JP4652731B2 - 超音波診断装置 - Google Patents

超音波診断装置 Download PDF

Info

Publication number
JP4652731B2
JP4652731B2 JP2004195245A JP2004195245A JP4652731B2 JP 4652731 B2 JP4652731 B2 JP 4652731B2 JP 2004195245 A JP2004195245 A JP 2004195245A JP 2004195245 A JP2004195245 A JP 2004195245A JP 4652731 B2 JP4652731 B2 JP 4652731B2
Authority
JP
Japan
Prior art keywords
frequency
signal
ultrasonic diagnostic
diagnostic apparatus
frequency difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004195245A
Other languages
English (en)
Other versions
JP2006014916A (ja
Inventor
正徳 国田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Aloka Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aloka Co Ltd filed Critical Aloka Co Ltd
Priority to JP2004195245A priority Critical patent/JP4652731B2/ja
Publication of JP2006014916A publication Critical patent/JP2006014916A/ja
Application granted granted Critical
Publication of JP4652731B2 publication Critical patent/JP4652731B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/895Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques characterised by the transmitted frequency spectrum
    • G01S15/8954Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques characterised by the transmitted frequency spectrum using a broad-band spectrum
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52053Display arrangements
    • G01S7/52057Cathode ray tube displays
    • G01S7/5206Two-dimensional coordinated display of distance and direction; B-scan display
    • G01S7/52066Time-position or time-motion displays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/02Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems using reflection of acoustic waves
    • G01S15/06Systems determining the position data of a target
    • G01S15/08Systems for measuring distance only
    • G01S15/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S15/34Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52023Details of receivers
    • G01S7/5203Details of receivers for non-pulse systems, e.g. CW systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Acoustics & Sound (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Description

本発明は、超音波診断装置に関し、特に、連続波を利用する超音波診断装置に関する。
超音波診断装置において連続波を利用した技術として、連続波ドプラが知られている。連続波ドプラでは、例えば、数MHzの正弦波状の送信波が生体内へ連続的に放射され、生体内からの反射波が連続的に受波される。反射波には、生体内における移動体(例えば血流)によるドプラシフト情報が含まれる。そこで、その情報を取り出して周波数解析し、移動体の速度情報を反映したドプラ波形などが形成される。
これに対し、レーダ装置などでは、連続波である搬送波信号にFM変調をかけることにより、移動体の速度に加えて移動体の位置を測定する技術が知られている(例えば特許文献1)。
特開平5−40168号公報
上記のように、レーダ装置などでは、連続波を利用して移動体の位置を測定する技術が知られているものの、超音波診断装置においては実現されていなかった。
そこで、本発明は、連続波を利用した新たな超音波診断装置の提供を目的とする。
上記目的を達成するために、本発明の好適な態様である超音波診断装置は、搬送波信号を変調信号により周波数変調し、変調送信信号を生成する送信部と、前記変調送信信号の供給によって生体に対して超音波を送波し、生体からの反射波を受波して受信信号を出力する送受波器と、前記受信信号を前記変調送信信号を用いて復調し、これにより周波数差信号を得る受信部と、前記周波数差信号の周波数スペクトラムから得られる送受信信号間における周波数差に基づいて生体内組織の位置を求める位置演算部と、を有することを特徴とする。
望ましくは、前記位置演算部は、前記周波数スペクトラムに含まれる少なくとも一つの周波数差成分に基づいて、その周波数差成分に対応する組織の位置を算出する、ことを特徴とする。望ましくは、前記送受波器の周波数特性を補償するように前記変調送信信号の振幅を制御する周波数特性補償部をさらに有することを特徴とする。さらに望ましくは、前記変調信号は、鋸歯状波、三角波、正弦波のうちのいずれか一つであることを特徴とする。
また、上記目的を達成するために、本発明の好適な態様である超音波診断装置は、搬送波信号を変調信号により周波数変調し、変調送信信号を生成する送信部と、前記変調送信信号の供給によって生体に対して超音波を送波し、生体からの反射波を受波して受信信号を出力する送受波器と、前記受信信号を前記変調送信信号を用いて復調し、これにより送受信信号間における周波数差を反映させた周波数差信号を得る受信部と、前記周波数差信号の周波数スペクトラムの時間変化に基づいて生体内組織の速度を求める速度演算部と、を有することを特徴とする。
望ましくは、前記速度演算部は、前記周波数スペクトラムに含まれる少なくとも一つの周波数差成分の時間変化に基づいて、その周波数差成分に対応する組織の速度を算出することを特徴とする。さらに望ましくは、前記速度演算部は、前記周波数差成分の位相の時間変化から前記速度を算出することを特徴とする。さらに望ましくは、前記速度演算部は、異なる時刻に対応する二つの前記周波数スペクトラムの差を求める自己相関回路を含むことを特徴とする。
本発明により、連続波を利用した新たな超音波診断装置が提供される。その結果、例えば、連続波を利用して組織の位置測定を行うことが可能になる。
以下、本発明の好適な実施形態を図面に基づいて説明する。
図1には、本発明に係る超音波診断装置の好適な実施形態が示されており、図1はその全体構成を示すブロック図である。送信用振動子10は生体内へ送信波を連続的に送波し、また、受信用振動子12は生体内からの反射波を連続的に受波する。このように、送信および受信が、それぞれ異なる振動子で連続的に実行される。なお、図1では、送信用振動子10および受信用振動子12をそれぞれ一つのブロックで示しているが、送信用振動子10および受信用振動子12は、それぞれ、複数の振動素子で形成されてもよい。
送信器14は、送信用振動子10へ送信信号を供給して超音波を送波させる。送信器14には、FM変調されたFM連続波(FMCW波)が入力され、このFM連続波に対応する送信波が送信用振動子10から送波される。
FM変調器18は、RF波発振器22から供給されるRF波、および、鋸歯状波発振器20から供給される鋸歯状の変調波(後に詳述する図3の符号40)に基づいてFM連続波(後に詳述する図4(A)の送信波形)を発生する。そして、振幅制御部16は、送信用振動子10や受信用振動子12の周波数特性を補償するように、FM変調器18で生成されるFM連続波の振幅を制御する。
図2は、振幅制御部(図1の符号16)における振幅制御を説明するための図である。以下、図1に示した部分には図1の符号を付して説明する。
図2(A)は送信用振動子10および受信用振動子12を含む探触子の振幅−周波数特性を示しており、横軸に示される周波数に応じて探触子の振幅が異なる。このため、振幅制御部16は、図2(B)に示される特性でFM連続波の振幅を周波数に応じて制御することにより、探触子の周波数特性を補償する。つまり、探触子の振幅特性の逆の特性となるようにFM連続波の振幅を周波数に応じて制御し、探触子から送波される超音波の振幅が周波数帯域内で均一に保たれるように補償する。
図1に戻り、前置増幅器24および主増幅器26は、受信用振動子12から供給される受波信号に対して増幅処理を施し、受信RF信号を形成して受信ミキサ28へ出力する。受信ミキサ28は、受信RF信号に対して検波を施す回路である。受信ミキサ28に供給される参照信号は、FM変調器18で生成されたFM連続波である。ここで、増幅制御部16で振幅制御されたFM連続波を受信ミキサ28に参照信号として供給するようにしてもよい。こうして、受信ミキサ28において、受信RF信号に対して送信用のFM連続波による検波が行われ、バンドパスフィルタ(BPF)30によって送受信信号間における周波数差信号が抽出される。周波数差信号については後に図3および図4を利用して詳述する。
なお、受信ミキサ28は、受信RF信号に対して直交検波を施して複素信号を生成してもよい。直交検波の場合、振幅制御部16から出力されるFM連続波と、そのFM連続波の位相をπ/2だけずらした連続波とによる、二つの連続波を参照信号として検波を行い、同相成分と直交成分の二つの成分を出力すればよい。
BPF30によって抽出された周波数差信号は、位置演算部32に、さらに位置演算部32を経由して速度演算部34に供給される。
位置演算部32は周波数差信号に基づいて生体内組織の位置を演算し、また、速度演算部34は各周波数差信号に相当する各周波数スペクトラムの時間変化に基づいて生体内組織の速度を演算する。位置演算部32および速度演算部34は、例えば、FFT演算を行う演算器(CPUやDSPなど)で構成される。位置演算部32および速度演算部34で求められた組織の位置情報や速度情報は、表示部36に出力され、例えば、位置情報に基づく生体内の断層画像、あるいは、速度情報に基づくドプラ画像やカラードプラ画像などが表示部36に表示される。
以上、概説したように、本実施形態では、鋸歯状波でFM変調した連続波による超音波(FMCW波)を送受波し、組織の位置情報や速度情報を取得する。そこで、次にその原理について詳述する。なお、以下において、図1に示した部分には図1の符号を付して説明する。
図3は、周波数差信号から位置情報を取得する原理を説明するための図である。図3は、一つの対象組織から受信信号を取得した場合の例を示している。そして、図3(A)には、送信周波数40および受信周波数42の時間変化の様子が示されており、図3(B)には、送受信信号の周波数差(周波数差信号44)の時間変化の様子が示されている。 送信周波数40は、送信用振動子10から送波される超音波の周波数変化に相当し、受信周波数42は、受信用振動子12で受波される組織からの反射波の周波数変化に相当する。また、周波数差信号44は、BPF30によって抽出される信号である。
送信周波数40は、鋸歯状波発振器20で生成される。送信周波数40は、時間Tmの間に−ΔωからΔωまで周波数が変化し、これが繰り返される鋸歯状の周波数変化をするFM変調波である。この、鋸歯状波で変調された送信波は、生体内を伝播して組織によって反射される。このため、往復伝播距離に応じた遅延を伴って受波される。この様子を示すのが受信周波数42である。つまり、受信周波数42は、送信周波数40から遅延時間τだけずれて取得される。
時間τは、超音波の往復伝播時間に相当する。そこで、探触子から対象組織までの距離をL、音速をcとすると、時間τは次式のようになる。
Figure 0004652731
また、送信周波数40は、時間Tmの間に−ΔωからΔωまで周波数が変化するため、単位時間当たりの周波数変化は、次式のようになる。
Figure 0004652731
このため、図3(B)に示す期間1,3,5における送受信信号間の周波数差Δδと、期間2,4,6における送受信信号間の周波数差Δδは、それぞれ次式のようになる。
Figure 0004652731
時間τ=2L/cであるため、期間1,3,5における送受信信号間の周波数差Δδを考えると、
Figure 0004652731
となる。したがって、期間1,3,5における送受信信号間の周波数差Δδを知ることで、既知の値であるΔω,Tm,cから、数4を利用して、探触子から対象組織までの距離Lを求めることができる。
図4は、周波数差信号から位置情報を取得する原理を説明するための図であり、図4は、複数の対象組織から受信信号を取得した場合の例を示している。
図4(A)は、送信用振動子10へ供給される送信波形(FM連続波:FMCW波)を示している。図4(B)は、送信周波数40および複数の受信周波数42a〜42dの時間変化の様子を示している。複数の受信周波数42a〜42dは、それぞれ、異なる深さに存在する対象組織からの受信信号に相当する。複数の受信周波数42a〜42dは、それぞれ、対応する組織の深さに応じて送信周波数40に対して遅延を伴って受波される。
図4(C)は、複数の受信周波数42a〜42dの各々について、送信周波数40との差である周波数差信号44a〜44dの時間変化の様子を示している。周波数差信号44a〜44dは、BPF30によって一括して抽出される信号である。つまり、BPF30は、周波数差信号44a〜44dが重ね合わされた信号を出力する。
位置演算部32は、この重ね合わされた信号から、各深さごとの周波数差信号を抽出する。このため、位置演算部32は、図4(C)に示す信号処理時間帯48にウィンドウを設定し、設定したウィンドウ内でBPF30からの出力信号を、例えばFFTなどを利用して周波数解析し、図4(D)に示す周波数電力スペクトラムを取得する。
図4(D)に示す周波数電力スペクトラムは、周波数差信号44a〜44dが重ね合わされた信号の周波数スペクトラムに相当する。したがって、各周波数差信号44a〜44dの周波数位置で、スペクトラム成分50a〜50dを含む波形となる。
そこで、位置演算部32は、必要とする周波数帯域の信号を抽出した後、FFT等により周波数スペクトラムの各スペクトラム成分50a〜50dに変換し、その周波数成分から、周波数差信号44a〜44dの信号処理時間帯48における周波数差Δδを求める。こうして、各深さごとに、周波数差Δδと、既知の値であるΔω,Tm,cから、数4を利用して、各組織の深さ(位置)に相当する距離Lが求められる。
図5は、周波数差信号から速度情報を取得する原理を説明するための図であり、周波数差信号の周波数スペクトラムの時間変化を示している。
図5は、図4(D)を利用して説明した周波数スペクトラムを、周波数軸と時間軸によって二次元的に表現したものであり、図5における周波数軸が、図4(D)における縦軸に対応する。したがって、図5においても、所定周波数におけるスペクトラムは、その周波数に対応する深さからの反射波に相当する。なお、図5において、周波数スペクトラムは、振幅成分と位相成分とを含む複素振幅で表現されており、図5において棒状に表現された各スペクトラムの棒の長さが振幅に相当し、棒の傾きが位相に相当する。
対象組織が固定していれば、その対象組織から得られる周波数スペクトラムは時間に関係なく一定となる。つまり、図5で、固定された組織に相当する周波数のスペクトラムは、時間に関係なくその棒の長さや傾きが一定となる。一方、対象組織が移動していると、その対象組織から得られる周波数スペクトラムは時間と共に変化する。つまり、図5で、移動組織に相当する周波数のスペクトラムは、時間と共に、その棒の長さや傾きが変化する。したがって、周波数スペクトラムの振幅成分と位相成分について、その時間変動を解析すれば、その周波数成分に相当する速度、つまり、その周波数成分に対応する組織の速度を求めることができる。
図6は、周波数差信号から速度情報を取得する原理を説明するための図であり、所定時刻における周波数スペクトラムの各周波数成分(Δδ1〜Δδ4)を複素表現したものである。図6の各周波数成分(Δδ1〜Δδ4)は、図5において周波数軸方向に並ぶ互いに異なる複数の周波数成分に対応する。
速度演算部34は、BPF30からの出力信号を位置演算部32によって周波数振幅スペクトラムに変換した信号、つまり図4(C)に示した周波数差信号を、例えばFFTなどを利用して解析する。そして、図6に示すように、Iチャンネル信号成分とQチャンネル信号成分の二つの成分で、各周波数成分(Δδ1〜Δδ4)を複素表現する。図6は、所定時刻における周波数スペクトラムの各周波数成分の複素振幅を示すものであるが、速度演算部34は、各時刻ごとに各周波数成分を複素表現で求め、各周波数成分ごとに時間変動を解析する。
各周波数成分(Δδ1〜Δδ4)は、それぞれ、各深さにおける組織の受信信号に対応するため、各周波数成分(Δδ1〜Δδ4)の時間変化を解析することで、各深さ(位置)における組織の速度を求めることができる。
図7には、図1に示す超音波診断装置の変形例が示されており、図7はその全体構成を示すブロック図である。
図7において、図1に示した部分と符号が同じ部分は、その構成および動作が図1のものと同じであるため説明を省略する。図1において説明したように、図7においても、BPF30から送受信信号間における周波数差信号が出力される。
FFT60は、BPF30から出力される周波数差信号(図4(C)に相当する信号)を周波数解析し、各時刻ごとに周波数スペクトラムの複素信号(図5に相当する信号)を生成する。
そして、乗算器72において、FFT60から入力される現時刻の周波数スペクトラムの複素信号と、遅延線70を介して入力される所定時間前の周波数スペクトラムの複素信号とが乗算され、低域フィルタ74によって、二つの時刻における複素信号の差が抽出される。速度演算回路76は、低域フィルタ74によって抽出された二つの時刻における複素信号の差から、周波数スペクトラムの各周波数成分ごとの時間変動を解析する。
各周波数成分は、それぞれ、各深さにおける組織の受信信号に対応するため、各周波数成分の時間変化を解析することで、各深さ(位置)における組織の速度を求めることができ、求めた速度を速度・速度分散表示部78に表示させる。
なお、図7に示すように、分散演算回路80を設けて、FFT60から出力される各時刻ごとの周波数スペクトラムの複素信号から、速度分散を演算し、それを速度、速度分散表示部78に表示させてもよい。
また、位置演算回路62は、各深さごとに周波数差Δδと、既知の値であるΔω,Tm,cから、数4を利用して、各組織の深さ(距離L)が求められる。そして、位置表示部64に求められた位置に基づく情報(例えば、断層画像など)が表示される。
以上、本発明の好適な実施形態を説明したが、本実施形態(その変形例を含む)は次のような利点を有している。
一般に、パルス波を利用する場合(パルス方式の場合)、SNRを向上させるためには、超音波パルスの尖頭値電力を大きくしなければならない。超音波パルスの尖頭値電力を大きくするためには、送信部の回路の高耐圧化や受信側への漏れ防止対策などが必要になるなど、回路構成が複雑になる。もちろん、超音波パルスの尖頭値電力を大きくした場合、ピーク音圧による生体への影響も考慮する必要がある。また、パルス方式で距離分解能を確保する場合、パルスの立ち上がり、立ち下り時間を小さくするために、受信系を広帯域に保つ必要がある。
本実施形態では、連続波を利用しているため、復調したベースバンド信号をFFT等により周波数変換した周波数スペクトラム信号の周波数帯域を狭帯域化することができ、パルス方式に比べて信号対ノイズ比(SNR)の向上が期待できる。しかも、距離分解能をパルス方式と同等あるいはそれ以上にすることができる。また、本実施形態では、パルス方式の場合に比べて、高耐圧化が不要となるので回路構成を簡単にすることができ、さらに、装置の小型化や低消費電力化にも有利である。
以上、本発明の好適な実施形態を説明したが、上述した実施形態は、あらゆる点で単なる例示にすぎず、本発明の範囲を限定するものではない。例えば、変調波信号として、鋸歯状波に換えて三角波あるいは正弦波などを利用してもよい。
本発明に係る超音波診断装置の全体構成を示すブロック図である。 振幅制御部における振幅制御を説明するための図である。 周波数差信号から位置情報を取得する原理を説明するための図である。 周波数差信号から位置情報を取得する原理を説明するための図である。 周波数差信号から速度情報を取得する原理を説明するための図である。 周波数差信号から速度情報を取得する原理を説明するための図である。 図1に示す超音波診断装置の変形例を示すブロック図である。
符号の説明
10 送信用振動子、12 受信用振動子、16 振幅制御部、18 FM変調器、20 鋸歯状波発振器、32 位置演算部、34 速度演算部。

Claims (8)

  1. 搬送波信号を変調信号により周波数変調し、変調送信信号を生成する送信部と、
    前記変調送信信号に対応した超音波を生体に送波して当該生体から超音波を受波することにより受信信号を得る超音波送受部と、
    前記受信信号を前記変調送信信号を用いて復調し、これにより送受信信号間における周波数差を反映させた周波数差信号を得る受信部と、
    前記変調送信信号の単位時間当たりの周波数変化が一定となる期間内における前記周波数差信号の周波数スペクトラムの時間変化に基づいて生体内組織の速度を求める速度演算部と、
    を有することを特徴とする超音波診断装置。
  2. 請求項1に記載の超音波診断装置において、
    前記速度演算部は、前記周波数スペクトラムに含まれる少なくとも一つの周波数差成分の時間変化に基づいて、その周波数差成分に対応する組織の速度を算出する、
    ことを特徴とする超音波診断装置。
  3. 請求項2に記載の超音波診断装置において、
    前記速度演算部は、前記周波数差成分を複素表現した信号の時間変化から前記速度を算出する、
    ことを特徴とする超音波診断装置。
  4. 請求項3に記載の超音波診断装置において、
    前記速度演算部は、異なる時刻に対応する二つの前記周波数スペクトラムの差を求める自己相関回路を含む、
    ことを特徴とする超音波診断装置。
  5. 請求項1に記載の超音波診断装置において、
    前記周波数差信号の周波数スペクトラムから得られる送受信信号間における周波数差に基づいて生体内組織の位置を求める位置演算部をさらに有する、
    ことを特徴とする超音波診断装置。
  6. 請求項5に記載の超音波診断装置において、
    前記位置演算部は、前記周波数スペクトラムに含まれる少なくとも一つの周波数差成分に基づいて、その周波数差成分に対応する組織の位置を算出する、
    ことを特徴とする超音波診断装置。
  7. 請求項1から6のいずれか1項に記載の超音波診断装置において、
    前記送受波器の周波数特性を補償するように前記変調送信信号の振幅を制御する周波数特性補償部をさらに有する、
    ことを特徴とする超音波診断装置。
  8. 請求項1から7のいずれか1項に記載の超音波診断装置において、
    前記変調信号は、鋸歯状波である、
    ことを特徴とする超音波診断装置。
JP2004195245A 2004-07-01 2004-07-01 超音波診断装置 Expired - Fee Related JP4652731B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004195245A JP4652731B2 (ja) 2004-07-01 2004-07-01 超音波診断装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004195245A JP4652731B2 (ja) 2004-07-01 2004-07-01 超音波診断装置

Publications (2)

Publication Number Publication Date
JP2006014916A JP2006014916A (ja) 2006-01-19
JP4652731B2 true JP4652731B2 (ja) 2011-03-16

Family

ID=35789670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004195245A Expired - Fee Related JP4652731B2 (ja) 2004-07-01 2004-07-01 超音波診断装置

Country Status (1)

Country Link
JP (1) JP4652731B2 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4771166B2 (ja) * 2006-09-29 2011-09-14 サクサ株式会社 Fm−cwレーダ装置
JP5283888B2 (ja) * 2006-11-02 2013-09-04 株式会社東芝 超音波診断装置
US8100832B2 (en) 2007-04-27 2012-01-24 Hitachi Aloka Medical, Ltd. Ultrasound diagnostic apparatus
JP5260897B2 (ja) * 2007-06-22 2013-08-14 日立アロカメディカル株式会社 超音波診断装置
JP5291952B2 (ja) * 2008-03-03 2013-09-18 日立アロカメディカル株式会社 超音波診断装置
JP5297082B2 (ja) * 2008-05-12 2013-09-25 日立アロカメディカル株式会社 超音波診断装置
JP5629052B2 (ja) 2008-06-03 2014-11-19 日立アロカメディカル株式会社 超音波診断装置
JP5654198B2 (ja) 2008-06-16 2015-01-14 日立アロカメディカル株式会社 超音波診断装置
JP5349173B2 (ja) * 2008-07-14 2013-11-20 株式会社東芝 超音波診断装置及び超音波診断装置制御プログラム
JP5325503B2 (ja) * 2008-08-27 2013-10-23 日立アロカメディカル株式会社 超音波診断装置
WO2020129197A1 (ja) * 2018-12-19 2020-06-25 日本電気株式会社 情報処理装置、装着型機器、情報処理方法及び記憶媒体
CN110220976B (zh) * 2019-06-02 2022-04-15 朱爱华 一种基于调频连续波超声成像系统及检测方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000175926A (ja) * 1998-12-14 2000-06-27 Toshiba Corp 超音波治療装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03162837A (ja) * 1989-11-22 1991-07-12 Yokogawa Medical Syst Ltd 医用超音波装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000175926A (ja) * 1998-12-14 2000-06-27 Toshiba Corp 超音波治療装置

Also Published As

Publication number Publication date
JP2006014916A (ja) 2006-01-19

Similar Documents

Publication Publication Date Title
JP4652731B2 (ja) 超音波診断装置
US7513872B2 (en) Ultrasonic doppler measuring apparatus and control method therefor
JP4962947B2 (ja) 非接触診断装置
CN103505247B (zh) 超声波诊断装置
US20090036778A1 (en) Dual frequency doppler ultrasound probe
JP5459963B2 (ja) 超音波診断装置
EP0146073B1 (en) Ultrasonic diagnosing apparatus
JP2007330541A (ja) 超音波診断装置
US7666142B2 (en) Ultrasound doppler diagnostic apparatus and image data generating method
KR20190113626A (ko) 음향 방사력 임펄스를 위한 주파수 스위프
JP2006288974A (ja) 超音波診断装置
JP4688466B2 (ja) 超音波診断装置
JP5291952B2 (ja) 超音波診断装置
JP4787683B2 (ja) 超音波診断装置
JP5260897B2 (ja) 超音波診断装置
JP5909076B2 (ja) 超音波診断装置及び制御プログラム
JP2011240006A (ja) 超音波診断装置
KR100978477B1 (ko) 도플러 모드 영상을 이용하여 초음파 영상을 형성하는 초음파 시스템 및 방법
JP3314991B2 (ja) 超音波ドプラ装置
JP5235110B2 (ja) 超音波診断装置
JPH09220229A (ja) 超音波診断装置
JP2009219783A (ja) 超音波診断装置
JP2005102716A (ja) 骨診断装置
JP5297082B2 (ja) 超音波診断装置
JP2015208416A (ja) 超音波診断装置及び超音波診断システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070619

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100702

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100831

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101216

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees