JP5349173B2 - 超音波診断装置及び超音波診断装置制御プログラム - Google Patents

超音波診断装置及び超音波診断装置制御プログラム Download PDF

Info

Publication number
JP5349173B2
JP5349173B2 JP2009157067A JP2009157067A JP5349173B2 JP 5349173 B2 JP5349173 B2 JP 5349173B2 JP 2009157067 A JP2009157067 A JP 2009157067A JP 2009157067 A JP2009157067 A JP 2009157067A JP 5349173 B2 JP5349173 B2 JP 5349173B2
Authority
JP
Japan
Prior art keywords
signal
diagnostic apparatus
frequency
ultrasonic diagnostic
ultrasonic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009157067A
Other languages
English (en)
Other versions
JP2010042244A (ja
Inventor
達朗 馬場
宏信 本郷
琢也 佐々木
修一 河崎
勇一 村中
正志 秋元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Canon Medical Systems Corp
Original Assignee
Toshiba Corp
Toshiba Medical Systems Corp
Toshiba Medical Systems Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Medical Systems Corp, Toshiba Medical Systems Engineering Co Ltd filed Critical Toshiba Corp
Priority to JP2009157067A priority Critical patent/JP5349173B2/ja
Priority to US12/501,736 priority patent/US20100010350A1/en
Publication of JP2010042244A publication Critical patent/JP2010042244A/ja
Application granted granted Critical
Publication of JP5349173B2 publication Critical patent/JP5349173B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52023Details of receivers
    • G01S7/5203Details of receivers for non-pulse systems, e.g. CW systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/48Diagnostic techniques
    • A61B8/483Diagnostic techniques involving the acquisition of a 3D volume of data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8909Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration
    • G01S15/8915Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration using a transducer array
    • G01S15/8927Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration using a transducer array using simultaneously or sequentially two or more subarrays or subapertures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8993Three dimensional imaging systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52085Details related to the ultrasound signal acquisition, e.g. scan sequences
    • G01S7/52095Details related to the ultrasound signal acquisition, e.g. scan sequences using multiline receive beamforming
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/895Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques characterised by the transmitted frequency spectrum
    • G01S15/8954Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques characterised by the transmitted frequency spectrum using a broad-band spectrum
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8979Combined Doppler and pulse-echo imaging systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Acoustics & Sound (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Molecular Biology (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Description

本発明は、超音波診断装置に係り、特に、超音波として連続波(CW:continuous wave)を用いた連続波ドプラ(CWD:continuous wave Doppler)を実施する装置であって、連続波ドプラによる折り返しの無いというメリットを最大限に活かしつつ、かつ距離方向に分解能を持たせることで距離方向の特定の領域を流れる血流の動態情報を観測することができる超音波診断装置及び超音波診断装置制御プログラムに関する。
超音波診断は、超音波プローブを体表から当てるだけの簡単な操作で心臓の拍動や胎児の動きの様子がリアルタイム表示で得られ、かつ安全性が高いため繰り返して検査を行うことができる。この他、システムの規模がX線、CT、MRIなど他の診断機器に比べて小さく、ベッドサイドへ移動していっての検査も容易に行えるなど簡便な診断手法であると言える。この超音波診断において用いられる超音波診断装置は、それが具備する機能の種類によって様々に異なるが、小型なものは片手で持ち運べる程度のものが開発されており、超音波診断はX線などのように被曝の影響がなく、産科や在宅医療等においても使用することができる。
この様な超音波診断装置を用いて、例えば心臓等の三次元領域を三次元走査しリアルタイムに映像化する場合がある。係る映像化を行う場合、リアルタイにム三次元領域を超音波走査しボリュームデータを得るには音速の制約があり、ボリュームレートと視野深度/方位分解能(アジマス/エレベーションのビーム数)にトレードオフの関係がある。このため、二次元画像をリアルタイムに映像化する場合に比べ、十分なボリュームレートと方位分解能が得られない問題がある。
この問題を解決するものとして、超音波振動子が二次元マトリックス状に配列された二次元アレイプローブを用いて、心電信号に基づいて三次元走査範囲における走査開始位置を変更することで、異なる走査範囲においてそれぞれ1心拍分のデータを取得して、同時相のデータを事後的に組合わせて、全体の走査範囲に対応する四次元画像を生成する手法も行われている(例えば、特許文献1参照)。また、並列同時受信を用いて送信ビームの数倍の受信ビームを得ることで、ボリュームレートを向上させる技術、或いはこれらを組合わせた技術がある。
特開2007−215630号公報 特許第2500937号公報 特許第3069910号公報 特開2006−142006号公報
しかしながら、三次元画像のリアルタイム表示において、十分なボリュームレート及び方位分解能を得るための技術には、次のような問題がある。
まず、心電信号を利用するものは、1ボリュームを収集するのに複数心拍の時間を要し、また、実際には収集された心拍の異なる複数のサブボリュームをつなぎ合わせてフルボリュームデータを生成する。このため、時間遅延が発生し、リアルタイム性に欠ける。
また、並列同時受信を利用するものは、並列段数を増やすとボリュームレートは上昇するが、広い範囲の受信エリアをカバーするため送信エネルギーを上げる必要がある。このため、パワー/発熱の問題が発生し、また送信ビームの音場分布の影響を受け受信ビームが不均質になり画質が劣化する場合がある。
本発明は、上記事情を鑑みてなされたもので、三次元超音波画像のリアルタイム表示において、従来に比して、時間遅延を少なくし、超音波送信において必要とされるパワーを低減させ、受信ビームの不均質を改善することができる超音波診断装置及び超音波診断装置制御プログラムを提供することを目的としている。
本発明は、上記目的を達成するため、次のような手段を講じている。
請求項1に記載の発明は、被検体の所定領域に周波数変調された連続超音波を送信する送信ユニットと、前記所定領域から前記連続超音波に基づいて発生する連続反射波をマルチビーム受信して第1の信号を出力する受信ユニットと、前記第1の信号を周波数復調し、前記所定領域内の位置毎に分離された第2のエコー信号を生成する信号処理ユニットと、前記第2の信号を用いて、第1のボリュームデータを生成するデータ生成ユニットと、前記第1のボリュームデータを用いて超音波画像を生成する画像生成ユニットと、を具備する超音波診断装置である。
請求項19に記載の発明は、被検体の所定領域に周波数変調された連続超音波を送信する送信ユニットと、前記所定領域から前記連続超音波に基づいて発生する連続反射波をマルチビーム受信して第1の信号を出力する受信ユニットと、前記第1の信号を多位相復調方式でレンジ毎に周波数復調し、前記所定領域内の位置毎に分離された第2のエコー信号を生成する信号処理ユニットと、前記第2の信号を用いて、第1のボリュームデータを生成するデータ生成ユニットと、前記第1のボリュームデータを用いて超音波画像を生成する画像生成ユニットと、を具備する超音波診断装置である。
請求項20に記載の発明は、被検体の所定領域に周波数変調された連続超音波を送信する送信ユニットと、基準となるビームに関する第1の受信遅延時間と、前記第1の受信遅延時間に対する補正遅延時間としてビーム毎に決定される複数の第2の遅延時間とを用いて、前記所定領域から前記連続超音波に基づいて発生する連続反射波をマルチビーム受信し、第1の信号を出力する受信ユニットと、前記第1の信号を周波数復調し、前記所定領域内の位置毎に分離された第2のエコー信号を生成する信号処理ユニットと、前記第2の信号を用いて、第1のボリュームデータを生成するデータ生成ユニットと、前記第1のボリュームデータを用いて超音波画像を生成する画像生成ユニットと、を具備する超音波診断装置である。
請求項21に記載の発明は、被検体の所定領域に周波数変調された連続超音波を送信する送信ユニットと、前記所定領域から前記連続超音波に基づいて発生する連続反射波をマルチビーム受信して第1の信号を出力する受信ユニットと、前記第1の信号を周波数復調した後、可変バンドパスフィルタを用いて時分割にフィルタリング処理により、周波数帯域の異なる前記第1の信号を逐次抽出し、前記抽出された周波数帯域の異なる前記第1の信号を、時分割に離散的フーリエ変換を実行することで、前記所定領域内の位置毎に分離された第2のエコー信号を生成する信号処理ユニットと、前記第2の信号を用いて、第1のボリュームデータを生成するデータ生成ユニットと、前記第1のボリュームデータを用いて超音波画像を生成する画像生成ユニットと、を具備する超音波診断装置である。
請求項22に記載の発明は、超音波診断装置に内蔵されたコンピュータに、被検体の所定領域に周波数変調された連続超音波を送信させる送信機能と、前記所定領域から前記連続超音波に基づいて発生する連続反射波をマルチビーム受信させて第1の信号を出力させる受信機能と、前記第1の信号を周波数復調させ、前記所定領域内の位置毎に分離された第2のエコー信号を生成させるエコー信号生成機能と、前記第2の信号を用いて、第1のボリュームデータを生成させるデータ生成機能と、前記第1のボリュームデータを用いて超音波画像を生成させる画像生成機能と、を実現させる超音波診断装置制御方法である。
以上本発明によれば、三次元超音波画像のリアルタイム表示において、従来に比して、時間遅延を少なくし、超音波送信において必要とされるパワーを低減させ、受信ビームの不均質を改善することができる超音波診断装置及び超音波診断装置制御プログラムを実現することができる。
図1は、本実施形態に係る超音波診断装置1のブロック構成図を示している。 図2は、本超音波診断装置1が具備する超音波プローブ12の構成を説明するための図である。 図3は、送受信ユニット22の構成を説明するための図である。 図4は、三次元画像のリアルタイム表示機能に従う処理(三次元画像のリアルタイム表示処理)の流れを示したフローチャートである。 図5は、周波数変調方式を用いた送信と、周波数復調方式を用いたレンジ毎のマルチビーム受信の概念を示した図である。 図6は、周波数復調方式を用いて受信されたレンジ毎のビームから基本波成分を検出する処理を説明するための図である。 図7は、周波数復調方式を用いて受信されたレンジ毎のビームから基本波成分を検出する処理を説明するための図である。 図8は、レンジ毎の基本波パワーの一例を示した図である。 図9は、本超音波診断装置1の送受信ユニット22の受信に関わるハード構成を示した図である。 図10は、変形例1に係る超音波診断装置1における周波数復調処理を説明するための図である。 図11は、変形例2に係る超音波診断装置1の送受信ユニット22の受信に関わるハード構成を示した図である。 図12は、変形例2に係る超音波診断装置1における周波数復調処理を説明するための図である。 図13は、変形例2に係るDFT229のアナログ構成を例示した図である。 図14Aは本変形例に係る超音波診断装置1の遅延方式を説明するための図である。 図14Bは従来のビームフォーミングにおける遅延方式を示した図である。 図15は、マトリックススイッチを用いた位相遅延方式を説明する図である。
以下、本発明の実施形態を図面に従って説明する。なお、以下の説明において、略同一の機能及び構成を有する構成要素については、同一符号を付し、重複説明は必要な場合にのみ行う。
図1は、本実施形態に係る超音波診断装置1のブロック構成図を示している。同図に示すように、本超音波診断装置11は、超音波プローブ12、入力装置13、モニター14、超音波送受信ユニット22、Bモード処理ユニット23、ドプラ処理ユニット24、画像生成ユニット25、ボリュームデータ生成ユニット26、画像合成ユニット27、制御プロセッサ(CPU)28、内部記憶部31、インターフェース部33を具備している。以下、超音波診断装置1の個々の構成要素の機能について説明する。
超音波プローブ12は、超音波送受信ユニット21からの駆動信号に基づき超音波を発生し、被検体からの反射波を電気信号に変換する複数の圧電振動子、当該圧電振動子に設けられる整合層、当該圧電振動子から後方への超音波の伝播を防止するバッキング材等を有している。当該超音波プローブ12から被検体Pに超音波が送信されると、当該送信超音波は、体内組織の音響インピーダンスの不連続面で次々と反射され、エコー信号として超音波プローブ12に受信される。このエコー信号の振幅は、反射することになった反射することになった不連続面における音響インピーダンスの差に依存する。また、送信された超音波パルスが、移動している血流や心臓壁等の表面で反射された場合のエコーは、ドプラ効果により移動体の超音波送信方向の速度成分を依存して、周波数偏移を受ける。
なお、本超音波装置が具備する超音波プローブ12は、複数の超音波振動子が二次元マトリックス状に配列された二次元アレイプローブである。また、超音波連続波の送信と受信とを並行して実行するために、超音波プローブ12は、それぞれ複数の超音波振動子から構成される送信領域(Tx Area)と受信領域(Rx Area)を有している。送信領域においては周波数変調された連続超音波が送信され、受信領域においては周波数復調しながらのマルチビーム受信が実行される。詳細については、後述する。
入力装置13は、装置本体11に接続され、オペレータからの各種指示、条件、関心領域(ROI)の設定指示、種々の画質条件設定指示等を装置本体11にとりこむための各種スイッチ、ボタン、トラックボール、マウス、キーボード等を有している。例えば、操作者が入力装置13の終了ボタンやFREEZEボタンを操作すると、超音波の送受信は終了し、当該超音波診断装置は一時停止状態となる。
モニター14は、スキャンコンバータ25からのビデオ信号に基づいて、生体内の形態学的情報(通常のBモード画像)、血流情報(平均速度画像、分散画像、パワー画像等)等を所定の形態で表示する。
超音波送受信ユニット22は、図3に示すように、信号発生器220、送信ミキサ221、受信遅延ユニット222、アポダイゼーションユニット223、周波数変調/復調ユニット224、受信バッファユニット225、受信ミキサ227、DBPF228、離散フーリエ変換ユニット229、ビームメモリ230を有している。超音波送受信ユニット22は、通常のBモードやパルスドプラモード等における超音波送受信処理のほか、三次元画像のリアルタイム表示を実行する場合において、周波数変調された連続超音波を送信し得られる反射波を周波数復調しながらマルチビーム受信する。
Bモード処理ユニット23は、送受信ユニット21からエコー信号を受け取り、対数増幅、包絡線検波処理などを施し、信号強度が輝度の明るさで表現されるデータを生成する。このデータは、スキャンコンバータ25に送信され、反射波の強度を輝度にて表したBモード画像としてモニター14に表示される。
ドプラ処理ユニット24は、送受信ユニット21から受け取ったエコー信号から速度情報を周波数解析し、ドプラ効果による血流や組織、造影剤エコー成分を抽出し、平均速度、分散、パワー等の血流情報を多点について求める。特に、ドプラ処理ユニット24は、送受信ユニット22から多位相復調データを逐次読み出し、各レンジで得られたスペクトラムを演算し、これを用いてCWスペクトラム画像のデータを演算する。
画像生成ユニット25は、Bモード処理ユニット23、ドプラ処理ユニット24、ボリュームデータ生成ユニット26から受け取ったデータを用いて、超音波画像を生成する。
ボリュームデータ生成ユニット26は、後述する三次元画像のリアルタイム表示機能において、サブボリュームデータを連結することにより、各時相に対応するボリュームデータを生成する。
画像合成ユニット27は、画像生成ユニット25から受け取った画像を種々のパラメータの文字情報や目盛等と共に合成し、ビデオ信号としてモニター14に出力する。
制御プロセッサ28は、情報処理装置(計算機)としての機能を持ち、本超音波診断装置本体の動作を制御する。制御プロセッサ28は、内部記憶部31から後述する三次元画像のリアルタイム表示機能を実現するための専用プログラム、所定のスキャンシーケンスを実行するための制御プログラムを読み出して自身が有するメモリ上に展開し、各種処理に関する演算・制御等を実行する。
内部記憶部31は、異なる画角設定により複数のボリュームデータを収集するための所定のスキャンシーケンス、後述する三次元画像のリアルタイム表示機能を実現するための専用プログラム、画像生成、表示処理を実行するための制御プログラム、診断情報(患者ID、医師の所見等)、診断プロトコル、送受信条件、ボディマーク生成プログラムその他のデータ群が保管されている。また、必要に応じて、画像メモリ26中の画像の保管などにも使用される。内部記憶部29のデータは、インターフェース部33を経由して外部周辺装置へ転送することも可能となっている。
インターフェース部33は、入力装置13、ネットワーク、新たな外部記憶装置(図示せず)に関するインターフェースである。当該装置によって得られた超音波画像等のデータや解析結果等は、インターフェース部30よって、ネットワークを介して他の装置に転送可能である。
(三次元画像のリアルタイム表示機能)
次に、本超音波診断装置1が有する、三次元画像のリアルタイム表示機能について説明する。この機能は、被検体に周波数変調された連続超音波を送信し得られる反射波を周波数復調しながらマルチビーム受信することで、時間遅延が少なく、超音波送信において必要とされるパワーを低減され、受信ビームの不均質が改善された三次元超音波画像のリアルタイム表示を行うものである。なお、本実施形態では、説明を具体的にするため、復調方式として、多位相復調方式を採用する。これは、送信変調と受信変調との位相をレンジ方向(ビーム方向)のレンジ毎に変化させながら(多位相)復調することにより、マルチビーム受信において距離分解能を得るものである。しかしながら、本発明の技術的思想は、多位相復調方式に拘泥されず、これと実質的に同等な結果を取得可能なものであれば、どの様な復調方式を採用してもよい。
図4は、本三次元画像のリアルタイム表示機能に従う処理(三次元画像のリアルタイム表示処理)の流れを示したフローチャートである。以下、このフローチャートに従って三次元画像のリアルタイム表示処理を説明する。
[周波数変調方式を用いた連続超音波送信:ステップS1]
まず、周波数変調方式を用いて、送信電圧の低い(パワー/発熱が小さい)連続超音波送信が実行される(ステップS1)。すなわち、信号発生器220は、FM変調回ユニット224によって周波数変調を掛ける。また、周波数変調された信号は、送信遅延ユニット222により送信遅延時間が与えられ、アポダイゼーションユニット223によりビーム指向性が与えられ、超音波プローブ12に供給される。この供給は、逐次実行される。超音波プローブ12は、供給された信号に基づいて超音波連続波(連続波チャープ)を被検体内部に送信する。
なお、超音波連続波は、広域の超音波走査を実現するため、ファンビーム形状により送信されることが好ましい。また、ファンビームによる超音波連続波は、一つの素子に電力が集中することを防止するために、方向を変更しながら送信されることが好ましい。
[周波数復調方式を用いたマルチビーム受信:ステップS2]
次に、周波数復調方式を用いたマルチビーム受信が実行される(ステップS2)。すなわち、超音波プローブ12は、送信された超音波連続波に基づく被検体内部からの反射波をレンジ方向毎にマルチビーム受信する。受信バッファユニット226は、各レンジに対応して設けられたバッファ回路においてマルチビーム受信された各ビームをA/D変換し、デジタルデータとして一次的に記憶する。なお、受信バッファユニット226は、時間遅延を伴うバッファとして機能するもので、係る格納によってレンジ方向の分解能に応じた多位相のサンプルデータがFM変調のNfm周期分、マップされる。受信ミキサ227、周波数変調/復調ユニット224は、レンジ方向毎に、送信変調に連動して多位相FM復調を実行する。ここで、連動とは、送信連続波に対する周波数変調用のチャープ波に一定時間を置いて同期したチャープ波でFM復調を行なうことである。なお、本ステップでの受信を行う際、近距離からのエコー信号の飽和対策として、TGC(Time Gain Control)を変調周期周波数に連動してかけることが好ましい。
この様な多位相FM復調方式により、図5に示すように、周波数変調方式を用いて送信された連続超音波に基づく反射波は、送信変調の位相と受信変調の位相とがレンジ毎に変化するように、且つ一定の時間間隔を置いて連動して受信されることになる。
[離散的フーリエ変換:ステップS3]
次に、周波数復調方式を用いてマルチビーム受信された各ビームに対して、離散的フーリエ変換が実行され、各レンジ毎の基本波が抽出される(ステップS3)。すなわち、離散的フーリエ変換ユニット229は、帯域フィルタユニット228においてフィルタリングされたレンジ毎の各ビームに対して、離散的フーリエ変換を実行し、図6に示すようにレンジ毎の各ビームのスペクトラムを計算する(ステップS3)。ビームメモリ230は、計算された各ビームの基本波成分のスペクトラムを、図7に示すようにレンジを規準として再配置した後、図8に示すようにレンジ毎の基本波パワー(すなわち、レンジ毎のAモード情報)を取得する。その結果、距離毎のエコー信号が抽出されることになる。
[ボリュームデータの生成:ステップS4]
次に、ステップS1〜S3の処理は逐次連続的に実行され、所定領域についてのサブボリュームデータが逐次生成される。また、必要に応じて、サブボリューム内の感度差、補間処理等に起因するサブボリューム間の感度差を補正する受信ゲイン補正処理が実行される。さらに、必要に応じて、S/N比を向上させるため、サブボリュームに対して、複数回変調波をたたいて時間コンパウンドするようにしてもよい。ボリュームデータ生成ユニット26は、この様にして得られたサブボリュームを位置合わせし連結することで、ボリュームデータを生成する(ステップS4)。
[三次元画像の生成/表示:ステップS5]
次に、画像生成ユニット25は、生成されたボリュームデータを用いて、三次元画像を生成する(ステップS5)。生成された三次元画像は、画像合成部27において必要な情報と合成された後、モニター14に所定の形態で表示される(ステップS5)。
(変形例1)
次に、本実施形態に係る超音波診断装置1の変形例1について説明する。本変形例1に係る超音波診断装置1は、特に受信に関する回路を集積回路化することで全体のハードウェア規模を縮小する例である。
図9は、本超音波診断装置1の送受信ユニット22の受信に関わるハード構成を示した図である。同図に示すように、複数の超音波振動子に受信されたエコー信号は、バッファユニット232においてA/D変換され、デジタルデータとして一次的に記憶され、各レンジに対応する受信ミキサ227に送り出される。位相シフト回路233は、周波数変調/復調ユニット224からの制御信号に基づいて受信ミキサ227の動作タイミングを制御し、図10に示すようにレンジ方向毎に送信変調に連動して多位相FM復調を実行する。各レンジに対応する基本波計算回路235は、LPF(ローパスフィルタ)234においてフィルタリングされたレンジ毎の各ビームを用いて、レンジ毎の基本波成分の振幅を計算する。
係る構成によれば、ハードウェア規模を縮小させつつ、被検体に周波数変調された連続超音波を送信し得られる反射波を多位相復調しながらマルチビーム受信することができる。
(変形例2)
次に、本実施形態に係る超音波診断装置1の変形例2について説明する。本変形例2に係る超音波診断装置1は、検出する成分をクラッタ成分に絞ることで(すなわち、ドプラ成分を検出しないようにすることで)、受信に関するハードウェア規模を縮小する例である。
図11は、本超音波診断装置1の送受信ユニット22の受信に関わるハード構成を示した図である。本変形例は、検出する成分をクラッタ成分に絞ることで、同図に示すように可変BPF(バンドパスフィルタ)236とDFT229とを時分割で用いることで、複数のレンジに関する信号処理を一系統化するものである。すなわち、可変BPF236は、周波数変調/復調ユニット224からの制御に従って、図12に示すように受信基本周波数Freq.を周波数復調しつつ、当該受信基本周波数Freq.からΔfの幅の帯域に該当する信号を通過させるフィルタリングを実行する。DFT229は、可変BPF236においてフィルタリングされたレンジ毎の各ビームを用いて、レンジ毎のクラッタ成分の振幅を計算する。このとき、各レンジに対応するビームのトータルパワーを計算することが好ましい。なお、DFT229は、図13に示すようなアナログ構成によっても代替可能である。
係る構成によっても、ハードウェア規模を縮小させつつ、被検体に周波数変調された連続超音波を送信し得られる反射波を多位相復調しながらマルチビーム受信し、クラッタ成分を検出することができる。
(変形例3)
次に、本実施形態に係る超音波診断装置1の変形例3について説明する。本変形例3に係る超音波診断装置1は、マルチビーム受信を行う際の遅延方式を、中心ビームの遅延と周辺ビームの補正遅延とで構成することで、ハードウェア規模を小さくするものである。すなわち、図3中に示した並列同時受信のビームフォーマの受信アポダイゼーション、受信遅延ユニットのアポダイゼーションデータや遅延データの他の実現手法である。
図14Aは本変形例に係る超音波診断装置1の遅延方式を説明するための図であり、図14Bは従来のビームフォーミングにおける遅延方式を示した図である。図14Bに示すように、従来の遅延方式では独立して各レンジに対応するビーム毎に偏向遅延(Delay)及び収束遅延(Delay)を定義している。これに対し、本変形例では、図14Aに示すように、中心ビームに関する偏向遅延及び収束遅延を定義し、これらからのずれ量として、各レンジに対応するビーム毎の偏向遅延及び収束遅延を定義する。なお、この様な中心ビームを規準とする各レンジに対応するビーム毎の偏向遅延及び収束遅延は、例えば内部記憶装置31に予め各種条件毎に記憶される。
また、上記の様なビーム遅延行う場合、図15に示すようなマトリックススイッチ(多入力多出力スイッチ)を用いて位相遅延を実現することが好ましい。この様な構成によれば、パルス位相遅延に比べて、性能を大幅に向上させることができる。なお、マトリックススイッチとは、ディレイ値に応じた遅延信号を複数のビームサム入力にプログラマブルに切り換え入力することが可能な、多入力、多出力のスイッチである。
(効果)
本実施形態に係る超音波診断装置によれば、周波数変調方式により送信電圧の低い連続超音波を送信し得られる反射波を周波数復調しながらマルチビーム受信する。従って、送信パワーに起因する発熱を抑制することができる。また、周波数復調方式を用いてマルチビーム受信された各ビームに対して離散的フーリエ変換等を実行し、各レンジに対応する距離毎のエコー信号を検出し、これを用いて三次元画像をリアルタイム表示する。従って、広い範囲を超音波走査して距離分解能を持つエコー信号を取得でき、複数心拍の時間を必要としないで三次元画像をリアルタイムに生成し表示することができる。
なお、本発明は上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。具体的な変形例としては、例えば次のようなものがある。
(1)本実施形態に係る各機能は、当該処理を実行するプログラムをワークステーション等のコンピュータにインストールし、これらをメモリ上で展開することによっても実現することができる。このとき、コンピュータに当該手法を実行させることのできるプログラムは、磁気ディスク(フロッピー(登録商標)ディスク、ハードディスクなど)、光ディスク(CD−ROM、DVDなど)、半導体メモリなどの記録媒体に格納して頒布することも可能である。
(2)上記実施形態において、例えば図5等に示したノコギリ波変調でなく、三角波変調をおこなうことで、ドプラ情報を取得し表示するようにしてもよい。また、ノコギリ波を必要な視野深度に応じて断続的に送受信に用いるようにしてもよい。さらに、変調波を曲線にし、近距離分解能を上げるようにしてもよい。
(3)上記実施形態において、受信ビームからAモード情報を計算する際に、デジタルミキサのみでDC成分のパワーを計算するようにしてもよい。係る構成とすることで、ハード規模をさらに小さくすることができる。また、受信ビームからAモード情報を計算する際に、アナログミキサ後にDC成分のみを抽出するLPFを用いて実現するようにしてもよい。
(4)上記実施形態においては、本発明の技術的思想を、三次元画像のリアルタイム表示機能として超音波診断装置に適用する場合を例示した。しかしながら、本発明の技術的思想は、超音波診断装置への適用例に限定されない。例えば、超音波を用いて移動体(例えば自動車)の衝突防止のための警告を行う装置に適用することも可能である。係る場合には、操作者側にリアルタイムで提供される情報として、超音波画像以外に、衝突可能性を警告するための音声等を出力することができる。
また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。
以上本発明によれば、三次元超音波画像のリアルタイム表示において、従来に比して、時間遅延を少なくし、超音波送信において必要とされるパワーを低減させ、受信ビームの不均質を改善することができる超音波診断装置及び超音波診断装置制御プログラムを実現することができる。
1…超音波診断装置、12…超音波プローブ、13…入力装置、14…モニター、22…送受信ユニット、23…Bモード処理ユニット、24…ドプラ処理ユニット、25…画像生成ユニット、26…ボリュームデータ生成ユニット、27…画像生成ユニット、28…制御プロセッサ(CPU)、31…内部記憶装置、33…インターフェースユニット、220…信号発生器、221…送信ミキサ、222…送受信遅延ユニット、223…アポダイゼーションユニット、224…周波数変調/復調ユニット、225…受信バッファユニット、227…受信ミキサ、228…DBPF、229…離散フーリエ変換ユニット、230…ビームメモリ、232…バッファユニット、233…位相シフト回路、234…LPF、235…基本波計算回路、236…可変BPF

Claims (22)

  1. 被検体の所定領域に周波数変調された連続超音波を送信する送信ユニットと、
    前記所定領域から前記連続超音波に基づいて発生する連続反射波をマルチビーム受信して第1の信号を出力する受信ユニットと、
    前記第1の信号を周波数復調し、前記所定領域内の位置毎に分離された第2のエコー信号を生成する信号処理ユニットと、
    前記第2の信号を用いて、第1のボリュームデータを生成するデータ生成ユニットと、
    前記第1のボリュームデータを用いて超音波画像を生成する画像生成ユニットと、
    を具備することを特徴とする超音波診断装置。
  2. 前記送信ユニットは、前記連続超音波をファンビームによって前記所定領域内に送信することを特徴とする請求項1記載の超音波診断装置。
  3. 前記送信ユニットは、前記ファンビームの送信方向を切り替えることで、前記所定領域を構成する複数のサブ領域のそれぞれに前記連続超音波を送信することを特徴とする請求項2記載の超音波診断装置。
  4. 前記前記送信ユニットは、前記所定領域を構成する複数のサブ領域のそれぞれに、前記連続超音波を複数回送信し、
    前記受信ユニットは、前記複数回送信のそれぞれに対応する前記連続反射波を用いて、時間的にコンパウンドされた前記第1の信号を出力することを特徴とする請求項1乃至3のうちいずれか一項記載の超音波診断装置。
  5. 前記周波数変調はノコギリ波変調であることを特徴とする請求項1乃至4のうちいずれか一項記載の超音波診断装置。
  6. 前記周波数変調は三角波変調であることを特徴とする請求項1乃至4のうちいずれか一項記載の超音波診診断装置。
  7. 前記周波数変調は曲線波に従う変調であることを特徴とする請求項1乃至4のうちいずれか一項記載の超音波診診断装置。
  8. 前記送信ユニットは、ノコギリ波変調を視野深度に応じて断続的に用いることを特徴とする請求項1乃至5のうちいずれか一項記載の超音波診断装置。
  9. 前記受信ユニットは、前記サブ領域毎に前記連続反射波をマルチビーム受信して、前記各サブ領域に対応する前記第1の信号を出力し、
    前記信号処理ユニットは、前記各サブ領域に対応する前記第1のエコー信号を周波数復調し、前記各サブ領域に対応する前記第2の信号を生成し、
    前記データ生成ユニットは、前記サブ領域毎の前記第2の信号を用いて、前記第1のボリュームデータを生成すること、
    を特徴とする請求項3記載の超音波診断装置。
  10. 前記信号処理ユニットは、前記各サブ領域に対応する前記第1のエコー信号間の感度差を補正することを特徴とする請求項9記載の超音波診断装置。
  11. 前記信号処理ユニットは、前記第1の信号を多位相復調方式でレンジ毎に周波数復調することを特徴とする請求項1乃至10のうちいずれか一項記載の超音波診断装置。
  12. 前記信号処理ユニットは、
    前記第1の信号を周波数復調した後、離散的フーリエ変換を実行し、
    前記離散的フーリエ変換後の前記第1の信号を用いて、振幅情報を含む前記第2の信号を生成すること、
    を特徴とする請求項1乃至10のうちいずれか一項記載の超音波診断装置。
  13. 前記信号処理ユニットは、
    デジタルミキサを用いて前記第1の信号から基本波成分を抽出し、
    前記抽出された基本波成分に基づいて、振幅情報を含む前記第2の信号を生成すること、
    を特徴とする請求項1乃至10のうちいずれか一項記載の超音波診断装置。
  14. 前記信号処理ユニットは、
    アナログミキサによる処理の後、ローパスフィルタによって前記第1の信号から基本波成分を抽出し、
    前記抽出された基本波成分に基づいて、振幅情報を含む前記第2の信号を生成すること、
    を特徴とする請求項1乃至10のうちいずれか一項記載の超音波診断装置。
  15. 前記信号処理ユニットは、
    前記第1の信号を周波数復調した後、可変バンドパスフィルタを用いて時分割にフィルタリング処理により、周波数帯域の異なる前記第1の信号を逐次抽出し、
    前記抽出された周波数帯域の異なる前記第1の信号を、時分割に離散的フーリエ変換を実行することで、前記第2の信号を生成すること、
    を特徴とする請求項1乃至10のうちいずれか一項記の超音波診断装置。
  16. 前記信号処理ユニットは、前記周波数復調に連動させて、タイムゲインコントロールを実行することを特徴とする請求項1乃至10のうちいずれか一項記載の超音波診断装置。
  17. 前記受信ユニットは、前記マルチビームのうちの基準となるビームに関する第1の受信遅延時間と、前記第1の受信遅延時間に対する補正遅延時間としてビーム毎に決定される複数の第2の遅延時間とを用いて、前記マルチビーム受信を実行することを特徴とする請求項1乃至16のうちいずれか一項記載の超音波診断装置。
  18. 前記受信ユニットは、前記第1の受信遅延時間と前記複数の第2の受信遅延時間とを用いたマルチビーム受信を、マトリックススイッチを用いて実行する請求項17記載の超音波診断装置。
  19. 被検体の所定領域に周波数変調された連続超音波を送信する送信ユニットと、
    前記所定領域から前記連続超音波に基づいて発生する連続反射波をマルチビーム受信して第1の信号を出力する受信ユニットと、
    前記第1の信号を多位相復調方式でレンジ毎に周波数復調し、前記所定領域内の位置毎に分離された第2のエコー信号を生成する信号処理ユニットと、
    前記第2の信号を用いて、第1のボリュームデータを生成するデータ生成ユニットと、
    前記第1のボリュームデータを用いて超音波画像を生成する画像生成ユニットと、
    を具備する超音波診断装置。
  20. 被検体の所定領域に周波数変調された連続超音波を送信する送信ユニットと、
    基準となるビームに関する第1の受信遅延時間と、前記第1の受信遅延時間に対する補正遅延時間としてビーム毎に決定される複数の第2の遅延時間とを用いて、前記所定領域から前記連続超音波に基づいて発生する連続反射波をマルチビーム受信し、第1の信号を出力する受信ユニットと、
    前記第1の信号を周波数復調し、前記所定領域内の位置毎に分離された第2のエコー信号を生成する信号処理ユニットと、
    前記第2の信号を用いて、第1のボリュームデータを生成するデータ生成ユニットと、
    前記第1のボリュームデータを用いて超音波画像を生成する画像生成ユニットと、
    を具備する超音波診断装置。
  21. 被検体の所定領域に周波数変調された連続超音波を送信する送信ユニットと、
    前記所定領域から前記連続超音波に基づいて発生する連続反射波をマルチビーム受信して第1の信号を出力する受信ユニットと、
    前記第1の信号を周波数復調した後、可変バンドパスフィルタを用いて時分割にフィルタリング処理により、周波数帯域の異なる前記第1の信号を逐次抽出し、前記抽出された周波数帯域の異なる前記第1の信号を、時分割に離散的フーリエ変換を実行することで、前記所定領域内の位置毎に分離された第2のエコー信号を生成する信号処理ユニットと、
    前記第2の信号を用いて、第1のボリュームデータを生成するデータ生成ユニットと、
    前記第1のボリュームデータを用いて超音波画像を生成する画像生成ユニットと、
    を具備する超音波診断装置。
  22. 超音波診断装置に内蔵されたコンピュータに、
    被検体の所定領域に周波数変調された連続超音波を送信させる送信機能と、
    前記所定領域から前記連続超音波に基づいて発生する連続反射波をマルチビーム受信させて第1の信号を出力させる受信機能と、
    前記第1の信号を周波数復調させ、前記所定領域内の位置毎に分離された第2のエコー信号を生成させるエコー信号生成機能と、
    前記第2の信号を用いて、第1のボリュームデータを生成させるデータ生成機能と、
    前記第1のボリュームデータを用いて超音波画像を生成させる画像生成機能と、
    を実現させる超音波診断装置制御方法。
JP2009157067A 2008-07-14 2009-07-01 超音波診断装置及び超音波診断装置制御プログラム Expired - Fee Related JP5349173B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009157067A JP5349173B2 (ja) 2008-07-14 2009-07-01 超音波診断装置及び超音波診断装置制御プログラム
US12/501,736 US20100010350A1 (en) 2008-07-14 2009-07-13 Ultrasonic diagnostic apparatus and ultrasonic image acquisition method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008183137 2008-07-14
JP2008183137 2008-07-14
JP2009157067A JP5349173B2 (ja) 2008-07-14 2009-07-01 超音波診断装置及び超音波診断装置制御プログラム

Publications (2)

Publication Number Publication Date
JP2010042244A JP2010042244A (ja) 2010-02-25
JP5349173B2 true JP5349173B2 (ja) 2013-11-20

Family

ID=41505786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009157067A Expired - Fee Related JP5349173B2 (ja) 2008-07-14 2009-07-01 超音波診断装置及び超音波診断装置制御プログラム

Country Status (2)

Country Link
US (1) US20100010350A1 (ja)
JP (1) JP5349173B2 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5689697B2 (ja) * 2011-01-27 2015-03-25 株式会社東芝 超音波プローブ及び超音波診断装置
US8469891B2 (en) * 2011-02-17 2013-06-25 Siemens Medical Solutions Usa, Inc. Viscoelasticity measurement using amplitude-phase modulated ultrasound wave
JP6109498B2 (ja) * 2011-07-05 2017-04-05 東芝メディカルシステムズ株式会社 超音波診断装置及び超音波診断装置制御プログラム
JP5917037B2 (ja) * 2011-07-29 2016-05-11 キヤノン株式会社 被検体情報取得装置および被検体情報取得方法
JP5892745B2 (ja) 2011-08-18 2016-03-23 株式会社東芝 超音波診断装置
JP5904732B2 (ja) 2011-09-01 2016-04-20 株式会社東芝 超音波プローブ及び超音波診断装置
US11921187B1 (en) * 2021-04-16 2024-03-05 Amazon Technologies, Inc. Monitoring non-stationary object distance using ultrasonic signals

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5519392B2 (ja) * 1973-07-25 1980-05-26
US4155258A (en) * 1978-05-24 1979-05-22 General Electric Company Ultrasonic imaging system
EP0087318B1 (en) * 1982-02-24 1988-02-03 Kabushiki Kaisha Toshiba Ultrasonic diagnostic apparatus
US5301674A (en) * 1992-03-27 1994-04-12 Diasonics, Inc. Method and apparatus for focusing transmission and reception of ultrasonic beams
JPH06207981A (ja) * 1992-04-03 1994-07-26 Ueda Nippon Musen Kk 生体の超音波反射特性解析方法及び超音波画像診断装置
JPH09313487A (ja) * 1996-05-29 1997-12-09 Ge Yokogawa Medical Syst Ltd 超音波3次元像撮像方法および装置
US6248071B1 (en) * 2000-01-28 2001-06-19 U-Systems, Inc. Demodulating wide-band ultrasound signals
US6866634B2 (en) * 2000-05-09 2005-03-15 Hitachi Medical Corporation Ultrasonic diagnostic apparatus
JP4652731B2 (ja) * 2004-07-01 2011-03-16 アロカ株式会社 超音波診断装置
WO2006043603A1 (ja) * 2004-10-20 2006-04-27 Kabushiki Kaisha Toshiba 超音波ドプラ診断装置
JP4846335B2 (ja) * 2004-10-20 2011-12-28 株式会社東芝 超音波ドプラ診断装置
JP4787683B2 (ja) * 2006-06-15 2011-10-05 日立アロカメディカル株式会社 超音波診断装置
JP2007330541A (ja) * 2006-06-15 2007-12-27 Kanazawa Inst Of Technology 超音波診断装置
US8100832B2 (en) * 2007-04-27 2012-01-24 Hitachi Aloka Medical, Ltd. Ultrasound diagnostic apparatus
JP5235110B2 (ja) * 2008-07-16 2013-07-10 日立アロカメディカル株式会社 超音波診断装置

Also Published As

Publication number Publication date
US20100010350A1 (en) 2010-01-14
JP2010042244A (ja) 2010-02-25

Similar Documents

Publication Publication Date Title
JP5597734B2 (ja) 超音波イメージング装置及び超音波イメージングプログラム
JP5349173B2 (ja) 超音波診断装置及び超音波診断装置制御プログラム
JP6218400B2 (ja) 超音波診断装置及び超音波診断装置の制御プログラム
JP5509038B2 (ja) 超音波診断装置、超音波画像処理装置及び超音波画像処理プログラム
JP6415937B2 (ja) 医用画像処理装置、超音波診断装置、医用画像処理方法および医用画像処理プログラム
EP2253275A1 (en) Ultrasonic diagnostic apparatus, ultrasonic image processing apparatus and ultrasonic image processing method
US10624608B2 (en) Ultrasonic diagnostic apparatus
JP2023126415A (ja) 超音波診断装置
JP5481334B2 (ja) 超音波診断装置
JP7305438B2 (ja) 解析装置及びプログラム
JP5606025B2 (ja) 超音波診断装置、超音波画像処理装置及び超音波画像処理プログラム
JP2004329609A (ja) 超音波診断装置
JP6651405B2 (ja) 超音波診断装置及びプログラム
JP2008253663A (ja) 超音波診断装置およびその制御処理プログラム
JP2008142130A (ja) 超音波診断装置およびその制御処理プログラム
JP2011045660A (ja) 超音波診断装置及び超音波画像処理装置
JP7343342B2 (ja) 超音波診断装置、及び画像処理装置
JP2008264314A (ja) 超音波診断装置及び超音波画像データ生成プログラム
JP5317391B2 (ja) 超音波診断装置
JP4901273B2 (ja) 超音波診断装置およびその画像処理プログラム
JP2010000198A (ja) 超音波診断装置及び超音波診断装置制御プログラム
JP6000559B2 (ja) 超音波診断装置
JP2013244162A (ja) 超音波診断装置
JP2010110642A (ja) 超音波診断装置
US10709421B2 (en) Ultrasound diagnostic apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120619

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130718

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130723

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130820

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees