JP4646856B2 - 周波数シンセサイザ - Google Patents

周波数シンセサイザ Download PDF

Info

Publication number
JP4646856B2
JP4646856B2 JP2006160734A JP2006160734A JP4646856B2 JP 4646856 B2 JP4646856 B2 JP 4646856B2 JP 2006160734 A JP2006160734 A JP 2006160734A JP 2006160734 A JP2006160734 A JP 2006160734A JP 4646856 B2 JP4646856 B2 JP 4646856B2
Authority
JP
Japan
Prior art keywords
frequency
output
signal
terminal
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006160734A
Other languages
English (en)
Other versions
JP2007329804A (ja
Inventor
徹 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Electronics Corp
Original Assignee
Renesas Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Electronics Corp filed Critical Renesas Electronics Corp
Priority to JP2006160734A priority Critical patent/JP4646856B2/ja
Priority to KR1020070055099A priority patent/KR20070118013A/ko
Priority to CN200710108939XA priority patent/CN101087142B/zh
Priority to US11/759,716 priority patent/US7826814B2/en
Publication of JP2007329804A publication Critical patent/JP2007329804A/ja
Application granted granted Critical
Publication of JP4646856B2 publication Critical patent/JP4646856B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B21/00Generation of oscillations by combining unmodulated signals of different frequencies
    • H03B21/01Generation of oscillations by combining unmodulated signals of different frequencies by beating unmodulated signals of different frequencies
    • H03B21/02Generation of oscillations by combining unmodulated signals of different frequencies by beating unmodulated signals of different frequencies by plural beating, i.e. for frequency synthesis ; Beating in combination with multiplication or division of frequency
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION, OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/16Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop

Description

本発明は、無線通信システムを構成する無線通信回路に用いて好適な周波数シンセサイザに関し、特に広帯域のマルチバンドを使用してデータを送受信する無線通信回路およびシステムに適用して有効な周波数シンセサイザに関する。
一般に無線通信システムは、データの送受を行うために所定の周波数帯域を用いる。例えば、広くワイヤレスLocal Area Network(LAN)の米国標準として知られるIEEE802.11gでは、2.4GHzから2.47GHzの周波数帯を用い、通信距離50〜100mの範囲で最大の伝送速度として54Mbpsを達成する。しかしながら、一般のユーザのデータに対する要求は年々高まり、高精細静画像のほか音楽データや動画像データを短時間にユーザの携帯機器へダウンロードすることが強く期待されている。この要求に応える1つの技術が超広帯域(Ultra Wide Band:UWB)無線通信である。UWB無線通信は、2002年4月に米国連邦通信委員会がUWBの商用利用を許可して以来、多くの機関が研究開発を進めている。
このようなUWB無線通信において、このUWB無線通信用の局発信号発生回路に関しては、例えば非特許文献1と非特許文献2や、特許文献1、特許文献2、特許文献3、特許文献4などに記載されている。
非特許文献1では、4相信号を生成できるインダクタとキャパシタによる共振回路を用いた発振器を応用した基準信号発生器にて発振周波数fREFを生成したのちに、2分周回路とシングルサイドバンドミキサ(Single Sideband Mixer:SSB Mixer)を複数用いることで複数の周波数の信号を生成している。
非特許文献2では、基準信号発生器を2つ設け、528MHzの整数倍の周波数と小数倍の周波数を同時に生成し、その上でSSBミキサを3つ同時に用いて周波数加算や減算を繰り返し、サブバンド中心周波数を作り出している。
特許文献1では、高速周波数ポッピング用ローカル発生器において、基準となる周波数を生成し、4分岐して、5分周、3分周、4分周、2分周の複数の分周器を用いて、複数の周波数の信号を生成している。
特許文献2では、少なくとも2つの基準周波数からなる周波数グループを、少なくとも2つ含んで構成されるUWBを用いて、データを送受信する通信システムにおいて、1つの局部発振器と1つのPLLを用いて複数の基準周波数を生成している。
特許文献3では、2以上の周波数を合成して新たな周波数を得る周波数合成装置において、基準周波数を2分周してサンプリング周波数を得て、さらに2分周、4分周、8分周して複数の周波数を生成している。
特許文献4では、1つの局部発振信号と少なくとも2つの中間周波数信号とを用いて搬送波を生成するSSB発生装置において、各周波数について位相シフトを行わなかった信号と行った信号とから構成されたグループ信号を生成し、この中から1つのグループ信号を選択してSSB発生装置に伝達している。
A Ismail(エイ・イスマイル)他、「ア・3.1・トゥ8.2GHz・ダイレクト・コンバージョン・レシーバ・フォー・MB−OFDM UWB・コミュニケーションズ(A 3.1 to 8.2GHz Direct Conversion Receiver for MB−OFDM UWB Communications)」、(米国)、アイ・イー・イー・ソリッド・ステイト・サーキッツ・コンファレンス(IEEE Solid−State Circuits Conference,2005年)論文集、講演番号11.5、pp.208〜210 C−F.Liang(シーエフ・リャン)他、「ア・14−band フリケンシ・シンセサイザ・フォ・MB−OFDM UWB アプリケーションズ(A 14−band Frequency Synthesizer for MB−OFDM UWB Application)」(米国)、アイ・イー・イー・ソリッド・ステイト・サーキッツ・コンファレンス(IEEE Solid−State Circuits Conference,2006年)論文集、講演番号6.7、pp.126〜128 特開2005−175698号公報 特開2005−198304号公報 特開2005−129993号公報 特開2005−39827号公報
ところで、前記のようなUWB無線通信に関しては、近年、屋内通信に向けてMultiband OFDM(MB−OFDM)方式を用いたUWB無線通信用の周波数配置が提案されている。このMB−OFDM方式を用いたUWB無線通信用の周波数配置を図7に示す。図7から明らかなようにUWBは、3432MHzを中心周波数とし528MHzの帯域幅を有する第1のサブバンドから、10296MHzを中心周波数とする同じく528MHzの帯域幅を有する第14のサブバンドまで分割されている。これらサブバンドは3つのサブバンド毎にグループ化され、第1から第3、第4から第6、第7から第9、第10から第12、そして第13と第14で形成する5グループで構成する。各サブバンドの中心周波数は、低い周波数から順に、3432、3960、4488、5016、5544、6072、6600、7128、7656、8184、8712、9240、9768、10296(単位:MHz)である。各グループ毎にピコネットと称す通信ネットワークを構成できるが、現在では周波数の低い第1のグループのサブバンドを用いてピコネットを形成し無線通信を実現する手段が開発されている。
しかしながら、さらに多数のユーザへ高速データ伝送用無線通信を提供するためには、約3GHzから約10GHzまでおよぶUWB帯域に設けられたサブバンドを広く用いてピコネット数を増やすことが必要である。そのため、UWB信号を送受信する無線回路では、受信信号の復調と送信信号の変調の目的で上記第1から第14のサブバンド中心周波数を局発信号として生成することが必要となる。MB−OFDM方式無線回路で生成する局発信号は、信号の搬送波周波数が短時間にサブバンド中心周波数間をホッピングする必要があり、その搬送波周波数切り替えに許容される時間は最大9.5nsと規定されている。従来の局発信号の周波数切り替えにはPhase Locked Loop(PLL)を用いていたが、PLL方式は負帰還ループを構成することで成り立っているために、局発信号の周波数の切り替え時間は長く、数msかかる欠点がある。以上の背景から、UWB無線通信用の局発信号を広い周波数範囲にわたって生成するための技術開発が必要となる。
このようなUWB無線通信用の局発信号発生回路に関しては、前記非特許文献1,2や、前記特許文献1〜4などに記載されている。
前記非特許文献1では、基準信号発生器にて発振周波数fREFを生成したのちに、2分周回路とシングルサイドバンドミキサを複数用いることで、最小でfREF・(4/64)の周波数から、最大でfREF・(76/64)の周波数を発生させることができる。しかしながら、UWB無線通信用のサブバンド中心周波数を意識し、fREF=16896MHzに設定した場合でも、多数の生成周波数の中から、図7のサブバンド中心周波数に該当するものは、3432、3960、4488MHzの3つでしかない。したがって、図7に示す周波数バンドを広くカバーすることはできないという欠点を有する。
また、前記非特許文献1の構成では、基準信号発生器出力を4相出力とすることが前提となっているが、この構成には局発信号発生回路として問題がある。局発信号発生回路に求められる技術項目のうち特に、1)所望の周波数範囲の正弦波信号を、スプリアス成分を無く提供すること、2)出力信号は低雑音であること、が重要である。出力信号の雑音は、周波数領域で考えれば位相雑音で考えることができ、その値が低いことが求められる。前記非特許文献1によれば、局発信号発生回路の信号品質を決める基準信号発生器において、相対的に位相が0°、90°、180°、270°の4相の出力信号を得るために、4相出力型の発振回路を用いている。
図8に4相出力型の発振回路の一例を示す。また、図9に2相(差動)出力型の発振回路の一例を示す、上記の位相雑音は、一般の雑音に対する概念と等しく、雑音を発生する能動素子の個数が多ければ多いほど総雑音が増加するため、図8に示す4相出力型の発振回路は、消費電流を等しい条件で比較した場合に、2相出力型の発振回路に対し、位相雑音が劣化することは定性的に明らかである。また、バイアス電流を増加させ、発振振幅を大きくすることで位相雑音を抑えることができるが、元来2相出力型に対し2倍のバイアス電流を必要とするのに対してさらに消費電力を増大させる結果となる。以上の検討から、周波数シンセサイザの基準信号発生器の出力信号を、位相雑音の少ない高純度の信号とすることは重要であり、そのために基準信号発生器の出力形式が差動型であっても、所望の周波数の信号を生成できる周波数シンセサイザの構成が必要不可欠となる。
また、前記非特許文献2では、528MHzの整数倍の周波数と小数倍の周波数を同時に生成し、その上で周波数加算や減算を繰り返し、図7に示す第1から第14のサブバンド中心周波数を作り出すことができる。その一方で、基準信号発生器を2つ用いる必要があることから消費電力とチップ面積が増大すること、さらに高周波側のUWBサブバンド中心周波数を発生させる場合にSSBミキサ3段全てを動作させる必要があることからさらに消費電力が増大するという欠点がある。また、ミキサが3段縦続であるために、ミキサの非線形動作によるスプリアスのために、出力周波数近傍にて多数の不要なスプリアス周波数が発生するという欠点が存在する。従って、出力信号の純度を高め、かつ低消費電流でUWB無線通信用の局発信号を生成する技術開発が期待されている。
そこで、本発明は、上記の問題点を克服するために為されたもので、その目的は、超広帯域で使用する局発信号を生成するための構成において、低位相雑音化と低消費電力化を同時に実現する方法を提供することにある。
本発明の前記ならびにその他の目的と新規な特徴は、本明細書の記述および添付図面から明らかになるであろう。
本願において開示される発明のうち、代表的なものの概要を簡単に説明すれば、次のとおりである。
上記目的を達成するため、本発明の周波数シンセサイザは、単一の周波数の信号を出力する基準信号発生器と、入力信号の周波数を基に異なった周波数の中間信号を1つ以上生成して出力信号として出力し、周波数マルチプライヤ制御信号によって中間信号それぞれを出力もしくは出力停止を制御する周波数マルチプライヤと、1つ以上の入力端子を備え、周波数セレクタ制御信号によって選択された入力信号を出力する周波数セレクタと、2つの入力信号に対して周波数ミキシングを実施して出力信号を生成するミキサと、周波数シンセサイザ制御端子を備えた周波数シンセサイザ制御回路とを具備し、上記基準信号発生器の出力を上記周波数マルチプライヤの入力とし、上記周波数マルチプライヤの1つ以上の出力を上記周波数セレクタの1つ以上の入力とし、上記周波数セレクタの出力と、上記周波数マルチプライヤの出力のうち1つの出力を、上記ミキサの第1と第2の入力とし、上記ミキサの出力を周波数シンセサイザの出力とすることを特徴とする。
このように周波数マルチプライヤと周波数セレクタとミキサを組み合わせることによって、基準信号発生器の出力周波数fREFに対し7/60から41/60の範囲において、fREF×(2n+1)/60(ここでnは、3から20の任意の整数)の周波数の信号を出力する周波数シンセサイザを提供することができ、基準信号発生器の出力は差動出力形式で上記の出力周波数を生成することができるため、低位相雑音の広帯域周波数シンセサイザを構成し、局発信号を提供することができる。
本願において開示される発明のうち、代表的なものによって得られる効果を簡単に説明すれば以下のとおりである。
本発明によれば、4相出力に対して低位相雑音を実現できる差動出力形式の基準信号発生器を基に、周波数マルチプライヤと周波数セレクタとミキサを組合せて構成することによって、UWB通信用の14のサブバンド中心周波数に対応する局発信号を、低雑音かつ低消費電力にて提供することができる。
以下、本発明に係る周波数シンセサイザの実施の形態を図面に基づいて詳細に説明する。なお、実施の形態を説明するための全図において、同一の部材には原則として同一の符号を付し、その繰り返しの説明は省略する。
(第1の実施の形態)
図1に本発明に係る周波数シンセサイザの第1の実施の形態(全体の構成)を示す。図1に示す周波数シンセサイザは、単一の周波数の信号を出力する基準信号発生器(SG)1、入力信号の周波数を基に異なった周波数の中間信号を1つ以上生成して出力信号として出力し、周波数マルチプライヤ制御信号によって中間信号それぞれを出力もしく出力停止を制御する周波数マルチプライヤ2、1つ以上の入力端子を備え、周波数セレクタ制御信号によって選択された入力信号を出力する周波数セレクタ(SEL)3、2つの入力信号に対して周波数ミキシングを実施して出力信号を生成するミキサ(SSBM)4、そして周波数シンセサイザ制御端子を備えた周波数シンセサイザ制御回路5によって構成される。
この周波数シンセサイザの構成において、基準信号発生器1の出力を周波数マルチプライヤ2の入力とし、周波数マルチプライヤ2の1つ以上の出力を周波数セレクタ3の1つ以上の入力とし、周波数セレクタ3の出力と、周波数マルチプライヤ2の出力のうち1つの出力を、ミキサ4の第1と第2の入力とし、ミキサ4の出力を周波数シンセサイザの出力とするように接続されている。そして、特に、周波数シンセサイザ制御端子に入力される制御信号によって、その出力周波数を制御し、かつ周波数マルチプライヤ2と周波数セレクタ3の動作不要な内部回路の電源を部分的に遮断することができるようになっている。
本構成では、基準信号発生器1は、正相と逆相の差動信号を出力する2つの出力端子を有し、周波数シンセサイザ基準クロック用入力端子324から周波数シンセサイザ基準クロックが入力され、正相、逆相の差動信号を周波数fREFにて発生し、その出力を周波数マルチプライヤ2の差動入力へ接続する。
周波数マルチプライヤ2は、正相と逆相の差動信号を入力する2つの入力端子と、入力信号の周波数を基に異なった周波数を有する1つ以上の種類の出力信号それぞれに90°位相のずれた4相信号を出力する4つの出力端子と、1つ以上の異なった分周数を有する分周回路を備える分周部21と、分周部21で生成した信号を基準に周波数ミキシングによって周波数の加減算を行なって生成した周波数の信号を出力とするミキサ部22と、周波数マルチプライヤ制御部23によって構成し、入力された基準信号を基に、分周部21によって複数の周波数の信号を発生し、後段のミキサ部22に設けたSingle Side Band(SSB)ミキサにて分周部21の出力の複数の信号をさらに周波数加減算することでUWB各サブバンドのうち、第2、5、8、11、14の中心周波数を生成し、4相信号(0°、90°、180°、270°の位相差を有する)として出力する。
この周波数マルチプライヤ2の分周部21は、分周回路として、4つの2分周回路(DIV2)24、1つの3分周回路(DIV3)25、1つの5分周回路(DIV5)26を備え、差動入力信号を入力信号とし、2分周しその4相信号を出力する第1の経路(2分周回路)と、4分周しその4相信号を出力する第2の経路(2分周回路+2分周回路)と、10分周しその4相信号を出力する第3の経路(5分周回路+2分周回路)と、20分周しその4相信号を出力する第4の経路(5分周回路+2分周回路+2分周回路)と、30分周しその4相信号を出力する第5の経路(5分周回路+2分周回路+3分周回路)とを有している。
また、周波数マルチプライヤ2のミキサ部22は、3つのミキサ(SSBM)4を備え、第1のミキサの2つの入力のうち第1の入力端子を第2の経路の出力端子に接続し、第2の入力端子を第3の経路の出力端子に接続し、第1のミキサの出力を第1の出力とし、第2のミキサの2つの入力のうち第1の入力端子を第1の経路の出力端子に接続し、第2の入力端子を第4の経路の出力端子に接続し、第2のミキサの出力を出力とし、第3のミキサの2つの入力のうち第1の入力端子を第2のミキサの出力端子に接続し、第2の入力端子を第3の経路の出力端子に接続し、第3のミキサの出力を第3の出力とし、第5の経路を第4の出力とするように接続されている。
周波数セレクタ3は、4相信号を入力信号とする4つの入力端子の組を1つ以上と90°位相のずれた4相信号を出力する1つの出力端子を有し、周波数マルチプライヤ2の出力の複数の信号のうち、周波数シンセサイザ制御回路5の制御信号(セレクタ制御端子31を介して)に従い指示された1つの入力信号を、増幅と周波数選択フィルタリングを実施したのちに、周波数セレクタ3の出力信号として4相信号として出力する。
ミキサ4は、周波数マルチプライヤ2の出力の任意の90°位相のずれた4相信号の1組と周波数セレクタ3の出力の90°位相のずれた4相信号の1組を入力とし、その出力信号もまた90°位相のずれた4相信号の1組を4つの出力端子から出力する。すなわち、周波数セレクタ3の出力の4相信号をRF入力信号(周波数fRF)とし、また周波数マルチプライヤ2から出力した4相信号をLO入力信号(周波数fLO)とし、ミキサ機能により周波数加減算した4相出力をIF出力信号(周波数fIF)として出力し、これを周波数シンセサイザの出力信号とする。ミキサ4では、そのミキサ機能において、周波数の加算(fRF+fLO)、減算(fRF−fLO)、LO信号を減衰させRF信号のみ透過して出力(fRF)の3つの動作モードを有し、その制御はミキサ出力周波数制御端子42に印加された信号で行なわれる。
周波数シンセサイザ制御回路5は、論理回路によって構成され、周波数シンセサイザ制御端子323に印加される周波数シンセサイザ制御信号によって、周波数マルチプライヤ2の内部の周波数マルチプライヤ制御部23、周波数セレクタ3、ミキサ4の動作状態を制御し、周波数シンセサイザ制御信号によって既定される周波数の信号を、周波数シンセサイザ出力として出力する。
以上のように構成される周波数シンセサイザでは、周波数マルチプライヤ2と周波数セレクタ3とミキサ4を組み合わせることによって、基準信号発生器1の出力周波数fREFに対し7/60から41/60の範囲において、fREF×(2n+1)/60(ここでnは、3から20の任意の整数)の周波数の信号を出力することができる。この際に、複数のサブバンドは、所定数のサブバンド毎に複数のバンドグループに分けられ、周波数セレクタの前段では、複数のバンドグループから1つのバンドグループが選択され、周波数セレクタの後段では、選択された1つのバンドグループから1つのサブバンドが選択される。さらに、バンドグループは、中心のサブバンドとその上下のサブバンドを有し、周波数セレクタの後段では、中心のサブバンドから上下のサブバンドが振り分けられ、第1のサブバンドから第14のサブバンドまで生成されて出力される。
以下に、周波数シンセサイザの動作を図1中に記載した周波数の値を用いて詳細に説明する。
基準信号発生器1は、15840MHzの周波数の差動信号を発生する。上記のように周波数マルチプライヤ2や周波数セレクタ3では4相信号を伝送しているが、本発明の構成では基準信号発生器1では差動出力とする。これは、基準信号発生器1を構成する発振器が、例えばインダクタとキャパシタによる共振回路を用いたLC共振発振器では、差動出力ではなく4相出力構成の発振回路構成を採った場合に、差動出力構成の発振回路構成に対して、出力信号の純度の指標となる位相雑音が増加することが示されている。そのため、周波数シンセサイザの出力信号を低雑音とする観点から、基準信号発生器1では差動出力としている。
周波数マルチプライヤ2の分周部21では、15840MHzの入力信号を、2分周回路24、3分周回路25、5分周回路26を複数個用いて図1に示す構成を実現する。この構成によって、7920MHz(2分周)、3960MHz(2分周+2分周)、1584MHz(5分周+2分周)、792MHz(5分周+2分周+2分周)、528MHz(5分周+2分周+3分周)の周波数を有する信号を生成することができる。これら生成された信号は分周回路において公知の4相出力型の回路構成を選択することによって、4相信号出力として次段の周波数マルチプライヤ2のミキサ部22に入力する。
ミキサ部22では、ミキサ4を3つ用いて、UWBサブバンドの中心周波数を生成する。第1のミキサでは、3960MHzをRF入力、1584MHzをLO入力し、ミキサ出力周波数制御端子42に印加するミキサ出力周波数制御信号を変化させることによって、RF信号周波数の透過出力とRF信号とLO信号の周波数加算を行なった信号をミキサ出力とすることで、UWBサブバンド#2の3960MHzと#5の5544MHzを出力可能とする。また、第2のミキサでは、7920MHzをRF入力、792MHzをLO入力し、同様に端子42に印加するミキサ出力周波数制御信号を変化させることによって、RF信号とLO信号の周波数の減算と加算を行なった信号をミキサ出力とすることで、UWBサブバンド#8の7128MHzと#11の8712MHzを出力可能とする。UWBサブバンド#14の10296MHzに関しては、第2のミキサの出力周波数を8712MHzに設定し、その信号を第3のミキサのRF入力とし、1584MHzをLO入力とし、同様に端子42に印加するミキサ出力周波数制御信号によって周波数の加算を実施することで、10296MHzの信号を出力可能とする。分周部21において生成された528MHzの信号は、ミキサ部22では用いずにそのまま周波数マルチプライヤ2の出力の1つの4相出力とする。
周波数セレクタ3は、その3つの4相入力において、周波数シンセサイザ制御信号によって時分割で現れる5つのUWBサブバンド周波数のうち1つを端子31に印加されるセレクタ制御信号によって選択出力する。
ミキサ4は、周波数セレクタ3によって選択されたUWBサブバンド#2、#5、#8、#11、#14の中心周波数の4相入力信号をRF入力信号とし、周波数マルチプライヤ2の出力の信号のうち、528MHzの4相出力信号をLO入力信号とし、その周波数ミキシングをした後の4相出力をミキサ出力とする。ミキサ出力信号は、ミキサ出力周波数制御端子42に印加されるミキサ出力周波数制御信号によって、(fRF+fLO、fRF、fRF−fLO)の周波数を出力することできる。この時LO信号の周波数は528MHzに設定し、この周波数はUWBサブバンドの中心周波数間のステップ周波数である528MHzと等しい。このため、ミキサ4では、RF入力周波数がUWBサブバンド#2の中心周波数の場合に#1と#3の周波数を、UWBサブバンド#5の中心周波数の場合に#4と#6の周波数を、UWBサブバンド#8の中心周波数の場合に#7と#9の周波数を、UWBサブバンド#11の中心周波数の場合に#10と#12の周波数を、UWBサブバンド#14の中心周波数の場合に#13の周波数を、ミキサ出力周波数制御端子42の制御信号によって適宜出力することができる。すなわち、図1に示した周波数シンセサイザの構成では、図7に示したUWBサブバンドの全14バンドを出力することができる。
以下、本実施の形態の構成による利点を述べる。本実施の形態の利点は、上記のUWBサブバンドを全てカバー出来る他に、1)基準信号発生器の出力形式は、位相雑音特性が良好な差動形式が適用できること、2)周波数シンセサイザ制御信号を基に、周波数マルチプライヤ出力信号と周波数セレクタ制御信号によって、周波数シンセサイザ出力周波数の生成に不要な回路の電源遮断を行い、出力周波数の値によって変動するものの消費電力を低く抑える機能を有すること、の2点を同時に備える点において、従来技術(例えば非特許文献1および2)に対して利点を備えることができる。
(第2の実施の形態)
図2に本発明に係る周波数シンセサイザの第2の実施の形態(ミキサの構成)を示す。図2に示すミキサ4は、周波数シンセサイザの最終段のミキサ、周波数マルチプライヤ2のミキサ部22の各ミキサであり、4相信号に対応して、4つの第1の入力端子(InRF0、InRF180、InRF90、InRF270)、4つの第2の入力端子(InLO0、InLO180、InLO90、InLO270)、および4つの第1の出力端子(OutIF0、OutIF180、OutIF90、OutIF270)と、1つのミキサ電源制御端子(CntP)41、1つのミキサ出力周波数制御端子(CntF)42と、2つのRF入力バッファ回路(RFBUF)43、2つのLO入力バッファ回路(LOBUF)47、4つのダブルバランストミキサ(DBM)44、1つの加算回路(ADDC)46、1つの減算回路(SUBC)45、2つのIF出力バッファ回路(IFBUF)61、1つの電源制御回路(Pcnt)48、1つのミキサ出力周波数制御回路(Fcnt)49で構成されている。
このミキサ4の構成において、各ミキサの第1の4相入力(0°、180°、90°、270°)のうち、位相0°と位相180°を第1のRF入力バッファ回路の差動入力とし、位相90°と位相270°を第2のRF入力バッファ回路の差動入力とし、各ミキサの第2の4相入力(0°、180°、90°、270°)のうち、位相0°と位相180°を第1のLO入力バッファ回路の差動入力とし、位相90°と位相270°を第2のLO入力バッファ回路の差動入力とし、各ミキサのミキサ出力周波数制御信号をミキサ出力周波数制御回路の制御信号とする。さらに、第1のRF入力バッファ回路の差動出力を第1と第2のダブルバランストミキサのRF入力とし、第2のRF入力バッファ回路の差動出力を第3と第4のダブルバランストミキサのRF入力とし、第1のLO入力バッファ回路の差動出力を第1と第3のダブルバランストミキサのLO入力とし、第2のLO入力バッファ回路の差動出力を第2と第4のダブルバランストミキサのLO入力とする。そして、加算回路の2つの差動入力のうち、第1の差動入力を第1のダブルバランストミキサのIF差動出力とし、第2の差動入力を第4のダブルバランストミキサのIF差動出力とし、減算回路の2つの差動入力のうち、第1の差動入力を第2のダブルバランストミキサのIF差動出力とし、第2の差動入力を第3のダブルバランストミキサのIF差動出力とし、加算回路と減算回路のそれぞれの差動出力をあわせた4つの出力信号を各ミキサの4相出力とするように接続されている。
すなわち、4相のRF入力信号は、相対位相0°と180°の信号と、90°と270°の位相の2組に分け、それぞれ差動入出力形式を採るRF入力バッファ回路43に入力する。同じく4相のLO入力信号は、RF信号同様に2つの差動入出力形式を採るLO入力バッファ回路47に入力する。
LO入力バッファ回路47は、3つのLO入力バッファ制御端子を有し、第1と第2の制御端子間の電位差に0.5V程度の電位差を発生させ、かつ第3の制御端子の電位を電源電圧に等しくすることによって、LO入力バッファ回路47の出力信号の位相を正相と逆相で反転させることができる。また、第1と第2の制御端子間の電位を等しくし、かつ第3の制御端子の電位を接地電圧に等しくすることによって、LO入力バッファ回路47の出力信号を、2つの電位の行なった直流電位とすることができる。以上のLO入力バッファ回路47の動作モード(位相非反転状態、位相反転状態、直流電位出力状態)の切り替えを、ミキサ出力周波数制御端子42からの制御信号を基に、ミキサ出力周波数制御回路49が制御する。
ダブルバランストミキサ44は、RF入力バッファ回路43とLO入力バッファ回路47の出力を入力とし、4相出力が可能なSSBミキサ回路を構成している。SSBミキサ回路によって周波数加算・減算された信号は、所望周波数のシングルサイドバンド成分のみを取り出すために、加算回路46と減算回路45によって信号の加減を行う。その加算回路46と減算回路45それぞれの差動出力を合わせ、ミキサ出力として取り出すことでミキサの4相出力が得られる。
また、電源制御回路48は、ミキサ電源制御端子41からの制御信号を基に、ミキサ構成回路の内部のバイアス電流を数mAの小さい値に絞る機能を有し、この電源制御信号によりミキサ機能をOFFする場合には、消費電力を低減する動作モードを備えることができる。
(第3の実施の形態)
図3に本発明に係る周波数シンセサイザの第3の実施の形態(LO入力バッファ回路の構成)を示す。図3に一例を示すLO入力バッファ回路47は、入力端子Inpにベースが接続され、定電流源I1を介して定電圧端子V1にエミッタが接続されたバイポーラトランジスタQn1、入力端子Innにベースが接続され、定電流源I2を介して定電圧端子V1にエミッタが接続されたバイポーラトランジスタQn2、バイポーラトランジスタQn1,Qn2のエミッタを接続する抵抗R1、制御端子Cnt1にベースが接続され、バイポーラトランジスタQn1のコレクタにエミッタが接続されたバイポーラトランジスタQn3、制御端子Cnt2にベースが接続され、バイポーラトランジスタQn1のコレクタにエミッタが接続されたバイポーラトランジスタQn4、制御端子Cnt2にベースが接続され、バイポーラトランジスタQn2のコレクタにエミッタが接続されたバイポーラトランジスタQn5、制御端子Cnt1にベースが接続され、バイポーラトランジスタQn2のコレクタにエミッタが接続されたバイポーラトランジスタQn6、バイポーラトランジスタQn3,Qn5のコレクタに共通に一方の端子を接続され、定電圧端子V2に他方の端子を接続された抵抗R2、バイポーラトランジスタQn4,Qn6のコレクタに共通に一方の端子を接続され、定電圧端子V2に他方の端子を接続された抵抗R3、ゲートとソースを定電圧端子V2に、ドレインをバイポーラトランジスタQn3,Qn5のコレクタに共通に接続されたpMOSトランジスタMp1、ゲートを制御端子Cnt3に、ソースを定電圧端子V2に、ドレインをバイポーラトランジスタQn4,Qn6のコレクタに共通に接続されたpMOSトランジスタMp2を含んで構成される。
これに加えて、ベースをバイポーラトランジスタQn3,Qn5のコレクタに、コレクタを定電圧端子V2に、エミッタを定電流源I3を介して定電圧端子V1に接続したバイポーラトランジスタQn7、ベースをバイポーラトランジスタQn4,Qn6のコレクタに、コレクタを定電圧端子V2に、エミッタを定電流源I4を介して定電圧端子V1に接続したバイポーラトランジスタQn8、ベースをバイポーラトランジスタQn7のエミッタに、エミッタを定電流源I5を介して定電圧端子V1に接続したバイポーラトランジスタQn9、ベースをバイポーラトランジスタQn8のエミッタに、エミッタを定電流源I6を介して定電圧端子V1に接続したバイポーラトランジスタQn10、バイポーラトランジスタQn9,Qn10のエミッタを接続する抵抗R4、一方の端子をバイポーラトランジスタQn9,Qn10のコレクタに接続し、他方の端子を共通に接続した抵抗R5,R6、抵抗R5,R6の共通端子と定電圧端子V2をともに接続する抵抗R7と容量C1の並列回路を含んで構成される。
このLO入力バッファ回路47の構成において、バイポーラトランジスタQn9,Qn10のコレクタをそれぞれ出力端子Outp,Outnとし、制御端子Cnt1,Cnt2に印加される電圧の電位差によって、出力端子Outp,Outnに現れる信号の位相が反転し、制御端子Cnt1,Cnt2に印加される電圧を等しくし、制御端子Cnt3に印加される直流電圧と定電圧端子V2の電圧との電位差がpMOSトランジスタMp2の閾値電圧を越すように設定した場合に、出力端子Outp,Outnに現れる信号は値の異なる直流電圧になるように制御されている。
すなわち、このLO入力バッファ回路47は、入力信号の位相反転や信号減衰を制御端子Cnt1とCnt2とCnt3に印加される直流電圧の値によって実施する入力段と、出力信号レベルを設定する出力段によって構成される。このLO入力バッファ回路47は、正相入力Inp、逆相入力Innが入力され、正相出力Outp、逆相出力Outnが出力される。
入力段は、npn型(以下省略)トランジスタQn1とQn2のエミッタを抵抗R1を介して結合した差動入力回路と、トランジスタQn1とQn2のコレクタに現れる信号電流の位相を制御端子Cnt1とCnt2の電位差によって反転と非反転させる機能を有するトランジスタQn3からQn6と、負荷抵抗R2とR3によって構成する。p型MOSトランジスタ(以降pMOSトランジスタ)Mp2は、制御端子Cnt3の電位が最大電圧V2か最小電圧V1かによって負荷抵抗R3の両端の電位を開放と短絡に切り替える機能を有する。pMOSトランジスタMp1は、負荷抵抗R2に対して負荷抵抗R3と等量の寄生容量を与えるために付加している。入力段の負荷抵抗で増幅された信号電圧は、エミッタフォロワトランジスタQn7とQn8によってレベルシフトされた後に、エミッタを抵抗R4で結合したトランジスタQn9とQn10で構成した出力段の入力回路へ入力される。
制御端子Cnt1とCnt2の制御端子間の電位差に0.5V程度の電位差を発生させ、かつ制御端子Cnt3の電位をV2の電位に等しくした場合、出力段では、トランジスタQn9とQn10のバイアス電流の和と抵抗R7の値の積で決まる電位(=V2−(I5+I6)×R7))を中心に、振幅(2×I5×R5)の出力振幅を出力する。ここで、I5=I6、R5=R6を仮定している。
一方、制御端子Cnt1とCnt2の制御端子間の電位を等しくし、かつ制御端子Cnt3の電位をV1の電位に等しくした場合には、入力段の信号電流がトランジスタQn3からQn6の共通コレクタで相殺され、トランジスタや抵抗等の回路素子がバラツキなく作成されている場合には、入力された交流信号は著しく減衰され負荷抵抗R2とR3の出力は直流電位でみなせる。さらに、負荷抵抗R3の両端のみが短絡されることから、トランジスタQn8のベース電位はV2と同電位に、トランジスタQn7のベース電位はV2−I1×R2で表せる電位をとることになる。トランジスタQn9とQn10の差動入力ダイナミックレンジは、I1×R2より小さく設定することによって、出力トランジスタQn9とQn10は一方が導通状態、他方がカットオフ状態となることから、その出力電位の高電位の値は(V2−(2×I5×R7))、低電位の値は(V2−(2×I5×(R5+R7))で表す直流電位を出力する。
このLO入力バッファ回路47が動作可能な電源電圧の下限値((V2−V1)で求まる電圧の最小値)VCCminは、トランジスタの導通状態のベース・エミッタ間電圧を(VBE=)0.8V、コレクタ・エミッタ間の飽和電圧を(VCEs=)0.2Vとすると、
VCCmin=VCEs+I5×R4+2×VBE
であり、I5×R4=0.3Vとすれば、VCCmin=2.1V程度である。これにより、消費電力に影響する電源電圧を低減することができる。
(第4の実施の形態)
図4に本発明に係る周波数シンセサイザの第4の実施の形態(LO入力バッファ回路の構成)を示す。図4に一例を示すLO入力バッファ回路47の回路構成は、図3の構成においてトランジスタをnpn型バイポーラトランジスタからn型MOSトランジスタ(以降nMOSトランジスタ)に置き換えたものである。機能については図3の構成と等しいという点以外に、この回路構成を採ることによって、動作電源電圧の低減が図れるという利点がある。
すなわち、このLO入力バッファ回路47は、nMOSトランジスタMn1、nMOSトランジスタMn2、抵抗R1、nMOSトランジスタMn3、nMOSトランジスタMn4、nMOSトランジスタMn5、nMOSトランジスタMn6、抵抗R2、抵抗R3、pMOSトランジスタMp1、pMOSトランジスタMp2、nMOSトランジスタMn7、nMOSトランジスタMn8、nMOSトランジスタMn9、nMOSトランジスタMn10、抵抗R4、抵抗R5,R6、抵抗R7と容量C1の並列回路によって構成され、nMOSトランジスタQn9,Qn10のコレクタをそれぞれ出力端子Outp,Outnとし、制御端子Cnt1,Cnt2に印加される電圧の電位差によって、出力端子Outp,Outnに現れる信号の位相が反転し、制御端子Cnt1,Cnt2に印加される電圧を等しくし、制御端子Cnt3に印加される直流電圧と定電圧端子V2の電圧との電位差がpMOSトランジスタMp2の閾値電圧を越すように設定した場合に、出力端子Outp,Outnに現れる信号は値の異なる直流電圧になるように制御されている。
このLO入力バッファ回路47が動作可能な電源電圧の下限値((V2−V1)で求まる電圧の最小値)VDDminは、例えば、MOSトランジスタの導通状態のゲート・ソース間電圧を(VGS=)0.4V、ドレイン・ソース間の飽和電圧を(VDSs=)0.2Vとすると、
VDDmin=VDSs+I5×R4+2×VGS
であり、I5×R4=0.3Vとすれば、VDDmin=1.3Vとバイポーラトランジスタを用いた場合に対しておよそ40%の電源電圧の低減、すなわち消費電力の低減が可能となる。
(第5の実施の形態)
図5に本発明に係る周波数シンセサイザの第5の実施の形態(周波数シンセサイザを含んで構成した無線通信機)を示す。図5は、第1〜第4の実施の形態の周波数シンセサイザを含んで構成した無線通信機である。
本実施の形態の無線通信機は、受信信号を入力し、これらを直接に低周波信号に変換するダイレクトコンバージョン方式の無線受信機として構成される。低周波信号は、低周波信号同相成分(i相信号)及び低周波信号直交成分(Q相信号)からなる。
RF入力端子321から入力された周波数RFの受信信号Sig−RFを増幅する低雑音増幅器301、低雑音増幅器301の出力信号の不要波を除去する帯域通過フィルタ302、帯域通過フィルタ302の出力信号を上記低周波信号に変換するダイレクトコンバージョンミキサ303が備えられる。
ダイレクトコンバージョンミキサ303に対して、局発発生回路311において生成される局発信号が供給される。局発信号は、互いに90°位相が異なる、即ち直交している2個の信号から成る。ダイレクトコンバージョンミキサ303から低周波信号が共通出力として出力され、低周波信号同相成分及び低周波信号直交成分をi信号、Q信号として差動出力する。ダイレクトコンバージョンミキサ303の出力は、増幅器304a,304bで増幅されてから、低域通過フィルタ305a,305bで不要波を除去され、段間容量306a,306bを経て可変利得増幅器307a,307bで再び増幅される。可変利得増幅器307a,307bからi/Q両相の信号Data_i,Data_QがIF出力端子322a,322bから出力される。
局発発生回路311は、第1〜第4の実施の形態の周波数シンセサイザから選択された本発明の周波数シンセサイザによって構成される。これにより、無線通信機では広い周波数範囲の入力信号を受信することができる他に、低い位相雑音の局発信号を発生できることから、受信データの識別感度を高めることができる。
(第6の実施の形態)
図6に本発明に係る周波数シンセサイザの第6の実施の形態(周波数シンセサイザを含んで構成した無線通信機)を示す。図6は、第1〜第4の実施の形態の周波数シンセサイザから選択された本発明の周波数シンセサイザを含んで構成した別の無線通信機である。
本実施の形態の無線通信機は、入力される変調信号Mod_i(変調信号同相成分)、変調信号Mod_Q(変調信号直交成分)を直接に無線周波数の送信信号Sig−RFに変換するダイレクトコンバージョン方式の無線送信機として構成される。
Mod入力端子422a,422bから入力された変調信号Mod−i,Mod−Qは、差動形式でそれぞれ可変利得増幅器401a,401bに入力される。可変利得増幅器401a,401bの出力信号は低域通過フィルタ402a,402bを経て不要波が除去される。
低域通過フィルタ402a,402bの出力信号は、ダイレクトコンバージョン変調器403に入力され、送信信号に変換される。ダイレクトコンバージョン変調器403から出力された送信信号は、可変利得増幅器404で増幅されてから出力増幅器405によって増幅され、周波数RFの送信信号Sig−RFがRF出力端子421から出力される。
この送信機においても、ダイレクトコンバージョン変調器403に対して、局発発生回路311が生成する局発信号が供給される。上述のように、局発信号は、互いに90°位相が異なる、即ち直交している2個の信号から成る。本実施の形態においても、局発発生回路311は本発明の周波数シンセサイザによって構成することで、無線通信機では広い周波数範囲の出力信号を送信することができる他に、低い位相雑音の局発信号を発生できることから、送信データの識別感度を高めることができる。
以上、本発明者によってなされた発明を実施の形態に基づき具体的に説明したが、本発明は前記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることは言うまでもない。
例えば、前記各実施の形態において、本発明の効果は、バイポーラトランジスタやMOSトランジスタを用いた場合のみに発生するものではなく、電界効果トランジスタ、ヘテロ接合バイポーラトランジスタ、高電子移動度トランジスタ、金属半導体接合電界効果トランジスタ等に置き換えても同様の効果が得られることは言うまでもない。
また、バイポーラトランジスタに関してはnpn型、MOSトランジスタは負性コンダクタンスにおいてp型及びn型を用いたCMOS型の回路構成を示したが、電源電圧の極性を考慮した上で、pnp型及びMOSトランジスタではn型及びp型に入れ替えた回路構成をとっても同様の効果が得られることは言うまでもない。
本発明に係る周波数シンセサイザの第1の実施の形態(全体の構成)を説明するための図である。 本発明に係る周波数シンセサイザの第2の実施の形態(ミキサの構成)を説明するための図である。 本発明に係る周波数シンセサイザの第3の実施の形態(LO入力バッファ回路の構成)を説明するための図である。 本発明に係る周波数シンセサイザの第4の実施の形態(LO入力バッファ回路の構成)を説明するための図である。 本発明に係る周波数シンセサイザの第5の実施の形態(周波数シンセサイザを含んで構成した無線通信機)を説明するための図である。 本発明に係る周波数シンセサイザの第6の実施の形態(周波数シンセサイザを含んで構成した無線通信機)を説明するための図である。 MB−OFDM方式を用いたUWB無線通信用の周波数配置を説明するための図である。 4相出力形式の発振回路の回路構成を説明するための図である。 2相出力形式の発振回路の回路構成を説明するための図である。
符号の説明
1…基準信号発生器、2…周波数マルチプライヤ、21…分周部、22…ミキサ部、23…周波数マルチプライヤ制御部、24…2分周回路、25…3分周回路、26…5分周回路、3…周波数セレクタ、31…セレクタ制御端子、4…ミキサ、41…ミキサ電源制御端子、42…ミキサ出力周波数制御端子、43…RF入力バッファ回路、44…ダブルバランストミキサ、45…減算回路、46…加算回路、47…LO入力バッファ回路、48…電源制御回路、49…ミキサ出力周波数制御回路、5…周波数シンセサイザ制御回路、61…IF出力バッファ回路、301…低雑音増幅器、302…帯域通過フィルタ、303…ダイレクトコンバージョンミキサ、304(a,b)…増幅器、305(a,b)…低域通過フィルタ、306(a,b)…段間容量、307(a,b)…可変利得増幅器、311…局発発生回路、321…RF入力端子、322(a,b)…IF出力端子、323…周波数シンセサイザ制御端子、324…周波数シンセサイザ基準クロック用入力端子、401(a,b)…可変利得増幅器、402(a,b)…低域通過フィルタ、403…ダイレクトコンバージョン変調器、404…可変利得増幅器、405…出力増幅器、421…RF出力端子、422(a,b)…Mod入力端子。

Claims (11)

  1. 単一の周波数の信号を出力する基準信号発生器と、
    入力信号の周波数を基に異なった周波数の中間信号を1つ以上生成して出力信号として出力し、周波数マルチプライヤ制御信号によって中間信号それぞれを出力もしくは出力停止を制御する周波数マルチプライヤと、
    1つ以上の入力端子を備え、周波数セレクタ制御信号によって選択された入力信号を出力する周波数セレクタと、
    2つの入力信号に対して周波数ミキシングを実施して出力信号を生成するミキサと、
    周波数シンセサイザ制御端子を備えた周波数シンセサイザ制御回路とを具備し、
    上記基準信号発生器の出力を上記周波数マルチプライヤの入力とし、
    上記周波数マルチプライヤの1つ以上の出力を上記周波数セレクタの1つ以上の入力とし、
    上記周波数セレクタの出力と、上記周波数マルチプライヤの出力のうち1つの出力を、上記ミキサの第1と第2の入力とし、
    上記ミキサの出力を周波数シンセサイザの出力とし、
    上記周波数マルチプライヤは、
    1つ以上の異なった分周数を有する分周回路を備える分周部と、
    上記分周部で生成した信号を基準に周波数ミキシングによって周波数の加減算を行なって生成した周波数の信号を出力とするミキサ部とを具備して成り、
    上記周波数マルチプライヤの分周部は、
    上記周波数マルチプライヤの差動入力信号を入力信号とし2分周しその4相信号を出力する第1の経路と、
    上記周波数マルチプライヤの差動入力信号を入力信号とし4分周しその4相信号を出力する第2の経路と、
    上記周波数マルチプライヤの差動入力信号を入力信号とし10分周しその4相信号を出力する第3の経路と、
    上記周波数マルチプライヤの差動入力信号を入力信号とし20分周しその4相信号を出力する第4の経路と、
    上記周波数マルチプライヤの差動入力信号を入力信号とし30分周しその4相信号を出力する第5の経路とを具備し、
    上記周波数マルチプライヤのミキサ部は、
    第1のミキサの2つの入力のうち第1の入力端子を上記第2の経路の出力端子に接続し、第2の入力端子を上記第3の経路の出力端子に接続し、上記第1のミキサの出力を上記周波数マルチプライヤの第1の出力とし、
    第2のミキサの2つの入力のうち第1の入力端子を上記第1の経路の出力端子に接続し、第2の入力端子を上記第4の経路の出力端子に接続し、上記第2のミキサの出力を上記周波数マルチプライヤの第2の出力とし、
    第3のミキサの2つの入力のうち第1の入力端子を上記第2のミキサの出力端子に接続し、第2の入力端子を上記第3の経路の出力端子に接続し、上記第3のミキサの出力を上記周波数マルチプライヤの第3の出力とし、
    上記第5の経路を上記周波数マルチプライヤの第4の出力とすることを特徴とする周波数シンセサイザ。
  2. 請求項1において、
    上記周波数シンセサイザ制御端子に入力される制御信号によって、その出力周波数を制御し、上記周波数マルチプライヤと上記周波数セレクタの動作不要な内部回路の電源を部分的に遮断することを特徴とする周波数シンセサイザ。
  3. 請求項1において、
    上記基準信号発生器は、正相と逆相の差動信号を出力する2つの出力端子を具備し、
    上記周波数マルチプライヤは、正相と逆相の差動信号を入力する2つの入力端子と、入力信号の周波数を基に異なった周波数を有する1つ以上の種類の出力信号それぞれに90°位相のずれた4相信号を出力する4つの出力端子とを具備し、
    上記周波数セレクタは、4相信号を入力信号とする4つの入力端子の組を1つ以上と90°位相のずれた4相信号を出力する1つの出力端子とを具備し、
    上記ミキサは、上記周波数マルチプライヤの出力の任意の90°位相のずれた4相信号の1組と上記周波数セレクタの出力の90°位相のずれた4相信号の1組とを入力とし、その出力信号もまた90°位相のずれた4相信号の1組を4つの出力端子から出力することを特徴とする周波数シンセサイザ。
  4. 請求項において、
    上記ミキサと、上記周波数マルチプライヤのミキサ部を構成する全てのミキサは、
    第1および第2の入力端子と、第1の出力端子と、ミキサ出力周波数制御端子とを具備し、
    上記第1および第2の入力端子はそれぞれ4相信号を入力するために4つ設けられ、
    上記第1の出力端子もそれぞれ4相信号を出力するために4つ設けられ、
    上記ミキサ出力周波数制御端子に印加された制御信号によって、各ミキサの出力周波数が可変となることを特徴とする周波数シンセサイザ。
  5. 請求項において、
    上記ミキサと、上記周波数マルチプライヤのミキサ部を構成する全てのミキサは、
    4つのダブルバランストミキサと、2つのRF入力バッファ回路と、2つのLO入力バッファ回路と、2つのIF出力バッファ回路と、1つの加算回路と、1つの減算回路と、1つの電源制御回路と、1つのミキサ出力周波数制御回路とを具備し、
    各ミキサの第1の4相入力(0°、180°、90°、270°)のうち、位相0°と位相180°を第1のRF入力バッファ回路の差動入力とし、位相90°と位相270°を第2のRF入力バッファ回路の差動入力とし、
    各ミキサの第2の4相入力(0°、180°、90°、270°)のうち、位相0°と位相180°を第1のLO入力バッファ回路の差動入力とし、位相90°と位相270°を第2のLO入力バッファ回路の差動入力とし、
    各ミキサのミキサ出力周波数制御信号を上記ミキサ出力周波数制御回路の制御信号とし、
    上記第1のRF入力バッファ回路の差動出力を第1と第2のダブルバランストミキサのRF入力とし、
    上記第2のRF入力バッファ回路の差動出力を第3と第4のダブルバランストミキサのRF入力とし、
    上記第1のLO入力バッファ回路の差動出力を上記第1と第3のダブルバランストミキサのLO入力とし、
    上記第2のLO入力バッファ回路の差動出力を上記第2と第4のダブルバランストミキサのLO入力とし、
    上記加算回路の2つの差動入力のうち、第1の差動入力を上記第1のダブルバランストミキサのIF差動出力とし、第2の差動入力を上記第4のダブルバランストミキサのIF差動出力とし、
    上記減算回路の2つの差動入力のうち、第1の差動入力を上記第2のダブルバランストミキサのIF差動出力とし、第2の差動入力を上記第3のダブルバランストミキサのIF差動出力とし、
    上記加算回路と上記減算回路のそれぞれの差動出力をあわせた4つの出力信号を各ミキサの4相出力とすることを特徴とする周波数シンセサイザ。
  6. 請求項において、
    上記周波数マルチプライヤのミキサ部を構成する全てのミキサは、
    ミキサ出力周波数制御信号により、
    2種の入力周波数(f1、f2)の加算(f1+f2)、減算(f1−f2)、透過(f1)を行なった周波数を出力するとともに、
    ミキサ電源制御信号によって、電源を遮断して動作に必要な電流供給を停止することを可能とすることを特徴とする周波数シンセサイザ。
  7. 請求項において、
    上記第1と第2のLO入力バッファ回路は、
    LO入力バッファ制御信号によって、その差動出力の信号の位相を反転する機能と、その差動出力それぞれに異なった直流電位のみを出力する機能とを具備し、
    その差動出力を、位相非反転状態、位相反転状態、直流電位出力状態の3状態に切り替えられることを特徴とする周波数シンセサイザ。
  8. 請求項1において、
    上記基準信号発生器の出力信号の周波数をfREFとし、上記周波数セレクタのセレクタ制御信号と上記ミキサのミキサ出力周波数制御信号の制御と組み合わせることによって、fREFの7/60から41/60の範囲において、fREF×(2n+1)/60(ここでnは、3から20の任意の整数)の周波数の信号を出力することを特徴とする周波数シンセサイザ。
  9. 請求項において、
    上記基準信号発生器の出力信号の周波数を15840MHzとし、上記周波数セレクタのセレクタ制御信号と上記ミキサのミキサ出力周波数制御信号の制御と組み合わせることによって、少なくとも、3432、3960、4488、5016、5544、6072、6600、7128、7656、8184、8712、9240、9768、10296(単位:MHz)の出力周波数を発生させることを特徴とする周波数シンセサイザ。
  10. 請求項において、
    上記第1と第2のLO入力バッファ回路は、
    第1の入力端子にベースが接続され、第1の定電流源を介して第1の定電圧端子にエミッタが接続された第1のバイポーラトランジスタと、
    第2の入力端子にベースが接続され、第2の定電流源を介して第1の定電圧端子にエミッタが接続された第2のバイポーラトランジスタと、
    上記第1と第2のバイポーラトランジスタのエミッタを接続する第1の抵抗と、
    第1の制御端子にベースが接続され、上記第1のバイポーラトランジスタのコレクタにエミッタが接続された第3のバイポーラトランジスタと、
    第2の制御端子にベースが接続され、上記第1のバイポーラトランジスタのコレクタにエミッタが接続された第4のバイポーラトランジスタと、
    上記第2の制御端子にベースが接続され、上記第2のバイポーラトランジスタのコレクタにエミッタが接続された第5のバイポーラトランジスタと、
    上記第1の制御端子にベースが接続され、上記第2のバイポーラトランジスタのコレクタにエミッタが接続された第6のバイポーラトランジスタと、
    上記第3と第5のバイポーラトランジスタのコレクタに共通に一方の端子を接続され、第2の定電圧端子に他方の端子を接続された第2の抵抗と、
    上記第4と第6のバイポーラトランジスタのコレクタに共通に一方の端子を接続され、上記第2の定電圧端子に他方の端子を接続された第3の抵抗と、
    ゲートとソースを上記第2の定電圧端子に、ドレインを上記第3と第5のバイポーラトランジスタのコレクタに共通に接続された第1のpMOSトランジスタと、
    ゲートを第3の制御端子に、ソースを上記第2の定電圧端子に、ドレインを上記第4と第6のバイポーラトランジスタのコレクタに共通に接続された第2のpMOSトランジスタと、
    ベースを上記第3と第5のバイポーラトランジスタのコレクタに、コレクタを上記第2の定電圧端子に、エミッタを第3の定電流源を介して上記第1の定電圧端子に接続した第7のバイポーラトランジスタと、
    ベースを上記第4と第6のバイポーラトランジスタのコレクタに、コレクタを上記第2の定電圧端子に、エミッタを第4の定電流源を介して上記第1の定電圧端子に接続した第8のバイポーラトランジスタと、
    ベースを上記第7のバイポーラトランジスタのエミッタに、エミッタを第5の定電流源を介して上記第1の定電圧端子に接続した第9のバイポーラトランジスタと、
    ベースを上記第8のバイポーラトランジスタのエミッタに、エミッタを第6の定電流源を介して上記第1の定電圧端子に接続した第10のバイポーラトランジスタと、
    上記第9と第10のバイポーラトランジスタのエミッタを接続する第4の抵抗と、
    一方の端子を上記第9と第10のバイポーラトランジスタのコレクタに接続し、他方の端子を共通に接続した第5と第6の抵抗と、
    上記第5と第6の抵抗の共通端子と上記第2の定電圧端子をともに接続する第7の抵抗と第1の容量の並列回路とを具備し、
    上記第9と第10のバイポーラトランジスタのコレクタをそれぞれ第1と第2の出力端子とし、
    上記第1と第2の制御端子に印加される電圧の電位差によって、上記第1と第2の出力端子に現れる信号の位相が反転し、
    上記第1と第2の制御端子に印加される電圧を等しくし、上記第3の制御端子に印加される直流電圧と上記第2の定電圧端子の電圧との電位差が上記第2のpMOSトランジスタの閾値電圧を越すように設定した場合に、上記第1と第2の出力端子に現れる信号は値の異なる直流電圧になることを特徴とする周波数シンセサイザ。
  11. 請求項において、
    上記第1と第2のLO入力バッファ回路は、
    第1の入力端子にゲートが接続され、第1の定電流源を介して第1の定電圧端子にソースが接続された第1のnMOSトランジスタと、
    第2の入力端子にゲートが接続され、第2の定電流源を介して第1の定電圧端子にソースが接続された第2のnMOSトランジスタと、
    上記第1と第2のnMOSトランジスタのソースを接続する第1の抵抗と、
    第1の制御端子にゲートが接続され、上記第1のnMOSトランジスタのドレインにソースが接続された第3のnMOSトランジスタと、
    第2の制御端子にゲートが接続され、上記第1のnMOSトランジスタのドレインにソースが接続された第4のnMOSトランジスタと、
    上記第2の制御端子にゲートが接続され、上記第2のnMOSトランジスタのドレインにソースが接続された第5のnMOSトランジスタと、
    上記第1の制御端子にゲートが接続され、上記第2のnMOSトランジスタのドレインにソースが接続された第6のnMOSトランジスタと、
    上記第3と第5のnMOSトランジスタのドレインに共通に一方の端子を接続され、第2の定電圧端子に他方の端子を接続された第2の抵抗と、
    上記第4と第6のnMOSトランジスタのドレインに共通に一方の端子を接続され、上記第2の定電圧端子に他方の端子を接続された第3の抵抗と、
    ゲートとソースを上記第2の定電圧端子に、ドレインを上記第3と第5のnMOSトランジスタのドレインに共通に接続された第1のpMOSトランジスタと、
    ゲートを第3の制御端子に、ソースを上記第2の定電圧端子に、ドレインを上記第4と第6のnMOSトランジスタのドレインに共通に接続された第2のpMOSトランジスタと、
    ゲートを上記第3と第5のnMOSトランジスタのドレインに、ドレインを上記第2の定電圧端子に、ソースを第3の定電流源を介して上記第1の定電圧端子に接続した第7のnMOSトランジスタと、
    ゲートを上記第4と第6のnMOSトランジスタのドレインに、ドレインを上記第2の定電圧端子に、ソースを第4の定電流源を介して上記第1の定電圧端子に接続した第8のnMOSトランジスタと、
    ゲートを上記第7のnMOSトランジスタのソースに、ソースを第5の定電流源を介して上記第1の定電圧端子に接続した第9のnMOSトランジスタと、
    ゲートを上記第8のnMOSトランジスタのソースに、ソースを第6の定電流源を介して上記第1の定電圧端子に接続した第10のnMOSトランジスタと、
    上記第9と第10のnMOSトランジスタのソースを接続する第4の抵抗と、
    一方の端子を上記第9と第10のnMOSトランジスタのドレインに接続し、他方の端子を共通に接続した第5と第6の抵抗と、
    上記第5と第6の抵抗の共通端子と上記第2の定電圧端子をともに接続する第7の抵抗と第1の容量の並列回路とを具備し、
    上記第9と第10のnMOSトランジスタのドレインをそれぞれ第1と第2の出力端子とし、
    上記第1と第2の制御端子に印加される電圧の電位差によって、上記第1と第2の出力端子に現れる信号の位相が反転し、
    上記第1と第2の制御端子に印加される電圧を等しくし、上記第3の制御端子に印加される直流電圧と上記第2の定電圧端子の電圧との電位差が上記第2のpMOSトランジスタの閾値電圧を越すように設定した場合に、上記第1と第2の出力端子に現れる信号は値の異なる直流電圧になることを特徴とする周波数シンセサイザ。
JP2006160734A 2006-06-09 2006-06-09 周波数シンセサイザ Expired - Fee Related JP4646856B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2006160734A JP4646856B2 (ja) 2006-06-09 2006-06-09 周波数シンセサイザ
KR1020070055099A KR20070118013A (ko) 2006-06-09 2007-06-05 주파수 신시사이저
CN200710108939XA CN101087142B (zh) 2006-06-09 2007-06-07 频率合成器
US11/759,716 US7826814B2 (en) 2006-06-09 2007-06-07 Frequency synthesizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006160734A JP4646856B2 (ja) 2006-06-09 2006-06-09 周波数シンセサイザ

Publications (2)

Publication Number Publication Date
JP2007329804A JP2007329804A (ja) 2007-12-20
JP4646856B2 true JP4646856B2 (ja) 2011-03-09

Family

ID=38874128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006160734A Expired - Fee Related JP4646856B2 (ja) 2006-06-09 2006-06-09 周波数シンセサイザ

Country Status (4)

Country Link
US (1) US7826814B2 (ja)
JP (1) JP4646856B2 (ja)
KR (1) KR20070118013A (ja)
CN (1) CN101087142B (ja)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050106454A (ko) * 2003-02-28 2005-11-09 프리스케일 세미컨덕터, 인크. 초광대역폭 신호를 전송하는 시스템 및 방법
US8019310B2 (en) * 2007-10-30 2011-09-13 Qualcomm Incorporated Local oscillator buffer and mixer having adjustable size
US8929840B2 (en) * 2007-09-14 2015-01-06 Qualcomm Incorporated Local oscillator buffer and mixer having adjustable size
US7941115B2 (en) * 2007-09-14 2011-05-10 Qualcomm Incorporated Mixer with high output power accuracy and low local oscillator leakage
US8599938B2 (en) * 2007-09-14 2013-12-03 Qualcomm Incorporated Linear and polar dual mode transmitter circuit
US8639205B2 (en) * 2008-03-20 2014-01-28 Qualcomm Incorporated Reduced power-consumption receivers
US8121558B2 (en) * 2008-05-12 2012-02-21 Texas Instruments Incorporated Local oscillator generator architecture using a wide tuning range oscillator
DE102008026698A1 (de) * 2008-06-04 2009-12-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Mehrfrequenzband-Empfänger
JP5445459B2 (ja) * 2008-09-02 2014-03-19 日本電気株式会社 送受信器
JP5187146B2 (ja) * 2008-11-10 2013-04-24 日本電気株式会社 無線受信機及び無線受信機の制御方法
JP5310380B2 (ja) * 2009-08-24 2013-10-09 富士通セミコンダクター株式会社 直交変復調回路
US8149023B2 (en) * 2009-10-21 2012-04-03 Qualcomm Incorporated RF buffer circuit with dynamic biasing
JP5480896B2 (ja) * 2010-01-22 2014-04-23 パナソニック株式会社 注入同期型奇数分周器及びpll回路
KR101614127B1 (ko) 2010-02-03 2016-04-20 삼성전자주식회사 주파수 신호 생성 장치
EP2599224A1 (en) * 2010-07-29 2013-06-05 Marvell World Trade Ltd. Modular frequency divider and mixer configuration
JP5522256B2 (ja) * 2010-07-29 2014-06-18 富士通株式会社 信号生成回路及びそれを有する無線送受信装置
US20130016796A1 (en) 2011-07-14 2013-01-17 Chih-Hao Sun Signal modulator and signal modulating method
US8909186B2 (en) * 2012-07-16 2014-12-09 Intel Mobile Communications GmbH Receiver, method and mobile communication device
CN103036563A (zh) * 2012-12-24 2013-04-10 中国电子科技集团公司第五十四研究所 测控系统的Ka频段低相噪频率合成器装置
US9077420B2 (en) * 2013-02-22 2015-07-07 Mstar Semiconductor, Inc. RF receiver with sideband symmetry circuit
US9906152B2 (en) * 2013-07-22 2018-02-27 Telefonaktiebolaget L M Ericsson (Publ) Frequency converter
CN106549656A (zh) * 2016-11-22 2017-03-29 章策珉 一种频率拓展器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004120631A (ja) * 2002-09-27 2004-04-15 Asahi Kasei Microsystems Kk 周波数変換装置、および、周波数変換方法
JP2005175698A (ja) * 2003-12-09 2005-06-30 Toshiba Corp ローカル発生器とこのローカル発生器を備えた無線通信装置
JP2005198304A (ja) * 2003-12-31 2005-07-21 Samsung Electronics Co Ltd 基準周波数生成方法およびその装置
JP2006121546A (ja) * 2004-10-25 2006-05-11 Sony Corp 無線通信装置
JP2007020175A (ja) * 2005-07-05 2007-01-25 Samsung Electronics Co Ltd 周波数合成装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6184817B1 (en) * 1999-08-23 2001-02-06 Lockheed Martin Corporation Master frequency generator
JP2002223126A (ja) * 2001-01-29 2002-08-09 Fujitsu Ltd 周波数逓倍装置
US7085549B2 (en) * 2002-12-30 2006-08-01 Motorola, Inc. Dynamic power sharing zero intermediate frequency (ZIF) mixer and method of forming same
KR100565787B1 (ko) 2003-07-14 2006-03-29 삼성전자주식회사 초광대역 통신 시스템에서 주파수 생성 장치 및 방법
EP1499010B1 (en) 2003-07-14 2013-09-25 Samsung Electronics Co., Ltd. Frequency translator, and method
JP2005129993A (ja) 2003-10-21 2005-05-19 Sony Corp 周波数合成装置及び周波数合成方法
WO2005112292A1 (ja) * 2004-05-17 2005-11-24 Nec Corporation 信号発生装置、並びにこれを用いた送信装置、受信装置及び送受信装置
US7450185B2 (en) * 2004-10-28 2008-11-11 Industrial Technology Research Institute Fully integrated tuner circuit architecture for a television system
KR100659291B1 (ko) * 2005-02-17 2006-12-20 삼성전자주식회사 주파수 합성 장치
DE102005019786A1 (de) * 2005-04-28 2006-11-09 Newlogic Technologies Ag Dualband-Frequenz-Synthesizer
US7936229B2 (en) * 2005-08-11 2011-05-03 Texas Instruments Incorporated Local oscillator incorporating phase command exception handling utilizing a quadrature switch
US7321268B2 (en) * 2005-11-04 2008-01-22 Via Technologies Ultra wideband and fast hopping frequency synthesizer for MB-OFDM wireless application
US20070155350A1 (en) * 2005-12-29 2007-07-05 Wionics Research Method of frequency planning in an ultra wide band system
US7349813B2 (en) * 2006-05-16 2008-03-25 Dresser, Inc. Fault tolerant power system architecture for fluid flow measurement systems

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004120631A (ja) * 2002-09-27 2004-04-15 Asahi Kasei Microsystems Kk 周波数変換装置、および、周波数変換方法
JP2005175698A (ja) * 2003-12-09 2005-06-30 Toshiba Corp ローカル発生器とこのローカル発生器を備えた無線通信装置
JP2005198304A (ja) * 2003-12-31 2005-07-21 Samsung Electronics Co Ltd 基準周波数生成方法およびその装置
JP2006121546A (ja) * 2004-10-25 2006-05-11 Sony Corp 無線通信装置
JP2007020175A (ja) * 2005-07-05 2007-01-25 Samsung Electronics Co Ltd 周波数合成装置

Also Published As

Publication number Publication date
KR20070118013A (ko) 2007-12-13
US20070298750A1 (en) 2007-12-27
US7826814B2 (en) 2010-11-02
CN101087142A (zh) 2007-12-12
CN101087142B (zh) 2012-05-09
JP2007329804A (ja) 2007-12-20

Similar Documents

Publication Publication Date Title
JP4646856B2 (ja) 周波数シンセサイザ
JP4713939B2 (ja) 電圧制御発振器及びそれを用いた無線通信機
KR101066054B1 (ko) 주파수 변환을 위한 시스템, 방법 및 장치
US6639447B2 (en) High linearity Gilbert I Q dual mixer
JP4364175B2 (ja) 乗算器及びこれを用いる無線通信装置
EP2148432B1 (en) Mixer cell with a dynamic bleed circuit
JP4056145B2 (ja) Pll回路およびそれを用いた無線通信端末機器
EP1184971A1 (en) Switching mixer
KR101212857B1 (ko) 신호 처리 회로와 이것을 이용한 통신 장치
JP5395634B2 (ja) 直交変調器およびそれを内蔵する半導体集積回路
CN110120786B (zh) 混频器及无线通信装置
Kitsunezuka et al. A 5–9-mw, 0.2–2.5-GHz CMOS low-if receiver for spectrum-sensing cognitive radio sensor networks
US7274317B2 (en) Transmitter using vertical BJT
US10944361B2 (en) Zero if transmitter with decoupling between mixer and programmable gain stage
CA3012393C (en) Generating local oscillator signals in a wireless sensor device
KR100677146B1 (ko) I/q 직교 복조기
JP2005184141A (ja) ミキサ回路、送信機、及び受信機
GB2417626A (en) Phase and envelope feedback loops for constant and non-constant amplitude modulation
KR101182855B1 (ko) 통신 시스템에서의 신호 발생 장치 및 방법
Wang et al. The 1-V 24-GHz low-voltage low-power current-mode transmitter in 130-nm CMOS technology
WO2013093616A2 (en) Output stage for wireless transmitter
JP4885643B2 (ja) ミキサ回路
JP4772723B2 (ja) 高周波受信機
JP2004343325A (ja) 周波数変換機能を有する電子回路装置及びそれを用いた無線通信装置
JP2011223514A (ja) ローカル周波数信号切替回路

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081107

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100528

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100727

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101109

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101207

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees