照)を準備する。なお、基材201の厚みは、0.2mm以上1.0mm以下であることが好ましい。次に、銅張積層板の両面の銅箔202のエッチングを行って導体層203を例えばサブトラクティブ法によってパターニングする(図6参照)。具体的には、無電解銅めっきの後、この無電解銅めっき層を共通電極として電解銅めっきを施す。さらにドライフィルムをラミネートし、同ドライフィルムに対して露光及び現像を行うことにより、ドライフィルムを所定パターンに形成する。この状態で、不要な電解銅めっき層、無電解銅めっき層及び銅箔202をエッチングで除去する。その後、ドライフィルムを剥離する。次に、基材201の上面及び下面と導体層203とを粗化した後、基材201の上面及び下面に、無機フィラーが添加されたエポキシ樹脂フィルム(厚さ600μm)を熱圧着により貼付し、サブ基材204を形成する(図7参照)。
次に、基材201及びサブ基材204からなる積層体に対してルータを用いて孔あけ加工を行い、収容穴部90となる貫通孔を所定位置に形成し、コア基板11を得る(図8参照)。なお、収容穴部90となる貫通孔は、縦12.0mm×横12.0mmで、四隅に半径0.1mm以上2.0mm以下(本実施形態では半径1.5mm)のアールまたはテーパを有する断面略正方形状の孔である。
また、セラミックコンデンサ101は以下のように作製される。即ち、セラミックのグリーンシートを形成し、このグリーンシートに内部電極層用ニッケルペーストをスクリーン印刷して乾燥させる。これにより、後に電源用内部プレーン電極層141となる第1内部電極部と、グランド用内部プレーン電極層142となる第2内部電極部とが形成される。次に、第1内部電極部が形成されたグリーンシートと第2内部電極部が形成されたグリーンシートとを交互に積層し、シート積層方向に押圧力を付与することにより、各グリーンシートを一体化したグリーンシート積層体を形成する。
さらに、レーザー加工機を用いてグリーンシート積層体にビアホール130を多数個貫通形成し、図示しないペースト圧入充填装置を用いて、ビア導体用ニッケルペーストを各ビアホール130内に充填する。次に、グリーンシート積層体の上面上にペーストを印刷し、グリーンシート積層体の上面側にて各導体部の上端面を覆うように第1上面側電源用表層電極111、第1上面側グランド用表層電極112、第2上面側電源用表層電極113、第2上面側グランド用表層電極114及び段差緩和層182を形成する。また、グリーンシート積層体の下面上にペーストを印刷し、グリーンシート積層体の下面側にて各導体部の下端面を覆うように第1裏面側電源用表層電極121、裏面側グランド用表層電極122、第2裏面側電源用表層電極123及び段差緩和層183を形成する。
この後、グリーンシート積層体の乾燥を行い、各電極111〜114,121〜123及び各段差緩和層182,183をある程度固化させる。次に、グリーンシート積層体を脱脂し、さらに所定温度で所定時間焼成を行う。その結果、チタン酸バリウム及びペースト中のニッケルが同時焼結し、セラミック焼結体104となる。
次に、得られたセラミック焼結体104が有する各電極111〜114,121〜123及び各段差緩和層182,183に対して無電解銅めっき(厚さ10μm程度)を行う。その結果、各電極111〜114,121〜123及び段差緩和層182,183の上に銅めっき層が形成され、セラミックコンデンサ101が完成する。そして、各電極111〜114,121〜123及び段差緩和層182,183の銅めっき層を粗化しておく。
続く固定工程では、マウント装置(ヤマハ発動機株式会社製)を用いて、収容穴部90内にセラミックコンデンサ101を収容する収容工程を実施する(図9参照)。このとき、収容穴部90のコア裏面13側開口は、剥離可能な粘着テープ210でシールされている。この粘着テープ210は、支持台(図示略)によって支持されている。かかる粘着テープ210の粘着面には、セラミックコンデンサ101が貼り付けられて仮固定されている。
そして、この状態において、収容穴部90の内面とセラミックコンデンサ101の側面との隙間に、ディスペンサ装置(Asymtek社製)を用いて、熱硬化性樹脂製の樹脂充填部92(株式会社ナミックス製)を充填する(充填工程)。その後、加熱処理を行うと、樹脂充填部92が硬化して、セラミックコンデンサ101が収容穴部90内に固定される(図10参照)。そして、この時点で、粘着テープ210を剥離する。
その後、ビルドアップ層形成工程を実施する。ビルドアップ層形成工程では、従来周知の手法に基づいてコア主面12及びコンデンサ主面102の上に第1ビルドアップ層31を形成するとともに、コア裏面13及びコンデンサ裏面103の上に第2ビルドアップ層32を形成する。具体的には、コア主面12及びコンデンサ主面102に感光性エポキシ樹脂を被着するとともに、コア裏面13及びコンデンサ裏面103に感光性エポキシ樹脂を被着し、第1層の樹脂絶縁層33,34を形成する(図11参照)。
さらに、YAGレーザーまたは炭酸ガスレーザーを用いて孔あけ加工を行い、コア基板11及び樹脂絶縁層33,34を貫通する貫通孔231を所定位置にあらかじめ形成しておく(図12参照)。併せて、樹脂絶縁層33においてビア導体47が形成されるべき位置に、第1上面側電源用表層電極111、第1上面側グランド用表層電極112、第2上面側電源用表層電極113及び第2上面側グランド用表層電極114を露出させるビア穴223をそれぞれ形成する。また、樹脂絶縁層34においてビア導体47が形成されるべき位置に、第1裏面側電源用表層電極121、裏面側グランド用表層電極122及び第2裏面側電源用表層電極123を露出させるビア穴224をそれぞれ形成する。そして、樹脂絶縁層33,34及び貫通孔231の内面に対する無電解銅めっきを行った後にエッチングレジストを形成し、次いで電解銅めっきを行う。さらに、エッチングレジストを除去してソフトエッチングを行う。これにより、樹脂絶縁層33上及び樹脂絶縁層34上に導体層42がパターン形成される(図13参照)。これと同時に、貫通孔231内にスルーホール導体16が形成されるとともに、各ビア穴223,224の内部にビア導体47が形成される。
次に、第1層の樹脂絶縁層33,34上に感光性エポキシ樹脂を被着し、露光及び現像を行うことにより、ビア導体43が形成されるべき位置に盲孔251,252を有する第2層の樹脂絶縁層35,36を形成する(図14参照)。次に、従来公知の手法に従って電解銅めっきを行い、前記盲孔251,252の内部にビア導体43を形成するとともに、第2層の樹脂絶縁層35上に端子パッド44を形成し、第2層の樹脂絶縁層36上にBGA用パッド48を形成する。
次に、第2層の樹脂絶縁層35,36上に感光性エポキシ樹脂を塗布して硬化させることにより、ソルダーレジスト37,38を形成する。次に、所定のマスクを配置した状態で露光及び現像を行い、ソルダーレジスト37,38に開口部40,46をパターニングする。さらに、端子パッド44上にはんだバンプ45を形成し、かつ、BGA用パッド48上にはんだバンプ49を形成する。その結果、コア基板11及びビルドアップ層31,32からなる配線基板10が完成する。
従って、本実施形態によれば以下の効果を得ることができる。
(1)ところで、充填工程を行う場合に、コンデンサ主面102上及びコンデンサ裏面103上においてギャップ181に対応する箇所に段差が生じていると、樹脂充填部92の一部がコンデンサ主面102及びコンデンサ裏面103の中央部に回り込みやすくなる。例えば、セラミックコンデンサ101と粘着テープ210との隙間に樹脂充填部92の一部が侵入したりする可能性がある。その結果、充填工程後のビルドアップ層形成工程を行う際に、コンデンサ主面102及びコンデンサ裏面103に対する樹脂絶縁層33,34の追従性が低下してしまう。
そこで、本実施形態の配線基板10によれば、コンデンサ主面102上及びコンデンサ裏面103上において上記ギャップ181に対応する箇所に段差緩和層182,183を配置し、上記の段差を緩和している。これにより、コンデンサ主面102上及びコンデンサ裏面103上に生じた段差に起因する不具合を低減できる。詳述すると、セラミックコンデンサ101と樹脂絶縁層33,34との密着強度が向上するため、熱膨張などに起因した樹脂絶縁層33,34の浮きやデラミネーションの発生を防止できる。これに伴い、セラミックコンデンサ101の電極111〜114,121〜123と、樹脂絶縁層33,34のビア導体47とを樹脂充填部92に邪魔されることなく接続できるため、コンデンサ機能部107,108とICチップ21とをつなぐ電気経路に確実に電流を流すことができる。ゆえに、ICチップ21の誤動作等の不具合を防止できるため、高い信頼性を得ることができる。
(2)本実施形態のグランド用内部プレーン電極層142は、各コンデンサ機能部107,108において共通の電極層であるため、グランド用内部プレーン電極層142をコンデンサ機能部107,108ごとにそれぞれ形成しなくても済む。よって、セラミックコンデンサ101を容易に形成できる。
(3)本実施形態のICチップ21はセラミックコンデンサ101の真上に配置される。これにより、ICチップ21とセラミックコンデンサ101とを電気的に接続する導通経路が最短となる。ゆえに、ICチップ21に対する電源供給をスムーズに行うことができる。また、ICチップ21とセラミックコンデンサ101との間で侵入するノイズを極めて小さく抑えることができるため、誤動作等の不具合を生じることもなく高い信頼性を得ることができる。
また本実施形態では、セラミックコンデンサ101がコア基板11の収容穴部90内に収容され、ICチップ搭載領域23の真下の領域内に位置しているため、ICチップ搭載領域23に搭載されるICチップ21は高剛性で熱膨張率が小さいセラミックコンデンサ101によって支持される。よって、上記ICチップ搭載領域23においては、第1ビルドアップ層31が変形しにくくなるため、ICチップ搭載領域23に搭載されるICチップ21をより安定的に支持できる。従って、大きな熱応力に起因するICチップ21のクラックや接続不良を防止することができる。ゆえに、ICチップ21として、熱膨張差による応力(歪)が大きくなり熱応力の影響が大きく、かつ発熱量が大きく使用時の熱衝撃が厳しい10mm角以上の大型のICチップや、脆いとされるLow−k(低誘電率)のICチップを用いることができる。
(4)本実施形態のセラミックコンデンサ101は、いわゆるビアアレイタイプのコンデンサであるため、セラミックコンデンサ101のインダクタンスの低減化が図られ、ノイズ吸収や電源変動平滑化のための高速電源供給が可能となる。
なお、本発明の実施形態は以下のように変更してもよい。
・上記実施形態では、コンデンサ主面102上及びコンデンサ裏面103上の両方に段差緩和層182,183が配置されていたが、コンデンサ主面102上及びコンデンサ裏面103上のいずれか一方のみに段差緩和層182(または段差緩和層183)を配置してもよい。なお、コンデンサ主面102上及びコンデンサ裏面103上の両方に段差緩和層182,183が配置されていれば、段差緩和層182,183のそれぞれをそれほど厚く形成しなくても、段差を緩和できる程度の厚さを得ることができる。
・上記実施形態の段差緩和層182は、第2上面側電源用表層電極113の面積を広げることによって形成されていたが、第1上面側電源用表層電極111、第1上面側グランド用表層電極112、第2上面側グランド用表層電極114などの面積を広げることで形成してもよい。また、上記実施形態の段差緩和層183は、裏面側グランド用表層電極122の面積を広げることによって形成されていたが、第1裏面側電源用表層電極121、第2裏面側電源用表層電極123などの面積を広げることで形成してもよい。なお、段差緩和層182,183は、電極111〜114,121〜123とは電気的に独立していてもよい。
・上記実施形態では、電源用内部プレーン電極層141がコンデンサ機能部107,108において互いに電気的に独立した電極層である一方、グランド用内部プレーン電極層142が各コンデンサ機能部107,108において共通の電極層であるセラミックコンデンサ101が用いられていた。しかし図15に示されるように、グランド用内部プレーン電極層142もコンデンサ機能部107,108において互いに電気的に独立した電極層となるセラミックコンデンサ302を用いてもよい。この場合、コンデンサ機能部107,108間には、電源用内部プレーン電極層141間のギャップ181に加え、グランド用内部プレーン電極層142間のギャップ180も生じる。その結果、コンデンサ主面102及びコンデンサ裏面103において、セラミック焼結体104の厚さ方向から見たときにギャップ180,181に対応する箇所には、より大きな段差が生じる。このため、段差緩和層182,183を設ければ、上記の段差に起因する不具合をより効果的に低減できる。
・上記実施形態のセラミックコンデンサ101はコア基板11内に収容されていた。しかし、上記実施形態のセラミックコンデンサ101よりも薄くしたセラミックコンデンサ303を形成し、そのセラミックコンデンサ303を第1ビルドアップ層31内(例えば図16参照)に収容してもよい。このようにすれば、セラミックコンデンサ101がコア基板11内に収容される場合に比べて、ICチップ21とコンデンサ機能部107,108とを電気的に接続する導通経路(コンデンサ接続配線)が短くなる。これにより、配線のインダクタンス成分の増加が防止されるため、セラミックコンデンサ101によりICチップ21のスイッチングノイズを確実に低減できるとともに、電源電圧の確実な安定化を図ることができる。また、ICチップ21とコンデンサ機能部107,108との間で侵入するノイズを極めて小さく抑えることができるため、誤動作等の不具合を生じることもなく高い信頼性を得ることができる。なお、薄くしたセラミックコンデンサ303を用いたとしてもセラミックコンデンサ303自体は厚いため、図16では、ビルドアップ層を、上記実施形態よりも多くの樹脂絶縁層(樹脂絶縁層30)からなる第1ビルドアップ層310に具体化している。なお、上記実施形態のセラミックコンデンサ101を、上記実施形態と同じ第1ビルドアップ層31内に収容してもよい。
・上記実施形態の配線基板10には、2つのコンデンサ機能部107,108を有するセラミックコンデンサ101が用いられていたが、3つ以上のコンデンサ機能部を有するセラミックコンデンサを用いてもよい。例えば図17に示されるように、上記実施形態と同じコンデンサ機能部108と、コンデンサ機能部108よりも小容量のコンデンサ機能部106と、コンデンサ機能部106よりもかなり小容量のコンデンサ機能部109とを有するセラミックコンデンサ301を用いてもよい。
・上記実施形態の収容穴部90は、コア基板11のコア主面12側及びコア裏面13側の両方にて開口する貫通穴部であった。しかし、図18に示す配線基板20のコア基板41のように、収容穴部は、コア基板41のコア主面12のみにて開口する有底の凹部91(非貫通穴部)であってもよい。
次に、前述した実施形態によって把握される技術的思想を以下に列挙する。
(1)コンデンサ主面及びコンデンサ裏面を有するとともに、誘電体層と内部プレーン電極層とが交互に積層配置された構造を有するコンデンサ本体と、前記内部プレーン電極層同士を導通させる複数のビア導体と、前記複数のビア導体における少なくとも前記コンデンサ主面側の端部に接続する表層電極とを備え、前記複数のビア導体が全体としてアレイ状に配置されたコンデンサであって、前記コンデンサ本体は、互いに電気的に独立した前記内部プレーン電極層を個々に有する複数のコンデンサ機能部を備え、前記コンデンサ主面上及び前記コンデンサ裏面上の少なくとも一方において、前記コンデンサ本体の厚さ方向から見たときに前記内部プレーン電極層間のギャップに対応する箇所に、前記コンデンサ主面上及び前記コンデンサ裏面上における段差を緩和する段差緩和層を配置したことを特徴とするコンデンサ。
(2)コンデンサ主面及びコンデンサ裏面を有するとともに、誘電体層と内部プレーン電極層とが交互に積層配置された構造を有するコンデンサ本体と、前記内部プレーン電極層同士を導通させる複数のビア導体と、前記複数のビア導体における少なくとも前記コンデンサ主面側の端部に接続する表層電極とを備えたコンデンサであって、前記コンデンサ本体は複数のコンデンサ機能部を備え、前記コンデンサ主面上及び前記コンデンサ裏面上の少なくとも一方において、前記コンデンサ本体の厚さ方向から見たときに前記内部プレーン電極層間のギャップに対応する箇所に、前記表層電極としても機能する前記段差緩和層が配置されていることを特徴とするコンデンサ。
(3)コンデンサ主面及びコンデンサ裏面を有するとともに、誘電体層と内部プレーン電極層とが交互に積層配置された構造を有するコンデンサ本体と、前記内部プレーン電極層同士を導通させる複数のビア導体と、前記複数のビア導体における少なくとも前記コンデンサ主面側の端部に接続する表層電極とを備えたコンデンサであって、前記コンデンサ本体は複数のコンデンサ機能部を備え、前記コンデンサ主面上及び前記コンデンサ裏面上の少なくとも一方において、前記コンデンサ本体の厚さ方向から見たときに前記内部プレーン電極層間のギャップに対応する箇所に、段差緩和層が配置され、前記誘電体層はセラミック誘電体層であり、前記内部プレーン電極層、前記ビア導体、前記表層電極及び前記段差緩和層はメタライズ導体であることを特徴とするコンデンサ。
本発明を具体化した一実施形態の配線基板を示す概略断面図。 セラミックコンデンサを示す概略断面図。 セラミックコンデンサの上面を示す概略平面図。 セラミックコンデンサの下面を示す概略平面図。 配線基板の製造方法の説明図。 配線基板の製造方法の説明図。 配線基板の製造方法の説明図。 配線基板の製造方法の説明図。 配線基板の製造方法の説明図。 配線基板の製造方法の説明図。 配線基板の製造方法の説明図。 配線基板の製造方法の説明図。 配線基板の製造方法の説明図。 配線基板の製造方法の説明図。 他の実施形態におけるセラミックコンデンサを示す概略断面図。 他の実施形態の配線基板を示す概略断面図。 他の実施形態におけるセラミックコンデンサの上面を示す概略平面図。 他の実施形態における配線基板を示す概略断面図。
符号の説明
10,20…配線基板
11,41…コア基板
12…コア主面
13…コア裏面
31…配線積層部としての第1ビルドアップ層
33,35…層間絶縁層としての樹脂絶縁層
42…導体層
101,301,302,303…コンデンサとしてのセラミックコンデンサ
102…コンデンサ主面
103…コンデンサ裏面
104…コンデンサ本体としてのセラミック焼結体
105…誘電体層としてのセラミック誘電体層
106,107,108,109…コンデンサ機能部
111…表層電極及び電源用表層電極としての第1上面側電源用表層電極
112…表層電極及びグランド用表層電極としての第1上面側グランド用表層電極
113…表層電極及び電源用表層電極としての第2上面側電源用表層電極
114…表層電極及びグランド用表層電極としての第2上面側グランド用表層電極
121…表層電極及び電源用表層電極としての第1裏面側電源用表層電極
122…表層電極及びグランド用表層電極としての裏面側グランド用表層電極
123…表層電極及び電源用表層電極としての第2裏面側電源用表層電極
131…ビア導体及び電源用ビア導体としての第1電源用ビア導体
132…ビア導体及びグランド用ビア導体としての第1グランド用ビア導体
133…ビア導体及び電源用ビア導体としての第2電源用ビア導体
134…ビア導体及びグランド用ビア導体としての第2グランド用ビア導体
141…内部プレーン電極層としての電源用内部プレーン電極層
142…内部プレーン電極層としてのグランド用内部プレーン電極層
180,181…ギャップ
182,183…段差緩和層

Claims (9)

  1. コンデンサ主面及びコンデンサ裏面を有するとともに、誘電体層を介して電源用内部プレーン電極層とグランド用内部プレーン電極層とが交互に積層配置された構造を有するコンデンサ本体を備えたコンデンサであって、
    前記コンデンサ本体は複数のコンデンサ機能部を備え、
    前記複数のコンデンサ機能部は、
    前記電源用内部プレーン電極層同士を導通させかつ前記コンデンサ主面及び前記コンデンサ裏面間を貫通する複数の電源用ビア導体と、
    前記グランド用内部プレーン電極層同士を導通させかつ前記コンデンサ主面及び前記コンデンサ裏面間を貫通する複数のグランド用ビア導体と、
    前記複数の電源用ビア導体における少なくとも前記コンデンサ主面側の端部に接続する電源用表層電極と、
    前記複数のグランド用ビア導体における少なくとも前記コンデンサ主面側の端部に接続するグランド用表層電極と
    を有し、
    前記グランド用内部プレーン電極層は、前記複数のコンデンサ機能部において共通の電極層を含み、
    前記コンデンサ主面上及び前記コンデンサ裏面上の少なくとも一方において、前記コンデンサ本体の厚さ方向から見たときに、前記複数のコンデンサ機能部の前記電源用内部プレーン電極層間のギャップに対応する箇所に、前記電源用表層電極及び前記グランド用表層電極の少なくとも一方の面積を広げることによって形成された段差緩和層を配置した
    ことを特徴とするコンデンサ。
  2. コンデンサ主面及びコンデンサ裏面を有するとともに、誘電体層を介して電源用内部プレーン電極層とグランド用内部プレーン電極層とが交互に積層配置された構造を有するコンデンサ本体を備えたコンデンサであって、
    前記コンデンサ本体は複数のコンデンサ機能部を備え、
    前記複数のコンデンサ機能部は、
    前記電源用内部プレーン電極層同士を導通させかつ前記コンデンサ主面及び前記コンデンサ裏面間を貫通する複数の電源用ビア導体と、
    前記グランド用内部プレーン電極層同士を導通させかつ前記コンデンサ主面及び前記コンデンサ裏面間を貫通する複数のグランド用ビア導体と、
    前記複数の電源用ビア導体における少なくとも前記コンデンサ主面側の端部に接続する電源用表層電極と、
    前記複数のグランド用ビア導体における少なくとも前記コンデンサ主面側の端部に接続するグランド用表層電極と
    を有し、
    前記グランド用内部プレーン電極層は、前記複数のコンデンサ機能部において互いに電気的に独立した電極層であり、
    前記コンデンサ主面上及び前記コンデンサ裏面上の少なくとも一方において、前記コンデンサ本体の厚さ方向から見たときに、前記複数のコンデンサ機能部の前記電源用内部プレーン電極層間のギャップ及び前記複数のコンデンサ機能部の前記グランド用内部プレーン電極層間のギャップに対応する箇所に、前記電源用表層電極及び前記グランド用表層電極の少なくとも一方の面積を広げることによって形成された段差緩和層を配置した
    ことを特徴とするコンデンサ。
  3. 前記段差緩和層は、前記表層電極と同じ金属材料によって形成されていることを特徴とする請求項1または2に記載のコンデンサ。
  4. 前記複数の電源用ビア導体における前記コンデンサ主面側の端部及び前記コンデンサ裏面側の端部には、電源用表層電極が接続され、前記複数のグランド用ビア導体における前記コンデンサ主面側の端部及び前記コンデンサ裏面側の端部には、グランド用表層電極が接続されている
    ことを特徴とする請求項1乃至3のいずれか1項に記載のコンデンサ。
  5. 前記段差緩和層は、前記コンデンサ主面及び前記コンデンサ裏面の両方の上に配置されている
    ことを特徴とする請求項1乃至のいずれか1項に記載のコンデンサ。
  6. 前記コンデンサ主面側における前記電源用表層電極として、第1主面側電源用表層電極及び第2主面側電源用表層電極を備え、
    前記段差緩和層は、前記第2主面側電源用表層電極の面積を、それに隣接する前記第1主面側電源用表層電極のある方向に広げることによって形成されたものであり、
    前記コンデンサ本体の厚さ方向から見たときに、前記第1主面側電源用表層電極と前記段差緩和層とのギャップは、前記電源用内部プレーン電極層間のギャップまたは前記グランド用内部プレーン電極層間のギャップからオフセットして配置されている
    ことを特徴とする請求項1乃至5のいずれか1項に記載のコンデンサ。
  7. 請求項1乃至6のいずれか1項に記載のコンデンサが内蔵されていることを特徴とする配線基板。
  8. コア主面及びコア裏面を有するコア基板と、
    層間絶縁層及び導体層を前記コア主面の上にて交互に積層した構造を有する配線積層部と
    を備え、
    前記コンデンサが、前記コア主面と前記コンデンサ主面とを同じ側に向けた状態で前記コア基板内に収容されていることを特徴とする請求項7に記載の配線基板。
  9. コア主面及びコア裏面を有するコア基板と、
    層間絶縁層及び導体層を前記コア主面の上にて交互に積層した構造を有する配線積層部と
    を備え、
    前記コンデンサが、前記配線積層部内に収容されていることを特徴とする請求項7に記載の配線基板。
JP2006166732A 2006-06-15 2006-06-15 コンデンサ、配線基板 Active JP4795861B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006166732A JP4795861B2 (ja) 2006-06-15 2006-06-15 コンデンサ、配線基板

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006166732A JP4795861B2 (ja) 2006-06-15 2006-06-15 コンデンサ、配線基板

Publications (2)

Publication Number Publication Date
JP2007335685A JP2007335685A (ja) 2007-12-27
JP4795861B2 true JP4795861B2 (ja) 2011-10-19

Family

ID=38934852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006166732A Active JP4795861B2 (ja) 2006-06-15 2006-06-15 コンデンサ、配線基板

Country Status (1)

Country Link
JP (1) JP4795861B2 (ja)

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4328530A (en) * 1980-06-30 1982-05-04 International Business Machines Corporation Multiple layer, ceramic carrier for high switching speed VLSI chips
JPH10270282A (ja) * 1997-03-21 1998-10-09 Taiyo Yuden Co Ltd 積層セラミックコンデンサ
JPH1116776A (ja) * 1997-06-20 1999-01-22 Taiyo Yuden Co Ltd コンデンサアレイ
JPH11102839A (ja) * 1997-09-26 1999-04-13 Murata Mfg Co Ltd 電子部品
JPH11162781A (ja) * 1997-11-21 1999-06-18 Murata Mfg Co Ltd 積層セラミック電子部品の製造方法
JP3437107B2 (ja) * 1999-01-27 2003-08-18 シャープ株式会社 樹脂封止型半導体装置
JP2000340955A (ja) * 1999-05-26 2000-12-08 Matsushita Electric Ind Co Ltd 受動部品内蔵複合多層配線基板およびその製造方法
JP2003257780A (ja) * 2002-03-05 2003-09-12 Tdk Corp 積層型電子部品およびその製造方法
JP2005039243A (ja) * 2003-06-24 2005-02-10 Ngk Spark Plug Co Ltd 中間基板
JP4287757B2 (ja) * 2004-02-04 2009-07-01 パナソニック株式会社 回路部品内蔵モジュール及びその製造方法

Also Published As

Publication number Publication date
JP2007335685A (ja) 2007-12-27

Similar Documents

Publication Publication Date Title
JP4838068B2 (ja) 配線基板
US7932471B2 (en) Capacitor for incorporation in wiring board, wiring board, method of manufacturing wiring board, and ceramic chip for embedment
US7808799B2 (en) Wiring board
US7889509B2 (en) Ceramic capacitor
JP5042049B2 (ja) コンデンサ、配線基板
JP4954824B2 (ja) 部品内蔵配線基板、配線基板内蔵用コンデンサ
JP4954765B2 (ja) 配線基板の製造方法
JP5179856B2 (ja) 配線基板内蔵用部品及びその製造方法、配線基板
JP5020671B2 (ja) コンデンサ内蔵配線基板
JP5078759B2 (ja) 配線基板内蔵用電子部品及び配線基板
JP5202878B2 (ja) 配線基板
JP4907273B2 (ja) 配線基板
TW201536130A (zh) 內建零件的配線基板及其製造方法
JP2007318089A (ja) 配線基板
JP5192865B2 (ja) 部品内蔵配線基板の製造方法
JP5192864B2 (ja) 部品内蔵配線基板の製造方法
JP4814129B2 (ja) 部品内蔵配線基板、配線基板内蔵用部品
JP4795860B2 (ja) コンデンサ、配線基板
JP2008244029A (ja) 部品内蔵配線基板、配線基板内蔵用部品
JP2009147177A (ja) 配線基板内蔵用コンデンサ及び配線基板
JP4795861B2 (ja) コンデンサ、配線基板
JP4668822B2 (ja) 配線基板の製造方法
JP4880485B2 (ja) コンデンサ、配線基板
JP5122846B2 (ja) コンデンサ内蔵配線基板
JP4705867B2 (ja) 配線基板の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090319

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110308

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110429

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110705

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110728

R150 Certificate of patent or registration of utility model

Ref document number: 4795861

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140805

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140805

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250