JP4647734B2 - 半導体素子のダイオード及びその製造方法 - Google Patents
半導体素子のダイオード及びその製造方法 Download PDFInfo
- Publication number
- JP4647734B2 JP4647734B2 JP11421999A JP11421999A JP4647734B2 JP 4647734 B2 JP4647734 B2 JP 4647734B2 JP 11421999 A JP11421999 A JP 11421999A JP 11421999 A JP11421999 A JP 11421999A JP 4647734 B2 JP4647734 B2 JP 4647734B2
- Authority
- JP
- Japan
- Prior art keywords
- layer
- forming
- epitaxial layer
- diode
- window
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 26
- 239000004065 semiconductor Substances 0.000 title claims description 20
- 239000012535 impurity Substances 0.000 claims description 87
- 238000000034 method Methods 0.000 claims description 28
- -1 boron ion Chemical class 0.000 claims description 11
- 238000009792 diffusion process Methods 0.000 claims description 9
- 229910052796 boron Inorganic materials 0.000 claims description 8
- 238000005530 etching Methods 0.000 claims description 6
- 239000007788 liquid Substances 0.000 claims description 6
- 229910052698 phosphorus Inorganic materials 0.000 claims description 5
- 239000011574 phosphorus Substances 0.000 claims description 5
- RLOWWWKZYUNIDI-UHFFFAOYSA-N phosphinic chloride Chemical compound ClP=O RLOWWWKZYUNIDI-UHFFFAOYSA-N 0.000 claims description 3
- 230000015556 catabolic process Effects 0.000 description 9
- 150000002500 ions Chemical class 0.000 description 8
- 238000011084 recovery Methods 0.000 description 8
- 239000000758 substrate Substances 0.000 description 8
- 238000007796 conventional method Methods 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 238000009826 distribution Methods 0.000 description 6
- 230000001965 increasing effect Effects 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 238000000151 deposition Methods 0.000 description 4
- 238000002347 injection Methods 0.000 description 4
- 239000007924 injection Substances 0.000 description 4
- 239000011810 insulating material Substances 0.000 description 4
- 239000007769 metal material Substances 0.000 description 4
- 239000000969 carrier Substances 0.000 description 3
- 238000005468 ion implantation Methods 0.000 description 3
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 238000000059 patterning Methods 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66083—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices
- H01L29/6609—Diodes
- H01L29/66136—PN junction diodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/86—Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
- H01L29/861—Diodes
- H01L29/8611—Planar PN junction diodes
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Electrodes Of Semiconductors (AREA)
- Bipolar Transistors (AREA)
- Thyristors (AREA)
Description
【発明の属する技術分野】
本発明は半導体素子及びその製造方法に係り、特に遅い逆電流減少特性を有する半導体素子のダイオード及びその製造方法に関する。
【0002】
【従来の技術】
半導体素子のうちダイオードはN型不純物層とP型不純物層が接合して形成され、整流素子として使われている。P型不純物層、即ちアノードに正(+)電圧を印加し、N型不純物層、即ちカソードに負(−)の電圧を印加して前記ダイオードを順方向導通状態に維持すれば、多数のキャリアが相異なる極性に注入され、即ちN型不純物層内の電子はP型不純物層に注入され、P型不純物層内のホールはN型不純物層に注入されてダイオードの各部分には順方向電流が流れる状態になる。引続き、ダイオードが順方向バイアス状態から逆方向状態にスイッチされれば、即ちP型不純物層に負の電圧を印加しN型不純物層に正の電圧を印加すれば、ダイオード内部は瞬間的に逆電流が流れる状態になる。以後、注入されたキャリアが順次消滅しながら逆電流は平常時の漏れ電流水準に減少し、ダイオードはブロッキング状態になる。
【0003】
この時、逆電流が流れる時点からダイオードに逆電圧がかからない状態が持続される時点までを蓄積時間という。応用回路によって長いあるいは短い蓄積時間が利用され、逆電流減少の比を回復比と表現する。ある応用回路では速い逆電流減少またはスナップ回復特性(即ち、回復比が大きい特性)が要求され、他の応用回路では遅い逆電流減少特性(即ち、回復比が小さな特性)が要求される。
【0004】
ダイオードの回復比の特性は蓄積された少数キャリアの量、少数キャリアの移動度、少数キャリアの寿命等に影響を受ける。ダイオードの場合、順方向導通状態で、アノード側からは多数のホールがカソード方向に注入され、カソード側からは電子がアノード方向に注入されるが、遅い逆電流減少特性を示すためにはホールの注入が電子の注入より相対的に小さいべきである。
【0005】
図1は遅い逆電流減少特性を得るためにP- 層を浅い接合を成すように形成した従来のダイオードを示す断面図で、図2は前記図1のII−II′線で切った断面の不純物濃度分布を示す特性図であって、図1において、図面符号10はカソードを、12はN+ 層を、14はN- エピタキシャル層を、16はP- 層を、18はリングを、20はチャンネルストッパを、22は絶縁膜を、そして24はアノードを示し、図2において、横軸はアノードからカソードまでの距離を示し、縦軸は不純物の濃度を示す。
【0006】
従来の上記ダイオードは、N+ 層12上にN- エピタキシャル層14を形成し、このN- エピタキシャル層14の表面近辺に浅い接合のP- 層16を形成した後、ダイオードの耐圧向上のために前記P- 層16周囲のN- エピタキシャル層14表面近辺にP型のリング18を形成する。以後、逆電圧印加時発生する空乏層の拡張を停止させるためのN+ チャンネルストッパ20を前記P型のリング18周囲に形成した後、前記P- 層16と接続するアノード24と前記N+ 層12と接続するカソード10を形成する。
【0007】
従来の上記ダイオードは、厚いN- エピタキシャル層14の表面近辺に浅い接合のP- 層16を形成して、カソード方向に注入されるホールの量は減らし相対的にアノード方向に注入される電子の量は高める方式で遅い逆電流減少特性を取った。
【0008】
【発明が解決しようとする課題】
しかし、従来の上記ダイオードの場合、第一に、カソード側にホールを注入するためのP- 層16と、ダイオードの耐圧を高めるためのP型リング18の接合深度が相異なるため、これらを形成するためには別のマスクが使われるので工程が複雑になり、第二に、P- 層16は浅い接合(約2μm〜4μm)を有するように形成されるので、アノード24を前記P- 層16に接続させるための接触窓形成などの工程時信頼度の面で弱点を持つ。
【0009】
図3は遅い逆電流減少特性を得るためにP- 層を波状の接合を成すように形成した従来の他の例によるダイオードを示す断面図であり、図4は前記図3のIV−IV′線で切った断面の不純物濃度分布を示す特性図であって、図3において、図面符号30はカソードを、32はN+ 層を、34はN- エピタキシャル層を、36はP+ 第1拡散層を、38はP- 第2拡散層を、40は絶縁膜を、そして42はアノードを示し、図4において、横軸はアノードからカソードまでの距離を示し、縦軸は不純物の濃度を示す。
【0010】
上記従来の他の例によるダイオードは、一定距離に離隔している複数のN+ 層32と、このN+ 層32間及びその上部に形成されたN- エピタキシャル層34と、このN- エピタキシャル層34の表面近辺で波状の接合を成すP- 層38と、この波状の接合中深い接合が形成されている領域の前記P- 層38の表面近辺に形成されたP+ 層36と、このP+ 層36および前記P- 層38と接続するアノード42と、前記N+ 層32および前記N- エピタキシャル層34が接続するカソード30よりなっている。この時、前記絶縁膜40は前記P+ 層36とP- 層38以外の他領域が前記アノード42と接続することを防止するために形成する。
【0011】
前記P+ 層36及びP- 層38は、N- エピタキシャル層34を形成した後、P+ 層36が形成される領域上で前記N- エピタキシャル層34を部分的に露出させる窓を有するマスクパターンを形成した後、この窓を通じてP+ 不純物イオンを拡散させる工程により形成する。前記窓を通じてP+ 不純物イオンを拡散させれば前記窓が形成されている部分のN- エピタキシャル層34にはP+ 層36が形成され、前記窓間の領域には前記窓を通じて注入されたP+ 不純物イオンが広がって前記P+ 層36より濃度が低下したP- 層38が形成される。
【0012】
従来の上記他の例によるダイオードによれば、言及したような工程により深くて自然な接合(波状の接合)を有するアノード不純物層(即ち、P+ 層36とP- 層38)を形成することによって、従来の図1のダイオードで問題になった浅い接合に原因する信頼度の面における弱点を克服でき、かつ耐圧強化のためのリングを形成しないか図1のダイオードより少ない数とし得るのでダイオードの大きさを縮めうる。
【0013】
しかし、P- 層38の接合深度が図1のダイオードに比べて相対的に大きくなって、順方向電圧印加時、カソードに注入されるホールがアノードに注入される電子に比べて相対的にその量が多いので、遅い逆電流減少特性を得るためには、多くの量の電子照射のようなホールのライフタイム調節のための追加的な方法が行なわれなければならなくなる。
【0014】
本発明の目的は、遅い逆電流減少特性の向上を図ることができるとともに、製造時のマスクの枚数を減らすことができ、かつ信頼度と耐圧特性を高めうる半導体素子のダイオードを提供することにある。
【0015】
本発明の他の目的は前記ダイオードを製造する場合において最適の製造方法を提供することにある。
【0016】
【課題を解決するための手段】
本発明による半導体素子のダイオードは、カソード電極と接続する第1N+ 層と、この第1N+ 層上に形成されたN- エピタキシャル層と、このN- エピタキシャル層の表面近辺に形成され、このN- エピタキシャル層とは波状の接合を成すP- 層と、このP- 層の表面近辺に選択的に形成され、このP- 層と共にアノード電極と接続する第2N+ 層とを含むことを特徴とする。より具体的には、前記第2N+ 層は前記P- 層の中で波状の接合が深く形成される部分に形成される。また、前記P- 層を取囲むようにその周辺の前記N- エピタキシャル層表面近辺にN+ チャンネルストッパをさらに含む。
【0017】
本発明による第1の半導体素子のダイオード製造方法は、第1N+ 層上にN- エピタキシャル層を形成する工程と、前記N- エピタキシャル層上にアノード不純物層になる領域を部分的に露出させる第1窓を有する第1マスクパターンを形成する工程と、前記第1窓を通じて露出したN- エピタキシャル層にN型不純物とP型不純物を同時に拡散させることによって前記N- エピタキシャル層と波状の接合を成すP- 層と、このP- 層の表面近辺に選択的に形成される第2N+ 層を同時に形成する工程とを含むことを特徴とする。続いて、前記第1マスクパターンを除去する工程と、前記第2N+ 層までが形成されているN- エピタキシャル層上にチャンネルストッパになる領域を露出させる第2窓を有する第2マスクパターンを形成する工程と、前記第2窓を通じてN型不純物を拡散させることによって前記P- 層周辺のN- エピタキシャル層表面近辺にチャンネルストッパを形成する工程と、前記チャンネルストッパまでが形成されている前記N- エピタキシャル層上に絶縁膜を形成する工程と、前記絶縁膜を選択的に除去することによって前記P- 層と第2N+ 層を露出させる第3窓を形成する工程と、前記第3窓を通じて前記P- 層及び第2N+ 層と接するアノード電極を形成する工程とを含むことができる。ここで、前記P型不純物はボロンイオン、前記N型不純物はリンイオンとすることができる。
【0018】
本発明による第2の半導体素子のダイオード製造方法は、第1N+ 層上にN- エピタキシャル層を形成する工程と、前記N- エピタキシャル層上にアノード不純物層になる領域を部分的に露出させる第1窓を有する第1マスクパターンを形成する工程と、前記第1窓を通じて露出したN- エピタキシャル層にP型不純物を拡散させることによって前記N- エピタキシャル層と波状の接合を成すP- 層を形成する工程と、前記第1マスクパターンを部分的に食刻して、前記第1マスクパターンにチャンネルストッパが形成される領域のN- エピタキシャル層を露出させる第2窓を形成する工程と、前記第1窓及び第2窓を通じて露出した前記P- 層およびN- エピタキシャル層にN型不純物を拡散させることによって前記P- 層内に第2N+ 層を形成すると同時に、前記P- 層を取囲むようなN+ チャンネルストッパを形成する工程とを含むことを特徴とする。続いて、第2N+ 層とチャンネルストッパまでが形成されている前記N- エピタキシャル層上に絶縁膜を形成する工程と、前記絶縁膜を選択的に除去することによって前記P- 層と第2N+ 層を露出させる第3窓を形成する工程と、前記第3窓を通じて前記P- 層及び第2N+ 層と接するアノード電極を形成する工程とをさらに含むことができる。
【0019】
この第2の方法で、前記P型不純物を拡散させる工程は前記第1窓を通じてN- エピタキシャル層の内部にボロンイオンを注入する工程であり、前記N型不純物を拡散させる工程はPOCl3 の液体不純物源を前記第1窓及び第2窓を通じて露出したP- 層およびN- エピタキシャル層の表面に塗布した後、ドライブ−インを行なってこの不純物源をP- 層およびN- エピタキシャル層の内部に拡散させる工程とすることができる。あるいは、前記P型不純物を拡散させる工程は前記第1窓を通じてN- エピタキシャル層の内部にボロンイオンを注入する工程であり、前記N型不純物を拡散させる工程は前記第1窓及び第2窓を通じてP- 層およびN- エピタキシャル層の内部にリンイオンを注入する工程であるとし得る。
【0020】
以上のような本発明によれば、順方向電圧印加時カソードに注入されるホールに比べてアノードに注入される電子の量を相対的に増加させることができて遅い逆電流減少特性を向上させることができるとともに製造時用いられるマスクの枚数を減らすことができ、かつ耐圧特性と信頼度を高めることができる。
【0021】
【発明の実施の形態】
以下、添付した図面を参照して、本発明による半導体素子のダイオード及びその製造方法の実施の形態を詳細に説明する。ただし、本発明は下記の実施の形態に限らず、多くの変形が本発明の技術的思想内で当分野で通常の知識を有する者によって可能である。
【0022】
図5は遅い逆電流減少特性を得るために波状の接合を成すP- 層内にN+ 層を形成した本発明の実施の形態のダイオードを示す断面図、図6は前記図5のVI−VI′線で切った断面の不純物濃度分布を示す特性図であって、図5において、図面符号50はカソード(カソード電極)を、52は第1N+ 層52を、54はN- エピタキシャル層を、56はP- 層を、58は第2N+ 層を、60はN+ チャンネルストッパを、62は絶縁膜を、64はアノード(アノード電極)を、そしてIh はホール電流を示し、Ie は電子電流を示し、図6において、横軸はアノードからカソードまでの距離を示し、縦軸は不純物の濃度を示す。
【0023】
上記ダイオードは、カソード50と接続する第1N+ 層52と、この第1N+ 層52上に形成されたN- エピタキシャル層54と、このN- エピタキシャル層54の表面近辺に形成されて波状の接合を有するP- 層56と、このP- 層56の表面近辺に選択的に形成され、前記P- 層56と共にアノード64と接続する第2N+ 層58よりなっている。この時、第2N+ 層58は前記P- 層56の中で波状の接合が深く形成される部分に形成されている。例えば、前記第2N+ 層58の接合深度は6μmで、この第2N+ 層58下部の前記P- 層56の接合深度は18μmである。N+ チャンネルストッパ60は前記P- 層56を取囲む形態でその周辺N- エピタキシャル層54の表面近辺に形成され、前記第2N+ 層58とほとんど同じ接合深度を有する。
【0024】
本実施形態はP- 層56内に第2N+ 層58を選択的に形成した後これをアノード64で連結させることによって従来の図3の場合よりホールの注入量を減らして遅い逆電流減少特性、即ち、ソフト回復特性を向上させる。P- 層56内に選択的に形成された前記第2N+ 層58は、ダイオードに順方向電圧が印加される時、前記P- 層56からカソードに注入されるホールの量を減らす(前記P- 層56からカソードに注入されるホール中一部は前記第2N+ 層58の電子と結合してなくなる)役割をする。従って、本実施形態のダイオードによれば、順方向電圧印加時、カソードに注入されるホールの量に比べてアノードに注入される電子の量が相対的に多くてソフト回復特性を向上させうる。
【0025】
この時、第2N+ 層58とP- 層56がアノード64にショートされた構造であるため、順方向電圧が損失する恐れがあるが、ホールの注入量が電子の注入量に比べて相対的に小さいのでキャリアライフタイムを調節するための順方向電圧を高める電子照射などのような追加工程を行なわなくてもいいので、これより得られる電圧利得は前記ショート構造により発生する電圧損失を相殺させうる。むしろ、本実施形態によるダイオードによれば、電子電流Ie の経路とホール電流Ih の経路が図5の点線と実線に各々示したように短くなることによって順方向電圧を低めうる。即ち、キャリア(電子またはホール)の経路が短くなればこれが注入される時発生する抵抗も小さくなるので、結局順方向電圧を低めうる。
【0026】
また、図5のダイオードによれば、P- 層56の接合深度が従来の図1のダイオードのP- 層16より深いため、浅い接合構造を有する前記従来のダイオードに比べて信頼度の面における弱点を解決できる。さらに、図5のダイオードによれば、波状の接合構造により電界集中を防止できるので、耐圧特性が向上する。
図7および図8は上記図5のダイオードを製造する場合の適した一実施形態を示す断面図である。
【0027】
まず、図7(A)はN- エピタキシャル層72上に第1マスクパターン74を形成する工程を説明するために示す断面図であって、この工程は、第1N+ 層(即ち、N+ 基板)70上に通常の方法でN- エピタキシャル層72を形成する段階と、このN- エピタキシャル層72上に、アノード不純物層になる領域を部分的に露出させる第1窓76を有する第1マスクパターン74を形成する段階からなる。この時、第1マスクパターン74は以後に実施される不純物イオン注入工程時前記第1窓76により露出されたN- エピタキシャル層72以外の他領域に不純物イオンが注入されないようにするための不純物イオンブロッキング膜であって、例えば、フォトレジストのような物質で形成される。
【0028】
図7(B)はP- 層80と第2N+ 層82を形成する工程を説明するために示す断面図であって、この工程は、前記第1マスクパターン74の第1窓76を通して露出されたN- エピタキシャル層72にN型不純物とP型不純物78を同時に注入する段階と、注入された不純物を拡散させることによって前記N- エピタキシャル層72と波状接合の前記P- 層80と、このP- 層80の表面近辺に前記波状の接合の深い部分と対応する位置に形成される前記第2N+ 層82を形成する段階からなる。
【0029】
この時、前記P型不純物はN型不純物より拡散係数が大きいものを使用する。
例えば、P型不純物としてはボロン(B)イオンを使用し、N型不純物としてはリン(P)イオンを使用する。
【0030】
拡散係数が異なる二種類の不純物を基板に同時に注入させた後拡散させれば、拡散係数が大きい不純物が拡散係数が小さな不純物に比べて早く拡散されるので最終的な不純物プロファイルは異なる。本実施形態では、P型不純物の拡散係数がN型不純物より大きいので最終的に形成される不純物プロファイルは、図7(B)に示したように、第2N+ 層82を前記P- 層80が取囲む形態に形成される。この時、第2N+ 層82はN型不純物を第1窓76を通して注入して形成されるので、第1窓76と対応する位置でアイランド状に互いに孤立している形態に形成されている。
【0031】
一方、P- 層80は波状の自然な接合構造で形成されるので、逆電圧印加時P- 層の角部分に電界が集中した従来の図1のダイオードの問題点を解決できる。即ち、前記波状の自然な接合構造により電界が集中することを防止できるのでダイオードの耐圧特性を向上させうる。
【0032】
図8(A)はN+ チャンネルストッパ88を形成する工程を説明するために示した断面図であって、この工程は、前記第1マスクパターン(図7(B)の74)を除去する段階と、第2N+ 層82までが形成されているN- エピタキシャル層72上に、チャンネルストッパになる領域を露出させる第2窓を有する第2マスクパターン84を形成する段階と、前記第2窓を通じてN型不純物86を注入した後これを拡散させることによって前記P- 層80を取囲む前記N+ チャンネルストッパ88を形成する段階からなる。
【0033】
この時、前記チャンネルストッパ88はダイオードに逆電圧印加時発生する空乏領域の拡張を防止する目的で形成される。
【0034】
図8(B)はアノード(アノード電極)92とカソード(カソード電極)94を形成する工程を説明するために示す断面図であって、この工程は、前記第2マスクパターン(図8(A)の84)を除去する段階と、チャンネルストッパ88までが形成されているN- エピタキシャル層72上に、例えば二酸化シリコンのような絶縁物質層を形成する段階と、この絶縁物質層を部分的に食刻して前記第2N+ 層82とP- 層80を露出させる第3窓を有する絶縁膜90を形成する段階と、前記第3窓を有する絶縁膜90が形成されている結果物全面に、例えばアルミニウムのような金属物質を蒸着した後パターニングして前記第2N+ 層82とP- 層80に同時に接続する前記アノード92を形成する段階と、前記第1N+ 層(即ち、N+ 基板)70裏面に、例えばアルミニウムのような金属物質を蒸着して前記カソード94を形成する段階からなる。
【0035】
上記のような本発明の一実施形態によるダイオード製造方法によれば、P- 層80を波状の自然な接合を有するように形成するので、ダイオードの耐圧向上のためのリングを形成しなくても良くなり、リング形成のための別のマスク工程を行なう必要がなくて、工程の数を減らすことができる。また、第2N+ 層82をP- 層80と同時に形成するので、第2N+ 層82形成のための別のマスクが要らない。
【0036】
図9および図10は図5のダイオードを製造する場合の適した他の実施形態を説明するために示す断面図であって、上記本発明の一実施形態による製造方法とはP- 層、第2N+ 層及びN+ チャンネルストッパを形成する方法が異なる。
【0037】
まず、図9(A)はP- 層108を形成する工程を説明するために示す断面図であって、この工程は、第1N+ 層(即ち、N+ 基板)100上に通常の方法でN- エピタキシャル層102を形成する段階と、このN- エピタキシャル層102上に、アノード不純物層になる領域を部分的に露出させる第1窓106を有する第1マスクパターン104を形成する段階と、前記第1窓106を通してP型の不純物を注入した後拡散させることによって波状の自然な接合を成す前記P- 層108を形成する段階からなる。
【0038】
この時、前記P型の不純物としては、例えばボロン(B)のようなイオンを使用する。
【0039】
また、本実施形態では、前記P- 層108を不純物イオン注入と拡散工程で形成したが、前記第1窓106を通して露出したN- エピタキシャル層102の表面にP型の液体不純物源を塗布した後ドライブインして前記不純物源をN- エピタキシャル層102に拡散させることにより前記P- 層108を形成することもできる。
【0040】
図9(B)は第2N+ 層116とN+ チャンネルストッパ118を形成する工程を説明するために示す断面図であって、この工程は、チャンネルストッパになる領域のN- エピタキシャル層を露出させる第2窓112を前記第1マスクパターン104に形成する段階と、前記第1窓106及び第2窓112を通して露出されたP- 層108表面およびN- エピタキシャル層102表面に、例えばPOCl3 のようなN型の液体不純物源114を塗布する段階と、結果物基板をドライブインして前記N型の液体不純物源114を前記P- 層108およびN- エピタキシャル層102内部に拡散させることによって、前記P- 層108内に選択的に第2N+ 層116を形成すると同時に、P- 層108を取囲むように前記N- エピタキシャル層102の表面近辺に前記N+ チャンネルストッパ118を形成する段階からなる。
【0041】
この時、本実施形態では、液状の不純物源を半導体基板上に塗布した後ドライブインして拡散させる工程で前記第2N+ 層116とN+ チャンネルストッパ118とを形成したが、これらを、前記第1窓106及び第2窓112を通じてN型の不純物(例えばリンイオン)を注入した後拡散させる工程で形成する場合もある。
【0042】
また、本実施形態では、前記第2窓112形成のための食刻工程時、既にオープンされている前記第1窓106を再オープンするが、これは前記P- 層108形成のための不純物イオン注入時前記第1窓106を通して露出したN- エピタキシャル層102表面に薄い酸化膜が形成される恐れがあるからである。本実施形態では、前記第2窓112形成のための食刻工程時前記第1窓106を再オープンして第2N+ 層116が円滑に形成できるようにする。
【0043】
図10はアノード(アノード電極)122とカソード(カソード電極)124を形成する工程を説明するために示す断面図であって、この工程は、前記第1マスクパターン(図9(B)の104)を除去する段階と、チャンネルストッパ118までが形成されているN- エピタキシャル層102上に、例えば二酸化シリコンのような絶縁物質層を形成する段階と、この絶縁物質層を部分的に食刻して前記第2N+ 層116とP- 層108を露出させる第3窓を有する絶縁膜120を形成する段階と、前記第3窓を有する絶縁膜120が形成されている結果物全面に、例えばアルミニウムのような金属物質を蒸着した後パターニングして前記第2N+ 層116とP- 層108に同時に接続する前記アノード122を形成する段階と、前記第1N+ 層(即ち、N+ 基板)100の裏面に、例えばアルミニウムのような金属物質を蒸着して前記カソード124を形成する段階からなる。
上記のような本発明の他の実施形態によるダイオード製造方法によれば、P- 層108を波状の自然な接合を有するように形成するので、ダイオードの耐圧向上のためのリングを形成しなくても良くてリング形成のための別のマスク工程を行なう必要がなくて工程の数を減らしうる。また、第2N+ 層116をN+ チャンネルストッパ118と同時に形成することができるので第2N+ 層116形成のための別のマスクが要らない。
【0044】
以下は、従来の一方法によるダイオードと、従来の他の方法によるダイオードと本発明によるダイオードの特性をシミュレーションした結果である。
【0045】
まず、従来の一方法によるダイオードの場合(図1参照)、P- 層16の接合深度を2.2μmとし、任意の順方向電流値を取った時、ダイオードの順方向電圧は2.10[V]になり、電子電流がホール電流に比べて48%ほど多かった。この時の電子のライフタイムは56[ns]であった。
【0046】
次に、従来の他の方法によるダイオードの場合(図3参照)、P- 層38の接合深度を18μmとし、従来の一方法によるダイオードの順方向電流と同じ値の電流値を取った時、ダイオードの順方向電圧は2.13[V]になり、ホール電流が電子電流に比べて161%ほど増えた。この時、電子のライフタイムは25[ns]であった。
【0047】
最後に、本発明によるダイオードの場合(図5参照)、第2N+ 層58の接合深度を6μmとし、その下のP- 層56の接合深度を18μmとし、従来の一方法によるダイオードの順方向電流と同じ値の電流値を取った時、ダイオードの順方向電圧は2.11[V]になり、電子電流がホール電流に比べて77%ほど増えた。この時電子のライフタイムは85[ns]であった。
【0048】
従って、言及したシミュレーション結果によれば、本発明は従来の一方法及び他方法のダイオードよりホール電流に対する電子電流の比がさらに大きいことが分かる。これは遅い逆電流減少特性(即ち、ソフト回復)が前記従来の一方法及び他方法のダイオードより向上したことを意味する。また、ホール電流に対する電子電流の比がさらに大きいため、従来の一方法及び他方法のダイオードより電子照射の必要性がさらに少ないことが分かる。
【0049】
【発明の効果】
以上詳細に説明したように本発明による半導体素子のダイオード及びその製造方法によれば、遅い逆電流減少特性を向上させることができるとともに、製造時のマスクの枚数を減らすことができ、かつ耐圧特性と信頼度を高めることができる。
【図面の簡単な説明】
【図1】遅い逆電流減少特性を得るためにP- 層を浅い接合を成すように形成した従来のダイオードを示す断面図。
【図2】前記図1のII−II′線で切った断面の不純物濃度分布を示す特性図。
【図3】遅い逆電流減少特性を得るためにP- 層を波状の接合を成すように形成した従来の他の例によるダイオードを示す断面図。
【図4】前記図3のIV−IV′線で切った断面の不純物濃度分布を示す特性図。
【図5】本発明によるダイオードの実施の形態を示す断面図。
【図6】前記図5のVI−VI′線で切った断面の不純物濃度分布を示す特性図。
【図7】本発明によるダイオードの製造方法の一実施の形態を示す断面図。
【図8】前記図7に続く工程を示す断面図。
【図9】本発明によるダイオードの製造方法の他の実施の形態を示す断面図。
【図10】前記図9に続く工程を示す断面図。
【符号の説明】
50 カソード
52 第1N+ 層
54 N- エピタキシャル層
56 P- 層
58 第2N+ 層
60 N+ チャンネルストッパ
62 絶縁膜
64 アノード
Ie 電子電流
Ih ホール電流
Claims (12)
- カソード電極と接続する第1N+層と、
前記第1N+層上に形成されたN−エピタキシャル層と、
前記N−エピタキシャル層の表面近辺に形成され、前記N−エピタキシャル層とは波状の接合を成すP−層と、
前記P−層の表面近辺に選択的に形成され、前記P−層と共にアノード電極と接続する第2N+層とを含み、
前記第2N + 層は前記P − 層の中で波状の接合が深く形成される部分に形成されていることを特徴とする半導体素子のダイオード。 - 前記第2N+層の接合深度は6μmで、前記第2N+層下部の前記P+層接合深度は18μmであることを特徴とする請求項1に記載の半導体素子のダイオード。
- 前記P−層を取囲むようにその周辺の前記N−エピタキシャル層表面近辺にN+チャンネルストッパをさらに含むことを特徴とする請求項1に記載の半導体素子のダイオード。
- 第1N+層上にN−エピタキシャル層を形成する工程と、
前記N−エピタキシャル層上にアノード不純物層になる領域を部分的に露出させる複数の第1窓を有する第1マスクパターンを形成する工程と、
前記複数の第1窓を通じて露出した前記N−エピタキシャル層にN型不純物とP型不純物を同時に拡散させることによって前記N−エピタキシャル層と波状の接合を成すP−層と、前記P−層の表面近辺に選択的に形成される第2N+層を同時に形成する工程とを含むことを特徴とする半導体素子のダイオード製造方法。 - 前記第2N+層を形成した後、前記第1マスクパターンを除去する工程と、
前記第2N+層までが形成されている前記N−エピタキシャル層上にチャンネルストッパになる領域を露出させる第2窓を有する第2マスクパターンを形成する工程と、
前記第2窓を通じてN型不純物を拡散させることによって前記P−層周辺の前記N−エピタキシャル層表面近辺にチャンネルストッパを形成する工程とをさらに含むことを特徴とする請求項4に記載の半導体素子のダイオード製造方法。 - 前記チャンネルストッパまでが形成されている前記N−エピタキシャル層上に絶縁膜を形成する工程と、
前記絶縁膜を選択的に除去することによって前記P−層と前記第2N+層とを露出させる第3窓を形成する工程と、
前記第3窓を通じて前記P−層及び前記第2N+層と接するアノード電極を形成する工程とをさらに含むことを特徴とする請求項5に記載の半導体素子のダイオード製造方法。 - 前記P型不純物として前記N型不純物より拡散係数が大きい不純物を使用することを特徴とする請求項4に記載の半導体素子のダイオード製造方法。
- 前記P型不純物はボロンイオンで、前記N型不純物はリンイオンであることを特徴とする請求項7に記載の半導体素子のダイオード製造方法。
- 第1N+層上にN−エピタキシャル層を形成する工程と、
前記N−エピタキシャル層上にアノード不純物層になる領域を部分的に露出させる複数の第1窓を有する第1マスクパターンを形成する工程と、
前記複数の第1窓を通じて露出した前記N−エピタキシャル層にP型不純物を拡散させることによって前記N−エピタキシャル層と波状の接合を成すP−層を形成する工程と、
前記第1マスクパターンを部分的に食刻して、前記第1マスクパターンにチャンネルストッパが形成される領域の前記N−エピタキシャル層を露出させる第2窓を形成する工程と、前記複数の第1窓及び前記第2窓を通じて露出した前記P−層および前記N−エピタキシャル層にN型不純物を拡散させることによって前記P−層内に第2N+層を形成すると同時に、前記P−層を取囲むようなN+チャンネルストッパを形成する工程とを含むことを特徴とする半導体素子のダイオード製造方法。 - 前記P型不純物を拡散させる工程は前記複数の第1窓を通じて前記N−エピタキシャル層の内部にボロンイオンを注入する工程であり、
前記N型不純物を拡散させる工程はPOCl3の液体不純物源を前記複数の第1窓及び前記第2窓を通じて露出した前記P−層および前記N−エピタキシャル層の表面に塗布した後、ドライブ−インを行なって前記不純物源を前記P−層および前記N−エピタキシャル層の内部に拡散させる工程であることを特徴とする請求項9に記載の半導体素子のダイオード製造方法。 - 前記P型不純物を拡散させる工程は前記複数の第1窓を通じて前記N−エピタキシャル層の内部にボロンイオンを注入する工程であり、
前記N型不純物を拡散させる工程は前記複数の第1窓及び前記第2窓を通じて前記P−層および前記N−エピタキシャル層の内部にリンイオンを注入する工程であることを特徴とする請求項9に記載の半導体素子のダイオード製造方法。 - 前記第2N+層と前記チャンネルストッパまでが形成されている前記N−エピタキシャル層上に絶縁膜を形成する工程と、
前記絶縁膜を選択的に除去することによって前記P−層と前記第2N+層を露出させる第3窓を形成する工程と、
前記第3窓を通じて前記P−層及び前記第2N+層と接するアノード電極を形成する工程とをさらに含むことを特徴とする請求項9に記載の半導体素子のダイオード製造方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1998P-18200 | 1998-05-20 | ||
KR1019980018200A KR100263912B1 (ko) | 1998-05-20 | 1998-05-20 | 반도체 소자의 다이오드 및 그 제조방법 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH11340241A JPH11340241A (ja) | 1999-12-10 |
JP4647734B2 true JP4647734B2 (ja) | 2011-03-09 |
Family
ID=19537538
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11421999A Expired - Fee Related JP4647734B2 (ja) | 1998-05-20 | 1999-04-21 | 半導体素子のダイオード及びその製造方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US6160306A (ja) |
JP (1) | JP4647734B2 (ja) |
KR (1) | KR100263912B1 (ja) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6376346B1 (en) * | 2000-09-28 | 2002-04-23 | Fabtech, Inc. | High voltage device and method for making the same |
US6580150B1 (en) * | 2000-11-13 | 2003-06-17 | Vram Technologies, Llc | Vertical junction field effect semiconductor diodes |
JP4126872B2 (ja) * | 2000-12-12 | 2008-07-30 | サンケン電気株式会社 | 定電圧ダイオード |
WO2011023922A1 (en) * | 2009-08-28 | 2011-03-03 | X-Fab Semiconductor Foundries Ag | Improved pn junctions and methods |
GB0915501D0 (en) * | 2009-09-04 | 2009-10-07 | Univ Warwick | Organic photosensitive optoelectronic devices |
US8513083B2 (en) | 2011-08-26 | 2013-08-20 | Globalfoundries Inc. | Methods of forming an anode and a cathode of a substrate diode by performing angled ion implantation processes |
CN102324390B (zh) * | 2011-10-21 | 2013-10-16 | 四川太晶微电子有限公司 | 整流二极管管芯制造方法 |
KR20140073325A (ko) | 2012-12-06 | 2014-06-16 | 삼성전기주식회사 | 전력 반도체 소자 및 그 제조방법 |
CN109390389A (zh) * | 2018-09-17 | 2019-02-26 | 西安理工大学 | 具有双侧调整区的高压快速软恢复二极管及其制备方法 |
CN110148633A (zh) * | 2019-06-19 | 2019-08-20 | 无锡光磊电子科技有限公司 | 整流二极管 |
KR102372374B1 (ko) * | 2020-09-11 | 2022-03-11 | (주) 트리노테크놀로지 | 고속 및 소프트 회복 특성을 가진 하이브리드 다이오드 |
CN112687749A (zh) * | 2020-12-14 | 2021-04-20 | 株洲中车时代半导体有限公司 | 快恢复二极管及其制作方法 |
CN113809166B (zh) * | 2021-08-10 | 2024-05-14 | 西安理工大学 | 一种具有n+调整区的双模式GCT及其制备方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5518010A (en) * | 1978-07-26 | 1980-02-07 | Toshiba Corp | Semiconductor device |
JPS57139970A (en) * | 1981-02-23 | 1982-08-30 | Nec Corp | Diode |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IT1061511B (it) * | 1975-07-03 | 1983-04-30 | Rca Corp | Transistore con protezione integrata |
CA1177148A (en) * | 1981-10-06 | 1984-10-30 | Robert J. Mcintyre | Avalanche photodiode array |
DE4405815A1 (de) * | 1993-02-24 | 1994-08-25 | Samsung Electronics Co Ltd | Halbleitervorrichtung mit einer Anodenschicht, die durch selektive Diffusion ausgebildete Bereiche geringerer Konzentration aufweist |
-
1998
- 1998-05-20 KR KR1019980018200A patent/KR100263912B1/ko not_active IP Right Cessation
-
1999
- 1999-04-21 JP JP11421999A patent/JP4647734B2/ja not_active Expired - Fee Related
- 1999-05-18 US US09/313,198 patent/US6160306A/en not_active Expired - Lifetime
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5518010A (en) * | 1978-07-26 | 1980-02-07 | Toshiba Corp | Semiconductor device |
JPS57139970A (en) * | 1981-02-23 | 1982-08-30 | Nec Corp | Diode |
Also Published As
Publication number | Publication date |
---|---|
KR19990085645A (ko) | 1999-12-15 |
KR100263912B1 (ko) | 2000-09-01 |
US6160306A (en) | 2000-12-12 |
JPH11340241A (ja) | 1999-12-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7704864B2 (en) | Method of manufacturing a superjunction device with conventional terminations | |
JP3287269B2 (ja) | ダイオードとその製造方法 | |
JP5515922B2 (ja) | 半導体装置 | |
KR100886883B1 (ko) | 순방향 및 역방향 차단 장치 및 그 제조 방법 | |
US20040164304A1 (en) | Insulated gate planar integrated power device with co-integrated schottky diode and process | |
KR19990045294A (ko) | 전계 효과 트랜지스터 및 그 제조 방법 | |
JP4647734B2 (ja) | 半導体素子のダイオード及びその製造方法 | |
DE102006047244A1 (de) | Halbleiterbauelement mit einem monokristallinen Halbleiterkörper und Verfahren zur Herstellung desselben | |
JPH0715011A (ja) | 自動調心陰極パターンを有する絶縁ゲートバイポーラトランジスタ及びその製造方法 | |
JP2003168797A (ja) | 半導体装置及びその製造方法 | |
JPH07321321A (ja) | Pic構造体及びその製造方法 | |
US6452233B1 (en) | SOI device having a leakage stopping layer | |
CN115483104A (zh) | 一种变容二极管的制作方法 | |
KR20020037094A (ko) | 쇼트키 베리어 다이오드 및 그 제조방법 | |
JPS59144175A (ja) | 電界効果トランジスタの製造方法 | |
JP2004039982A (ja) | 半導体装置 | |
KR100304719B1 (ko) | 트렌치형 게이트를 갖는 전력용 반도체 소자 및 그 제조방법 | |
JP4275763B2 (ja) | フィールドプレートを採用した電力用半導体素子及びその製造方法 | |
JP2000299476A (ja) | 半導体装置 | |
JPH02296342A (ja) | Mosfetの製造方法 | |
JPH09213954A (ja) | 縦型mosトランジスタ及び静電誘導トランジスタ及びトレンチ構造のmosトランジスタ、及び、縦型半導体装置の製造方法 | |
JP2001185740A (ja) | 半導体装置とその製造方法 | |
JPS6386569A (ja) | 半導体装置及びその製造方法 | |
JPH08306733A (ja) | 半導体集積回路の製造方法 | |
JPH05102479A (ja) | 半導体装置及びその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060410 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100518 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100728 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20101116 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20101209 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131217 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |