以下、本発明の実施の形態について説明する。
図1は本発明に係るセラミックスヒータ1の一例を示す断面図で、炭化珪素または窒化アルミニウムを主成分とするセラミックスからなる板状セラミックス体2の一方の主面を、ウェハWを載せるウェハ加熱面3とするとともに、他方の主面に抵抗発熱体5を形成したものである。
抵抗発熱体5のパターン形状としては、略同心円状をしたものや渦巻き状をしたものなど、ウェハ加熱面3を均一に加熱できるパターン形状であれば良い。均熱性を改善するため、抵抗発熱体5を複数のパターンに分割することも可能である。またパターンの線幅や粗密を調整し、電力密度に分布をつけて均熱性を改善しても良い。
抵抗発熱体5には、金や銀、パラジウム、白金等の材質からなる給電部6が形成され、該給電部6に給電端子11を接触させることにより、導通が確保されている。給電端子11と給電部6とは、導通が確保できる方法で有れば、はんだ付け、ロウ付け等の手法を用いてもよい。
さらに、板状セラミックス体2と有底の金属ケース19開口部の外周にボルト16を貫通させ、板状セラミックス体2と有底の金属ケース19が直接当たらないように、リング状の接触部材17を介在させ、有底の金属ケース19側より弾性体18を介在させてナット20を螺着することにより弾性的に固定している。
これにより、板状セラミックス体2の温度が変動した場合に有底の金属ケース19が変形しても、上記弾性体18によってこれを吸収し、これにより板状セラミックス体2の反りを抑制し、ウェハ表面に、板状セラミックス体2の反りに起因する温度ばらつきが発生することを防止できるようになる。
なお、金属製の有底の金属ケース19は側壁部22と底面21を有し、板状セラミックス体2はその有底の金属ケース19の開口部を覆うように設置してある。また、有底の金属ケース19には冷却ガスを排出するための孔23が施されており、板状セラミックス体2の抵抗発熱体5に給電するための給電部6に導通するための給電端子11,板状セラミックス体2を冷却するためのガス噴射口24、板状セラミックス体2の温度を測定するための熱電対27を設置してある。
さらに、有底の金属ケース19の深さは10〜50mmで、底面21は、板状セラミックス体2から10〜50mmの距離に設置することが望ましい。更に好ましくは20〜30mmである。これは、板状セラミックス体2と有底の金属ケース19相互の輻射熱によりウェハ加熱面3の均熱化が容易となると同時に、外部との断熱効果があるので、ウェハ加熱面3の温度が一定で均熱となるまでの時間が短くなるためである。
また、板状セラミックス体2には少なくとも3箇所の貫通孔26が設けられ、ウェハリフトピン25を上下させることにより、板状セラミックス体2へウェハを迅速に載置離脱がおこなえる。また、ウェハリフトピン25が板状セラミックス体2へ直接接触しないようにガイド部材10が設置されている。
本発明のセラミックスヒータ1は、板状セラミックス体2の周辺部をリング状に支持して前記金属ケース19と接続する接触部材17と、前記板状セラミックス体2の周囲で前記抵抗発熱体5の外接円の外側に前記抵抗発熱体5の存在しない非発熱領域の幅Wdが前記抵抗発熱体の外周部における対向間隔Soより大きいもので、このような構成が好ましいのは下記の理由からである。
板状セラミックス体2は、ウェハWを均一に加熱するように抵抗発熱体5が配設されているが、ウェハ加熱面3に載せられたウェハWをウェハW面内の温度差が小さい状態で急速に加熱したり、ウェハ加熱面3の温度変更を短時間で行ったりするには、ウェハWの面内温度差が小さくなるように板状セラミックス体2を加熱するとともに板状セラミックス体2の周囲から下面を覆う金属ケース19に伝わる熱や金属ケース19の上部から板状セラミックス体2の周囲に伝わる熱を効果的に抑制/制御することが重要であることが判明した。そして、ウェハWの周辺の温度差が大きくならない様に板状セラミックス体2の周辺部をリング状に支持して金属ケース19と接続する接触部材17が必要である。このような構成とすることで例えば直径200mmや直径300mm以上の大型ウェハWの周辺部の温度差を小さく保つことができるとともに低温のウェハWがウェハ加熱面3に載せられた際にはウェハW周辺の温度が中心部より低下しないよう熱を供給しつつ、ウェハ加熱面の温度変更時には素早く温度を変えることができるように板状セラミックス体2の熱容量と金属ケース19が板状セラミックス体2と熱的に接続された部分の熱容量を含めた熱容量を小さくすることができる。
更に、板状セラミックス体2の周囲で前記抵抗発熱体5の外接円の外側に前記抵抗発熱体5の存在しない非発熱領域を備えることが必要である。このように非発熱領域を備えることで、板状セラミックス体2の周辺部から熱が金属ケースに逃げることを妨げることができることから、ウェハW面の温度差を小さくすることができるからである。また、同時に冷えたウェハWを加熱したウェハ加熱面3に載せても、前記非発熱領域の熱がウェハWの周辺の温度の低下を防ぎウェハWの周辺や中心の温度が等しく加熱されウェハW面内の温度差が小さい状態でウェハW全面の温度が上昇し所定の温度に短時間で昇温することができるからである。一方前記非発熱領域がなく抵抗発熱体5の外接円の直径を単に大きくしただけでは、定常状態での板状セラミックス体2周辺部からの熱が金属ケース19に流れ、金属ケース19が加熱されウェハ加熱面の温度変更等の際に金属ケース19の温度が高く、短時間でのウェハ加熱面の温度変更ができなくなる虞があるからである。
そして、本発明のセラミックスヒータ1は非加熱領域を備えるとともに、非加熱領域の幅Wdが外周の抵抗発熱体5の対向間隔Soより大きいことが特徴であり、非加熱領域の幅Wdが間隔So以下であると非加熱領域から冷えたウェハWの周辺を加熱する熱容量が小さくなって、ウェハWの周辺の温度が低下する虞があり、WdがSoより大きいとウェハWの周辺の温度が小さくなることなく、ウェハW全面の温度差が小さい状態で温度が上昇し好ましい。
尚、複数の抵抗発熱体5は少なくとも中央と周辺に独立して加熱できる複数の抵抗発熱体5を備え、外周の抵抗発熱体5とは板状セラミックス体2の周辺に位置するもので非加熱領域の隣に配設された抵抗発熱体5で、この抵抗発熱体5に内接する円の直径でSoを表すことができる(図3、4参照)。
図1の本発明の実施例の一つであるセラミックスヒータ1は、板状セラミックス体2の周辺の下面を支えるようにリング状に上記接触部材17が接続していることが特徴である。
図1のセラミックスヒータ1は、板状セラミックス体2の周辺の下面を支えるようにリング状に接触部材17が接続しているので、金属ケース19の直径と板状セラミックス体2の直径Dを同等とすることができることから、板状セラミックス体2の直径を大きくすることができる。そのため、温度の低いウェハWを温度の高いウェハ加熱面3に載せてもウェハWの周辺の温度が低下することなく、板状セラミックス体2の周辺の非発熱領域に蓄熱された熱によりウェハWの周辺を加熱することができる。
また、本発明のセラミックスヒータ1の他の例として図2に示すように板状セラミックス体2の周辺の端面を囲むようにリング状に上記接触部材17が接続していることを特徴とする。
このような構成とすることで、板状セラミックス体2の周辺部の熱の漏出を防止しウェハW面内の温度差を小さくすることができる。特に板状セラミックス体2の周辺の端面が接触部材17と接触することで板状セラミックス体2の直径が小さくなり抵抗発熱体5の熱を効率的にウェハWに供給することができることから好ましい。また、温度の低いウェハWを温度の高いウェハ加熱面3に載せた際に、ウェハWの周辺部に多くの熱を供給する必要があることから板状セラミックス体2の周辺に多くの熱を蓄える必要があり、この熱を蓄える領域として、板状セラミックス体2の周辺に抵抗発熱体5の存在しない非発熱領域が必要である。なお、ウェハWの定常時の面内温度差を小さくするには抵抗発熱体5の外接円の直径はウェハWの直径より3〜7%程大きいことが必要である。従って、板状セラミックス体2の直径DはウェハWの直径の4〜17%程大きいことが好ましい。
そして、板状セラミックス体2の外接円の直径DCが板状セラミックス体2の直径Dの90〜99%であると更に好ましい。
抵抗発熱体5の外接円Cの直径DCが板状セラミックス体2の直径Dの90%より小さいと、非発熱領域が大き過ぎることからウェハを急速に昇温したり急速に降温させたりする時間が大きくなり、ウェハWの温度応答特性が劣る。また、板状セラミックス体2の直径Dが大きくなり、均一に加熱できるウェハWの大きさが板状セラミックス体2の直径Dに比較して小さくなり、ウェハWを加熱する電力に対するウェハ加熱効率が悪くなる。更に、板状セラミックス体2が大きくなることからウェハ製造装置の設置面積が大きくなり、最小の設置面積で最大の生産を行う必要がある半導体製造装置の設置面積に対する稼働率を低下させ好ましくない。
抵抗発熱体5の外接円Cの直径DCが板状セラミックス体2の直径Dの99%より大きいと非発熱領域が小さすぎることから温度の低いウェハWを温度の高いウェハ加熱面3に載せると、ウェハWの周辺の温度が低下しウェハW面内の温度差が小さい状態でウェハW温度を高めることができない虞があるからであり、接触部材17と抵抗発熱体5の外周との間隔が小さく抵抗発熱体5の外周部から熱が接触部材17に不均一に流れ、特に、外周部の抵抗発熱体5の対称性が崩れ欠落している微小な部分からも熱が流れ、温度が低下しウェハWの定常時の面内温度差を大きくする虞がある。
より好ましくは、抵抗発熱体5の外接円Cの直径DCが板状セラミックス体2の直径Dの92〜97%である。
特に、板状セラミックス体2と金属ケース19の外形が略同等で、板状セラミックス体2を下から金属ケース19が支える図1のセラミックスヒータ1の場合、ウェハWの面内の温度差を小さくするには、抵抗発熱体5の外接円Cの直径DCが板状セラミックス体2の直径Dの92〜95%であり、更に好ましくは93〜95%である。
一方、板状セラミックス体2の周辺の端面を囲むように金属ケース19が接続した図2のセラミックスヒータの場合には、抵抗発熱体5の外接円Cの直径DCが板状セラミックス体2の直径Dの95〜98%が好ましく、更に好ましくは96〜97%である。
尚、本発明のセラミックスヒータ1は板状セラミックス体2の周辺の下面に金属ケース19を接続したり、板状セラミックス体2の周辺の端面で金属ケースと接続したりした例で説明したが、周辺の下面と周辺の端面との両方同時に金属ケース19と接続して上記趣旨を逸脱しない範囲のセラミックスヒータ1を含むものであることは当然である。
また、上記のように非加熱領域の幅で熱容量を調整することができる一方で、非発熱領域の蓄熱量を増やすために非発熱領域の板状セラミックス体2の厚みを大きくすることで非発熱領域の熱容量を大きくしてウェハWの周辺の温度低下を防ぐこともできる。
また、抵抗発熱体5はウェハ加熱面3から一定の距離に配設され、抵抗発熱体5の対向間隔Sが板状セラミックス体2の板厚tの5倍以下となるように設計することが必要である。
ここで対向間隔Sとは図3に示すように、抵抗発熱体5の外接円の中で、抵抗発熱体5の帯に接する最大の円の直径で示すことができる。
上記間隔Sが板状セラミックス体2の板圧tの5倍を超えると、間隔Sの中心付近の温度が低下し板状セラミックス体2のウェハ加熱面3に載せられたウェハWにクールスポットが発生する虞があるからである。
また、直径200mmを超える大型ウェハWを均一にしかも高温まで加熱できるように配設するには、対向間隔Sは0.5mm以上とすることが好ましい。間隔Sが0.5mmを下回るとスクリーン印刷法で抵抗発熱体5を印刷すると、インクの滲み等の影響で、抵抗発熱体5の帯と帯が短絡する虞が生じ、ウェハWの面内温度差を小さくすることができないからである。
さらに、本発明のセラミックスヒータ1は、板状セラミックス体2の一方の主面に平行な投影面で見て、帯状の抵抗発熱体5を囲む外接円Cの面積に対し、上記外接円C内に占める帯状抵抗発熱体5の面積の比率を5%〜50%としたことを特徴とする。
即ち、帯状の抵抗発熱体5を囲む外接円Cの面積に対し、外接円C内に占める帯状抵抗発熱体5の面積の比率を5%未満とすると、帯状抵抗発熱体5の相対向する対向領域において、板状セラミックス体2の板厚tに対して対向領域の対向間隔Sが大きくなり過ぎることから、帯状抵抗発熱体5のないウェハ加熱面3の表面温度が他の部分と比較して小さくなり、ウェハ加熱面3の温度を均一にすることが難しいからであり、逆に帯状抵抗発熱体5を囲む外接円Cの面積に対し、外接円C内に占める帯状抵抗発熱体5の面積の比率を
50%を超えると、板状セラミックス体2と帯状抵抗発熱体5との間の熱膨張差を3.0×10-6/℃以下に近似させたとしても、両者の間に作用する熱応力が大きすぎること、板状セラミックス体2は変形し難いセラミック焼結体からなるものの、その板厚tが1mm〜7mmと薄いこと、から帯状抵抗発熱体5を発熱させると、ウェハ加熱面3側が凹となるように板状セラミックス体2に反りが発生し、その結果、ウェハWの中心部の温度が周縁よりも小さくなり、温度バラツキが大きくなる虞があるからである。
なお、好ましくは、帯状抵抗発熱体5を囲む外接円Cの面積に対し、外接円C内に占める帯状抵抗発熱体5の面積の比率を10%〜30%、さらには15%〜25%とすることが好ましい。
さらに、このような効果を効率良く発現させるには、帯状抵抗発熱体5の膜厚を5〜70μmとすることが好ましい。
帯状抵抗発熱体5の膜厚が5μmを下回ると、帯状抵抗発熱体5をスクリーン印刷法で膜厚を均一に印刷することが困難となるからであり、また、帯状抵抗発熱体5の厚みが70μmを超えると、外接円Cに対し、帯状抵抗発熱体5の占める面積の比率を50%以下としても帯状抵抗発熱体5の厚みが大きく、抵抗発熱体5の剛性が大きくなり、板状セラミックス体2の温度変化により帯状抵抗発熱体5の伸び縮みによる影響で板状セラミックス体2が変形したりスクリーン印刷で均一の厚みに印刷することが難しくウェハWの表面の温度差が大きくなったりする虞があるからである。なお、更に好ましい帯状抵抗発熱体5の厚みは10〜30μmとすることが良い。
図5は、図1に示すセラミックスヒータ1のリング状の接触部材17付近を示す拡大断面図であり、図6は、セラミックスヒータ1の他の接触部材17周辺を示す拡大断面図である。リング状の接触部材17の断面は図5の断面図に示すような多角形や図6の断面図に示すような円形の何れでも良いが、板状セラミックス体2と接触部材17が平面で接触する場合において、板状セラミックス体2と接触部材17の接する接触部の巾は0.1mm〜13mmであれば、板状セラミックス体2の熱が接触部材17を介して有底の金属ケース19に流れる量を小さくすることができる。そして、ウェハWの面内の温度差が小さくウェハWを均一に加熱することができる。
接触部材17の接触部の巾が0.1mm以下では、板状セラミックス体2と接触固定した際に接触部が変形し、接触部材が破損する虞がある。また、接触部材17の接触部の巾が13mmを超える場合には、板状セラミックス体2の熱が接触部材に流れ、板状セラミックス体2の周辺部の温度が低下しウェハWを均一に加熱することが難しくなる。好ましくは接触部材17と板状セラミックス体2の接触部の巾は0.1mm〜8mmであり、更に好ましくは0.1〜2mmである。
また、接触部材17の熱伝導率は板状セラミックス体2の熱伝導率より小さいことが好ましい。接触部材17の熱伝導率が板状セラミックス体2の熱伝導率より小さければ板状セラミックス体2に載せたウェハW面内の温度分布を均一に加熱することができると共に、板状セラミックス体2の温度を上げたり下げたりする際に、接触部材17との熱の伝達量が小さく有底の金属ケース19との熱的干渉が少なく、迅速に温度を変更することが容易となる。
接触部材17の熱伝導率が板状セラミックス体2の熱伝導率の10%より小さいセラミックスヒータ1では、接触部材を介して板状セラミックス体2の熱が有底の金属ケース19に流れ難く、雰囲気ガス(ここでは空気)による伝熱や輻射伝熱により板状セラミックス体2から有底の金属ケース19へ流れる熱が多くなり、逆に効果が小さい。
接触部材17の熱伝導率が板状セラミックス体2の熱伝導率より大きい場合には、板状セラミックス体2の周辺部の熱が接触部材17を介して有底の金属ケース19に流れ、有底の金属ケース19を加熱すると共に、板状セラミックス体2の周辺部の温度が低下しウェハW面内の温度差が大きくなり好ましくない。また、有底の金属ケース19が加熱されることからガス噴射口24からエアを噴射し板状セラミックス体2を冷却しようとしても有底の金属ケース19の温度が高いことから冷却する時間が大きくなったり、一定温度に加熱する際に一定温度になるまでの時間が大きくなったりする虞があった。
一方、前記接触部材17を構成する材料としては、小さな接触部を保持するために、接触部材のヤング率は1GPa以上が好ましく、更に好ましくは10GPa以上である。このようなヤング率とすることで、接触部の巾が0.1mm〜8mmと小さく、板状セラミックス体2を有底の金属ケース19に接触部材17を介してボルト16で固定しても、接触部材17が変形すること無く、板状セラミックス体2が位置ズレしたり平行度が変化したりすることなく、精度良く保持することができる。
尚、接触部材をフッ素系樹脂やガラス繊維を添加した樹脂からなる接触部材では得られない精度を達成することができる。
前記接触部材17の材質としては鉄とカーボンからなる炭素鋼やニッケル、マンガン、クロムを加えた特殊鋼等の金属がヤング率が大きく好ましい。また、熱伝導率の小さな材料としては、ステンレス鋼やFe−Ni−Co系合金の所謂コバールが好ましく、板状セラミックス体2の熱伝導率より小さくなるように接触部材17の材料を選択することが好ましい。
更に、接触部材17と板状セラミックス体2との接触部を小さく、且つ接触部が小さくても接触部が欠損しパーティクルを発生する虞が小さく安定な接触部を保持できるために、板状セラミックス体2に垂直な面で切断した接触部材17の断面は図5に示すような多角形より図6に示すような円形が好ましく、断面の直径1mm以下の円形のワイヤを接触部材17として使用すると板状セラミックス体2と有底の金属ケース19の位置が変化することなくウェハWの表面温度を均一にしかも迅速に昇降温することが可能である。
次に、その他の構成について説明する。
金属ケース19内に昇降自在に設置されたリフトピン25により、ウェハWをウェハ加熱面3上に載せたり加熱面3より持ち上げたりといった作業がなされる。そして、ウェハWは、ウェハ支持ピン8によりウェハ加熱面3から浮かした状態で保持され、片当たり等による温度バラツキを防止するようにしている。
また、このセラミックスヒータ1によりウェハWを加熱するには、搬送アーム(不図示)にてウェハ加熱面3の上方まで運ばれたウェハWをリフトピン25にて支持したあと、リフトピン25を降下させてウェハWをウェハ加熱面3上に載せる。
次に、給電部6に通電して抵抗発熱体5を発熱させ、板状セラミックス体2を介してウェハ加熱面3上のウェハWを加熱するのであるが、本発明によれば、セラミックスヒータ1に板状セラミックス体2を支持する接触部材17を介して有底の金属ケース19と接続していることから、板状セラミックス体2に接続した接触部材17により板状セラミックス体2の熱が必要以上に逃げることなく運転できるので、板状セラミックス体2を有効に短時間で均熱化しウェハWの温度を均一に加熱することができる。
さらに、板状セラミックス体2を炭化珪素質焼結体又は窒化アルミニウム質焼結体により形成してあることから、ヤング率が200GPa以上と大きく熱を加えても変形が小さく、板厚を薄くできるため、所定の処理温度に加熱するまでの昇温時間及び所定の処理温度から室温付近に冷却するまでの冷却時間を短くすることができ、生産性を高めることができるとともに、板状セラミックス体2は60W/(m・K)以上の熱伝導率を有することから、薄い板厚でも抵抗発熱体5のジュール熱を素早く伝えることができる。
板状セラミックス体2の厚みは、2〜5mmとすることが好ましい。板状セラミックス体2の厚みが2mmより薄いと、板状セラミックス体2の強度がなくなり抵抗発熱体5の発熱による加熱時、ガス噴射口24らの冷却エアを吹き付けた際に、冷却時の熱応力に耐えきれず、板状セラミックス体2にクラックが発生する。また、板状セラミックス体2の厚みが5mmを超えると、板状セラミックス体2の熱容量が大きくなるので加熱および冷却時の温度が安定するまでの時間が長くなってしまい好ましくない。
このように、板状セラミックス体2の熱容量を小さくすると、有底の金属ケース19からの熱引きにより板状セラミックス体2の温度分布が悪くなる。そこで、有底の金属ケース19が板状セラミックス体2をその外周部で保持する構造としている。
また、抵抗発熱体5への給電方法については、有底の金属ケース19に設置した給電端子11を板状セラミックス体2の表面に形成した給電部6にバネ(不図示)で押圧することにより接続を確保し給電する。これは、2〜5mmの厚みの板状セラミックス体2に金属からなる端子部を埋設して形成すると、該端子部の熱容量により均熱性が悪くなるからである。そのため、本発明のように、給電端子11をバネで押圧して電気的接続を確保することにより、板状セラミックス体2とその有底の金属ケース19の間の温度差による熱応力を緩和し、高い信頼性で電気的導通を維持できる。さらに、接点が点接触となるのを防止するため、弾性のある導体を中間層として挿入しても構わない。この中間層は単に箔状のシートを挿入するだけでも効果がある。そして、給電端子11の給電部6側の径は、1.5〜5mmとすることが好ましい。
また、板状セラミックス体2の温度は、板状セラミックス体2にその先端が埋め込まれた熱電対27により測定する。熱電対27としては、その応答性と保持の作業性の観点から、外径0.8mm以下のシース型の熱電対27を使用することが好ましい。この熱電対27の先端部は、板状セラミックス体2に孔が形成され、この中に設置された固定部材により孔の内壁面に押圧固定することが測温の信頼性を向上させるために好ましい。同様に素線の熱電対やPt等の測温抵抗体を埋設して測温を行うことも可能である。
さらに、レジスト膜形成用のセラミックスヒータ1として使用する場合は、板状セ
ラミックス体2の主成分を炭化珪素にすると、大気中の水分等と反応してガスを発生させることもないため、ウェハW上へのレジスト膜の貼付に用いたとしても、レジスト膜の組織に悪影響を与えることがなく、微細な配線を高密度に形成することが可能である。この際、焼結助剤に水と反応してアンモニアやアミンを形成する可能性のある窒化物を含まないようにすることが必要である。
なお、板状セラミックス体2を形成する炭化珪素質焼結体は、主成分の炭化珪素に対し、焼結助剤として硼素(B)と炭素(C)を添加したり、もしくはアルミナ(Al2O3)イットリア(Y2O3)のような金属酸化物を添加したりして十分混合し、平板状に加工したのち、1900〜2100℃で焼成することにより得られる。炭化珪素はα型を主体とするものあるいはβ型を主体とするもののいずれであっても構わない。
また、板状セラミックス体2を形成する窒化アルミニウム質焼結体は、主成分の窒化アルミニウムに対し、焼結助剤としてY2O3やYb2O3等の希土類元素酸化物と必要に応じてCaO等のアルカリ土類金属酸化物を添加して十分混合し、平板状に加工した後、窒素ガス中1900〜2100℃で焼成することにより得られる。
さらに、板状セラミックス体2のウェハ加熱面3と反対側の主面は、ガラスや樹脂からなる絶縁層4との密着性を高める観点から、平面度20μm以下、面粗さを中心線平均粗さ(Ra)で0.1μm〜0.5μmに研磨しておくことが好ましい。
一方、炭化珪素質焼結体を板状セラミックス体2として使用する場合、半導電性を有する板状セラミックス体2と抵抗発熱体5との間の絶縁を保つ絶縁層としては、ガラス又は樹脂を用いることが可能であり、ガラスを用いる場合、その厚みが100μm未満では耐電圧が1.5kVを下回り絶縁性が保てず、逆に厚みが400μmを超えると、板状セラミックス体2を形成する炭化珪素質焼結体や窒化アルミニウム質焼結体との熱膨張差が大きくなり過ぎるために、クラックが発生して絶縁層として機能しなくなる。その為、絶縁層としてガラスを用いる場合、絶縁層4の厚みは100〜400μmの範囲で形成することが好ましく、望ましくは200μm〜350μmの範囲とすることが良い。
また、板状セラミックス体2を、窒化アルミニウムを主成分とする焼結体で形成する場合は、板状セラミックス体2に対する抵抗発熱体5の密着性を向上させるために、ガラスからなる絶縁層を形成する。ただし、抵抗発熱体5の中に十分なガラスを添加し、これにより十分な密着強度が得られる場合は、省略することが可能である。
この絶縁層を形成するガラスの特性としては、結晶質又は非晶質のいずれでも良く、耐熱温度が200℃以上でかつ0℃〜200℃の温度域における熱膨張係数が板状セラミックス体2を構成するセラミックスの熱膨張係数に対し−5〜+5×10-7/℃の範囲にあるものを適宜選択して用いることが好ましい。即ち、熱膨張係数が前記範囲を外れたガラスを用いると、板状セラミックス体2を形成するセラミックスとの熱膨張差が大きくなりすぎるため、ガラスの焼付け後の冷却時においてクラックや剥離等の欠陥が生じ易いからである。
なお、ガラスからなる絶縁層を板状セラミックス体2上に被着する手段としては、前記ガラスペーストを板状セラミックス体2の中心部に適量落とし、スピンコーティング法にて伸ばして均一に塗布するか、あるいはスクリーン印刷法、ディッピング法、スプレーコーティング法等にて均一に塗布したあと、ガラスペーストを600℃以上の温度で焼き付けすれば良い。また、絶縁層としてガラスを用いる場合、予め炭化珪素質焼結体又は窒化アルミニウム質焼結体からなる板状セラミックス体2を850〜1300℃程度の温度に加熱し、絶縁層を被着する表面を酸化処理しておくことで、ガラスからなる絶縁層との密着性を高めることができる。
さらに、絶縁層上に被着する抵抗発熱体5材料としては、金(Au)、銀(Ag)、銅(Cu)、パラジウム(Pd)等の金属単体を、蒸着法やメッキ法にて直接被着するか、あるいは前記金属単体や酸化レニウム(Re2O3)、ランタンマンガネート(LaMnO3)等の導電性の金属酸化物や上記金属材料を樹脂ペーストやガラスペーストに分散させたペーストを用意し、所定のパターン形状にスクリーン印刷法等にて印刷したあと焼付けして、前記導電材を樹脂やガラスから成るマトリックスで結合すれば良い。マトリックスとしてガラスを用いる場合、結晶化ガラス、非晶質ガラスのいずれでも良いが、熱サイクルによる抵抗値の変化を抑えるために結晶化ガラスを用いることが好ましい。
ただし、抵抗発熱体5材料に銀(Ag)又は銅(Cu)を用いる場合、マイグレーションが発生する虞があるため、このような場合には、抵抗発熱体5を覆うように絶縁層と同一の材質からなるコート層を40〜400μm程度の厚みで被覆しておけば良い。
また、抵抗発熱体5に対し、給電部6において給電端子11をロウ付けや導電性接着剤で固定して導通を確保するようにしている。給電端子11は、抵抗発熱体5の端子部に弾性体で押圧し導通を確保しても構わない。
また、これまで、抵抗発熱体5を板状セラミックス体2の表面に形成するタイプのセラミックスヒータ1について説明してきたが、抵抗発熱体5は、板状セラミックス体2に内蔵されていても構わない。
例えば主成分が窒化アルミニウムからなる板状セラミックス体2を用いる場合、まず、抵抗発熱体5の材料としては窒化アルミニウムと同時焼成できる材料という観点から、WもしくはWCを用いる。板状セラミックス体2は、窒化アルミニウムを主成分とし焼結助剤を適宜含有する原料を十分混合したのち円盤状に成形し、その表面にWもしくはWCからなるペーストを抵抗発熱体5のパターン形状にプリントし、その上に別の窒化アルミニウム成形体を重ねて密着した後、窒素ガス中1900〜2100℃の温度で焼成することにより得ることが出来る。
また、抵抗発熱体5からの導通は、窒化アルミニウム質基材にスルーホールを形成し、WもしくはWCからなるペーストを埋め込んだ後焼成するようにして表面に電極を引き出すようにすれば良い。また、給電部6は、ウェハWの加熱温度が高い場合、Au、Ag等の貴金属を主成分とするペーストを前記スルーホールの上に塗布し900〜1000℃で焼き付けることにより、内部の抵抗発熱体5の酸化を防止することができる。
まず、窒化アルミニウム粉末に対し、重量換算で1.0質量%の酸化イットリウムを添加し、さらにイソプロピルアルコールとウレタンボールを用いてボールミルにより48時間混練することにより窒化アルミニウムのスラリーを製作した。
次に、窒化アルミニウムのスラリーを200メッシュに通し、ウレタンボールやボールミル壁の屑を取り除いた後、防爆乾燥機にて120℃で24時間乾燥した。
次いで、得られた窒化アルミニウム粉末にアクリル系のバインダーと溶媒を混合して窒化アルミニムのスリップを作製し、ドクターブレード法にて窒化アルミニムのグリーンシートを複数枚製作した。
そして、得られた窒化アルミニウムのグリーンシートを複数枚積層熱圧着にて積層体を形成した。
しかる後、積層体を非酸化性ガス気流中にて500℃の温度で5時間脱脂を施した後、非酸化性雰囲気にて1900℃の温度で5時間の焼成を行い板状セラミックス体を製作した。
そして、窒化アルミニウム焼結体に研削加工を施し、板厚3mmと中央部の板厚が3mmで周辺部のみ環状に厚み3.5mmとした直径315mm〜345mmの円板状をした板状セラミックス体を複数枚製作し、更に中心から60mmの同心円上に均等に3箇所貫通孔を形成した。貫通口径は、4mmとした。
次いで板状セラミックス体の上に抵抗発熱体を被着するため、導電材としてAu粉末とPd粉末と、バインダーを添加したガラスペーストとを混練して作製した導電体ペーストをスクリーン印刷法にて所定のパターン形状に印刷したあと、150℃に加熱して有機溶剤を乾燥させ、さらに550℃で30分間脱脂処理を施した。その後、700〜900℃の温度で焼き付けを行うことにより、厚みが50μmの抵抗発熱体を形成した。抵抗発熱体のパターン配置は、中心部から放射状に円と円環状に分割し、中心部に円形の1つにパターンを形成し、その外側の円環状の部分に2つにパターンを形成し、更にその外側に4つのパターンの計7個のパターン構成とした。そして、最外周の4つのパターンの外接円Cの直径を310mmとして、板状セラミックスの直径を変えて作製した。しかるのち抵抗発熱体に給電部をロウ付けし固着させることにより、板状セラミックス体を製作した。
また、有底の金属ケースの底面の厚みは2.0mmのアルミニウムと側壁部を構成する厚み1.0mmのアルミニウムからなり、底面に、ガス噴射口、熱電対、導通端子を所定の位置に取り付けた。また、底面から板状セラミックス体までの距離は20mmとした。
その後、前記有底の金属ケースの開口部に、板状セラミックス体を重ね、その外周部にボルトを貫通させ、板状セラミックス体と有底の金属ケースが直接当たらないように、リング状の接触部材を介在させ、接触部材側より弾性体を介在させてナットを螺着することにより弾性的に固定してセラミックスヒータとした。
また、板状セラミックス体の周辺部下面を支持する支持構造Aと、板状セラミックス体の外周端面を支持する支持構造Bとの2つの構造でセラミックスヒータを作製した。尚、支持構造Aでは、板状セラミックス体の直径と金属ケースの外形である直径を同じとした。
尚、接触部材の断面は図6に示すような円形状で、リング状とした。円形状の断面の大きさは、直径1mmとした。また、接触部材の材質はSUS304、炭素鋼を用いた。作製した各種のセラミックスヒータを試料No.1〜13とした。
作製したセラミックスヒータの評価は、測温抵抗体が29箇所に埋設された直径300mmの測温用ウェハを用いて行った。夫々のセラミックスヒータに電源を取り付け25℃から200℃まで5分間でウェハWを昇温し、ウェハWの温度を200℃に設定してからウェハWの平均温度が200℃±0.5℃の範囲で一定となるまで加熱しその後10分間温度を保持した。そして、セラミックスヒータを加熱したまま、ウェハWをリフトピンで持ち上げ室温の25℃に冷却した後、ウェハWをウェハ加熱面に載せ、ウェハW面内の平均温度が200℃となるまでのウェハW各部の温度を測定し、時間軸に対するウェハW面内の最大温度と最小温度の差を求め、過渡時のウェハの温度差とした。また、25℃のウェハWを載せ、平均温度が200℃となるまでの時間を応答時間として測定した。また、セラミックヒータを30℃から200℃に5分で昇温し5分間保持した後、30分間冷却する温度サイクルを1000サイクル繰り返した後、室温から200℃に設定し10分後のウェハ温度の最大値と最小値の差をウェハWの定常時の温度差として測定した。
表1の試料No.1は、板状セラミックス体の直径に対する抵抗発熱体の外接円の比率が85%と小さく定常時のウェハの面内温度差は0.71℃と大きく、特に応答時間が63秒と大きく好ましくなかった。
また、試料No.13は板状セラミックス体の直径に対する抵抗発熱体の外接円の比率が99.5%と大きくウェハの面内温度差は2.18℃と大きく、応答時間も72秒と大きく好ましくなかった。
これらに対し、試料No.2〜12はウェハの面内の温度差が0.47℃以下と小さく、しかも応答時間も40秒未満と小さく優れていることから、板状セラミックス体の直径に対する抵抗発熱体の外接円の比率は、90〜99%が優れたセラミックスヒータであることが分った。
更に、板状セラミックス体の周辺の下面で金属ケースと接触部材を介して接続した支持構造Aでは、試料No.3〜6に示すように板状セラミックス体の直径に対する抵抗発熱体の外接円の比率が92〜95%で、ウェハの面内温度差が0.40℃以下で且つ応答時間が35秒以下と小さく優れていた。
また、試料No.4〜6は面内温度差が0.35℃以下で応答時間も34秒以下と小さいことから、板状セラミックス体の直径に対する抵抗発熱体の外接円の比率が93〜95%であるとさらに好ましいことが分った。
一方、板状セラミックス体の周辺の端面を囲むように金属ケースと接触部材を介して接続した支持構造Bでは、試料No.7〜11に示すように板状セラミックス体の直径に対する抵抗発熱体の外接円の比率が95%〜98%で、ウェハの面内温度差が0.44℃以下で且つ応答時間は34秒以下と優れていた。
また、試料No.8、9の面内温度差はどちらも0.40℃で応答時間が31秒と小さいことから、板状セラミックス体の直径に対する抵抗発熱体の外接円の比率が96%〜97%であるとさらに好ましいことが分った。
また、本発明の板状セラミックス体の周辺の非発熱領域の厚みが中央部の厚みより大きなセラミックスヒータである試料No.6、11の過渡時のウェハWの温度差は3.56、3.58℃と試料No.5、10の過渡時のウェハWの温度差が4.53、4.50℃より格段に小さく更に優れていることが分った。