JP4695341B2 - 燃料改質システム - Google Patents

燃料改質システム Download PDF

Info

Publication number
JP4695341B2
JP4695341B2 JP2004101354A JP2004101354A JP4695341B2 JP 4695341 B2 JP4695341 B2 JP 4695341B2 JP 2004101354 A JP2004101354 A JP 2004101354A JP 2004101354 A JP2004101354 A JP 2004101354A JP 4695341 B2 JP4695341 B2 JP 4695341B2
Authority
JP
Japan
Prior art keywords
fuel
water
reforming
ejector
partial oxidation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004101354A
Other languages
English (en)
Other versions
JP2005285693A (ja
Inventor
元久 上條
博通 三輪
ルーベラ ルーク
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2004101354A priority Critical patent/JP4695341B2/ja
Publication of JP2005285693A publication Critical patent/JP2005285693A/ja
Application granted granted Critical
Publication of JP4695341B2 publication Critical patent/JP4695341B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Fuel Cell (AREA)

Description

本発明は、燃料改質システムに関する。特に、水蒸気改質反応を主反応とする燃料改質システムに関する。
従来、炭化水素化合物を改質して水素リッチな燃料ガスを生成するシステムが提案されている。このようなシステムでは、改質時における炭素析出を回避するため、部分酸化部において高温下で部分酸化を行い、その後、改質部において水蒸気改質を行っている。改質反応で生じた水素は水素分離膜を利用して分離する。分離部にパージガスとして水蒸気を供給することにより水素分圧を下げ、水素の分離効率を向上する。改質用水蒸気、パージ用水蒸気を、部分酸化部から排出される高温の生成ガスと水との熱交換によって生成する。または、その他の高温部との熱交換、排気されるべき可燃性ガスの燃焼熱を利用して水蒸気を生成する。こうすることにより廃熱・廃棄物を有効活用して水蒸気を生成している(例えば、特許文献1、参照。)。
特開2001−223017号公報
しかしながら、上記従来技術においては、改質部に導入される燃料蒸気および水蒸気、または改質中の混合気を十分に加熱する手段が備えられていないことから、空気を多く導入し、部分酸化反応で発熱する必要がある。
部分酸化反応を生じることで燃料を加熱し、水蒸気改質反応を生じるATR反応では、室温の改質燃料と炭素生成回避または反応場のCO低減のために必要なH2Oを、空気と改質燃料の部分酸化反応により800℃付近まで昇温させる必要がある。そのため、燃料中のCとほぼ等モルのO原子相当量の空気を導入する必要がある。しかしながら、水蒸気改質反応に比較して部分酸化反応は効率が悪く、部分酸化反応を多く生じることにより、生成される水素量が低減されるという問題が生じる。
これに対して、改質排ガスのエンタルピを改質入口流体へ回収することで、導入酸素を減らすことができる。しかしながら、ATR反応器は、入口温度より出口温度の方が高くなる改質反応場を持つシステムであるために、改質排ガスから回収できるエンタルピを用いることで、反応場が高温になりすぎてしまうという問題がある。そのため、余剰熱量はシステムに回収することができず、全体の効率が低下してしまう。
そこで本発明は、上記問題を鑑みて、システム効率を向上させた燃料改質システムを提供することを目的とする。
本発明は、外部からの熱供給により水蒸気改質反応を生じる水蒸気改質部と、前記水蒸気改質部の上流に配置された部分酸化部と、前記部分酸化部に酸化剤ガスを供給する酸化剤ガス供給手段をと、を備える。また、前記水蒸気改質部における水蒸気改質反応に用いる水蒸気を供給する水蒸気供給手段と、前記部分酸化部、前記水蒸気改質部における部分酸化反応および水蒸気改質反応に用いる燃料を前記部分酸化部に供給する燃料供給手段と、を備え、前記部分酸化部には、燃料を燃料中の重炭化水素を分解する温度にするために必要な量の酸化剤ガスを供給する。
水蒸気改質部で外部からの熱供給により水蒸気改質反応を行うとともに、水蒸気改質部に導入する以前に、部分酸化部において燃料を燃料中の重炭化水素を分解する温度まで上昇させる。これにより、ATR(Autothermal reforming)反応に比較して、部分酸化反応を抑制して水蒸気改質反応を促進することができるので、システムの効率を向上することができる。また、水蒸気改質反応に比較して、外部からの供給熱量を抑えることができるとともに、水蒸気改質部導入後、速やかに反応を開始することができる。
第1の実施形態について説明する。燃料改質システム1における反応として、以下のようなものが知られている。
部分酸化反応: CnHm+n/2O2→nCO+m/2H2 ・・・ (1)
水蒸気改質反応: CnHm+nH2O→nCO+(n+m)/2H2 ・・・ (2)
シフト反応: CO+H2O→H2+CO2 ・・・ (3)
炭化水素化合物(以下、HC)全てが部分酸化反応し、生成したCOが全てシフト反応を起こすとすると、m×3/2の水素が生成する。これに対して、HCが全て水蒸気改質反応し、生成したCOが全てシフト反応を起こすとすると、m×5/2の水素が生成する。つまり、部分酸化反応より水蒸気改質反応のほうが高効率であることが分かる。
しかしながら、水蒸気改質反応の場合、反応場の温度を400℃〜800℃、ガソリン燃料の場合、好ましくは600℃〜800℃とする必要がある。また水蒸気反応を主反応とする場合、入口(反応開始位置付近)の温度を600℃〜800℃として、水蒸気改質反応(吸熱反応)による反応場の温度降下が生じても、出口温度400℃以上を維持しなければならない。
そこで、外部(バーナ44)から熱を供給するとともに、予め部分酸化反応部(CPOX:Catalytic Partial Oxidation 部の通称)41に導入して、燃料を所定温度まで上昇させてから水蒸気改質部43に導入する。さらに、CPOX41に導入する酸化剤ガスまたは燃料を予め改質排ガスを用いて加熱することにより、酸化剤ガス導入量を抑えて部分酸化反応を低減し、水蒸気改質反応を増大する。燃料電池システムの構成を図1に示す。
以下はH2透過メンブレン式水蒸気改質反応システムの例であるが、メンブレンを組み合わせていない水蒸気改質反応システムに対しても同様に、水蒸気改質をメインとしたシステムに部分酸化反応を利用した本燃料改質システム1を構成することが可能である。
燃料改質システム1を、大きくエゼクタシステム2(図2)、流体調整装置3(図3)、改質サブシステム4(図4)より構成する。
エゼクタシステム2では、燃料改質に用いる水を駆動流体として用いることで酸化剤ガスを加圧する。エゼクタシステム2として、水と酸化剤ガスを分離する水トラップ21を備える。なお、水トラップ21の換わりに相分離器等をもちいてもよい。また、後述する流体調整装置3で改質排ガスから分離された水と図示しない水凝縮装置で凝縮された水を水トラップ21に供給する水ポンプ22を備える。図示しない水凝縮装置としては、例えば、図示しない燃料電池の排ガスから水を分離・回収する装置を用いる。さらに、水を駆動流体として酸化剤ガスを吸引するエゼクタ23と、水トラップ21で分離された水を、後述する流体調整装置3に送る水ポンプ24を備える。水ポンプ24により吐出された水の一部が、エゼクタ23の入口に導入されるように構成する。
エゼクタ23では、水ポンプ24によって押し出された水の一部を駆動流体として、酸化剤ガスを吸引し、酸化剤ガスと水の混合気を生成する。この混合気を水トラップ21に導入し、再度水と酸化剤ガスに分離してから、水ポンプ24によって水を流体調整装置3に導入し、また、酸化剤ガスを後述する改質サブシステム4に導入する。このとき、後述するように改質反応場の圧力を調整するバルブ47により、エゼクタシステム2内の酸化剤ガスの圧力を調整する。酸化剤ガス圧力は、後述する改質反応場の圧力まで上昇される。例えば、後述するように1〜1.5MPaとする。これにより空気圧縮器等を省略することができ、システムの大型化を抑制することができる。
さらに、エゼクタ23の吸引部の上流側に酸化剤ガス導入手段25を備える。酸化剤ガスとして、図示しない燃料電池からのカソード排ガスを用いる場合には、バルブ等により酸化剤ガス吸引量を調整する。また、酸化剤ガスとして外気を用いる場合には、コンプレッサ等により流量を調整して導入する。
また、図1に示すように、改質燃料、ここではガソリンの流量を調整する噴射システム51を備える。図示しない燃料タンクから噴射システム51を用いて後述する流体調整装置3へ、流量を調整した液状の改質燃料を導入する。
次に、流体調整装置3について図3を用いて説明する。流体調整装置3では、改質燃料、H2Oを加熱する。なお、ここでは酸化剤ガスの加熱は行っていないが、酸化剤ガスとして外気等の比較的低温なガスを用いた場合には、後述する予熱器32または予熱器33により加熱するのが好ましい。
噴射システム51により導入された改質燃料、エゼクタシステム2から供給されたH2Oを蒸発する蒸発器31を備える。また、蒸発器31で生成された燃料蒸気をさらに加熱する予熱器32を備える。予熱器32は、後述するバーナ44の一部を熱源として燃料蒸気を加熱可能に構成する。ここでは、予熱器32をバーナ44の最上流端である第一バーナ部44aと熱交換可能に構成する。予熱器32で昇温された燃料蒸気に、前述したエゼクタシステム2で加圧された酸化剤ガスが混入され、後述する改質サブシステム4のCPOX41に導入される。また、蒸発器31で生成された水蒸気をさらに加熱する予熱器33を備える。予熱器33も、バーナ44の一部、ここでは最下流端である第三バーナ部44cを熱源として水蒸気を加熱可能に構成する。予熱器33で昇温された水蒸気は、後述する改質サブシステム4の水蒸気改質部43に導入するためにミキサ42へ供給される。
さらに、改質排ガス中の水を分離・回収する水凝縮器35を備える。水凝縮器35と蒸発器31を熱交換可能に構成する。水凝縮器35で凝縮に伴って生じる潜熱を用いて蒸発器31で蒸発を行う。水凝縮器35に導入される改質排ガスは高温高圧であるため、効率良く水が凝縮されるとともに、蒸発器31側へ多くの熱量が供給される。水凝縮器35で水を分離・回収された改質排ガスは、バルブ36を介して、バーナ44に供給される。一方、水凝縮器35で回収された水は、水ポンプ22により前述したエゼクタシステム2に導入される。
次に、改質サブシステム4について、図4を用いて説明する。
部分酸化反応を生じるCPOX41と、CPOX41において加圧された改質燃料に水蒸気を混入するミキサ42、水蒸気改質反応を生じる水蒸気改質部43を備える。水蒸気改質部43は、バーナ44と熱交換可能に構成する。バーナ44には、前述したように予熱器32、33と熱交換を行う第一バーナ部44a、第三バーナ部と、水蒸気改質部43と熱交換を行う第二バーナ部44bから構成する。第二バーナ部44bにおいて水蒸気改質部43を許容された所定の反応温度範囲に調整する。
バーナ44へは、酸化剤ガスとしてのカソード排ガスまたは外気と、水凝縮器35で水を分離・回収された改質排ガスを供給する。また、必要に応じてバルブ34を介して噴射システム51から噴射された液状燃料の一部をバーナ44に導入可能に構成する。バーナ44としては、例えば酸化触媒を用いる。
さらに、水蒸気改質部43で生成された水素を選択的に透過する水素分離膜45を備える。水素分離膜45を介して分離された水素は、図示しない燃料電池のアノードに導入され、発電反応に用いられる。
水蒸気改質部43を、図5に示すような積層構造により構成する。
触媒が担持され、改質燃料が導入される溝状の水蒸気改質触媒通路61が構成されたプレート62を備える。また、水素分離膜45を支持する支持体63と、水素分離膜45を透過した水素が流通する水素リッチガス通路64を備える。さらに、酸化触媒が担持された溝状の酸化触媒通路65を設けたプレート66(第二バーナ44b)を備える。水蒸気改質触媒通路61、水素分離膜支持体63、水素リッチガス通路64、水素分離膜支持体63、水蒸気改質触媒通と61、酸化触媒通路65の順番で積層されるように各部材を積層する。このとき、溝状の水蒸気改質触媒通路61の開口部が、水素分離膜45に対峙するように構成する。
水素透過量を確保するためには、水蒸気改質触媒通路61内を高圧に保つ必要がある。ここでは、水蒸気改質部43の下流に配置したバルブ47により水改質反応場の圧力を調整する。なお、バルブ47は、水凝縮器35のさらに下流側、例えばバーナ44の改質排ガス入口近傍に配置する。加圧レベルは水素分離膜45の透過性や設計サイズによって異なるが、通常は1〜1.5MPaとする。また、水素分離膜45の水素透過を促進するために、水素リッチガス通路64には水蒸気等のパージガスを流通させてもよい。
さらに、図4に示すように、水蒸気改質部43の下流側には、水素分離膜45を透過できなかったH2、CO、CH4、CO2、およびH2O等の改質排ガスを回収する排出マニホールド46を備える。改質排ガスは高温高圧の状態で、前述した水凝縮器35に導入される。
流体調整装置3において加熱された燃料蒸気に、加圧された酸化剤ガスが混入され、CPOX41に導入される。CPOX41において、(1)式に示す部分酸化反応が生じて水素が生成されるとともに、燃料蒸気の温度が上昇する。この部分酸化反応により燃料が水蒸気反応に必要な温度となるように、酸化剤ガス導入手段25により導入する酸化剤ガス量を調整する。ここでは、CPOX41における反応により燃料蒸気の温度が燃料中の重HCを分化する温度となるように酸化剤ガス量を設定する。このとき、燃料は予め改質排ガス中の水の潜熱を用いて蒸発器31において燃料蒸気に変換され、さらに改質排ガスの燃焼により予熱器32において加熱されている。そのため、CPOX41に導入された時点での燃料蒸気の温度は高く、燃料蒸気が、後流の水蒸気改質部43における反応に適した温度に昇温されるまでに必要とする熱量は抑制されている。言い換えれば、目標加熱温度到達のために導入される酸素量は、ATR反応における理論的な部分酸化に必要な酸素当量に比べて非常に少なくすることができる。具体的には、このとき導入される酸化剤ガス量としては、全体燃料中のCモル数に対して4%相当のモル数のO原子を含む酸化剤ガス量となる。
CPOX41で昇温された燃料蒸気に、ミキサ42において流体調整装置3において加熱された水蒸気を混入する。このとき、蒸発器31で生成された水蒸気も予熱器33でさらに加熱されているので、燃料蒸気を高温に維持することができる。これを水蒸気改質部43に導入することにより、(2)式の水蒸気改質反応、(3)式のシフト反応を生じ、燃料中のHC分解を促進し、水素リッチガスを生成する。
このように、流体調整装置3において予め燃料蒸気を加熱してから、部分酸化反応を生じることにより、目標温度に達するのに必要な部分酸化反応を抑制し、水蒸気改質反応を増大することができるので、効率のよいシステムを構成することができる。このとき、予め燃料蒸気を加熱する際には改質排ガスの有するエネルギを用いる。
次に、本実施形態の効果について説明する。
外部からの熱供給により水蒸気改質反応を生じる水蒸気改質部43と、水蒸気改質部43の上流に配置されたCPOX41を備える。また、CPOX41に酸化剤ガスを供給する酸化剤ガス導入手段25と、水蒸気改質部43における水蒸気改質反応に用いる水を供給する水ポンプ24と、CPOX41にCPOX41および水蒸気改質部43におけるそれぞれの反応に用いる燃料を供給する噴射システム51と、を備える。CPOX41には、燃料を所定の温度にするために必要な量の酸化剤ガスを供給する。
外部から熱供給されることにより、ATR反応に比較して部分酸化反応が低減され、システム効率を向上することができる。また、CPOX41での反応量が増えるとCOが生成されるが、CPOX41での反応量を抑えることでCOの生成量が抑制され、水蒸気改質部43でシフト反応(発熱)が起きても、加熱端面より出口温度を低くすることが可能となる。つまり、排気エネルギが過剰にならないので、さらにシステム効率が向上することができる。さらに、部分酸化反応により燃料温度を高めることにより、水蒸気改質部43を小型化することができる。また、一般的な水蒸気改質温度600℃〜800℃の温度を外部加熱で得るためには高温の熱源が必要となり、耐熱構造やバーナ加熱の場合NOx生成の問題があるが、ここではCPOX41内で燃料を直接加熱するので、熱伝達のための高温の熱源が必要なく、上記のような問題が生じない。
ここでは、所定の温度を、燃料中の重炭化水素を分解する温度とする。部分酸化反応により燃料を高温にすることで、水蒸気反応では改質困難なガソリン燃料などの一部に含まれる重HCを分解し、反応させることができる。全てのHCを改質可能であれば、効率の序列だけで、SR(水蒸気改質の効率)>CPOX+SR(本実施形態の効率)>ATR(ATR反応の効率)となるが、実際のSRは、改質できなかったHC(重HC)分だけ下がる。そのため、SR≒CPOX+SR>ATRとなり、水蒸気改質と同等の効率を保つことができる。なお、この序列は、水蒸気改質部43の重HC改質能力や燃料組成により変わることがある。
なお、重HCを水蒸気改質のみで改質する、もしくは、熱により、より小さいHCに分解することを想定した場合、一般的な水蒸気改質温度600℃〜800℃以上の温度、好ましくは850℃〜900℃の温度が必要である。外部加熱で850℃〜900℃の反応場温度を得る為には、熱伝達のために例えば950℃〜1000℃の熱源が必要となり、耐熱構造やバーナ加熱の場合NOxの問題が生じるが、本実施形態ではこれを解決できる。
また、水蒸気および燃料または酸化剤ガスの少なくとも一方を加熱する流体調整装置3を備える。CPOX41の上流側で、少なくとも一方が加熱された燃料および酸化剤ガスを導入し、CPOX41の下流側かつ水蒸気改質部43の上流側で、加熱された水蒸気を導入する。CPOX41の上流で燃料または酸化剤ガスの少なくとも一方を加熱するので、部分酸化反応により燃料を所定の温度まで上昇させるのに必要な酸化剤ガス量を低減することができる。また、水蒸気を加熱することで、水蒸気改質部43に供給されて直ちに水蒸気改質反応を開始することができる。また、CPOX41に水蒸気を供給しないので、燃料を容易に高温にでき、重HCの分解を促進できる。
燃料改質システム1は、燃料電池に導入する水素リッチガスを生成するシステムであって、CPOX41に供給される酸化剤ガスとして、燃料電池のカソード排ガスまたは外気のうち少なくとも一方を用いる。CPOX41に導入することで、CPOX41における部分酸化反応が可能となる。CPOX41へ導入する空気の温度上昇はカソード排ガスの方が若干上昇が鈍い(O/Cで0.04と微量)が、温度が外気導入の場合より高いので、カソード排ガスを用いることでCPOX41において所定の温度に加熱するための酸化剤ガスを減少できる。
また、水蒸気改質部43を、水素分離膜45と一体に構成し、生成された水素の一部を反応場から分離する。水素分離膜45と改質反応場を合わせて構成した場合、水素分離膜45を挟んだ水素分圧差を確保するために高圧での反応が必要である。そのため、例えば、システム内に空気を導入するコンプレッサ等が大型化してしまう。しかしながら、本実施形態においては導入する酸化剤ガス量を少なくすることができるため、高圧反応場へ導入する酸化剤ガス導入手段25としてコンプレッサを用いた場合にもその容量を抑えることが可能となる。さらに、水素分離膜45を透過しなかったCOリッチの改質ガスを、バーナ44に導入して発熱させ、その熱を水蒸気改質反応に用いることができ、高効率のパワープラントシステムとすることができる。また、燃料電池のアノードのストイキ比が、純水素を用いたときと同じ1付近となり、通常1.1〜1.3のストイキ比が必要となる水蒸気改質反応器に水素分離膜を組み合わせない改質反応器システムに対し、高効率のパワープラントシステムとすることができる。
また、水または燃料を駆動流体とするエゼクタシステム2を備える。酸化剤ガスの圧力を、エゼクタシステム2の利用により改質圧力まで上昇させる。これにより、空気圧縮器などを用いずに、空気を反応場圧力まで上昇させることができる。
エゼクタシステム2として、水または燃料を駆動流体とするエゼクタ23と、駆動流体をエゼクタ23に圧送するポンプ22と、を備える。エゼクタ23において酸化剤ガスを吸引することにより酸化剤ガスの圧力を上昇させる。ポンプ22は、燃料改質システム1の水蒸気発生に必要な水加圧ポンプとして用いることができ、システムの簡素化を図ることができる。
エゼクタ23の駆動流体として水を用い、エゼクタ23下流に水トラップ21もしくは相分離器を備える。水トラップ21もしくは相分離器において分離された酸化ガスをCPOX41に導入する。これにより、CPOX41への水の流入を防止することができるので、CPOX41において、水の気化と加熱に必要な酸化熱を発生するために消費される酸化剤ガスを低減することができる。このとき、エゼクタ23の駆動流体として、水トラップ21もしくは相分離器で分離された水を取出す水ポンプ24により圧送された水の一部を用いる。つまり、エゼクタ23の駆動流体である水を回収するように構成することで、駆動流体の流量範囲を任意に設定することができる。これにより、エゼクタ23の設計自由度が向上される。
改質反応場と略同じ圧力状態の改質排ガス中の水を回収する水凝縮器35を備える。水の凝縮熱を蒸発器31へ伝え、CPOX41への酸化ガスまたは燃料および水を加熱することで、所定の温度を確保するためのCPOX41への必要導入酸素量を抑制することが可能となる。これにより、部分酸化反応による効率悪化を最小限にし、かつ、エゼクタ23の容量を小さくすることができる。
水凝縮器35で生じる凝縮に伴う熱を用いて水または燃料の少なくとも一方を蒸発させる蒸発器31を備える。改質排ガスの熱を水蒸気生成のための潜熱および顕熱として回収することでき、CPOX41への必要導入酸素量を抑制できる。これにより、部分酸化反応による効率悪化を最小限にし、かつ、エゼクタ23の容量を小さくすることができる。
蒸発器31から供給される蒸気を予熱する予熱器32、33を備える。これにより、CPOX41および水蒸気改質部43上流を加熱することで、必要導入酸素量を抑制し、エゼクタ23の容量を小さくすることができる。
次に、第2の実施形態について説明する。図6に燃料改質システム1の構成を示す。ここでは、エゼクタシステム2における駆動流体として改質燃料を用いる。
図示しないガソリンタンクから液状改質燃料を取出す燃料ポンプ71と、取出した改質燃料を蒸発させる燃料蒸発器72、燃料蒸発器72で生成された燃料蒸気を駆動流体としてカソード排ガスまたは外気等の酸化剤ガスを吸引するエゼクタ73を備える。エゼクタ73から排出された高圧状態の燃料蒸気と酸化剤ガスの混合ガスを、流体調整装置3の予熱器33に導入して加熱してから、改質サブシステム4のCPOX41に導入する。このとき、燃料と酸化剤ガスの混合は、部分酸化反応で燃料を水蒸気改質反応に必要な所定温度まで上昇させる割合で混合する。また、バーナ部44cで、燃焼可能域を越えるような割合で、燃料および酸化剤ガスを混合する。ここでは、空気中でのガソリン体積濃度が8%をはるかに超える値とする。なお、燃焼可能域を、空気中でのガソリン体積濃度が0.5〜8%の領域とする。
また、流体調整装置3の水凝縮器35で回収された水や、図示しない燃料電池の排ガスから回収した水を貯蔵する水タンク81を備える。さらに、水タンク81に貯蔵された水を、流量調整して取出す水噴射システム82を備える。流量調整して取出された水は、蒸発器31に導入され、水蒸気が生成される。なお、蒸発器31の熱源は、第1の実施形態と同様に水凝縮器35で生じる潜熱とする。ここでは、潜熱により高温となった改質排ガスと水とを蒸発器31において熱交換可能に構成する。ただしこの限りではなく、第1の実施形態と同様に、水凝縮器35と蒸発器31とを熱交換可能に構成してもよい。このように生成された水蒸気は、予熱器33、32を介してミキサ42に導入され、燃料蒸気に混入される。なお、予熱が十分である場合には、第1の実施形態と同様に、水蒸気を予熱器32のみで予熱してもよい。
次に本実施形態の効果について説明する。以下、第1の実施形態と異なる効果のみを説明する。
エゼクタ73の駆動流体として燃料を用い、エゼクタ73から排出された酸化剤ガスと燃料の混合気をCPOX41に導入する。CPOX41に酸化剤ガスと燃料の混合気を分離せずにそのまま供給しても、そもそも混合気に水が含まれてないので、水の気化と加熱に必要な熱を発生に必要なCPOX41への酸化剤ガス導入量分を低減することができる。また、酸化剤ガスと燃料とを分離する装置、第1の実施形態では水トラップ21に相当する装置が不要となり、構成をシンプルにすることができる。
なお、本発明は、上記発明を実施するための最良の形態に限定されるわけではなく、特許請求の範囲に記載の技術思想の範囲内で、様々な変更を為し得ることはいうまでもない。
本発明は、燃料改質システム1に適用することができる。特に、水蒸気改質反応を主反応とする燃料改質システム1に適用することができる。
第1の実施形態に用いる燃料改質システムの概略構成図である。 第1の実施形態に用いるエゼクタシステムの構成図である。 第1の実施形態に用いる流体調整装置の構成図である。 第1の実施形態に用いる燃料改質サブシステムの構成図である。 第1の実施形態に用いる水蒸気改質触媒の構成図である。 第2の実施形態に用いる燃料改質システムの概略構成図である。
符号の説明
2 エゼクタシステム
22、71 ポンプ(水供給手段)
21 水トラップ
23、73 エゼクタ
25 酸化剤ガス導入手段(酸化剤ガス供給手段)
3 流体調整装置
31 蒸発器
32 予熱器
33 予熱器
35 水凝縮器
4 燃料改質サブシステム
41 CPOX(部分酸化部)
43 水蒸気改質部
44 バーナ
45 水素分離膜
51 噴射システム(燃料供給手段)
72 燃料蒸発器(燃料供給手段)
82 水噴射システム(水供給手段)

Claims (11)

  1. 外部からの熱供給により水蒸気改質反応を生じる水蒸気改質部と、
    前記水蒸気改質部の上流に配置された部分酸化部と、
    前記部分酸化部に酸化剤ガスを供給する酸化剤ガス供給手段と、
    前記水蒸気改質部における水蒸気改質反応に用いる水を供給する水供給手段と、
    前記部分酸化部に、前記部分酸化部および前記水蒸気改質部における部分酸化反応および水蒸気改質反応に用いる燃料を供給する燃料供給手段と、を備え、
    前記部分酸化部には、燃料を燃料中の重炭化水素を分解する温度にするために必要な量の酸化剤ガスを供給することを特徴とする燃料改質システム。
  2. 水蒸気および燃料または酸化剤ガスの少なくとも一方を加熱する流体調整装置を備え、
    前記部分酸化部の上流側で、少なくとも一方が加熱された燃料および酸化剤ガスを導入し、
    前記部分酸化部の下流側かつ前記水蒸気改質部の上流側で、加熱された水蒸気を導入する請求項1に記載の燃料改質システム。
  3. 前記燃料改質システムは、燃料電池に導入する水素リッチガスを生成するシステムであって
    前記部分酸化部に供給される酸化剤ガスとして、前記燃料電池のカソード排ガスまたは外気のうち少なくとも一方を用いる請求項1または2に記載の燃料改質システム。
  4. 前記水蒸気改質部を水素分離膜と一体に構成し、生成された水素の少なくとも一部を反応場から分離する請求項1から3のいずれか一つに記載の燃料改質システム。
  5. 水または燃料を駆動流体とする加圧式エゼクタシステムを備え、
    酸化剤ガスの圧力を、前記加圧式エゼクタシステムの利用により改質圧力まで上昇させる請求項1から4のいずれか一つに記載の燃料改質システム。
  6. 前記加圧式エゼクタシステムとして、水または燃料を駆動流体とするエゼクタと、
    前記駆動流体を前記エゼクタに圧送する液体ポンプと、を備え、
    前記エゼクタにおいて酸化剤ガスを吸引する請求項に記載の燃料改質システム。
  7. 前記エゼクタの駆動流体として水を用い、
    前記エゼクタ下流に水トラップもしくは相分離器を備え、
    前記水トラップもしくは相分離器において分離された酸化ガスを前記部分酸化部に導入する請求項6に記載の燃料改質システム。
  8. 改質反応場と略同じ圧力状態の改質排ガス中の水を回収する水凝縮器を備える請求項1から7のいずれか一つに記載の燃料改質システム。
  9. 前記水凝縮器で生じる凝縮に伴う熱を用いて水または燃料の少なくとも一方を蒸発させる蒸発器を備える請求項に記載の燃料改質システム。
  10. 前記蒸発器から供給される水または燃料の蒸気を予熱する予熱器を備える請求項9に記載の燃料改質システム。
  11. 前記エゼクタの駆動流体として燃料を用い、
    前記エゼクタから排出された酸化剤ガスと燃料の混合気を前記部分酸化部に導入する請求項に記載の燃料改質システム。
JP2004101354A 2004-03-30 2004-03-30 燃料改質システム Expired - Lifetime JP4695341B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004101354A JP4695341B2 (ja) 2004-03-30 2004-03-30 燃料改質システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004101354A JP4695341B2 (ja) 2004-03-30 2004-03-30 燃料改質システム

Publications (2)

Publication Number Publication Date
JP2005285693A JP2005285693A (ja) 2005-10-13
JP4695341B2 true JP4695341B2 (ja) 2011-06-08

Family

ID=35183830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004101354A Expired - Lifetime JP4695341B2 (ja) 2004-03-30 2004-03-30 燃料改質システム

Country Status (1)

Country Link
JP (1) JP4695341B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5818502B2 (ja) 2011-04-28 2015-11-18 本田技研工業株式会社 燃料電池モジュール
JP5763405B2 (ja) 2011-04-28 2015-08-12 本田技研工業株式会社 燃料電池システム
JP5697576B2 (ja) * 2011-10-19 2015-04-08 本田技研工業株式会社 燃料電池モジュール
JP6194854B2 (ja) * 2013-12-05 2017-09-13 株式会社デンソー 燃料電池装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001143731A (ja) * 1999-11-16 2001-05-25 Daikin Ind Ltd 燃料電池システム
JP2001223017A (ja) * 2000-02-09 2001-08-17 Toyota Motor Corp 燃料電池用燃料ガスの生成システム
JP2003238105A (ja) * 2002-02-07 2003-08-27 Honda Motor Co Ltd 燃料改質システム
JP2003277005A (ja) * 2002-03-19 2003-10-02 Hitachi Ltd 水素製造装置及び当該水素製造装置を用いた発電システムとその運転法
JP2004047472A (ja) * 2002-07-04 2004-02-12 Sgl Acotec Gmbh 水素を製造するための方法および装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001143731A (ja) * 1999-11-16 2001-05-25 Daikin Ind Ltd 燃料電池システム
JP2001223017A (ja) * 2000-02-09 2001-08-17 Toyota Motor Corp 燃料電池用燃料ガスの生成システム
JP2003238105A (ja) * 2002-02-07 2003-08-27 Honda Motor Co Ltd 燃料改質システム
JP2003277005A (ja) * 2002-03-19 2003-10-02 Hitachi Ltd 水素製造装置及び当該水素製造装置を用いた発電システムとその運転法
JP2004047472A (ja) * 2002-07-04 2004-02-12 Sgl Acotec Gmbh 水素を製造するための方法および装置

Also Published As

Publication number Publication date
JP2005285693A (ja) 2005-10-13

Similar Documents

Publication Publication Date Title
US8623563B2 (en) Method for starting-up solid oxide fuel cell system
JP5011673B2 (ja) 燃料電池発電システム
WO2010058750A1 (ja) 水素リサイクル型mcfc発電システム
US20110045364A1 (en) Method and Apparatus for Generating Hydrogen
US20100104903A1 (en) Power Plant With Membrane Water Gas Shift Reactor System
JP2008529218A (ja) 燃料電池発電プラント
JP2011508949A (ja) 燃料電池システム
JP5063986B2 (ja) 改質システムの停止方法およびその改質システム
CN101946354A (zh) 利用燃料电池产生电力的方法
JP6084314B1 (ja) 燃料電池システム
JP2001223017A (ja) 燃料電池用燃料ガスの生成システム
JP4695341B2 (ja) 燃料改質システム
JP2007141772A (ja) 燃料電池システム
JP2002110207A (ja) 燃料電池システムおよびその運転方法
JP2010509734A (ja) 燃料電池電源ユニットの水分平衡を向上させるための方法および装置
JP5347330B2 (ja) 水素生成装置
JP2019204606A (ja) 燃料電池システム
JP2003151599A (ja) 燃料電池システム
JP2010116304A (ja) 改質装置、燃料電池システム、改質装置の運転方法
TW200941814A (en) System and process for generating electrical power
JP3998561B2 (ja) ジメチルエーテル改質発電システムとその運転方法
JP2001135336A (ja) 燃料電池システム
JP3676334B2 (ja) 燃料電池システム
JP7165502B2 (ja) 燃料電池システム
JP5305845B2 (ja) 燃料電池発電システムおよびその運転方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100921

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110208

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110225

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140304

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4695341

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250