以下、本発明の好ましい実施形態について、添付の図面を参照して詳細に説明する。
ユーザによる観察が可能な可視画像を提供するための、LEDポンプ有機レーザ微小共振器技術を使用したディスプレイシステム1について説明する。必要なドライブエレクトロニクスを線形アレイ構造上に備えた、単一またはパターン化された、有機活性媒質(利得媒質)を備えた微小共振器レーザが使用されている。微小共振器レーザは、可視波長が異なる光を放出するデバイスを製造するために、異なる有機利得媒質を使用して設計されている。線形アレイの長さおよび微小共振器レーザの密度は、レーザ光が表示表面に結像した場合に、解像度の高い投射ディスプレイを生成する長さおよび密度になっている。単一線形アレイ放出デバイスは、カラーピクセルの行または列のいずれかを観察領域内に生成するように画像化されている。線形アレイの画像は、全画像を観察領域に生成するように、単一走査デバイスあるいは複数の走査デバイスによって、観察領域の両端間で走査される。
図1は、3つの個別の有機レーザデバイス1a、1bおよび1cが組み合わされたディスプレイシステム1の略図を示したもので、観察者5が観察することができる表示画面90およびディスプレイ91が示されている。赤色有機レーザデバイス1a、緑色有機レーザデバイス1bおよび青色有機レーザデバイス1cは、結合してカラー出力を生成する3つの異なる光波長を生成している。図7は、これらの有機レーザデバイス1a、1bおよび1cの構造を、より詳細に示したものである。有機レーザデバイス1a、1bおよび1cからの光の強度を変調するための方法は、ポンプビームの強度レベルを変化させることによって、デバイス自身によって提供されている。この変調は、有機レーザデバイスのポンプLEDに供給する電流を変化させることによって達成されている。各波長の強度を個々に制御することができるため、表示画面90の輝度およびカラーの両方を正確に制御することができる。この方法によれば、表示画面90上に、ユーザによる観察が可能な可視画像を生成することができる。3つの光ビーム(赤色光ビームである10R、緑色光ビームである10G、および青色光ビームである10B)は、それぞれエレメント20a、20bおよび20cで示す鏡すなわち光ビーム反射板である反射エレメントによって結合され、単一の光ビームを生成している。このビームの輝度およびカラーも、上で言及した手段によって制御されている。赤色光ビーム反射板20aは、赤色波長の光を反射するように最適化され、一方、ダイクロイックミラー20bは、赤色光波長を透過させ、かつ、緑色光波長を反射している。同様に、ダイクロイックミラー20cは、赤色波長および緑色波長を透過させ、かつ、青色波長を反射している。このような反射板およびダイクロイックミラーの製造については、当業者には周知のことであろう。電気光学偏向器40を使用して、結合した光ビームの位置を修正し、表示画面90上の最終ラスタビームのピッチの不均一性を補正することができる。図1に示すように、エレメント65は、広帯域波長応答を備えた従来設計の光学ミラーである。表示画面90を観察する際の最終画像中のスペックルを少なくするために、揺動ミラー50によって結合ビームに若干の偏向すなわち「ディザー」が施される。スペックルを少なくするための手段の必要性は、コヒーレントレーザ光源を使用していることによるものである。スペックルの影響を緩和するための他の代替手段については、表示画面90内または表示画面90の近傍における拡散光エレメント95の使用を始めとして、当分野では知られている。拡散光エレメント95の位置をディザーさせる、すなわち発振させることにより、スペックルを望み通りに低減させることができる。スペックルの低減は、光学ミラーをディスプレイシステムに対して移動させることによっても達成することができる。このような拡散エレメントの用法および構造については、当業者には周知のことである。
「拡散板」という用語は、鏡面光(主方向を有する光)を拡散光(ランダムな光方向を有する光)に変換することができる任意の材料を意味している。「光拡散エレメント」という用語は、鏡面光(主方向を有する光)を拡散光(ランダムな光方向を有する光)に変換することができる任意のエレメントを意味している。「光」という用語は、可視光を意味している。「拡散光透過率」という用語は、光源の500nmの光の総量と比較した場合の、拡散した500nmの透過光の百分率を意味している。「全光透過率」という用語は、光源の500nmの光の総量と比較した場合の、500nmのサンプルを貫通して透過した光の百分率を意味している。これには、光のスペクトル透過率および拡散透過率の両方が含まれている。「拡散効率」および「ヘーズ」という用語は、1/100を乗じた500nmの全透過光の百分率に対する、拡散した500nmの透過光の割合を意味している。「透明」という用語は、500nmにおける全光透過率が80%以上の膜を意味している。
「重合体膜」という用語は、重合体からなる膜を意味している。「重合体」という用語は、同種重合体および共重合体を意味している。レンズサイズおよび周波数に対する「平均」という用語は、膜表面積全体に対する算術平均を意味している。膜上のレンズレット配列に対する「任意の方向に」という用語は、x平面およびy平面における任意の方向を意味している。「パターン」という用語は、規則的であれランダムであれ、任意の所定の配列を意味している。「微小ビーズ」という用語は、典型的には限定凝結プロセスを使用して合成された重合体球を意味している。「実質的に円形の」という用語は、長軸の長さが短軸の長さの2倍以内である幾何学形状を意味している。
「マクロ拡散効率変化」という用語は、少なくとも2cmの間隔を隔てた2つの位置と位置の間の拡散効率変化が5%より大きいことを意味している。光学勾配とは、透過、反射、および出発点からの距離を関数とした光の方向などの光学特性の変化を意味している。光透過勾配、光拡散勾配および光吸収勾配などは、光学勾配の有用な例である。拡散に関する「勾配」という用語は、出発点からの距離に対する拡散効率の漸次増加または漸次減少を意味している。
拡散光エレメント95を構築するための可能な方法の1つは、ビーズが施された層で表示画面90を被覆することである(図10aおよび10bに示す)。例えば、表示画面90が、ポリ(エチレンテレフタラート)などのポリエステルサポートからなっている場合、レーザ光を有効に拡散させるためには、厚さ約20マイクロメートルのビーズを薄く被覆するだけで十分である。このようなビーズは、ポリ(メタクリル酸メチル共アクリル酸ブチル)、エチレンジメタクリラートまたはメタクリル酸ヒドロキシエチルなどの重合体から製造することができる。別法としては、表面をざらざらにすることによってレーザ光を拡散させる方法が知られており、このような表面は、打抜き等の機械的手段によって製造することができる。エレメントのこの組合せにより、有機レーザ光を受け取るための、拡散エレメントを有する、有機レーザ光に応答して品質の高い観察可能可視画像を生成するディスプレイ装置を生成することができる。図9〜13は、拡散光エレメント95をより明確に示したものである。
ガルバノミラー60は、結合光ビームを水平方向に反射している。光ビーム経路内の追加光コンポーネントを通過した後、ガルバノミラー60の移動により、表示画面90上の光ビームに垂直方向の変位が生じる。結合レーザ光ビームは、典型的にはレンズ70からなる光学系を通過し、回転ポリゴンミラー80を照射する。回転ポリゴンミラー80は、アレイからの有機レーザ光を、表示画面90に可視画像を結像させるパターンで、一行ずつ表示画面90に投射している。回転ポリゴンミラー80は、表示画面90上の結合光ビームを水平方向に変位させている。表示画面90を除く光コンポーネントおよび電子コンポーネントは、前面投射ディスプレイ装置を生成するように、外部光学投影系に組み込むことができ、あるいは、表示画面90が背面から照射される設計に組み込むことができる。回転ポリゴンミラー80は、有機レーザ光を表示画面90上に走査するための手段として説明されているが、代替手段を使用して走査することができることは、当業者には周知のことである。これらの代替手段には、音響光学または電気光学ビーム偏向器、およびディジタルマイクロミラーまたはマイクログレーティング偏向器などの超小型機械デバイスなどがある。
図2は、図1に示す装置の表示画面90上のレーザビーム経路100を示したものである。結合レーザからの光が、表示画面90の左上隅から右上隅まで水平に走査されている。図の水平方向の実線矢印は、光ビームのこの移動を示したものである。光ビームは、次に、次の表示ラインを生成するように、ガルバノミラー60の作用によって垂直方向に下側に変位して元の水平位置にリセットされる。このリセットの間、光ビームは、有機レーザデバイス1a、1bおよび1cへの電流を直接小さくすることによってターンオフされている。このようにして水平走査が継続され、観察者5のための画像が表示画面90に構築される。
図3は、このようなディスプレイ装置のコスト、サイズおよび複雑性を低減するための方法を示したものである。図3には、複数の異なる有機レーザ光源がアレイに配列されたディスプレイシステム1の略図が示されており、有機レーザ光源の各々は、図には示されていないが、ドライブエレクトロニクスによって個々に制御されている。線形レーザアレイ200は、独立した複数の有機微小共振器レーザから光を生成している。ここで説明する実施例では、3つの異なる有機レーザ光源について説明されているが、実例の中には、より広いカラーガマトを生成するように、4つ以上の波長の光が生成されているものがある。図3には、活性化された一列のレーザアレイピクセル210が示されている。この光源列は、個々の微小共振器有機レーザ光源を同時に電気ドライブすることによって生成されている。光は、光学系コンポーネント220によって操作され、回転ポリゴンミラー80へ導かれている。回転ポリゴンミラー80の回転により、表示画面90上の活性レーザアレイピクセル列の画像240に垂直方向の変位が生じる。本質的には、行全体が同時に表示画面90に書き込まれる。次の行は、第1の行から垂直方向に変位して書き込まれる。画像は、観察者5が画像全体のみを知覚する速度で、一行ずつ構成される。図3は、画像の第1の行および最後の行のみを表示するケースを示している。任意選択の光学ミラー65は、表示画面90への画像240の書き込みを補助している。このディスプレイシステム1の場合、線形レーザアレイ200を使用することによって、図1からの結合光ビームを水平方向に正確に移動させるために必要な光コンポーネントおよび電子コンポーネントの必要性が排除されている。線形レーザアレイ200は、容易に取り外すことができるように設計されているため、故障時の交換、またはディスプレイの能力、例えば解像度、カラーガマト等をある程度向上させるための消費者部品に対する要求がある場合の交換が容易である。この実施形態の場合、ディスプレイの解像度は、垂直次元に対しては、ラスタシステムの走査解像度によって決まり、水平次元に対しては、レーザアレイの有機レーザピクセルのサイズによって決まる。
図4は、本発明による代替ディスプレイシステムの略図を示したものである。このディスプレイシステム1の導波路ディスプレイコンポーネント290については、ベリグダンによる米国特許第5,381,502号に、より詳細に記載されている。ベリグダンは、この特許の中で、複数の光導波路アセンブリの使用を開示し、その動作について詳細に説明している。図3に関連して説明した実施形態と同様、線形レーザアレイ200は、独立した複数の有機微小共振器レーザから光を生成している。ここで説明する実施例では、3つの異なる有機レーザ光源について説明されているが、実例の中には、より広いカラーガマトを生成するように、4つ以上の波長の光が生成されているものがある。図4には、活性化された一列のレーザアレイピクセル210が示されている。この光源列は、個々の微小共振器有機レーザ光源を同時に電気ドライブすることによって生成されている。光205は、光学系コンポーネント220によって操作され、回転ポリゴンミラー80へ導かれている。回転ポリゴンミラー80は、有機レーザ光源の列を導波路ディスプレイコンポーネント290の底部に導いている。導波路ディスプレイコンポーネント290は、光学的に透明な材料の層からなっており、屈折率が比較的大きい値と比較的小さい値の間で交番(alternate)している。これらの層の厚さはtであり、有機レーザ光を捕獲し、高さHのディスプレイシステム1の観察可能部分に導く役割を果たしている。導波路ディスプレイコンポーネント290は、事実上、導波路ディスプレイコンポーネントの底部に沿った行と、高さVの観察可能な垂直方向の行との間の関係を確立している。ディスプレイシステム1の観察可能部分の異なる垂直方向の行が、回転ポリゴンミラー80の回転に応じて、その角度範囲を通してアドレスされ、有機レーザ光が、導波路ディスプレイコンポーネント290の底部の厚さDに沿った異なる距離に対応する様々な平面導波路層に衝突する。また、図4には、表示画面90の表面にレーザアレイピクセル270の画像が示されている。図4には、表示画面90に光を導く導波路ディスプレイコンポーネント290を構成している複数の導波路292が示されている。導波路ディスプレイコンポーネント290の層は、レーザアレイピクセル270の画像の垂直方向の範囲を制限する役割を果たしている。導波路292の各々に対して、内部全反射によって特定の有機レーザピクセルからの光が制限されている。レーザアレイピクセル270の画像の水平方向の範囲は、導波路ディスプレイコンポーネント290によって制限されていない。レーザアレイピクセル270の画像の水平方向の範囲は、回折の量および有機レーザピクセルのサイズによって決まり、また、導波路層における散乱などの影響によって決まる。したがって、この実施形態のディスプレイの解像度は、部分的には導波路ディスプレイコンポーネント290構造の層の厚さtによって決まり、かつ、レーザアレイ200の特性によって決まる。図3および図4にはいずれも、レーザ光205が光学系コンポーネント220を通過した後の回転ポリゴンミラー80の変位(いわゆる対物レンズ後スキャナ)が示されているが、光学系コンポーネント220の前段で回転ポリゴンミラー80の変位を生じさせる(いわゆる対物レンズ前スキャナ)こともできることを理解すべきである。
図5は、複数の異なる有機レーザ光源が線形アレイに配列された、線形レーザアレイ200の略図を示したものである。図に示すパターンは、赤色(R)、緑色(G)および青色(B)有機レーザデバイスを反復して示したものである。有機レーザデバイス300の各々は、有機微小共振器デバイスである。これらのデバイスをパターン化することにより、ディスプレイシステム1の表示画面90に光を送達するための集積レーザエミッタアセンブリを生成することができる。表示画面90中に観察されるスーパピクセル(赤色、緑色および青色のピクセルを組み合わせたもの)の各々は、それぞれ赤色、緑色および青色の光を生成する3つのレーザ光源によって画定されている。
図6は、レーザエミッタの3つの線形アレイが単一アセンブリ中に統合された、代替線形レーザアレイ200の略図を示したものである。このアレイには、3つの個別線形アレイが含まれており、線形アレイの各々は、同一カラーを生成する複数のレーザ光源を有している。この場合も、有機レーザデバイス300の各々は、有機微小共振器デバイスである。表示画面90中に観察されるピクセルの各々は、それぞれ赤色、緑色および青色の光を生成する3つのレーザ光源によって画定されている。このケースでは、3つの光源は、垂直方向にグループ化されている。他の空間配列の有機レーザデバイス300が可能であることは明らかである。ディスプレイ装置の所望のシステム特性によって、これらの有機レーザデバイス300の最適空間配列が決まる。
図7は、単一有機レーザデバイス300の略図を示したもので、図6に示す線7−7に沿った有機レーザデバイス300の横断面図が示されている。本発明の利点は、高反射率誘電体多層膜反射鏡を組み込んだ垂直共振器設計を、頂部反射板および底部反射板の両方に使用し、かつ、微小分子有機材料から構成された活性材料を有していることであり、それにより、レーザ共振器のレーザ作用の閾値が極めて小さくなっている。これは、1)活性体積が小さいこと、2)損失が極めて小さい高反射率誘電体反射鏡を使用していること、3)レーザ放出媒質が、底部誘電体スタックを覆って極めて一様に蒸着することができる小分子有機材料から構成されていること、および4)レーザ放出媒質が、ホスト有機材料(ポンプビーム放射を吸収する)および体積百分率の小さいドーパント有機材料(レーザ光を放出する)から構成されていることによるものであり、そのために量子効率が高く、かつ、散乱/吸収損失が小さくなっている。垂直共振器の閾値が極めて小さくなっているため、共振器にレーザ光を放出させるための高パワー密度デバイス(集束レーザ光)を使用する必要がなく、そのため、レーザ共振器をポンピングするために使用する光源として、非集束有機発光ダイオード(OLED)放射あるいは無機発光ダイオード(LED)からの放射など、低パワー密度デバイスの放射で十分である。有機ベースのレーザ微小共振器とLEDポンプ源を組み合わせることにより、その光出力を広波長レンジに転換することができる安価な汎用レーザ光源を得ることができる。これは、高品質高カラーガマトディスプレイの製造には特に重要である。
図7をさらに参照すると、基板320は、意図する光ポンピング方向およびレーザ放出方向に応じて、光透過性あるいは不透明のいずれであっても良い。光透過性基板320は、透明なガラスかあるいはプラスチックである。別法としては、光ポンピングおよび放出の両方が同じ表面を通して生じる場合、それらに限定されないが、半導体材料(例えばケイ素)またはセラミック材料を含んだ不透明基板を使用することもできる。基板320の上には、底部誘電体スタック330(第1の誘電体スタックとも呼ばれる)が蒸着され、その上に有機活性領域340が蒸着されている。つづいて頂部誘電体スタック350(第2の誘電体スタックとも呼ばれる)が蒸着されている。ポンプビーム360は、垂直共振器有機レーザデバイス300を光ポンプしている。ポンプビーム源は、LEDからの放出など、非干渉性の源である。別法としては、ポンプビームは、干渉性レーザ源から放出されるビームであっても良い。図7には、頂部誘電体スタック350からのレーザ放出370が示されている。別法としては、頂部誘電体スタック350を通してレーザを光ポンプし、適切に設計された誘電体スタック反射率によって、基板320を通してレーザを放出させることも可能である。基板320がケイ素などの不透明基板である場合、光ポンピングおよびレーザ放出は、いずれも頂部誘電体スタック350を介して発生する。
底部および頂部誘電体スタック330、350は、いずれも従来の電子ビーム蒸着によって蒸着されていることが好ましく、また、高屈折率誘電材料と低屈折率材料が交番する、例えば、それぞれTiO2およびSiO2などから構成されている。高屈折率層には、Ta2O5などの他の材料を使用することもできる。底部誘電体スタック330は、約240℃の温度で蒸着されている。頂部誘電体スタック350の蒸着プロセスの間、有機活性材料の熔融を回避するために、温度は約70℃に維持されている。本発明の代替実施形態(図示せず)では、頂部誘電体スタック350は、反射金属ミラー蒸着層に置換されている。典型的な金属は、可視光の反射率が90%を超える銀またはアルミニウムである。この代替実施形態では、ポンプビーム360およびレーザ放出370の両方が、基板320を貫通して進行している。底部誘電体スタック330および頂部誘電体スタック350は、いずれも所定の波長レンジのレーザ光を反射している。半値全幅(FWHM)が1nm未満のレーザピークを得るためには、レーザ放出波長に対する頂部および底部の両誘電体スタックの反射率を、99%より大きくしなければならないことが実験によって分かっている。
1つまたは複数の利得領域を共振器の定在波電磁界の腹に設置することにより、高反射率の頂部および底部誘電体スタックが組み込まれた垂直共振器設計の動作が改善されている。その結果、パワー変換効率が改善され、レーザ放出閾値が小さくなり、かつ、自然放出による望ましくない出力が著しく低減されている。図8は、垂直共振器有機レーザデバイス300の概略側面図を示したもので、有機活性領域340がより詳細に示されている。有機活性領域340は、1つまたは複数の周期利得領域385および周期利得領域385の両側に配置された有機スペーサ層375を備えており、周期利得領域385とデバイスの定在波電磁界120の腹103が整列するように配列されている。誘導放出は、腹103の部分で最も高く、かつ、電磁界の節105の部分を無視することができるため、図8に示すような有機活性領域340を形成することが本質的に有利である。1つまたは複数の周期利得領域385の配置は、標準光学マトリックス方式を使用して決定されている(スコットW.コーツィン他、IEEE Journal Of Quantum Electronics,Vol.25,No.6,1989年6月、を参照されたい)。スペーサ層375は、誘導放出あるいは自然放出には関与せず、また、レーザ放出370波長およびポンプビーム360波長の吸収も極めてわずかである。有機材料1,1−ビス−(4ビス(4−メチル−フェニル)−アミノ−フェニル)−シクロヘキサン(TAPC)は、スペーサ層375の一例である。TAPCは、レーザ放出370およびポンプビーム360をほとんど吸収しないため、また、その屈折率が、ほとんどの有機ホスト材料の屈折率よりわずかに小さいため、スペーサ材料として良好に機能している。この屈折率の差によって、電磁界の腹103と1つまたは複数の周期利得領域385の間の重畳の最大化が促進されるため、この屈折率の差は有用である。1つまたは複数のバルク利得領域の代わりに、1つまたは複数の周期利得領域385を使用することにより、より高いパワー変換効率、より小さいレーザ放出閾値が得られ、かつ、望ましくない自然放出が著しく低減される。
1つまたは複数の周期利得領域385の好ましい材料は、典型的には高真空熱蒸着によって蒸着される小分子量有機ホスト−ドーパントコンビネーションである。これらのホスト−ドーパントコンビネーションは、それらによって利得媒質の非ポンプ散乱/吸収損失が極めて小さくなるため、有利である。より一様に熱蒸着層を蒸着することができるため、有機分子は、小分子量の有機分子であることが好ましい。本発明に使用されるホスト材料は、ポンプビーム360波長を十分に吸収し、かつ、フォスタエネルギー伝達を介して励起エネルギーの大半をドーパント材料に伝達することができる任意の材料の中から選択される。ホスト分子とドーパント分子の間の無放射エネルギー伝達を包含しているフォスタエネルギー伝達の概念については、当業者には周知のことであろう。赤色放出層に有用なホスト−ドーパントコンビネーションの一例としては、ホスト材料としてAlq[アルミニウムトリス(8−ヒドロキシキノリン)]、およびドーパントとして1%DCJTB[4−(ジシアンメチレン)−2−t−ブチル−6−(1,1,7,7−テトラメチルジュロリジル−9−エニル)−4H−ピラン]がある。可視スペクトルの緑色部分および青色部分などにおける他の波長放出には、他のホスト−ドーパントコンビネーションを使用することができる。他の有機利得領域材料としては、重合体物質、例えば、同一出願人による、本願に引用される「Thermal Transfer Element And Process For Forming Organic Electroluminescent Devices」という名称の米国特許第6,194,119号(2001年2月27日)の中でウォルクらによって教示されているように、ポリフェニレンビニレン誘導体、ジアルコキシ−ポリフェニレンビニレン、ポリ−パラ−フェニレン誘導体およびポリフルオレン誘導体がある。有機活性領域340の目的は、透過したポンプビーム光360を受け取り、レーザ光を放出することである。
本発明の利点は、広領域源によって電気的または光学的にドライブすることができ、かつ、位相固定レーザ出力を生成することができる、ミクロンサイズのレーザピクセルを使用した二次元有機レーザアレイデバイスが提供されることである。このデバイスには、底部および頂部反射板の両方に高反射率誘電体スタックが組み込まれた、小分子量有機材料からなる利得媒質を有する微小共振器設計が使用されている。このデバイスのミクロンサイズのレーザピクセルは、底部誘電体スタックの反射率を修正することによって生成されている。ピクセルからの放出は位相が固定されており、それにより、レーザ出力が単一モード(あるいは、せいぜいいくつかの横モード)を維持している間、デバイスを広領域源によってドライブすることができる。低パワー密度閾値と広領域源によるポンピングを組み合わせることにより、安価な非干渉性LEDによってデバイスを光学的にドライブすることができる。このようなピクセルからの光出力を多モード(横モード)にするように設計することができるため、光源の干渉性が低減され、ひいてはディスプレイ中のスペックルの望ましくない影響が緩和される。位相を固定するためには、強度情報および位相情報をピクセル間で交換しなければならない。ピクセル間の情報交換は、ピクセル領域へのレーザ放出を、少量の組込み屈折率導波または利得導波のいずれかによって緩やかに制限することによって最も良好に達成される。二次元無機レーザアレイに適用する場合は、この緩やかな制限を達成するための手段が、金属を追加することによって(1992年2月4日発行の、カポンらの「Phase−Locked Array Of Reflectivity−Modulated Surface−Emitting Lasers」という名称の米国特許第5,086,430号を参照されたい)、あるいは頂部誘電体スタック350中へのマクロエッチング(P.L.ギーリー他、Appl.Phys.Lett.58,(9),1991年3月4日、を参照されたい)のいずれかによって、頂部誘電体スタック350の反射率を変調することになる。強度変調手段には、電気光学変調器または音響光学変調器を使用することができる。これらの変調器については当分野で周知のことであり、本明細書においては省略する。両無機レーザアレイの場合、レーザピクセルの幅は、3〜5μm程度(したがって単一モードアクションを可能にしている)であり、ピクセル間の間隔は1〜2μmである。有機層が蒸着されると、レーザ構造にミクロンスケールのパターンを施すことは極めて困難であるため、これらの結果を有機レーザシステムに適用するためには、若干の注意が必要である。そのために、一実施形態では、図8に示すように、標準のフォトリソグラフィック技法およびエッチング技法を使用して、底部誘電体スタック330中にエッチング領域345をパターン化し、形成することによって、底部誘電体スタック330の表面に円形ピラーの二次元アレイを形成し、それによって反射率変調に作用している。一実施形態では、レーザピクセルの形状は円形であるが、長方形などの他のピクセル形状も可能である。ピクセル間の間隔は、0.25μmから4μmの範囲である。位相固定アレイ動作は、ピクセル間の間隔がもっと広い場合にも生じるが、この場合、光ポンピングエネルギーの使用が不十分である。ピクセル間の反射率を大きく減少させるための、無機鉛に続き、底部誘電体スタック330中への深いエッチングは、活性領域の位置を著しく変化させることになるため、好ましい経路ではない。好ましい方法は、深さ50nmから400nmまでの浅いエッチングを施すことによってエッチング領域345を形成し、往復位相が2πの整数倍である波長でのみレーザ放出が生じる条件を利用することである。赤色レーザアレイの一例として、レーザ放出波長は、660nmになるように選択されている。底部誘電体スタック330から奇数倍の層(例えばSiO2層を1層、またはSiO2層を2層とTiO2層を1層)を除去することにより、ピクセル間領域におけるレーザ放出波長を、660nm(〜610nmおよび710nm)から可能な限り押し上げることができることが計算されている(スコットW.コーツィン他、IEEE Journal Of Quantum Electronics,Vol.25,No.6,1989年6月、を参照されたい)。そうすることにより、710nm領域におけるレーザ放出信号および自然放出信号が極めて小さくなることが分かっている。また、次のTiO2層中にさらに数十ナノメートル深くエッチングを施すことにより、短波長共振条件を590nmの波長領域に押し上げることができることが決定されている。この波長領域では、誘電体スタックの反射率が極めて小さくなり(望ましくないあらゆるレーザ放出が阻止される)、また、利得媒質の蛍光強度が大きく低減される(望ましくないあらゆる自然放出が阻止される)。したがって、底部誘電体スタック330中のいくつかの奇数倍の層に渡ってエッチングを施すことにより、ピクセル間領域におけるレーザ放出作用が回避され、かつ、自然放出が著しく低減される。
本発明の一実施形態では、拡散光エレメント95は、少なくとも一方の側に、複数のランダムな微小レンズすなわちレンズレットの形態のテクスチャが施された表面を有する膜である。「レンズレット」という用語は、微小レンズを意味しているが、ここでの考察の目的に対しては、レンズおよびレンズレットという用語は、同じ意味で捕らえるべきである。レンズレットは、重畳して複合レンズを形成している。「複合レンズ」という用語は、表面に複数の副レンズを有する主レンズを意味している。「主レンズ」という用語は、その頂部に副レンズがランダムに形成された、より大きいレンズレットを意味している。「副レンズ」という用語は、主レンズ上に形成された、主レンズより小さいレンズを意味している。「凹面の」という用語は、外部表面が膜の表面に最も近接した球の表面のような湾曲表面を意味している。「凸面の」という用語は、内部表面が膜の表面に最も近接した球の表面のような湾曲表面を意味している。「頂部表面」という用語は、光源から遠い方の膜表面を意味している。「底部表面」という用語は、光源に近い方の膜表面を意味している。図9は、基板500および複合レンズ502を備えた複合レンズ拡散光エレメント95を示したものである。基板500の全透過率は、85%より大きくなっている。
印刷投射媒質の「鏡面領域」は、媒質のその領域を通過する光のほとんどが鏡面透過する(拡散することなく)領域として定義される。この領域を透過する光のヘーズ値は、通常、30%未満である。印刷投射媒質の「拡散領域」は、媒質のその領域を通過する光のほとんどが拡散透過する領域として定義される。この領域を透過する光のヘーズ値は、通常、70%より大きい。投射媒質に対する「印刷投射媒質」という用語は、光拡散エレメントを部分的または全面的に熔融させるために、熱および/または圧力に晒された後の投射媒質を意味している。
各レンズレットの表面は局部的な球台をなしており、レンズを通過するエネルギーの光線経路を交番させるための小形レンズとして作用している。各レンズレットの形状は、各レンズレットの表面が球の扇形であることを意味する「半球面」であり、必ずしも半球である必要はない。レンズレットの湾曲表面は、透明な重合体膜に平行の第1の軸(x)に対して測定した曲率半径、および透明な重合体膜に平行で、かつ、第1の軸(x)に対して直角をなす第2の軸(y)に対する曲率半径を有している。アレイ膜中のレンズは、xおよびy方向に同じ寸法である必要はない。レンズの寸法、例えばxまたはy方向の長さは、一般的に膜の長さまたは幅より著しく短くなっている。「高さ/直径比」という用語は、複合レンズの直径に対する複合レンズの高さの比率を意味している。「直径」という用語は、x平面およびy平面における複合レンズの最大寸法を意味している。高さ/直径比の値が、光が広がる量、すなわち複合レンズの各々が生成する拡散の量を主として決定している。小さい高さ/直径比は、直径が、より幅の広い複合レンズであるフラッタを生成しているレンズの高さよりはるかに大きいことを表している。より大きい高さ/直径値は、より幅の狭い複合レンズであるトーラ(taller)を表している。
レンズを通過する光の発散は「非対称」と呼ばれ、水平方向の発散と垂直方向の発散が異なっていることを意味している。発散曲線は非対称であり、ピーク光透過の方向が、θ=0°の方向に沿った方向ではなく、表面に非直角の方向であることを意味している。本明細書においては、「空隙」という用語を使用して、追加固体物質および液体物質が存在していないことを意味している。「空隙」という用語は、気体に対しても適用される。
ディスプレイの視角は、光強度をディスプレイに対して直角に測定することによって計算される。光強度が正規の光強度の50%に低下する角度が、視角として定義されている。視角は、例えば、直角に対して各方向に80°をなす方向に正規の強度の50%ラインが存在している場合、視角160°というように引用される。ディスプレイシステム、とりわけ複数の観察者が存在するディスプレイシステムにおいては、観察者のほとんどが、ディスプレイを取り囲んで、同じ高さからディスプレイを観察することになるため、極めて広い水平方向の視角を有していることが重要である。垂直方向の視角は、観察者のほとんどが、ほぼ同じ視角に位置することになるため、広くする必要はない。拡散光エレメント95は、第1の観察方向の視角を160°より広くし、また、第1の方向に対して直角をなす第2の観察方向の視角を100°より広くすることができる。あるいは、水平観察方向の視角を120°より広くし、また、垂直観察方向の視角を60°より広くすることもできる。
水平観察方向の視角は160°より広く、また、垂直観察方向の視角は100°より広いことが好ましく、それにより観察者は、160°に渡ってディスプレイを取り囲んで座り、良好な明るい画像を観察することができる。垂直方向の視角を100°にすることにより、異なる高さに座っている観察者によるディスプレイの観察が保証される。
拡散光エレメント95の利得は、少なくとも1.2であることが好ましい。利得は、拡散光エレメント95を備えた場合と備えていない場合のシステムの光強度を、ディスプレイに対して直角に測定することによって測定される。利得1.2は、拡散光エレメント95を備えた場合の、ディスプレイに対して直角をなす光強度が、拡散光エレメント95を備えていない場合より1.2倍明るい(強度が1.2倍である)ことを意味している。この利得は、光を整形し、かつ、より多くの光を、輝度を持たせるべき最も重要なディスプレイの中心に集束させることによって達成される。本発明によるディスプレイシステム1の場合、1.2以上の利得を得るためには、垂直方向にディスプレイに導かれる光のうちの若干の部分を取り上げ、それを再方向付けし、かつ、整形して、直角方向にディスプレイシステム1から退出させる必要がある。
拡散光エレメント95は、少なくとも3Hの鉛筆硬度であることが好ましい。この硬度により、一般的に表示画面90の外部表面である拡散光エレメント95は、通常の摩耗および破損を確実に抑制することができる。3Hの鉛筆硬度は、引っ掻き傷に対して耐久性があり、かつ、引っ掻き傷を食い止めることができる。鉛筆硬度は、鉛筆硬度テスタを使用して、試験値として記録される、膜に引っ掻き傷を生成することのない最も硬い硬度である1kgの荷重の下で、JIS−K5400によって測定することができる。
拡散光エレメント95は、表示画面90に統合されていることが好ましい。図12は、表示画面90に統合された複合レンズ502を備えた拡散光エレメント95を示したものである。拡散光エレメント95を表示画面90に統合すると、インタフェースが不要になり、それにより効率および透過性がさらに向上する。さらに、個々の拡散光エレメント95を形成し、かつ、表示画面90に拡散光エレメント95を接着する製造ステップを省略することができる。
本発明の他の実施形態では、拡散光エレメント95が、好ましくは表示画面90に粘着接着されており、それにより、拡散光エレメント95を各応用例の要求および環境に適合させることができる。図13は、接着剤512で表示画面90に粘着接着された基板500上に複合レンズ502を備えた拡散光エレメント95を示したものである。拡散光エレメント95は、引っ掻き傷が付き、あるいは損傷した場合に交換することができるため、表示画面全体を交換する場合に比べて、修理費がはるかに低減されている。拡散光エレメント95は、任意の接着方法を使用して表示画面90に粘着接着することができる。
好ましい接着方法のいくつかには、感圧性接着剤(PSA)、熱活性化接着剤およびUV硬化性接着剤などがある。接着剤は、永久接着剤であっても、あるいは保存可能接着剤のいずれであっても良い。接着剤は、表示画面90または拡散光エレメント95に被覆あるいは塗布されることが好ましい。好ましい感圧性接着剤(PSA)はアクリル基の接着剤であり、プラスチック間に優れた結合を提供することが分かっている。当分野で知られている様々な方法を使用して、好ましい接着材料を塗布し、薄い、無矛盾接着剤被覆を生成することができる。実施例には、食刻ロールコーティング、ロッドコーティング、反転ロールコーティングおよびホッパーコーティングがある。
拡散光エレメント95は、全透過率が85%より大きい基板500を備えていることが好ましい。基板500は、拡散光エレメント95に安定した寸法を提供し、かつ、ディスプレイシステム1に適したものにするために、剛性および厚さを提供している。基板500の光透過率は、少なくとも85%であることが好ましい。光透過率が少なくとも85%の基板500は、明るい、飽和したカラーを表示するための許容可能なレベルの透過率を有していることが分かっている。基板500の最も好ましい百分率透過率は、少なくとも92%である。92%の透過率により、ディスプレイを拡散させ、かつ、ディスプレイの輝度を最大化することができるため、自然太陽光と競合しなければならない場合のディスプレイの画像品質が著しく改善される。
基板500は、フリンジフィルタ(図示せず)を備えていることが好ましい。フリンジフィルタは、ノッチフィルタ以外のカラー修正フィルタである。フリンジフィルタは、特定の波長の透過率を90%より大きく減少させるノッチフィルタと比較した場合、特定の波長の白色光の透過率を25%だけ選択的に減少させることが分かっている。したがってフリンジフィルタは、ディスプレイデバイスの白色光源のカラー修正および照明光源のカラーバランスの調整には理想的なフィルタである。フリンジフィルタには、光を散乱させる傾向にある顔料化学薬品は含まれていない。顔料化学薬品が含まれているどころか、フリンジフィルタは透明であり、高光透過率を可能にしている。透過率が大きいほど画像が明るくなるため、高透過率は、ディスプレイデバイスにとっては重要な要素である。また、フリンジフィルタは、通常、光エネルギーおよび紫外エネルギーへの長時間の露出によって退色する染料化学薬品を使用することなく、カラーフィルタリングを提供している。退色することのないフリンジフィルタにより、ディスプレイは、時間の経過と共に劣化することのない無矛盾カラーを提供することができる。
二酸化チタン粒子によって、拡散光エレメント95の透過特性または拡散特性を著しく変化させることなく、拡散光エレメント95に強度が追加されるため、拡散光エレメント95には、30ナノメートル未満の二酸化チタン粒子が含まれていることが好ましい。拡散光エレメント95に強度および剛性を追加することは、輸送の取扱いおよび処理のためには重要である。少量の微小TiO2の追加は、粒子が光の波長未満であり、したがって光を散乱させないため、透過特性および拡散特性に著しい影響を及ぼすことはない。
拡散光エレメント95は、紫外(UV)硬化性重合体からなっていることが好ましい。UV硬化性重合体は、最初は非硬化重合体であり、その非硬化重合体に拡散光エレメント95を生成するプロセスが施される。次にシートを硬化させると、シートは、熱および/または圧力に対してほぼ不変になる。したがって拡散光エレメント95は硬質で、かつ、耐久性があり、引っ掻き傷に強くなっている。
拡散光エレメント95は、ポリアクリラートからなっていることが好ましい。本発明による他の実施形態では、拡散光エレメント95は、ポリカーボネートからなっている。ポリカーボネートおよびポリアクリラートから形成された拡散光エレメントは、光透過率の値が大きく、優れた光透過および拡散を可能にしている。また、ポリカーボネートおよびポリアクリラートは、引っ掻き傷および損傷に対して極めて硬質で、かつ、耐久性に富んでおり、また、比較的安価である。
拡散光エレメント95は、着色料からなっていることが好ましく、したがって、表示画面を通して投射される光をカラー修正する方法が提供される。着色料によって、望ましくない波長がフィルタ除去される。拡散光エレメント95は、染料または顔料からなっていることがより好ましい。顔料および染料は、優れたカラー再現性およびカラー安定性を有している。顔料および染料により、広いカラーガマトおよび飽和を生成することができる。また、顔料および染料は、重合体層の押出物および被覆中に容易に組み込むことができる。また、顔料粒子は非常に小さく、カラーを追加するにはより効率的であるため、同じカラー飽和を達成するために必要な顔料の量が少ないという利点を生かして、ナノサイズの顔料を使用することもできる。
拡散光エレメント95は、少なくとも70%のヘーズ値を有していることが好ましい。拡散光エレメント95を光が通過する際に、光を十分に拡散させ、かつ、整形するためには、このヘーズ量が必要である。拡散光エレメント95のヘーズ値が60%未満であると、投射媒質を透過する光の一部が偏向かつ整形されないため、その結果、視角が狭くなる。
拡散光エレメント95の全透過率は、少なくとも85%であることが好ましい。85%の光透過率は、明るい、飽和したカラーを表示するための許容可能なレベルの透過率を有している。拡散光エレメント95の最も好ましい百分率透過率は、少なくとも92%である。92%の透過率により、ディスプレイを拡散させ、かつ、ディスプレイの輝度を最大化することができるため、自然太陽光と競合しなければならない場合のディスプレイの画像品質が著しく改善される。
拡散光エレメント95は、400ナノメートルから420ナノメートルまでの光の80%をフィルタすることが好ましい。有機レーザを備えた投射ディスプレイシステムの中には、400nmから420nmまでの大きい光成分が存在しているシステムがあることが分かっている。より自然に近い、より現実的なカラーを得るためには、この光をフィルタすることが望ましい。拡散エレメントには、400ナノメートルから420ナノメートルまでの光をフィルタするために、着色料またはフリンジフィルタが使用されていることが好ましい。
拡散光エレメント95は、実質的に鏡面透過領域からなっていることが好ましい。これらの鏡面透過領域は、ディスプレイシステム1をブランド化するための方法として、あるいは個別化すなわち機密保護のための方法として使用することができる。鏡面透過領域を除去するためには拡散光エレメント95を除去しなければならず、ディスプレイシステム1を破壊してしまうことになる。
カラーは、鏡面透過領域に追加されることが好ましい。拡散光エレメント95の各々に複数のカラーを追加することにより、重要なかつ感動的なディスプレイ材料を可能にすることができる。また、カラーは、昇華性染料およびサーマルプリンタを使用して、鏡面領域の生成と同時に容易に追加することができる。このことは、カラー領域(染料の昇華)および鏡面透過領域が、安価で、かつ、印刷業界において既にサポートされている印刷技法を使用して同時に生成されるため、カラー領域と鏡面透過領域の間に位置決めの問題がなく、有利である。染料は透明であり、投射されると着色領域が明るく着色されるため、追加するカラーは染料であることが好ましい。
また、他の態様では、本発明に使用される拡散光エレメント95には、1つまたは複数のレンズレットチャネルを透過する光透過率を改善するために、1つまたは複数のオプティカルコーティングが施されている。拡散板の効率を向上させるためには、拡散板を無反射(AR)コーティングの層で被覆することが好ましい。また、ディスプレイ画面から眩さを除去するためには、無反射コーティングおよび/または眩さ防止コーティングを施すことが好ましい。無反射コーティングおよび/または眩さ防止コーティングを施すことにより、より多くの飽和カラーを表示することができる。
本発明の一実施形態では、拡散光エレメント95は、結合剤および結合剤中に分散した光拡散剤からなっている。拡散光エレメント95は、10aおよび10bに示すように、基板500上の非対称重合体ビーズ504であることが好ましい。非対称重合体ビーズ504は、通常、重合体結合剤中に見出され、そのサイズ、分布および密度が、拡散量および整形量を制御している。非対称重合体ビーズ504は、球面であっても非球面であっても良い。ビーズ504中に被覆されている重合体の厚さによって、拡散する量を交番させることができる。これらの光拡散エレメントおよび結合剤を使用することにより、ディスプレイシステム中における光の拡散量および整形量を容易に適合させることができる。直交する2つの方向の間に視角差を生成するようには、拡散光エレメント95が1つの方向(例えば、垂直方向に対する水平方向)により多くの光を拡散させるよう、重合体ビーズ504を非対称にすることが重要である。
熱硬化性ウレタン樹脂などの熱硬化性樹脂は、アクリルポリオール、イソシアネートプレポリマー、フェノール樹脂、エポキシ樹脂、非飽和ポリエステル樹脂等からなり、また、拡散光エレメント95には、ポリカーボネート、熱可塑性アクリル樹脂、エチレンビニルアセテート共重合体樹脂等の熱可塑性樹脂が含まれている。ポリメチルメタクリラート(PMMA)ビーズ、ケイ素ビーズ、スチレンビーズ等の合成樹脂ビーズは、単独で、あるいはそれらを任意に組み合わせて使用することができる。
ビーズの粒子サイズは、光拡散層の厚さに対して適切に決定されるが、平均粒子サイズが1〜30マイクロメートルであり、粒子の分布が狭いことが望ましい。拡散光エレメント95は、少なくとも粒子部分を光拡散層の表面から突出させることによって光拡散率を大きくしているため、平均粒子サイズは、粒子部分が光拡散層の表面から突出することができる範囲内でなければならない。
拡散光エレメント95は、図11に示すように、基板500上に湾曲した表面506を備えたレンズであることが好ましい。湾曲した凹面および凸面重合体レンズは、光を極めて有効に拡散させ、かつ、透明性に優れていることが分かっている。レンズの寸法すなわち周波数を変更することにより、拡散する量を制御することができる。アスペクト比の大きいレンズは、アスペクト比の小さい平らなレンズより多くの光を拡散させ、アスペクト比のより大きい(例えば0.8)レンズを通して、より暗い投射領域を提供する。レンズは非対称であることが好ましい。
拡散光エレメント95は、非対称湾曲表面506であり、0.2〜1.0の平均アスペクト比を有していることが好ましい。拡散した光エレメントは、より多くの光を1つの方向に導き、それにより、より広い視角を1つの方向に生成するように、非対称に湾曲している。これは、垂直方向より水平方向にはるかに広い視角を必要とするTV応用例に有用である。拡散エレメントのアスペクト比が0.1未満の場合、曲率の量が小さ過ぎるため、拡散光エレメント95膜を透過した光を十分に拡散させ、かつ、導くことができない。拡散エレメントのアスペクト比が1.7より大きい場合、内部反射が生じ、入射光の一部が光源に向かって反射して戻るため、総合透過率およびディスプレイの輝度が低下する。
本発明の他の実施形態では、拡散光エレメント95は、複合レンズ502であることが好ましい。複合レンズ502は、他のレンズの頂部に配置されたレンズである。複合レンズ502は、光を極めて有効に拡散させ、かつ、透明性に優れていることが分かっており、有効な拡散および光整形を可能にしている。複雑性、幾何学、サイズあるいは複合レンズ502の周波数を変更することにより、拡散量および整形量を容易に交番させることができる。
本発明の一実施形態は、月のクレータ表面にたとえることができる。月に衝突する小惑星が、クレータを、他のクレータと間隔を隔てて、あるいは他のクレータの一部と重畳して、もしくは他のクレータの内部あるいは他のクレータを飲み込んで形成している。さらに多くのクレータが刻まれると、月の表面は、拡散エレメント中に形成された複雑なレンズの様に複雑な窪みになる。
複合レンズ502は、サイズ、形状、光軸からのオフセットおよび焦点距離が異なっている。レンズレットの曲率、深度、サイズ、間隔、構造材料(重合体膜および基板の基本屈折率を決定している)および位置決めが、拡散および光整形の程度を決定している。これらのパラメータは、本発明による製造中に確立される。
光軸が個々のレンズの中心からオフセットしているレンズを有する拡散膜を使用することにより、光が膜から非対称に分散することになるが、光軸がレンズの中心からx方向およびy方向の両方にオフセットするようにレンズ表面を形成することができることは理解されよう。これを使用して、水平方向および垂直方向に異なる視角が生成される。
レンズレット構造は、基板500の両側に製造することができる。基板500のいずれの側のレンズレット構造も、レンズレットの曲率、深度、サイズ、形状および位置決めを変化させることができる。
拡散光エレメント95は、その拡散効率が、拡散板の2つの異なる位置において5パーセントを超えて変化することが好ましい。変化が3パーセント未満の拡散効率は、製造プロセスの変動による拡散膜の変化によるものである。拡散板の2つの異なる位置における拡散効率は、10パーセントまたは50パーセントを超えて変化することが最も好ましい。拡散板膜の2つの異なる位置における50パーセントを超える変化により、光の拡散および整形をディスプレイ画面上の配置を関数として適合させることができる膜が生成されることが分かっている。
拡散光エレメント95は、その拡散効率の変化が勾配をなしていることが好ましい。勾配を包含することにより、ディスプレイの両端間に渡って、より多く拡散する部分から拡散の少ない部分へ、滑らかに移行させることができる。この勾配は、カラー勾配と組み合わせて使用することができる。光拡散エレメントの拡散効率は、以下の数学的変分による印刷によって変化させることができる。例えば、
拡散効率=e1/距離またはe-1/距離
(式1)
拡散効率=1/距離または−1/距離
(式2)
拡散効率=距離*xまたは−距離*x (xは、実数)
(式3)
必要な変化量は、個々の光拡散応用例によって決定され、拡散効率は、距離に対してその割合で変化する。
重合体膜の表面の凹面または凸面レンズは、ランダムに配置されることが好ましい。レンズをランダムに配置することにより、本発明による材料の拡散効率が向上する。また、レンズの凹面または凸面の順序配置を回避することにより、観察者を当惑させるモアレなどの望ましくない光干渉パターンが回避される。
凹面または凸面レンズは、任意の方向に、5複合レンズ/mmから250複合レンズ/mmまでの平均周波数を有していることが好ましい。平均285複合レンズ/mmの膜の場合、レンズの幅は、光の波長に近くなる。レンズは、レンズを通過する光にカラーを付与し、かつ、表示画像に不要なカラーを追加する。1ミリメートル当たりのレンズの数を4つ未満にすると、過大なレンズが生成され、それにより光の拡散効率が低下する。任意の方向における平均周波数が22複合レンズ/mmと66複合レンズ/mmの間の凹面または凸面レンズであることがより好ましい。22個の複合レンズと66個の複合レンズの間の平均周波数は、有効な光の拡散を提供し、かつ、ランダムにパターン化されたロールにキャストコート重合体を利用して効果的に製造することができることが分かっている。
光拡散エレメントは、x方向およびy方向の平均幅が3ミクロンと60ミクロンの間の凹面または凸面レンズを有している。レンズのサイズが1ミクロン未満になると、レンズの寸法が光の波長程度になるため、レンズによって、通過する光にカラーシフトが付与され、かつ、表示画像に不要なカラーが追加される。レンズのx方向またはy方向の平均幅が68ミクロンを超えると、過大なレンズが生成され、光の拡散効率が低下する。凹面または凸面レンズのx方向およびy方向の平均幅は、15ミクロンと40ミクロンの間であることがより好ましい。このサイズのレンズによって、最も有効な拡散および整形が生成されることが分かっている。
凹面または凸面複合レンズは副レンズを備えており、より小さいレンズのx方向およびy方向の幅は、2ミクロンと20ミクロンの間であることが好ましい。副レンズのサイズが1ミクロン未満になると、レンズの寸法が光の波長程度になるため、レンズによって、通過する光にカラーシフトが付与され、かつ、表示画像に不要なカラーが追加される。副レンズのサイズが25ミクロンを超えると、レンズの複雑性が低減されるため、拡散効率が低下する。副レンズのx方向およびy方向の幅は、3ミクロンと8ミクロンの間であることがより好ましい。この範囲が最も有効な拡散を生成することが分かっている。
1主レンズ当たりの副レンズの数は、2個から60個までであることが好ましい。主レンズが有する副レンズが1個、または主レンズが副レンズを有していない場合、その複雑性が低減され、したがって拡散効率が低下する。主レンズが含有する副レンズが70個を超えると、いくつかの副レンズの幅が光の波長に近くなるため、透過する光にカラーが付与される。1主レンズ当たりの副レンズの数は、5個から18個までであることが最も好ましい。この範囲が最も有効な拡散を生成することが分かっている。
凹面または凸面レンズは、各レンズレットの表面が球の扇形であり、必ずしも半球である必要のないことを意味する半球面であることが好ましい。それにより、x−y平面上に、優れた一様な拡散が提供される。形状が半球面のレンズにより、入射光が一様に分散するため、ディスプレイ領域を一様に拡散させる必要のあるディスプレイ応用例には理想的である。
本発明に使用される複合レンズ502は、重合体からなっていることが好ましい。重合体は、先行技術によるガラスレンズと比較して一般的に低コストであり、また、優れた光学特性を有し、かつ、熔融押出し、真空成形および射出成形など、知られているプロセスを利用して効果的にレンズに形成することができるため、重合体であることが好ましい。複合レンズの形成に好ましい重合体には、ポリオレフィン、ポリエステル、ポリアミド、ポリカーボネート、セルロースエステル、ポリスチレン、ポリビニル樹脂、ポリスルホンアミド、ポリエーテル、ポリイミド、ポリフッ化ビニリデン、ポリウレタン、ポリフェニレンスルファイド、ポリテトラフルオロエチレン、ポリアセタール、ポリスルホナート、ポリエステルイオノマー、およびポリオレフィンイオノマーなどがある。これらの重合体の共重合体および/または混合物を使用して、機械的または光学的特性を改善することができる。透明複合レンズに好ましいポリアミドには、ナイロン6、ナイロン66およびそれらの混合物がある。また、ポリアミドの共重合体も、適切な連続相重合体である。ビスフェノールAポリカーボネートは、有用なポリカーボネートの一例である。複合レンズの連続相重合体としての使用に適したセルロースエステルには、硝酸セルロース、三酢酸セルロース、二酢酸セルロース、酢酸セルロースプロピオナート、酢酸酪酸セルロース、およびそれらの混合物または共重合体がある。ポリビニル樹脂には、ポリ塩化ビニル、ポリ(ビニルアセタール)、およびそれらの混合物が含まれていることが好ましい。また、ビニル樹脂の共重合体を利用することもできる。本発明に使用される複合レンズに好ましいポリエステルには、4−20炭素原子の芳香性ジカルボン酸、脂肪族ジカルボン酸または脂環式ジカルボン酸から生成されるポリエステル、および2−24炭素原子から生成される脂肪族グリコールまたは脂環式グリコールなどがある。適切なジカルボン酸の例には、テレフタル酸、イソフタル酸、フタル酸、ナフタレンジカルボン酸、コハク酸、グルタール酸、アジピン酸、アゼライン酸、セバシン酸、フマル酸、マレイン酸、イタコン酸、1,4−シクロヘキサンジカルボン酸、ソジオスルホイソフタル酸、およびそれらの混合物などがある。適切なグリコールの例には、エチレングリコール、プロピレングリコール、ブタンジオール、ペンタンジオール、ヘキサンジオール、1,4−シクロヘキサンジメタノール、ジエチレングリコール、他のポリエチレングリコール、およびそれらの混合物などがある。
他の実施形態では、基板は、炭酸塩の単量体からなっている。ポリカーボネートは、ポリオレフィン重合体と比較すると光透過率の値が大きく、したがってディスプレイデバイスの輝度を改善することができる。本発明の他の実施形態では、基板は、オレフィンの単量体からなっている。オレフィンは低コストであり、かつ、良好な強度特性および表面特性を有している。本発明の他の実施形態では、基板は、酢酸セルロースからなっている。トリアセチルセルロースは、光透過率が大きく、かつ、光複屈折が小さいため、本発明に使用される拡散板は、光を拡散させ、かつ、不要な光パターンを小さくすることができる。
拡散光エレメント95は、空隙構造を備えていることが好ましい。拡散光エレメント95全体を空隙構造にすることができるが、重合体基板上の表皮層を空隙構造にすることが好ましい。空隙構造は、動作性能に影響を及ぼす引っ掻き傷を受けにくく、また、通常、空隙には空気が充填されているため、拡散光エレメント95は、優れた光の拡散および整形効率を有している。空気を含んだ微小空隙層は、空隙中の空気(n=1)と重合体マトリックス(n=1.2〜1.8)の間の屈折率の差が大きく、この大きな屈折率の差が、優れた拡散および高透過率を提供している。
空気空隙と熱可塑性マトリックスとの間の屈折率の差は、0.2より大きいことが好ましく、屈折率の差を0.2より大きくすることにより、優れた拡散および整形が提供され、かつ、薄膜中に拡散させることができる。拡散エレメントには、垂直方向に0.2を超えて変化する少なくとも4つの屈折率が含まれていることが好ましい。変化する5つ以上の屈折率により、十分な拡散がディスプレイ応用例に提供される。垂直方向の屈折率の差を30個以上にすることにより、優れた拡散が提供される一方で、透過する光の量が著しく減少し、より暗いディスプレイがもたらされる。
微小空隙合成物二軸配向ポリオレフィンシートであることが好ましく、また、コアおよび1つまたは複数の表面層の共有押出し成形によって製造された後、二軸配向され、それにより、コア層中に含まれた空隙誘発材の周囲に空隙が形成される。二軸配向層の場合、二軸配向シートおよび好ましい合成物シートのコアマトリックス重合体のための適切な等級の熱可塑性重合体は、ポリオレフィンからなっている。適切なポリオレフィンには、ポリプロピレン、ポリエチレン、ポリメチルペンテン、ポリスチレン、ポリブチレン、およびそれらの混合物などがある。また、プロピレンおよびヘキセン、ブテンおよびオクテンなどのエチレンの共重合体を始めとするポリオレフィン共重合体も有用である。ポリエチレンは、低コストであり、かつ、望ましい強度特性を有しているため、好ましい。例えば、1983年3月22日発行の、アッシュクラフトらによる「Lustrous Satin Appearing,Opaque Film Compositions And Method Of Preparing Same」という名称の米国特許第4,377,616号、1988年7月19日発行の、パークらによる「Opaque Film Composites And Method Of Preparing Same」という名称の米国特許第4,758,462号、および1986年12月30日発行の、パークらによる「Resin Composition,Opaque Film And Method Of Preparing Same」という名称の米国特許第4,632,869号に、このような合成物シートが開示されている。投射媒質膜は、少なくとも1つの空隙重合体層を備えた重合体シートを備えており、また、1つまたは複数の非空隙ポリエステル重合体層を備えることもできる。投射媒質膜は、前記重合体シートの前記空隙層の体積で2%と60%の間の空隙空間を備えていなければならない。透過特性および反射特性を最適化し、かつ、ハイドバック光およびフィラメントに適切な拡散パワーを提供するためには、このような空隙濃度であることが望ましい。本発明に使用される微小空隙含有配向膜の厚さは、1マイクロメートルから400マイクロメートルであることが好ましく、5マイクロメートルから200マイクロメートルであることがより好ましい。
本発明に使用される拡散光エレメント95は、微小空隙層に隣接した1つまたは複数の非空隙表皮層を備えていることが好ましい。合成物シートの非空隙表皮層は、コアマトリックスに対して上に挙げた重合体材料と同じ重合体材料で作ることができる。合成物シートには、コアマトリックスと同じ重合体材料の1つまたは複数の表皮を持たせることができ、あるいはコアマトリックスとは異なる重合体組成物の1つまたは複数の表皮を持たせることができる。融和性を持たせるために、補助層を使用して、コアへの表皮層の粘着を促進することができる。配向されていることを条件として、部材には任意の適切なポリエステルシートを利用することができる。配向によって多層構造に強度が追加され、ディスプレイを組み立てる際の取扱い特性が改善される。空隙により、TiO2を使用することなく不透明体が提供されるため、微小空隙配向シートであることが好ましい。微小空隙層は、コアおよび薄層の共有押出し成形、およびそれに続く二軸配向によって都合良く製造され、それにより、薄層中に含まれた空隙誘発材の周囲に空隙が形成される。
また、配向ポリエステルは、優れた強度、耐衝撃性および耐化学薬品性を有しているため、ポリエステル微小空隙光拡散エレメントも好ましい。本発明に利用されるポリエステルは、そのガラス転移温度が50℃と150℃の間、好ましくは60〜100℃でなければならず、また、配向可能でなければならない。また、少なくとも0.50、好ましくは0.6から0.9の固有粘度を有していなければならない。適切なポリエステルには、4−20炭素原子の芳香性ジカルボン酸、脂肪族ジカルボン酸または脂環式ジカルボン酸から生成されるポリエステル、および2−24炭素原子から生成される脂肪族グリコールまたは脂環式グリコールなどがある。適切なジカルボン酸の例には、テレフタル酸、イソフタル酸、フタル酸、ナフタレンジカルボン酸、コハク酸、グルタール酸、アジピン酸、アゼライン酸、セバシン酸、フマル酸、マレイン酸、イタコン酸、1,4−シクロヘキサンジカルボン酸、ソジオスルホイソフタル酸、およびそれらの混合物などがある。適切なグリコールの例には、エチレングリコール、プロピレングリコール、ブタンジオール、ペンタンジオール、ヘキサンジオール、1,4−シクロヘキサンジメタノール、ジエチレングリコール、他のポリエチレングリコール、およびそれらの混合物などがある。このようなポリエステルは、当分野においては周知であり、例えば、1949年3月22日発行の、ウィンフィールドらによる「Polymeric Linear Terephthalic Esters」という名称の米国特許第2,465,319号、および1959年8月25日発行の、キブラーらによる「Linear Polyesters And Polyester−Amides From 1,4−Cyclohexanedimethanol」という名称の米国特許第2,901,466号に記載されている周知の技法によって製造されている。好ましい連続マトリックス重合体は、テレフタル酸またはナフタレンジカルボン酸からの単量体、およびエチレングリコール、1,4−ブタンジオールおよび1,4−シクロヘキサンジメタノールから選択される少なくとも1つのグリコールを有する連続マトリックス重合体である。少量の他の単量体によって修正することができるポリ(エチレンテレフタラート)であることが特に好ましい。ポリプロピレンも有用である。他の適切なポリエステルには、スチルベンジカルボン酸などの共酸成分を適量含有させることによって形成される液晶共ポリエステルがある。1983年12月13日発行の、モーリスらによる「Polyesters Of Trans−4,4−Stilbenedicarboxylic Acid,Terephthalic Acid Or 2,6−Naphthalenedicarboxylic Acid,And 1,2−Propanediol」という名称の米国特許第4,420,607号、1984年7月10日発行の、モーリスらによる「Copolyesters Comprising Repeating Units From Trans−4,4’−Stilbenedicarboxylic Acid,Terephthalic Acid And/Or 2,6−Naphthalenedicarboxylic Acid,And 1,4−Butanediol」という名称の米国特許第4,459,402号、および1984年8月28日発行の、モーリスらによる「Polyesters Of Trans−4,4’−Stilbenedicarboxylic Acid,Terephthalic Acid Or 2,6−Naphthalenedicarboxylic Acid,1,2−Propanediol And 1,3−Propanediol」という名称の米国特許第4,468,510号に、このような液晶共ポリエステルの例が開示されている。
ポリエステル拡散板シートの共有押出し成形、焼入れ、配向およびヒートセットは、当分野で知られている、配向シートを製造するための任意のプロセス、例えばフラットシートプロセス、バブルプロセスまたはチューブラプロセスによって実施される。フラットシートプロセスには、スリットダイを通してブレンドを押し出すステップ、およびシートのコアマトリックス重合体成分および1つまたは複数の表皮成分をガラス凝固温度未満に焼き入れするために、チル鋳物ドラム上で押出しウェブを急速焼入れするステップが含まれている。次に、ガラス転移温度より高く、かつ、マトリックス重合体の熔融温度より低い温度で、互いに直角をなす方向へ引き伸ばすことによって焼入れシートが二軸配向される。シートは、第1の方向に引き伸ばした後、第2の方向へ引き伸ばすことができ、あるいは同時に両方の方向に引き伸ばすことができる。シートの引き伸ばしが完了すると、重合体を結晶化させる、すなわち焼きなますだけの十分な温度に加熱することにより、シートの両引伸し方向の収縮をある程度抑制しつつヒートセットされる。
本発明に使用される微小空隙含有配向膜は、光を拡散させる機能を有している。微小空隙は、光を散乱させる回折格子状構造を形成している。この構造は、周期的に変化する屈折率分布を有している。空隙熱可塑性拡散板シートは、光を極めて良好に散乱させ、かつ、高い百分率光透過率を有している。所望の形状およびサイズの空隙を生成するようには、完成したパッケージングシートコア中に残存している空隙誘発粒子の直径は、0.1マイクロメートルから10マイクロメートルまででなければならない。空隙を非対称にすることによって、異なる視角を水平方向および垂直方向に生成することができ、あるいは空隙を実質的に円形にすることによって、光を一様に分散させることができる。本明細書においては、このサイズの誘発粒子を使用することによって得られる空隙を「微小空隙」と呼んでいる。非配向厚さ、すなわちZ方向の層の空隙の直径は、10マイクロメートル以下である。また、空隙のサイズは、マシン中の配向および横方向の度合に左右される。2つの相対するエッジ接触凹面ディスクによって形成される形状を空隙が担うことが理想的である。つまり、空隙の断面は、光エネルギーの方向(本明細書においては垂直方向とも呼ばれる)に対して直角をなす平面においては、実質的に円形になる傾向がある。空隙は、2つの主次元(長軸および短軸)とマシンおよびシートの横方向が整列するように配向される。Z方向の軸は、副次元であり、概ね空隙粒子の交差径のサイズである。空隙は、一般的に独立気泡になる傾向があり、したがって、事実上、気体または液体が横断することができる、空隙コアの一方の側からもう一方の側への経路は開通していない。
空隙は、光エネルギーを有効に拡散させ、光エネルギーの非一様な拡散を低減し、かつ、光を整形することが分かっているため、空隙の長軸対短軸は、4.0と0.5の間であることが好ましい。長軸径対短軸径の比率は、2.0未満であることが好ましい。比率を2.0未満にすることにより、光源が極めて一様に拡散することが分かっている。また、比率が3.0より大きくなると、空隙が非球面になり、非球面空隙は、光を非一様に拡散させ、視角差を生成することが分かっている。
微小空隙とは、拡散板の重合体層中に存在している、体積が100立方マイクロメートル未満の空隙のことである。100立方マイクロメートルより大きい微小空隙は、可視光を拡散させることができるが、空隙サイズが大きいため、光が非一様に拡散し、そのためにディスプレイデバイスの光が非一様になる。熱可塑性微小空隙の体積は、8立方マイクロメートルと42立方マイクロメートルの間であることが好ましい。6立方マイクロメートルに必要な空隙剤は、典型的な3×3配向のポリエステルを備えた空隙には小さ過ぎるため、体積が6立方マイクロメートル未満の微小空隙を得ることは困難である。微小空隙の体積が50立方マイクロメートルより大きくなると、拡散を提供するが、材料およびコストを余計に必要とする分厚い拡散層が生成される。熱可塑性拡散板の最も好ましい空隙体積は、10立方マイクロメートルと20立方マイクロメートルの間である。空隙の体積を10立方マイクロメートルと20立方マイクロメートルの間にすることにより、優れた拡散特性および透過特性が提供されることが分かっている。
シート材すなわち膜材を双方向に配向する方法については、当分野においては周知である。基本的には、膜材を双方向に配向する方法には、少なくともマシン中で、あるいは元の寸法の1.5〜10倍の量に鋳造すなわち押出し成形された後、縦方向にシートすなわち膜を引き伸ばすステップが含まれている。このようなシートすなわち膜は、当分野において周知の装置および方法によって、一般的に元の寸法の1.5〜10倍の量に、マシンの横方向に引き伸ばすこともできる(通常、ポリエステルの場合、3〜4倍であり、ポリプロピレンの場合、6〜10倍である)。このような装置および方法は、当分野においては周知であり、また、1975年9月2日発行の、イケダらによる「Process For Preparing Filled,Biaxially Oriented,Polymeric Film」という名称の米国特許第3,903,234号に記載されている。
連続マトリックス重合体として形成される空隙、すなわち本明細書においては微小ビーズを取り囲んでいる空隙空間は、マトリックス重合体の温度より高い温度で引き伸ばされる。架橋重合体の微小ビーズは、連続マトリックス重合体と比較すると比較的硬質である。また、微小ビーズとマトリックス重合体の間の非融和性および非混合性により、連続マトリックス重合体を引き伸ばす際に、微小ビーズ上を連続マトリックス重合体が滑り、それにより、両側に、1つまたは複数の引伸し方向に空隙が形成され、マトリックス重合体の引き伸ばしを継続することによって細長くなる。したがって空隙の最終的なサイズおよび形状は、1つまたは複数の引伸し方向および引伸し量によって決定される。引伸し方向が1つの方向のみである場合、微小ビーズの両側に、引伸し方向に微小空隙が形成される。引伸し方向が2方向(二方向引伸し)である場合、このような引伸しは、任意の所定の位置から半径方向に延びたベクトル成分を有しており、そのために、各微小ビーズの周囲にドーナッツ形の空隙が形成される。
好ましいプリフォーム引伸し操作により、微小空隙が同時に開放され、かつ、マトリックス材料が配向される。最終生成物の特性は、引伸し時間と温度の関係、および引伸しのタイプおよび引伸しの度合によって決まり、かつ、それらによって制御することができる。不透明性およびテクスチャを最大にするために、引伸しは、マトリックス重合体のガラス転移温度より少し高い温度で実行される。より高いガラス転移温度の近辺で引伸しを実施すると、両方の相が同時に伸び、不透明性が減少することになる。前者の場合、機械的非融和化プロセス時に、材料が引き離されることになる。
追加層は、微小空隙ポリエステル拡散シートに付加されることが好ましく、それによりユーティリティが付与される。固有の特性を有するシートを生成するように、追加層には、ティント、静電防止材または異なる空隙形成材を含有させることができる。二軸(二方向)配向シートは、粘着性を改善する表面層を使用して形成することができる。二軸配向押出しは、所望する何らかの特定の特性を達成するために、程度必要に応じて10層を使用して実施される。付加物をポリエステル表皮層に追加し、画像化エレメントのカラーを変更することが好ましい。表皮層の共有押出し成形には、320℃より高い温度が必要であるため、320℃より高い押出し温度に耐えることができる着色顔料が好ましい。
本発明による付加物は、光光沢剤として使用することが可能である。光光沢剤は、紫外光を吸収し、かつ、吸収した紫外光を可視青色光として放出することができる、実質的に無色の蛍光有機化合物である。光光沢剤の例には、それらに限定されないが、4,4’−ジアミノスチルベン−2,2’−二スルホン酸の誘導体、4−メチル−7−ジエチルアミノクマリンなどのクマリン誘導体、1,4−ビス(O−シアノスチリル)ベンゾール、および2−アミノ−4−メチルフェノールなどがある。光光沢剤は、表皮層に使用することによって、より効果的に光光沢剤を使用することができる。
共有押出し成形プロセスおよび配向プロセス後、あるいは鋳造プロセスと全配向プロセスの間に、印刷性を始めとするシートの特性を改善するために使用される任意の数の被覆材を使用してポリエステル光拡散エレメントを被覆し、あるいは処理することにより、防湿層を提供し、ポリエステル光拡散エレメントを熱封じ可能な構造にし、あるいは粘着性を改善することができる。例として、印刷性を改善するためのアクリル被覆、および熱封じ特性を改善するためのポリ塩化ビニリデン被覆がある。他の例としては、印刷性あるいは粘着性を改善するための、フレーム、プラズマあるいはコロナ放電処理などがある。少なくとも1つの非空隙表皮を微小空隙コアに持たせることにより、シートの引張り強さを強化し、製造性をさらに向上させることができ、それにより、シートの幅をより広くすることができ、かつ、すべての層が空隙化されたシートと比べて、より高い引出し比率にすることができる。膜を製造した後に、1つまたは複数の非空隙層を剥がすことができる。層を共有押出し成形することにより、製造プロセスをさらに単純化することができる。
拡散光エレメント95は、表面拡散板であることが好ましい。表面拡散板は、空気中に露出したその粗い表面を利用しており、それにより、拡散板の材料と拡散板を取り囲んでいる媒質との間に最大可能屈折率差をもたらし、延いては入射光を最大角度で分散させ、かつ、極めて有効に拡散させている。拡散光エレメント95は、表面微細構造を備えていることが好ましい。表面微細構造は、表面構造設計において容易に変更することができる。例えば、マクロ拡散効率変化を達成するために、表面微細構造を熱および/または圧力と共に変化させることができる。微細構造は、様々な拡散効率および光を整形する方法に適合させることができる。単純レンズまたは複合レンズ、プリズム、ピラミッドおよびキューブは、微細構造の一例である。微細構造の形状、幾何学およびサイズを変化させることにより、所望の拡散変化を達成することができる。
本発明の他の実施形態では、バルク型拡散板であることが好ましく、バルク型拡散板は、マクロ拡散効率変化を備えて製造することができ、あるいは、マクロ拡散効率変化を生成するように、熱および/または圧力に晒すことができる。また、バルク型拡散板は、膜を介した屈折率変化を利用しており、有効に動作させるための空気界面が不要である。
拡散光エレメント95は、微小粘土からなっていることが好ましい。本発明は、親水性成分、より好ましくは追加親油性成分を有する有機材料が挿入されていることが好ましい、スメクタイト粘土などの層状材料を使用した品物である。前述の有機材料は、界面活性剤、エトキシ化アルコールおよび/またはブロック共重合体からなっている。粘土を挿入することにより、可視光を拡散させる複数の屈折率変化が生成される。バルク重合体層に挿入粘土材を追加することにより、重合体シートの機械的強度が改善され、それによりシートの引っ掻き傷に対する抵抗力が強くなり、また、シートの剛性が改善されるため、より薄く、かつ、より軽量の材料を使用することができる。より薄く、かつ、より軽量の材料を使用することにより、ディスプレイデバイスの重量およびサイズが低減され、デバイスをより小型、軽量にすることができる。また、本発明に使用される挿入粘土材により、基本をなしている重合体の熱特性が改善され、本発明による材料を、自動車あるいは戦車などの軍用車両内で遭遇する温度において、熱的および光学的により安定させている。熱的および光学的安定性が、ディスプレイデバイスを利用することができる環境範囲を広くしている。これらおよびその他の利点については、以下の詳細な説明から明らかになるものと思われる。
本発明に使用される光コンポーネントは、アスペクト比が10:1と1000:1の間の粒子状の層状材料を有していることが好ましい。横方向の寸法(例えば、長さまたは幅)と粒子の厚さの間の比率として定義される層状材料のアスペクト比は、光の拡散量における重要な要素である。アスペクト比が8:1よりはるかに小さくなると、光が十分に拡散しなくなり、また、アスペクト比が1000:1よりはるかに大きくなると、処理が困難になる。
層状材料の量は、結合剤の重量の1%と10%の間であることが好ましい。層状材料の量が結合剤の重量の0.9%未満になると、光の拡散レベルが極めて小さくなることが分かっている。また、層状材料の量が11%を超えると、拡散する光がそれ以上ほとんど増加せず、一方で、結合剤に不要なカラーが追加され、したがって透過した光の着色に不要なカラーが追加されることが分かっている。可視光の拡散を大きくし、かつ、不要な着色および高価な追加材料の追加を回避するためには、層状材料の量は、結合剤の重量の2%と5%の間であることが最も好ましい。また、層状材料の量を2%から5%までにすることにより、液晶ディスプレイなどに見られる鏡面バックライトアセンブリに優れた光拡散が提供されることが分かっている。
本発明の他の実施形態では、層状材料の量は、前記結合剤の重量の0.1%と1%の間である。層状材料を重量で0.1%と1%の間にすることにより、光エレメントは、光透過率が大きく(90%を超える)なり、かつ、ヘーズが小さく(10%未満)なるため、光エレメントを、眩さ防止特性を備えた外部光拡散板に使用することができる。眩さ防止光エレメントにより、透過画像の品質に影響を及ぼす、太陽光などの周辺光によって生成される眩さが軽減される。
本発明の他の実施形態では、光コンポーネントは、複数の層からなっている。光エレメントに追加層を提供することにより、静電防止特性および光フィルタリング特性など、追加層中における光エレメントの特性が改善される。多層光エレメントを提供することにより、拡散光の焦点距離を制御するために、本発明に使用される層状材料を特定の位置に追加することができる。本発明に使用される層状材料を、光コンポーネント中の異なる層に追加することにより、光密度を視角の関数として変化させることができることが分かっており、したがって、本発明による材料を個別化することによって光学系を最適化することができる。例えば、本発明に使用される層状材料の2重量%の追加を、125マイクロメートルの光エレメントの最も外側の層に追加することができる。層状材料を含んだ最も外側の層が光源に向かって配向されている場合、角度を関数とした拡散光の密度は、最も外側の層が光源から離れる方向に配向されている場合と比較すると、直角方向に小さくなる。光エレメントは、光が移動する方向に光拡散勾配を生成するように、本発明に使用される層状材料の様々な重量%が追加された複数の層を有していることが好ましい。
本発明に適した層状材料には、あらゆる無機相が包含されており、アスペクト比が極めて大きいプレート形状の層状材料からなっていることが望ましいが、個々の発明に応じて、アスペクト比の大きい他の形状も有利である。本発明に適した層状材料には、層状ケイ酸塩、例えばモンモリロナイト、とりわけナトリウムモンモリロナイト、マグネシウムモンモリロナイトおよび/またはカルシウムモンモリロナイト、ノントロナイト、バイデル石、volkonskoite、ヘクトライト、サポナイト、ソーコナイト、sobockite、stevensite、svinfordite、ヒル石、magadiite、kenyaite、滑石、雲母、カオリナイト、およびそれらの混合物などがある。他の有用な層状材料には、イライト、レジカイトおよび上に挙げた粘土鉱物を有するイライトの添加剤などの層状イライト/スメクタイト鉱物の混合物などがある。他の有用な層状材料、とりわけアニオンマトリックス重合体を有する有用な層状材料は、層間スペーサ中に正電荷層および交換可能陰イオンを有する、Mg6Al3.4(OH)18.8(CO3)1.7H2Oなどの層状二重水酸化物すなわちハイドロタルサイトである。層上の電荷が極めて少ないか、全く電荷を有さない他の層状材料は、それらの層状材料に層間空間を膨張させる膨張剤が挿入される場合、有用である。このような材料には、FeCl3、FeOClなどの塩化物、TiS2、MoS2およびMoS3などのカルコゲニド、Ni(CN)2などのシアニド、およびH2Si2O5、V6O13、HTiNbO5、Cr0.5V0.5S2、V2O5、AgドープV2O5、W0.2V2.8O7、Cr3O8、MoO3(OH)2、VOPO4−2H2O、CaPO4CH3−H2O、MnHAsO4−H2O、Ag6Mo10O33などの酸化物がある。層状材料は膨張可能であることが好ましく、それにより、一般的に有機イオンまたは分子である他の薬剤を加えることができ、かつ/または層状材料を剥離させ、無機相を好ましく分散させることができる。これらの膨張可能な層状材料には、2:1の層状ケイ酸塩がある。イオン交換能力が100グラム当たり50から300ミリ当量である典型的な層状ケイ酸塩が好ましい。本発明のための好ましい層状材料には、モンモリロナイト、ノントロナイト、バイデル石、volkonskoite、ヘクトライト、サポナイト、ソーコナイト、sobockite、stevensite、svinfordite、ハロイサイト、magadiite、Kenyaiteおよびヒル石などのスメクタイト粘土、および層状二重水酸化物すなわちハイドロタルサイトなどがある。最も好ましいスメクタイト粘土は、市販されているという理由で、モンモリロナイト、ヘクトライトおよびハイドロタルサイトなどである。
前述のスメクタイト粘土は、天然あるいは人工のいずれであっても良い。天然と人工の相異は、粒子のサイズおよび/または関連する不純物のレベルに影響する。通常、人工粘土は横方向の寸法がより短く、したがってアスペクト比がより小さいが、天然粘土と比較すると純粋であり、かつ、サイズの分布がより狭く、また、精製または分離が全く不要である。本発明の場合、スメクタイト粘土粒子の横方向の寸法は、0.01μmと5μmの間でなければならず、0.05μmと2μmの間であることが好ましく、0.1μmと1μmの間であることがより好ましい。粘土粒子の厚さすなわち縦方向の寸法は、0.5nmと10nmの間、好ましくは1nmと5nmの間で変化させることができる。粘土粒子の最大寸法と最小寸法の比率であるアスペクト比は、本発明の場合、10:1と1000:1の間でなければならない。粒子のサイズおよび形状に対する前述の制限により、他の特性に有害な影響を及ぼすことなく、微小合成物の何らかの特性を適切に確実に改善することができる。例えば、横方向の寸法を大きくすることにより、機械的およびバリア特性を改善するための望ましい判定基準であるアスペクト比を大きくすることができる。しかしながら、粒子が極めて大きくなると、有害な光散乱による光学欠陥の原因になり、また、処理、搬送および仕上げ装置、さらには他のコンポーネントを消耗させることになる。
本発明に使用される光コンポーネントにおけるスメクタイト粘土の濃度は、必要に応じて変化させることができるが、結合剤の重量の10%未満であることが好ましい。粘土の量が著しく多くなると、光コンポーネントをもろくし、また、処理が困難になるため、光コンポーネントの物理特性が損なわれることになる。また一方では、粘土の濃度が著しく小さくなると、所望の光効果を達成することができなくなる。粘土の濃度は、1%と10%の間、最適結果を得るためには1.5%と5%の間に維持することが好ましい。
必要な層間膨張および/またはマトリックス重合体との融和性を提供するためには、通常、スメクタイト粘土には、1つまたは複数の挿入物による処理が必要である。本発明の実践に際して、挿入される層状材料にその性能を発揮させるためには、得られる層間空間は重要である。本明細書において使用されている「層間空間」という用語は、挿入された材料中におけるアセンブルの際の、何らかの層間剥離(すなわち剥脱)が生じる前の層の面と面の間の距離を意味している。好ましい粘土材料には、通常、Na+、Ca+2、K+、Mg+2などの層間正イオンまたは交換可能正イオンが含まれている。この状態では、これらの材料の層間空間が一般的に極めて狭く(通常、0.4nm以下)、したがって層間凝集性エネルギーが比較的強力であるため、ホスト重合体の融解に際して、混合には無関係に、これらの材料が層間剥離することはない。また、金属正イオンは、層と融解した重合体との間の融和性を促進することはない。
本発明においては、層間距離を所望の距離にするために、スメクタイト粘土には、1つまたは複数の膨張剤あるいは1つまたは複数の挿入物が挿入されることが好ましい。一般的には、層間距離は、X線回折による正確な測定で、少なくとも0.5nm、好ましくは少なくとも2nmでなければならない。膨張剤あるいは挿入物に対するスメクタイト粘土の重量比率は、0.1:99.9から99.9:0.1まで変化させることができるが、1:99と90:10の間であることが好ましく、20:80と80:20の間であることがより好ましい。
膨張剤あるいは挿入物には、好ましくは親水性成分、より好ましくは親油性成分からなる有機材料を使用することができる。親水性成分は、挿入物に関係し、また、親油性成分は、スメクタイト粘土の融和化に関係するとされている。前述の有機材料は、界面活性剤、ブロック共重合体および/またはエトキシ化アルコールからなっていても良い。最も好ましい実施形態では、前述の有機材料は、2003年5月14日公布の欧州特許公報第1310528号、および2003年5月21日公布の欧州特許公報第1312582号に開示されている有機材料と類似のブロック共重合体またはエトキシ化アルコールである。
本発明に使用される好ましいブロック共重合体は両親媒性であり、親水性成分および親油性成分を有している。また、本発明に使用されるブロック共重合体は、2つのブロック、すなわちAが親水性成分を表し、Bが親油性成分を表す「A−B」タイプのブロック共重合体であるか、あるいは3つのブロックすなわち「A−B−A」タイプのブロック共重合体である。例えば、ブロック共重合体は、3つのブロックからなり、また、マトリックスは、共重合体またはその共重合体の少なくとも1つのブロックと融和性のある重合体のブレンドからなっている。また、マトリックスが重合体のブレンドである場合、ブレンド中の個々の重合体は、共重合体の個々のブロックと融和することができる。本発明における親水性成分に有用な重合体成分の現時点における好ましいクラスは、ポリ(エチレンオキシド)などのポリ(アルキレンオキシド)である。本明細書において使用されているポリ(アルキレンオキシド)という用語には、エチレンオキシドとプロピレンオキシドの混合物を含むポリ(エチレンオキシド)などのアルキレンオキシドから誘導される重合体が包含されている。本発明におけるその有効性、その周知の、水素結合およびイオン相互作用を介して粘土格子を挿入する能力、およびその熱処理性および潤滑性により、ポリ(エチレンオキシド)が最も好ましい。本明細書において使用されているポリ(アルキレンオキシド)という用語には、エチレンオキシドとプロピレンオキシドの混合物を含むポリ(エチレンオキシド)などのアルキレンオキシドから誘導される重合体が包含されている。主として本発明におけるその有効性、つまり、分子量の範囲および化学的性質の市販性により、広範囲に渡るブロック共重合体の合成がもたらされるため、ポリ(エチレンオキシド)が最も好ましい。
本発明に使用される拡散光エレメント95は、透明な重合体でできた膜すなわちシートと組み合わせて使用することができる。このような重合体の例には、ポリカーボネート、ポリエチレンテレフタラート、ポリブチレンテレフタラートおよびポリエチレンナフタラートなどのポリエステル、ポリメチルメタクリラート、ポリエチレン、ポリプロピレン、ポリスチレン、ポリ塩化ビニル、ポリエーテルスルホン、ポリスルホン、ポリアリラートおよびトリアセチルセルロースなどのアクリル重合体がある。投射媒質は、ガラスシートに取り付けることによってサポートされる。
本発明に使用される拡散光エレメント95は、例えば、膜の引出し性および表面の滑り性を改善するために、添加剤すなわちシリカなどの潤滑材を組み込むことができる。添加剤すなわち潤滑材は、拡散光エレメント95の光学特性を悪変させてはならない。このような添加剤の例としては、キシレン、アルコールまたはケトン、アクリル樹脂の微粒子、ケイ素樹脂、ケイ素樹脂、金属酸化物または充てん材などの有機溶媒がある。
拡散光エレメント95は、熱可塑性レンズレットを鋳造する前に、あるいは鋳造した後に、印刷性を始めとするシートの特性を改善し、防湿層を提供し、熱封じ可能な構造にし、あるいは粘着性を改善するために使用される任意の数の被覆材を使用して被覆すなわち処理することができる。例として、印刷性を改善するためのアクリル被覆、および熱封じ特性を改善するためのポリ塩化ビニリデン被覆がある。他の例としては、印刷性あるいは粘着性を改善するための、フレーム、プラズマあるいはコロナ放電処理などがある。
また、本発明による拡散光エレメント95は、例えば、バルク型拡散板、レンズ状層、ビーズ層、表面拡散板、ホログラフィック拡散板、微小構造拡散板、その他のレンズアレイ、またはそれらの様々な組合せなどの光拡散板と共に使用することができる。レンズレット拡散板膜は、光を分散すなわち拡散させ、それにより、整然とした周期的レンズアレイを追加することによって生じるあらゆる回折パターンが破壊される。
また、他の態様では、拡散光エレメント95には、1つまたは複数のレンズレットチャネルを透過する光透過率を改善するために、1つまたは複数のオプティカルコーティングが施されている。拡散板の効率を向上させるためには、拡散板を無反射(AR)コーティング層で被覆することが望ましい場合がしばしばである。
拡散光エレメント95の厚さは、250マイクロメートル以内であることが好ましく、25マイクロメートルから150マイクロメートルまでであることがより好ましい。拡散光エレメント95は、厚さが25〜150マイクロメートルの場合に、その取扱いが容易であり、安定性があり、かつ、容易に処理することができる。投射膜の厚さが250マイクロメートルより厚くなると、膜を透過する光が減少し、表示画像が薄暗くなる。また、拡散光エレメント95の厚さを薄くすることにより、拡散エレメントの材料含有量が低減される。
本発明に使用される拡散光エレメント95は、通常、ディスプレイシステムに使用されるため、拡散光エレメント95の弾性率は、500MPaより大きいことが好ましい。また、拡散光エレメント95は、機械的に頑丈にできているため、過酷な取扱いおよび処理により良く耐えることができる。拡散光エレメント95の衝撃抵抗は、0.6GPaより大きいことが好ましい。衝撃抵抗を0.6GPaより大きくすることにより、拡散光エレメント95は、引っ掻き傷および機械的変形に耐えることができる。
また、本発明に使用される拡散光エレメント95は、労働空間および生活空間に適した光の提供など、重要な体系上の用途を有している。典型的な商用応用例では、部屋全体の光の拡散を促進するために、安価な透明重合体拡散板膜が使用されている。本発明は、ディスプレイシステムの視野を改善し、光を拡散させるだけでなく、本発明を使用することにより、固有の、かつ、重要な表示媒質を生成することができる。
ユーザによる観察が可能な可視画像を提供するためのディスプレイシステムであって、拡散光エレメントは、少なくとも3Hの鉛筆硬度を有している。
ユーザによる観察が可能な可視画像を提供するためのディスプレイシステムであって、拡散光エレメントは、表示画面に統合されている。
ユーザによる観察が可能な可視画像を提供するためのディスプレイシステムであって、拡散光エレメントは、表示画面に粘着接着されている。
ユーザによる観察が可能な可視画像を提供するためのディスプレイシステムであって、拡散光エレメントは、全透過率が85パーセントより大きい基板を備えている。
ユーザによる観察が可能な可視画像を提供するためのディスプレイシステムであって、基板は、フリンジフィルタを備えている。
ユーザによる観察が可能な可視画像を提供するためのディスプレイシステムであって、拡散光エレメントは、複合レンズをさらに備えている。
ユーザによる観察が可能な可視画像を提供するためのディスプレイシステムであって、拡散光エレメントは、非対称重合体ビーズをさらに備えている。
ユーザによる観察が可能な可視画像を提供するためのディスプレイシステムであって、拡散光エレメントは、湾曲表面をさらに備えている。
ユーザによる観察が可能な可視画像を提供するためのディスプレイシステムであって、拡散光エレメントは、平均アスペクト比が0.2から1.0までの非対称湾曲表面をさらに備えている。
ユーザによる観察が可能な可視画像を提供するためのディスプレイシステムであって、拡散光エレメントは、空隙構造をさらに備えている。
ユーザによる観察が可能な可視画像を提供するためのディスプレイシステムであって、拡散光エレメントは、微小粘土をさらに備えている。
ユーザによる観察が可能な可視画像を提供するためのディスプレイシステムであって、拡散光エレメントには、30ナノメートル未満の二酸化チタン粒子が含まれている。
ユーザによる観察が可能な可視画像を提供するためのディスプレイシステムであって、拡散光エレメントは、紫外硬化性重合体からなっている。
ユーザによる観察が可能な可視画像を提供するためのディスプレイシステムであって、拡散光エレメントは、ポリカーボネートからなっている。
ユーザによる観察が可能な可視画像を提供するためのディスプレイシステムであって、拡散光エレメントは、ポリアクリラートからなっている。
ユーザによる観察が可能な可視画像を提供するためのディスプレイシステムであって、拡散光エレメントには着色料が含まれている。
ユーザによる観察が可能な可視画像を提供するためのディスプレイシステムであって、拡散光エレメントには、染料または顔料が含まれている。
ユーザによる観察が可能な可視画像を提供するためのディスプレイシステムであって、拡散光エレメントは、少なくとも70パーセントのヘーズを有している。
ユーザによる観察が可能な可視画像を提供するためのディスプレイシステムであって、拡散光エレメントは、少なくとも85パーセントの光透過率を有している。
ユーザによる観察が可能な可視画像を提供するためのディスプレイシステムであって、拡散光エレメントは、400ナノメートルから420ナノメートルまでの光の80パーセントをフィルタリングしている。
ユーザによる観察が可能な可視画像を提供するためのディスプレイシステムであって、拡散光エレメントの選択領域は、実質的に鏡面透過領域である。
ユーザによる観察が可能な可視画像を提供するためのディスプレイシステムであって、拡散光エレメントには無反射コーティングが施されている。
ユーザによる観察が可能な可視画像を提供するためのディスプレイシステムであって、単色ディスプレイを生成するように、1つまたは複数の有機レーザ光源が実質的に同じ波長の光を生成している。
ユーザによる観察が可能な可視画像を提供するためのディスプレイシステムであって、カラーディスプレイを生成するように、1つまたは複数の有機レーザ光源が実質的に異なる波長の光を生成している。
ユーザによる観察が可能な可視画像を提供するためのディスプレイシステムであって、投射手段は、1つまたは複数の有機レーザ光源によって生成される有機レーザ光を、1行ずつ表示画面に照射する可動ミラーを備えている。
ユーザによる観察が可能な可視画像を提供するためのディスプレイシステムであって、可動ミラーはポリゴン上に取り付けられている。
ユーザによる観察が可能な可視画像を提供するためのディスプレイシステムであって、投射手段は、音響光学偏向器デバイスを備えている。
ユーザによる観察が可能な可視画像を提供するためのディスプレイシステムであって、投射手段は、電気光学デバイスを備えている。
ユーザによる観察が可能な可視画像を提供するためのディスプレイシステムであって、投射手段は、超小型機械デバイスを備えている。
ユーザによる観察が可能な可視画像を提供するためのディスプレイシステムであって、投射手段は、ディジタル微小ミラーデバイスを備えている。
ユーザによる観察が可能な可視画像を提供するためのディスプレイシステムであって、投射手段は、微小格子デバイスを備えている。
ユーザによる観察が可能な可視画像を提供するためのディスプレイシステムであって、1つまたは複数の有機レーザ光源のアレイは、1つまたは複数のピクセルを備えており、ピクセルの各々は、それぞれ赤色光、緑色光および青色光を生成する3つ以上の有機レーザ光源によって画定されている。
ユーザによる観察が可能な可視画像を提供するためのディスプレイシステムであって、アレイは3つの個別線形アレイを備えており、それぞれ、同じカラーを生成する1つまたは複数の有機レーザ光源を有する個別線形アレイの各々を使用して、異なるカラーを生成している。
ユーザによる観察が可能な可視画像を提供するためのディスプレイシステムは、投射される有機レーザ光を受け取り、かつ、受け取った有機レーザ光を表示画面に導くための導波路ディスプレイコンポーネントをさらに備えている。
ユーザによる観察が可能な可視画像を提供するためのディスプレイシステムであって、スペックル低減手段は、光学ミラーおよび光学ミラーを移動させるための手段を備えている。
ユーザによる観察が可能な可視画像を提供するためのディスプレイシステムであって、スペックル低減手段は、拡散エレメントを発振させるための手段を備えている。
ユーザによる観察が可能な可視画像を提供するためのディスプレイシステムであって、強度変調手段は、音響光学変調器を備えている。
ユーザによる観察が可能な可視画像を提供するためのディスプレイシステムであって、強度変調手段は、電気光学変調器を備えている。
ユーザによる観察が可能な可視画像を提供するためのディスプレイシステムであって、1つまたは複数の有機レーザ光源の各々は、ポンプビーム光によってドライブされ、ディスプレイシステムは、ポンプビーム光の強度を変化させるための手段をさらに備えている。
1 ディスプレイシステム、1a 赤色有機レーザデバイス、1b 緑色有機レーザデバイス、1c 青色有機レーザデバイス、5 観察者、10B 青色光ビーム、10G 緑色光ビーム、10R 赤色光ビーム、20a 赤色光ビーム反射板、20b ダイクロイックミラー、20c ダイクロイックミラー、40 電気光学偏向器、50 揺動ミラー、60 ガルバノミラー、65 光学ミラー、70 レンズ、80 回転ポリゴンミラー、90 表示画面、91 ディスプレイ、95 拡散光エレメント、100 レーザビーム経路、200 線形レーザアレイ、205 光、210 活性化レーザアレイピクセル、220 光学系コンポーネント、240 活性レーザアレイピクセル列の画像、270 表示画面上のレーザアレイピクセルの画像、290 導波路ディスプレイコンポーネント、292 導波路、300 有機レーザデバイス、320 基板、330 底部誘電体スタック、340 有機活性領域、345 エッチング領域、350 頂部誘電体スタック、360 ポンプビーム、370 レーザ放出、375 有機スペーサ層、385 周期利得領域、500 基板、502 複合レンズ、504 非対称重合体ビーズ、506 湾曲表面、512 接着剤。