JP4699882B2 - 電圧−パルス変換回路及び充電制御システム - Google Patents

電圧−パルス変換回路及び充電制御システム Download PDF

Info

Publication number
JP4699882B2
JP4699882B2 JP2005336932A JP2005336932A JP4699882B2 JP 4699882 B2 JP4699882 B2 JP 4699882B2 JP 2005336932 A JP2005336932 A JP 2005336932A JP 2005336932 A JP2005336932 A JP 2005336932A JP 4699882 B2 JP4699882 B2 JP 4699882B2
Authority
JP
Japan
Prior art keywords
voltage
output
integrator
terminal
pulse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005336932A
Other languages
English (en)
Other versions
JP2007139700A (ja
Inventor
晃二 横澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Electronics Corp
Original Assignee
Renesas Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Electronics Corp filed Critical Renesas Electronics Corp
Priority to JP2005336932A priority Critical patent/JP4699882B2/ja
Priority to US11/561,582 priority patent/US7750612B2/en
Publication of JP2007139700A publication Critical patent/JP2007139700A/ja
Application granted granted Critical
Publication of JP4699882B2 publication Critical patent/JP4699882B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K7/00Modulating pulses with a continuously-variable modulating signal
    • H03K7/06Frequency or rate modulation, i.e. PFM or PRM
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/02Generators characterised by the type of circuit or by the means used for producing pulses
    • H03K3/023Generators characterised by the type of circuit or by the means used for producing pulses by the use of differential amplifiers or comparators, with internal or external positive feedback
    • H03K3/0231Astable circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Measurement Of Current Or Voltage (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Dc-Dc Converters (AREA)

Description

本発明は、積分器を使用し、電圧をパルス信号に変換する電圧−パルス変換回路及びこれを搭載した及び充電制御システムに関する。
リチウム電池などの二次電池は、デジタルカメラやノートPCなどに使用され、バッテリによる使用時間を少しでも長くするためバッテリ残量の正確な管理が要求される。このため、一般には、バッテリと共にバッテリ残量を管理する充電管理システムを備える。このような充電管理システムにおいては、例えば複数の二次電池を直列に接続してなる充電池の両端に充電器が接続される。充電池の−端子側には充放電の電流を検出する電流検出抵抗(センス抵抗)が接続され、このセンス抵抗により充放電の電流を電圧に変換する。センス抵抗の両端には、この変換された電圧を入力とする電流積算部(クーロンカウンタ又は電流流量測定器ともいう。)が接続される。
充電池は、充電器が接続されると(充電時)、+端子から二次電池及びセンス抵抗へ電流が流れ込む。一方、充電池に充電器が接続されていない状態(放電時)では、二次電池から電流が流出する。
すなわち、充電か放電かによりセンス抵抗に流れる電流が逆方向になり、センス抵抗の充電池側をCS+端子、他端をセンス抵抗のCS−端子とすると、CS+端子は、充電時はプラス、放電時はマイナスとなる。CS+端子に発生する電圧は数十mV程度である。
上記クーロンカウンタには、ADコンバータ又は電圧周波数変換回路(V-Fコンバータ)などが使用される。ここで、V-Fコンバータは、センス抵抗の検出電圧を周波数パルスに変換し、このパルスをカウンタで積算することにより単位時間あたりのカウント数から電流積分値を得る。この方法では、カウンタ以外がアナログ回路であり、連続的に電流を積分していくため、ADコンバータ方式より、電流変換が大きくても正確に積分ができること、及びダイナミックレンジが広く取れること等の利点がある。
充電池の残留管理においては、このクーロンカウンタ(以下、V-Fコンバータという。)により、充放電電流の履歴を測定することで、現在の充電池の残留状態を知ることができる。
ここで、充電池(バッテリ)の充放電を監視することを目的としたクーロンカウンタを上記V-Fコンバータで構成しようとした場合には、バッテリと直列に接続されたセンス抵抗の両端に発生する電圧を積分器を用いてパルス信号に変換し、そのパルス数をカウントする。カウント値に応じて現在の充電量又は放電量を算出することができる。そして同時に、V-Fコンバータへの入力電圧の正負によって充電か放電かを判断する必要がある。ただし、単純にV-Fコンバータを構成しただけでは入力電圧の正負の判断は難しく、電圧の正負を判断するためのコンパレータ及び電荷ポンプを追加した回路とする必要がある。なお、このパルス及び充電か放電かの判断により、パルス1クロック分で何ミリクーロンの電荷が充電又は放電されたかを算出することができ、このパルスのカウント値に応じて充電池の現在の残留量を算出することができる。
このような回路例として、充電式電池への充電電流及び充電式電池からの放電電流を監視する充電式電池モニタとして使用される電圧−周波数変換器(V-F変換器)が特許文献1に記載されている。
図6は、特許文献1に記載の電圧−周波数変換器を示すブロック図である。また、図7はその動作波形を示す。V-F変換器224において、電池の−端子はセンス抵抗RSを通してシステムの接地220に接続される。センス抵抗RSの電池側端子(CS+端子)には電池が接続され、電池の充電時には、CS+端子からCS−端子の方向へセンス抵抗RSに電流が流れ、放電時にはCS−端子からCS+端子の方向へセンス抵抗RSに電流が流れる。センス抵抗RSの両端間の電圧は、V-F変換器224に対する入力電圧となる。
このV-F変換器224は、積分器と、積分器の出力を比較するコンパレータ228、230と、インタリーブされた双方向電化ポンプ238とを有する。積分器は、抵抗Rint、例えば36pFの容量を有するコンデンサCint及び差動増幅器226からなる。この積分器の出力電圧(ノード222の電圧)VINTは、CS+端子からの入力電圧Vcs+が正の場合(CS+端子がCS−端子に対して正の場合)は、負の傾き、すなわち図7において右下がりとなり、入力端子CS−からの入力電圧Vcs+が負の場合(CS+端子がCS−端子に対して負の場合)は、正の傾き、すなわち図7において右上がりとなる。
電荷ポンプ238は、例えば容量12pFの電荷ポンピング・コンデンサCP1、CP2を備え、電荷パルスCHG又はDSGにより、ノード240に対する電荷のポンピング方向を反転する。すなわち、充電時には、電荷パルスCHGが供給されるタイミングで電荷ポンピング・コンデンサCP1、CP2を交互に使用してノード240から積分器の出力電圧の約2/3Vに等しい電荷を抜き取る。一方、放電時には、電荷ポンピング・コンデンサCP1、CP2が比較電圧VREFにより充電され、電荷パルスDSGが供給されるタイミングで交互に電荷をノード240に供給する。
すなわち、V-F変換回路224は、積分器のCS+端子に正の電圧が入力されている場合(充電時)には、コンパレータ230が積分器の出力VINTと比較電圧1Vとを比較し、1Vに一致したタイミングで電荷パルスCHGを出力する。このタイミングでノード240の電荷が抜き取られ、これにより、積分器の出力VINT(ノード222)をプラス側に戻し、再び積分器の出力VINTを負の傾きとしている。
また、積分器の入力CS+に負の電圧が入力されている場合(放電時)には、コンパレータ228が積分器の出力VINTと比較電圧2Vとを比較し、2Vに一致したタイミングで電荷パルスDSGを出力する。このタイミングでノード240に電荷が供給され、積分器の出力VINT(ノード222)をマイナス側に戻し、再び積分器の出力VINTを負の傾きとしている。
バッテリ監視用のクーロンカウンタ(電流流量測定器)を構成しようとした場合、センス抵抗RSに発生する電圧が充電か放電かで逆転するため、積分器を用いた電圧−周波数変換器で電流流量をカウントする場合には、周波数と同時に充電か放電かを明確にする必要がある。この特許文献1に記載のV−F変換器では、コンパレータ228の出力(電荷パルスDSG)を示す放電クロック、コンパレータ230の出力(電荷パルスCHG)を充電を示す充電クロックとして使用している。
特表2001‐520391号公報
しかしながら、この特許文献1に記載の方法では、コンパレータ228、230から電荷パルスが出力される度に、電荷ポンプ238のCp1又はCp2で電荷を供給又は抜き取る必要がある。このCp1、Cp2は、V-F変換器の本来の積分スピードを決定する容量Cintとは異なる、余分な容量であるため、集積回路とするにはチップサイズが大きくなりコストアップとなってしまうという問題点がある。
またコンパレータ228、230からの電荷パルスCHG、DSGが出力される毎に電荷ポンプ238のCp1又はCp2を充放電してノード240に電荷を供給したり抜き取ったりする必要があり、消費電流が多くなってしまうという問題点もある。
上述した問題点を解決すべく、本発明にかかる電圧−パルス変換回路は、第1の入力端子と第2の入力端子との間に生じる電位差を入力電圧とし、これをパルスに変換する電圧−パルス変換回路であって、正及び負の入力を有する積分器と、前記第1及び第2の入力端子と前記積分器の前記正及び負の入力との接続を切替える入力切替部と、第1の検出電圧と前記積分器の出力電圧とを比較する第1の比較器及び前記第1の検出電圧とは異なる第2の検出電圧と前記出力電圧とを比較する第2の比較器と、前記第1及び第2の比較器の比較結果に基づき、前記第1の端子が前記第2の端子より高電位か否かを示す充放電フラグを出力するフラグ出力部と、前記第1及び第2の比較器の比較結果に基づき、前記第1及び第2の端子間に生じる電圧に応じた周波数の出力信号を出力するクロック出力部とを有し、前記入力切替部は、前記充放電フラグ及び前記出力信号に基づき前記第1の端子及び前記第2の端子の、前記積分器の正又は負の入力端子との接続を切替えるものである。
本発明においては、前記第1の端子及び前記第2の端子の、前記積分器の正又は負の入力端子との接続を切替える入力切替部を有するので、前記第1及び第2の比較器の比較結果に基づき前記接続を切り替えることができ、このことにより充電又は放電に応じて積分器の出力の傾きを変更させ、充電又は放電に応じたパルスを生成することができる。
本発明にかかる充電制御システムは充電池に接続された抵抗に生じ電位差を入力電圧とし、これをパルスに変換する電圧−パルス変換回路と、前記パルスのカウント値に応じて前記充電池の充電を制御する充電制御部とを有し、前記電圧−パルス変換回路は、正及び負の入力を有する積分器と、前記第1及び第2の入力端子と前記積分器の前記正及び負の入力との接続を切替える入力切替部と、第1の検出電圧と前記積分器の出力電圧とを比較する第1の比較器及び前記第1の検出電圧とは異なる第2の検出電圧と前記出力電圧とを比較する第2の比較器と、前記第1及び第2の比較器の比較結果に基づき、前記第1の端子が前記第2の端子より高電位か否かを示す充放電フラグを出力するフラグ出力部と、前記第1及び第2の比較器の比較結果に基づき、前記第1及び第2の端子間に生じる電圧に応じた周波数の出力信号を出力するクロック出力部とを有し、前記入力切替部は、前記充放電フラグ及び前記出力信号に基づき前記第1の端子及び前記第2の端子の、前記積分器の正又は負の入力端子との接続を切替えるものである。
本発明によれば、回路規模を縮小させると共に消費電力を削減させることができる電圧−パルス変換回路及びこれを搭載した充電制御システムを提供することができる。
以下、本発明を適用した具体的な実施の形態について、図面を参照しながら詳細に説明する。本実施の形態にかかる電圧−パルス変換回路(V-Fコンバータ)は、CS+端子の電圧の正負が逆になると積分器の出力電圧の傾きも逆になることから、積分器の出力に接続されている2つのコンパレータの内いずれか一方が2回連続出力することを利用して充放電フラグ信号を生成する。そして、センス抵抗の両端の端子であるCS+端子及びCS−端子に接続される電圧−周波数変換器への接続関係を入れ替え可能な入力切替回路を設け、この制御に上記充放電フラグ信号を利用することで、CS+端子電圧の正負の判断が可能な電圧−パルス変換回路を実現する。
実施の形態1.
図1は、本発明の実施の形態1にかかる電圧−パルス変換回路を示すブロック図であり、図2及び図3は、その動作波形の一例を示す図である。また、図4は、本実施の形態にかかる電圧−パルス変換回路100の状態遷移を説明する図である。
図1に示すように、電圧−パルス変換回路100は、入力切替回路4、電圧誘導部としての積分器出力誘導部5、積分器8、第1,第2コンパレータ12,13(ウィンドウコンパレータ)、RSラッチ回路14、第1,第2積分器出力エラー検出回路16,19、第1,第2コンパレータ連続出力判定回路17,18、及び、フラグ出力部としてのフリップフロップFF23を有している。
入力切替回路4は、電流センス抵抗(RS)3の一方の端子(CS+端子)1及び他方の端子(CS−端子)3と、積分器8の2つの入力との間に接続されている。電流センス抵抗3は、そのCS+端子1が例えば充電池(不図示)の−端子側と接続され、充電池に流れ込む又は充電池から流れ出す電流を検出する電流検出抵抗である。また、電流センス抵抗3のCS−端子2は、通常接地に接続される。そして、例えば、充電池の+端子が充電器(不図示)の+端子と接続され、充電池の−端子は、電流センス抵抗3を介して充電器の−端子と接続されることで、充電池の充電が行なわれる。すなわち、充電される場合には、電流センス抵抗3には、CS+端子1からCS−端子2へ充電電流が流れ、CS+端子1の電位は、CS−端子の電位より高電位、すなわちCS−端子に対して正の電位となる。一方、充電池が放電される場合には、電流センス抵抗3のCS−端子からCS+端子へ向かう、充電時と逆方向の電流が流れ、CS+端子の電位は、CS−端子の電位より低電位、すなわちCS−端子に対して負の電位となる。
この電圧−パルス変換回路100は、電流センス抵抗3に流れる充電又は放電時の電流を検知すると共に、センス抵抗RSの両端に現れる電圧を入力電圧とし、これをパルスに変換してクロック出力CKOUTから出力する。また、充電又は放電を示すフラグをフラグ出力FLAGから出力する。
入力切替回路4は、電圧を周波数に変換したクロック出力CKOUT、及び充電か放電かを示す充放電フラグFLAGに基づき生成される切替制御信号S1により、CS+端子1と積分器8の正又は負の入力とを接続し、CS−端子2と積分器8の正又は負の入力とを接続する。本例においては、切替制御信号S1がHIGHのとき、CS+端子1と積分器8の−端子とを抵抗9を介して接続し、CS−端子2と積分器8の+端子とを接続する。以下、この接続状態をA−セレクトともいう。また、切替制御信号S1がLOWのときは、CS−端子2と積分器8の−端子とを抵抗9を介して接続し、CS+端子1と積分器8の+端子とを接続する。以下、この接続状態をB−セレクトともいう。
積分器8は、差動増幅器11と、差動増幅器11の−端子(反転入力端子)に一端が接続された抵抗9と、差動増幅器11の出力とその−端子との間に接続された容量10とから構成される。抵抗9の他端及び差動増幅器11の+端子(非反転入力端子)は、入力切替回路4により、CS+端子1又はCS−端子2と接続される。
第1コンパレータ12は、その+端子が例えば2Vの第2の検出電位とされ、その−端子と積分器8の出力とが接続され、積分器8の出力が検出電位(2V)を超えたときにHIGHとなる検出信号(CMP−H)を出力する。また、第2コンパレータ13は、その−端子が例えば1Vの第1の検出電圧とされ、その+端子が積分器8の出力と接続され、積分器8の出力が検出電位(1V)を下回った場合にHIGHとなる検出信号(CMP−L)を出力する。
RSラッチ回路14は、2つのNOR回路15a,15bを有する。NOR回路15aの一方の入力は第1コンパレータ12の出力と接続され、他方の入力は、NOR回路15bの出力と接続されている。NOR回路15bの一方の入力は、NOR回路15aの出力と接続され、他方の入力は第2コンパレータ13の出力と接続されている。したがって、RSラッチ回路14は、第1コンパレータ12から検出信号(CMP−H)が出力されるとLOWを出力し、第2コンパレータ13から検出信号(CMP−L)が出力されるとHIGHを出力する。
第1コンパレータ12の出力は、第1積分器出力エラー検出回路16、及び第1、第2コンパレータ連続出力判定回路17、18にも供給される。また、第2コンパレータ13の出力は、第2積分器出力エラー検出回路19、及び第1、第2コンパレータ連続出力判定回路17、18にも供給される。
第1積分器出力エラー検出回路16の出力は、通常は、LOWレベルであるが、積分器8の出力が検出電圧(2V)以上の状態となって一定時間経過した場合にエラー検出パルスE−Hを出力する。第2積分器エラー検出回路19の出力は、通常は、LOWレベルであるが、積分器8の出力が検出電圧(1V)以下の状態となって一定時間経過した場合にエラー検出パルスE−Lを出力する。
第1コンパレータ連続出力判定回路17は、上述のように、第1コンパレータ12の出力CMP−H及び第2コンパレータ13の出力CMP−Lが供給される。CMP−HとCMP−Lとが交互に供給される場合にはLOWレベルであるが、第1コンパレータ12の出力CMP−Hが連続して2回供給されると連続判定パルスJ−Hを出力する。
また、同じく第2コンパレータ連続出力判定回路18にも、上述のように、第1コンパレータ12の出力CMP−H及び第2コンパレータ13の出力CMP−Lが供給され、CMP−HとCMP−Lとが交互に供給される場合にはLOWレベルであるが、第2コンパレータ12の出力CMP−Lが連続して2回供給されると連続判定パルスJ−Lを出力する。
更に、本実施の形態にかかる電圧−パルス変換回路100は、第1積分器出力エラー検出回路16の出力(エラー検出パルスE−H)と第1コンパレータ連続出力判定回路17の出力(連続判定パルスJ−H)とが入力されるOR回路20を有し、OR回路20の出力は、積分器出力誘導部5の一方の入力に供給される。また、第2積分器出力エラー検出回路19の出力(エラー検出パルスE−L)と第2コンパレータ連続出力判定回路18の出力(連続判定パルスJ−L)とが入力されるOR回路22を有し、OR回路22の出力は積分器出力誘導部5の他方の入力に供給される。
積分器出力誘導部5は、入力切替回路4と積分器8の抵抗9の他端との間のノード6aに一端が接続され他端が基準電位Vref1とされたスイッチ6を有する。そして、OR回路20の出力OUT20に基づきスイッチ6をオンオフし、積分器8の出力を第2コンパレータの検出電位近傍まで誘導する。また、入力切替回路と積分器8の差動増幅器11の+端子との間のノード7aに一端が接続され他端が基準電位Vref2とされたスイッチ7を有する。そして、OR回路22の出力OUT22に基づきスイッチ7をオンオフし、積分器8の出力を第1コンパレータの検出電位近傍まで誘導する。この基準電位Vref1、Vref2は、電流センス抵抗3に生じる電位差の例えば50mV以上であればよく、例えば2.5Vなどである。
更に、電圧−パルス変換回路100は、第1,第2コンパレータ連続出力判定回路17,18の出力が入力され、FF23にその出力を入力するOR回路21を有する。FF23の出力は、充放電フラグFLAGとして出力されると共にEXOR回路25に供給される。
更にまた、電圧−パルス変換回路100は、RSラッチ回路14の出力を反転するインバータ回路(NOT回路)24を有し、このインバータ回路24の出力が充放電カウントパルスCKUOTとして出力されると共に、上記EXOR回路25に供給される。
EXOR回路25は、充放電フラグFLAG及び充放電カウントパルスCKOUTの排他的論理和を入力切替信号S1として入力切替回路4へ供給する。上述したように、入力切替回路4は、この入力切替信号S1に基づきCS+端子1、CS−端子とノード6a、7aとの接続を切り替え制御する。
この電圧−パルス変換回路100の動作においては、CS+端子1、CS−端子2と積分器8の入力端子との間に入力切替回路4が接続されているため、CS+端子1の電圧がCS−端子2の電圧に対して正(または負)の電圧であっても入力切替回路4によって積分器8の2つの入力に対するCS+端子1、CS−端子2との接続関係を入れ替えることができる。このため、積分器8の出力電圧の変化を負(または正)の傾きから正(または負)の傾きに変更することができる。
したがって、単純に電圧―周波数変換を行いたければ、コンパレータ12又はコンパレータ13のいずれか一方が検出信号CMP−H又はCMP−Lを出力したら入力切替回路4の入力を切替え、積分器8の出力電圧の傾きが逆になるようにすればよい。そして、時間の経過と共に他方のコンパレータが出力されたら再度、入力切替回路4の入力を元に戻し、積分器8の出力電圧の傾きも元に戻るよう制御すればよい。このように入力切替回路4を設けて積分器8に対するCS+端子1、CS−端子2の接続関係を入替えることができるため、従来のような電荷ポンプを不要とし、回路構成を簡略化することができる。
しかしながら、このような動作のみでは、CS+端子1の電圧がCS−端子2の電圧に対して正の電圧なのか負の電圧なのかが不明である。そこで本実施の形態においては、CS+端子1の電圧がCS−端子2に対して正であるのか負であるのかを判断するフラグ信号(充放電フラグFLAG)を生成する。これにより、CS+端子1が正であるのか負であるのか、すなわち、充電がされているのか、放電がされているのかを判断することができる。
次に、本実施の形態にかかる電圧−パルス変換回路100の動作について、図2乃至図4を参照して詳細に説明する。図2において、充放電状態遷移として示す[1]乃至[20]は、図4に示す状態遷移に示す[1]乃至[20]の状態に相当する。
まず図2に示す時刻T0からT1においては、充電FLAGがHIGHであり、充電中の動作を示している。この場合、積分器8の出力がどちらか一方のコンパレータ12、13の検出電圧に達して検出信号が出力されると同時に入力切替回路4の切替信号S1が反転する。これにより、積分器8の入力が反転し積分器8の出力電圧VINTの傾きが逆になる。こうして、コンパレータ12、13の出力が交互に出力されると同時に積分器8の出力電圧の傾きも右上がりと右下がりを繰り返すこととなる。
具体的には、本例においては、図4における[2]→[3]→[4]→[1]→[2]→・・の状態に遷移する。先ず、積分器8の出力が上昇していき[2]、2Vに達した時点で第1コンパレータ12から検出信号CMP−Hが出力される[3]。このとき、電圧−パルス変換回路100の出力である充放電カウントパルスCKOUTがLOWになり、入力切替信号S1がHIGHになる。これにより入力切替回路4は、CS+端子1とノード6aとを接続させ、CS−端子2とノード7aとを接続(Aセレクト)させる。これにより積分器の出力VINTは右下がりとなり[4]、1Vに達した時点で第2コンパレータ13から検出信号CMP−Lが出力される[1]。このとき、電圧−パルス変換回路100の出力である充放電カウントパルスCKOUTがHIGHになり、入力切替信号S1がLOWになる。これにより入力切替回路4は、CS−端子2とノード6aとを接続させ、CS+端子1とノード7aとを接続(Bセレクト)させる。充電時には、以下、同様の動作を繰り返す。
そして、時刻T1のタイミングでCS+端子1の電圧が正の電圧から負の電圧に変化する。すなわち充電状態から放電状態へ変化する。このため、積分器8の出力電圧の傾きが、T0〜T1までとは逆になり、それまで交互に出力していたコンパレータ12、13のうち一方が検出信号を2回連続して出力する。この2回連続出力したことをコンパレータ連続出力判定回路17、18で検出し、CS+端子1の電圧の極性及び積分器8の出力電圧VINTの傾きが変わったと判断し、積分器8の出力電圧VINTを他方のコンパレータの検出電圧付近まで誘導すると同時に充放電フラグFLAGを反転させ、且つ入力切替回路4の切替信号の位相を反転させる。こうして充放電状態を遷移させることで、CS+端子1の電圧が負の電圧であるT1〜T3においても、T0〜T1と同様にコンパレータ12、13の出力が交互に出力させることができる。また、CS+端子の極性が変わったことで充放電フラグFLAGがHIGHからLOWへ変化するため、CS+端子の極性も判断することができる。
具体的には、本例においては、積分器8の出力がそれまでは右下がりであったのが、時刻T1以降右上がりに変化する[18]。これにより、再び第1コンパレータ12が2Vを検出して検出信号CMP−Hを出力する[19]。同時に、第1コンパレータ12が2回連続して検出信号CMP−Hを出力したことを第1コンパレータ連続出力判定回路17で検出し、CS+端子1の電圧の極性及び積分器8の出力電圧VINTの傾きが変わったと判断する。そして、OR回路20の出力OUT20がLOWになり、積分器出力誘導部5のスイッチ6をONにする(pull on)。これにより、コンデンサ10に電荷が蓄積され、よって差動増幅器11の出力電圧が下がっていく。こうして、積分器8の出力電圧VINTを第2コンパレータの検出電圧(1V)付近まで誘導する。また、同時に充放電フラグFLAGを反転させLOWとし、これにより放電中であることを示す。なお、充放電フラグFLAGがLOWになるため、EXOR回路25の出力が反転し、入力切替回路4の入力切替信号S1の位相を反転させるが、OR回路20の出力OUT20がLOWの間はこの入力切替信号S1が入力切替回路4に供給されないようマスクされる。
次いで、積分器8の出力が第2コンパレータ13の検出電圧(V1)に達すると検出信号CMP−Lが出力され、充放電カウントパルスCKOUTがHIGHになり、OR回路20の出力OUT20がHIGHへ戻り積分器出力誘導部5のスイッチ6がOFFされる。OR回路20の出力OUT20がHIGHとなると、EXOR回路25の入力切替制御信号S1が再び入力切替回路4へ供給される。入力切替信号S1は、充放電カウントパルスCKOUTにより再びHIGHとなり、接続状態がAセレクトとされる(pull off)[20]([7])。
また、図2のT2〜T3は、T2でCS+端子1の電圧は負のままであるが電圧が変化したため積分器8の出力電圧の傾きが変わることを示している。CS+端子1に現れる電圧が更に低くなると積分器8の出力電圧VINTの傾きが急峻になり、これにより充放電カウントパルスCKOUTの周期が短くなる。
このT1〜T3までにおいては、充電FLAGがLOWであり、放電中の動作を示している。そして、図4における[8]→[5]→[6]→[7]→[8]→・・の状態遷移を繰り返す。すなわち、積分器8の出力VINTが右上がり[8]の状態から、積分器8の出力VINTが第1コンパレータ12の検出電圧(2V)に達した時点で第1コンパレータ12から検出信号CMP−Hが出力される[5]。このとき、電圧−パルス変換回路100の出力である充放電カウントパルスCKOUTがLOWになり、入力切替信号S1がLOWになる。これにより入力切替回路4は、接続状態をBセレクトとし、積分器の出力VINTは右下がりとなり[6]、1Vに達した時点で第2コンパレータ13から検出信号CMP−Lが出力される[7]。このとき、電圧−パルス変換回路100の出力である充放電カウントパルスCKOUTがHIGHになり、入力切替信号S1がHIGHになる。これにより入力切替回路4は、接続状態をAセレクトとする。放電時には、以下、同様の動作を繰り返す。
そして、図2におけるT3において、CS+端子1の電圧が負の電圧から正の電圧に変化し、再び充電が開始される。先ず、第2コンパレータ13が2回連続して検出信号CMP−Lを出力する。この場合も基本的には、上述と同様に積分器8の出力電圧VINTを第1コンパレータ12の検出電圧付近まで誘導すると同時に充放電フラグFLAGを反転させている。
具体的には、本例においては、積分器8の出力がそれまでは右上がりであった[8]のが、時刻T3以降右下がりに変化する[15]。これにより、第2コンパレータ13が1Vを検出して検出信号CMP−Lを連続出力する[16]。同時に、第2コンパレータ12が2回連続して検出信号CMP−Lを出力したことを第2コンパレータ連続出力判定回路18で検出し、CS+端子1の電圧の極性及び積分器8の出力電圧VINTの傾きが変わったと判断する。そして、OR回路22の出力OUT22がLOWになり、積分器出力誘導部5のスイッチ7をONにする(pull on)。これにより、積分器8の+端子が−端子より電圧が高くなり、よって差動増幅器11の出力電圧が上昇する。こうして、積分器8の出力電圧VINTを第1コンパレータの検出電圧(2V)付近まで誘導する。また、同時に充放電フラグFLAGが反転してHIGHとなる。なお、これによりEXOR回路25の出力が反転し、入力切替回路4の切替信号S1の位相を反転させるがOR回路22の出力OUT22がLOWの間はマスクされる。すなわち、入力切替回路4の接続状態がAセレクトのままとされる。
次いで、積分器8の出力VINTが第1コンパレータ12の検出電圧(V2)に達すると検出信号CMP−Hが出力され、充放電カウントパルスCKOUTがLOWになる。すると、OR回路22の出力OUT22がHIGHになり、積分器出力誘導部5のスイッチ7がOFFされる。そして、これにより、EXOR回路25の出力である入力切替信号S1が入力切替回路4へ供給される。(pull off)[17]([7])。
ここで、積分器8の出力電圧VINTが一定時間以上第1コンパレータ12の検出電圧以上であった場合は、積分器出力エラー検出回路16が異常と判断し積分器8の出力電圧VINTを第2コンパレータ13の検出電圧付近に誘導し、正常に動作するようにする。同様に積分器8の出力電圧が一定時間以上コンパレータ13の検出電圧以下であった場合は、積分器出力エラー検出回路19が異常と判断し積分器8の出力電圧をコンパレータ12の検出電圧付近に誘導し、正常に動作するようにする。このようなエラーは、たとえば電源投入時や、積分器11の出力にノイズが重畳された場合等に起こりうる。図3に積分器出力エラー検出回路19が異常と判断し、エラー検出パルスE−Lを出力する例を示す。
図3に示すT4〜T7は、CS+端子1が正で、充放電FLAGがHIGHである充電中の動作を示している。ここで、時刻T5において、積分器出力エラー検出回路19がエラー検出パルスE−Lを出力すると、同時にOR回路22の出力がHIGHになり、積分器出力誘導部5のスイッチ7をONにする。これにより、積分器8の出力を第2コンパレータ13の検出電圧付近に誘導する。そして、第2コンパレータ13が積分器8の出力電圧VINTがその検出電圧(1V)を超えると検出信号CMP−Lの出力を停止し、これにより積分器出力エラー検出回路19の出力はLOWになり、同時にOR回路22の出力OUT22もLOWになり、スイッチ7をOFFする。以降は、上述の充電中又は放電中の動作と同様な動作を繰り返す。
また、T7以降、充電から放電へ遷移し、〜T8の間は放電動作となる。そして、T8以降は再び放電から充電へ遷移し、充電動作を繰り返すこととなる。充電中の動作、放電中の動作、又は充放電の遷移方法は、上述と同様である。
本実施の形態においては、従来必要であったインタリーブされた電荷ポンプのCp1及びCp2のような容量を必要としないため、電圧−パルス変換回路を半導体集積回路で実現する際に大きな面積を必要とせず、且つ無駄なコンデンサの充放電を削減することができ、低消費電力化を図ることができる。
実施の形態2.
次に、本発明の実施の形態2にかかる電圧−パルス変換回路について説明する。図5は、本実施の形態にかかる電圧−パルス変換回路を示すブロック図である。なお、図5に示す本実施の形態においては、図1に示す実施の形態1と同一の構成要素には同一の符号を付してその詳細な説明は省略する。
図5に示すように、本実施の形態にかかる電圧−パルス変換回路130は、実施の形態1とは積分器出力誘導部の接続位置が異なる。すなわち、実施の形態1においては、積分器出力誘導部5を入力切替回路4と積分器8の2つの入力端子との間に接続してあったのに対し、本実施の形態においては、積分器8の出力に直接接続したものとなっている。
積分器出力誘導部35は、OR回路20の出力OUT20によりオンオフするスイッチ36と、OR回路22の出力OUT22によりオンオフするスイッチ37とが直列に接続してなる。スイッチ36とスイッチ37との接続点と積分器8の出力とが接続されている。スイッチ6の他端は接地に接続され、スイッチ37の他端は基準電位Vref3に接続されている。この基準電位Vref3は例えば電源電位VDDである。
このように構成された本実施の形態にかかる電圧−パルス変換回路130においても、上述の電圧−パルス変換回路100と同様の動作を実現することができる。
本実施の形態においては、上述の実施の形態1と同様の効果を奏する。すなわち、積分器8及びコンパレータ12、13以外は、ほとんど論理回路の構成だけでV−F変換出力(充放電カウントパルスCKOUT)と入力端子CS+の極性(充放電フラグFLAG)を得ることができるため、従来必要であった電荷ポンプの容量を必要とせず、小さい面積でかつ無駄な消費電力化を削減することができる電圧−パルス変換回路を実現することができる。
更に、本実施の形態においては、積分器8の出力に積分器出力誘導部5を接続したので、実施の形態1に比して充放電の切り替え時のスピードを速くすることができる。
その他の実施の形態.
図6は、本実施の形態にかかる充電制御システムを示す図である。本実施の形態は、上述の実施の形態1、2に示す電圧−パルス変換回路を、充電池の充放電を制御する充電制御システムに適用したものである。
図6に示すように、電流センス抵抗3のCS+端子1には、二次電池を直列してなる充電池101のマイナス端子に接続される。充電池101は、充電池101のプラス端子及びCS−端子を介して充電器104により充電されるものとする。充電制御システム110は、センス抵抗3のCS+端子1及びCS−端子2に接続される上述の電圧−パルス変換回路100と、カウンタ102及び充電制御部102とを有する。カウンタ102は、電圧−パルス変換回路100からの充放電フラグFLAG及び充放電カウントパルスCKOUTが供給され、充放電カウントパルスCKOUTのパルス数をカウントする。このカウンタ102は、例えば充放電フラグFLAGのHigh又はLowに応じてパルス数を個別にカウントするカウンタであってもよく、又はHigh又はLowに応じてカウント数をインクリメント又はデクリメントするようにしてもよい。なお、カウンタ102を電圧−パルス変換回路100の内部に設けるようにしてもよいことは勿論である。
充電制御部103は、カウンタ102のカウント結果に応じ、現在の充電池101の残留量を算出し、充電器104の充電を制御する。また、充電池101が満充電になった際には、カウンタ102のカウント値をリセットする。この充電制御部103は、充放電カウントパルスCKOUTが1カウントで何クーロンの充電又は放電がなされたのかを算出することができ、その演算結果に基づき、充電器104により充電池101の充電を行なわせたり、充電を止めたり等の制御・管理を行なう。また、過充電・過放電保護の処理や、これらの処理を行わない場合等においては、低消費電力モードに移行させるなどの処理を行ってもよい。
本実施の形態においては、従来必要であった電荷ポンプの容量を必要とせず、小さい面積でかつ無駄な消費電力化を削減することができる電圧−パルス変換回路を搭載することで、面積が小さく低消費電力の充電制御システムを提供することができる。
なお、本発明は上述した実施の形態のみに限定されるものではなく、本発明の要旨を逸脱しない範囲において種々の変更が可能であることは勿論である。
本発明の実施の形態1にかかる電圧−パルス変換回路を示すブロック図である。 本発明の実施の形態1にかかる電圧−パルス変換回路の動作波形の一例を示す図である。 同じく、本発明の実施の形態1にかかる電圧−パルス変換回路の動作波形の一例を示す図である。 本発明の実施の形態1にかかる電圧−パルス変換回路における充放電状態の状態遷移を説明する図である。 本発明の実施の形態2にかかる電圧−パルス変換回路を示すブロック図である。 本発明の実施の形態にかかる充電制御システムを示す図である。 特許文献1に記載の電圧−周波数変換器を示すブロック図である。 特許文献1に記載の電圧−周波数変換器の動作波形を示す図である。
符号の説明
2 CS−端子
3 電流センス抵抗
4 入力切替回路
5,35 積分器出力誘導部
6,7,36,37 スイッチ
6a,7b ノード
8 積分器
9 抵抗
10 容量
11 差動増幅器
12 第1コンパレータ
13 第2コンパレータ
14 ラッチ回路
15a,15b NOR回路
16,19 積分器出力エラー検出回路
17,18 コンパレータ連続出力判定回路
20,21,22 OR回路
24 インバータ回路
25 EXOR回路
40 ノード
100,130 電圧−パルス変換回路

Claims (12)

  1. 第1の入力端子と第2の入力端子との間に生じる電位差を入力電圧とし、これをパルスに変換する電圧−パルス変換回路であって、
    正及び負の入力を有する積分器と、
    前記第1及び第2の入力端子と前記積分器の前記正及び負の入力との接続を切替える入力切替部と、
    第1の検出電圧と前記積分器の出力電圧とを比較する第1の比較器及び前記第1の検出電圧とは異なる第2の検出電圧と前記出力電圧とを比較する第2の比較器と、
    前記第1及び第2の比較器の比較結果に基づき、前記第1の端子が前記第2の端子より高電位か否かを示す充放電フラグを出力するフラグ出力部と、
    前記第1及び第2の比較器の比較結果に基づき、前記第1及び第2の端子間に生じる電圧に応じた周波数の出力信号を出力するクロック出力部とを有し、
    前記入力切替部は、前記充放電フラグ及び前記出力信号に基づき前記第1の端子及び前記第2の端子の、前記積分器の正又は負の入力端子との接続を切替える、電圧−パルス変換回路。
  2. 前記入力切替部は、前記第1及び第2の比較器のうちいずれか一方の比較器が検出電圧を検出すると、前記第1の端子及び前記第2の端子の、前記積分器の正又は負の入力端子との接続を切替える
    ことを特徴とする請求項1記載の電圧−パルス変換回路。
  3. 前記積分器の出力電圧を前記第1又は第2の検出電圧近傍まで誘導する電圧誘導部を有する
    ことを特徴とする請求項1又は2記載の電圧−パルス変換回路。
  4. 前記電圧誘導部は、前記第1及び第2の比較器のうちいずれか一方の比較器が連続して検出電圧を検出すると、前記積分器の出力電圧を他方の比較器の検出電圧付近まで誘導する
    ことを特徴とする請求項3記載の電圧−パルス変換回路。
  5. 前記電圧誘導部は、前記入力切替部と前記積分器との間に設けられる
    ことを特徴とする請求項3又は4に記載の電圧−パルス変換回路。
  6. 前記電圧誘導部は、前記積分器の出力に接続される
    ことを特徴とする請求項3又は4に記載の電圧−パルス変換回路。
  7. 前記第1及び第2の比較器のそれぞれの比較結果に基づきそれぞれ第1及び第2の連続検出信号を出力するそれぞれ第1及び第2の連続出力判定回路を有し、
    前記電圧誘導部は、第1の電位に接続された第1のスイッチと、第2の電位に接続された第2のスイッチとを有し、
    前記第1及び第2のスイッチは、前記積分器のそれぞれ負及び正の入力端子側に接続され、それぞれ前記第1及び第2の連続検出信号に基づきオンオフが制御される
    ことを特徴とする請求項乃至5のいずれか1項記載の電圧−パルス変換回路。
  8. 前記電圧誘導部は、前記第1の電位より低い電位に接続された第3のスイッチと、前記第2の電位より高い電位に接続された第4のスイッチとを有し、
    前記第3及び第4のスイッチは、前記積分器の出力に接続され、それぞれ前記第1及び第2の連続検出信号に基づきオンオフが制御される
    ことを特徴とする請求項7記載の電圧−パルス変換回路。
  9. 前記積分器の出力電圧が、一定時間以上、前記第2の検出電圧より高い電圧である場合に、積分器出力エラー信号を生成するエラー検出回路と、
    前記積分器出力エラー信号により前記積分器の出力電圧を前記第2の検出電圧より低い電位に誘導する電圧誘導部を有する
    ことを特徴とする請求項1又は2記載の電圧−パルス変換回路。
  10. 前記積分器の出力電圧が、一定時間以上、前記第1の検出電圧より低い電圧である場合に、積分器出力エラー信号を生成するエラー検出回路と、
    前記積分器出力エラー信号により前記積分器の出力電圧を前記第1の検出電圧より高い電位に誘導する電圧誘導部を有する
    ことを特徴とする請求項1又は2記載の電圧−パルス変換回路。
  11. 充電池に接続された抵抗に生じ電位差を入力電圧とし、これをパルスに変換する電圧−パルス変換回路と、
    前記パルスのカウント値に応じて前記充電池の充電を制御する充電制御部とを有し、
    前記電圧−パルス変換回路は、
    正及び負の入力を有する積分器と、
    前記第1及び第2の入力端子と前記積分器の前記正及び負の入力との接続を切替える入力切替部と、
    第1の検出電圧と前記積分器の出力電圧とを比較する第1の比較器及び前記第1の検出電圧とは異なる第2の検出電圧と前記出力電圧とを比較する第2の比較器と、
    前記第1及び第2の比較器の比較結果に基づき、前記第1の端子が前記第2の端子より高電位か否かを示す充放電フラグを出力するフラグ出力部と、
    前記第1及び第2の比較器の比較結果に基づき、前記第1及び第2の端子間に生じる電圧に応じた周波数の出力信号を出力するクロック出力部とを有し、
    前記入力切替部は、前記充放電フラグ及び前記出力信号に基づき前記第1の端子及び前記第2の端子の、前記積分器の正又は負の入力端子との接続を切替える、充電制御システム。
  12. 前記電圧−パルス変換回路から出力されるパルスをカウントするカウンタを有し、
    前記充電制御部は、前記カウンタのカウント値に応じて前記充電を制御する
    ことを特徴とする請求項11記載の充電制御システム。
JP2005336932A 2005-11-22 2005-11-22 電圧−パルス変換回路及び充電制御システム Expired - Fee Related JP4699882B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005336932A JP4699882B2 (ja) 2005-11-22 2005-11-22 電圧−パルス変換回路及び充電制御システム
US11/561,582 US7750612B2 (en) 2005-11-22 2006-11-20 Voltage-pulse converting circuit and charge control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005336932A JP4699882B2 (ja) 2005-11-22 2005-11-22 電圧−パルス変換回路及び充電制御システム

Publications (2)

Publication Number Publication Date
JP2007139700A JP2007139700A (ja) 2007-06-07
JP4699882B2 true JP4699882B2 (ja) 2011-06-15

Family

ID=38052882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005336932A Expired - Fee Related JP4699882B2 (ja) 2005-11-22 2005-11-22 電圧−パルス変換回路及び充電制御システム

Country Status (2)

Country Link
US (1) US7750612B2 (ja)
JP (1) JP4699882B2 (ja)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009206839A (ja) * 2008-02-27 2009-09-10 Kyocera Corp 電子機器および電子機器における消費電流測定方法
JP5082952B2 (ja) * 2008-03-13 2012-11-28 セイコーエプソン株式会社 クーロンカウンタ、そのダイナミックレンジ可変方法
JP2010199798A (ja) 2009-02-24 2010-09-09 Renesas Electronics Corp アナログデジタル変換回路
JP2010199799A (ja) * 2009-02-24 2010-09-09 Renesas Electronics Corp アナログデジタル変換回路
JP5593849B2 (ja) * 2009-06-12 2014-09-24 日産自動車株式会社 組電池の監視装置
KR101025795B1 (ko) * 2009-12-30 2011-04-04 안현구 전하 릴레이 인핸서 및 인핸서를 구비한 태양전지 시스템
JP2011160288A (ja) * 2010-02-02 2011-08-18 Renesas Electronics Corp 積分回路
CN103222225A (zh) 2010-09-22 2013-07-24 Dba扩展波有限责任公司 合并独立定时校正的低功率无线电受控时钟
US8233582B2 (en) * 2010-12-03 2012-07-31 Linear Technology Corporation High dynamic range coulomb counter which simultaneously monitors multiple sense resistors
US20120169397A1 (en) * 2010-12-30 2012-07-05 Eliezer Oren E Mixed Signal Integrator Incorporating Extended Integration Duration
US8270465B1 (en) 2011-11-15 2012-09-18 Xw Llc Timing and time information extraction from a phase modulated signal in a radio controlled clock receiver
WO2013133931A1 (en) 2012-03-05 2013-09-12 Xw Llc Dba Xtendwave Multi-antenna receiver in a radio controlled clock
JP2013253841A (ja) * 2012-06-06 2013-12-19 Fuji Electric Co Ltd 電流検出回路
JP6494196B2 (ja) * 2014-07-09 2019-04-03 オリンパス株式会社 サンプリング回路
US9344107B1 (en) * 2015-06-12 2016-05-17 Commissariat A L'energie Atomique Continuous time ADC and filter
KR20170007927A (ko) * 2015-07-13 2017-01-23 에스케이하이닉스 주식회사 반도체장치 및 반도체시스템
JPWO2017110578A1 (ja) * 2015-12-25 2018-09-06 ローム株式会社 電流監視回路、クーロンカウンタ回路、それらを用いたバッテリ管理システムおよび自動車

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3311208B2 (ja) * 1995-07-21 2002-08-05 株式会社東芝 電圧/周波数変換器
WO1999019983A1 (en) 1997-10-15 1999-04-22 Maxim Integrated Products, Inc. Single supply voltage to frequency converter optimized for low voltage sensing above and below ground
JPH11344546A (ja) * 1998-03-31 1999-12-14 Hitachi Ltd 電流積算値検出装置及び電流検出装置及びそれらを用いた電池パック
US6497146B1 (en) * 2000-09-15 2002-12-24 Bei Technologies, Inc. Inertial rate sensor and method with built-in testing
US6510737B1 (en) * 2000-09-15 2003-01-28 Bei Technologies, Inc. Inertial rate sensor and method with improved tuning fork drive
US6509921B2 (en) * 2001-03-26 2003-01-21 Toshiba Tec Kabushiki Kaisha Light beam scanning apparatus with multiple sensors and patterns
US6639620B2 (en) * 2001-10-05 2003-10-28 Kabushiki Kaisha Toshiba Light beam scanning apparatus

Also Published As

Publication number Publication date
JP2007139700A (ja) 2007-06-07
US7750612B2 (en) 2010-07-06
US20070115037A1 (en) 2007-05-24

Similar Documents

Publication Publication Date Title
JP4699882B2 (ja) 電圧−パルス変換回路及び充電制御システム
KR101013696B1 (ko) 절연 저항 검출 장치
US7911185B2 (en) Battery voltage detection circuit
JP2013523080A (ja) 圧電振動ハーベスタから最大電力を抽出するためのコンバータ及び方法
US9766295B2 (en) Coulomb counting using analog-to-frequency conversion
US10732210B2 (en) Sensor and method of sensing a value of a parameter
CN100460880C (zh) 检测电容变化的方法和集成电路
CN101398670A (zh) 对具有积分响应的系统的基于时间的控制
CN111900782B (zh) 充电控制电路、充电芯片及充电设备
US7336213B2 (en) Polarity independent precision measurement of an input voltage signal
KR100551656B1 (ko) 전지 충방전 감시용 회로, 및 전지 충방전 감시 방법
JP2018157648A (ja) Ac/dcコンバータの制御回路
JP5082952B2 (ja) クーロンカウンタ、そのダイナミックレンジ可変方法
US8258798B2 (en) On chip duty cycle measurement module
JP2013110943A (ja) Dc/dcコンバータ
JP5752086B2 (ja) 二次電池監視装置
JP2005233626A (ja) 車輪速検出装置
JP2009229165A (ja) クーロンカウンタ、その内部電源制御方法
JP7530783B2 (ja) パワーグッド回路
CN101867369B (zh) 相位检测模块及相位检测方法
JP2009222628A (ja) クーロンカウンタ、その内部電源生成方法及びそれに適用される内部電源制御方法
CN114362679A (zh) 一种集成电路中降低振荡器功耗的方法、电路以及装置
CN115494278A (zh) 工作时段定时检测器、包括其的设备及操作设备的方法
JP2012163458A (ja) クーロンカウンタおよび電子情報機器
JPH0794942A (ja) 基準クロック信号生成回路

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081016

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101012

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110303

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees