JP4639445B2 - Manufacturing method of semiconductor device - Google Patents

Manufacturing method of semiconductor device Download PDF

Info

Publication number
JP4639445B2
JP4639445B2 JP2000260515A JP2000260515A JP4639445B2 JP 4639445 B2 JP4639445 B2 JP 4639445B2 JP 2000260515 A JP2000260515 A JP 2000260515A JP 2000260515 A JP2000260515 A JP 2000260515A JP 4639445 B2 JP4639445 B2 JP 4639445B2
Authority
JP
Japan
Prior art keywords
oxide film
thermal oxide
film
polysilicon film
resist
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000260515A
Other languages
Japanese (ja)
Other versions
JP2002075907A (en
Inventor
晴司 野口
紀之 須ヶ原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Systems Co Ltd filed Critical Fuji Electric Systems Co Ltd
Priority to JP2000260515A priority Critical patent/JP4639445B2/en
Publication of JP2002075907A publication Critical patent/JP2002075907A/en
Application granted granted Critical
Publication of JP4639445B2 publication Critical patent/JP4639445B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Drying Of Semiconductors (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、CCD(Charge Coupled Device)などの半導体装置およびその製造方法に関する。
【0002】
【従来の技術】
CCDの電荷転送部の電極構造は、ゲート電極を形成するポリシリコン膜と層間絶縁膜である熱酸化膜と転送電極を形成するポリシリコン膜の積層構造をしている。
図3は、CCDの電荷転送部の要部断面図である。p基板51上にゲート酸化膜52を形成し、このゲート酸化膜52上に第1ポリシリコン膜53でゲート電極を形成する。この第1ポリシリコン膜53上に、層間絶縁膜となるSi(シリコン)熱酸化膜54を形成し、ゲート酸化膜52上とSi熱酸化膜54上に第2ポリシリコン膜55で転送電極を形成する。CCDの電極は円Cで示すように第1ポリシリコン膜53/Si熱酸化膜54/第2ポリシリコン膜55の積層構造となっている。尚、図中のV1、V3、V5はゲート電極に接続する端子、V2、V4、V6は転送電極に接続する端子である。
【0003】
つぎに、動作について簡単に説明する。図示しない左側で、光などの信号が電子量に変換され、V1の下にその電子が送られてきたとする。V1、V3、V5に正電圧を印加すると、この電子はV1の下に保持される。つぎに、V1、V3、V5を0Vとして、V2、V4、V6に正電圧を印加すると、V1の下の電子はV2の下に移動する。V2、V4、V6を0Vとして、再びV1、V3、V5に正電圧を印加すると、V2の下の電子はV3の下に移動する。このことを繰り返すことで、電子をV1からV2へ、V2からV3へと移動させることができる。この電子の移動によって、信号を転送することができる。
【0004】
図4は、従来のCCDの電荷転送部の電極構造の製造方法で、同図(a)から同図(e)は工程順に示した要部工程断面図である。
p基板51(Si基板)上にゲート酸化膜52を形成し、続いて減圧CVD(Chemical Vapor Deposition)法により、第1ポリシリコン膜53を形成する(同図(a))。
【0005】
つぎに、図示しないレジストを被覆し、このレジストをパターニングし、パターニングされたレジストをマスクに第1ポリシリコン膜53をエッチングして、第1ポリシリコン膜53からなるゲート電極を形成する(同図(b))。
つぎに、レジスト53を除去し、900℃程度で熱酸化を行い、p基板51表面および第1ポリシリコン膜53表面にSi熱酸化膜54(SiO2 )を形成する。このSi熱酸化膜54の厚みは、酸化速度(酸化レート)の違いから、第1ポリシリコン膜53表面に形成されるSi熱酸化膜54の方が、ゲート酸化膜52表面に形成されるSi熱酸化膜より2倍から4倍程度厚くなる(同図(c))。同図(c)ではゲート酸化膜52上に形成されたSi熱酸化膜はゲート酸化膜52の中に含めた。
【0006】
つぎに、全面に、減圧CVD法により、第2ポリシリコン膜55を形成し、つぎに、レジスト56を被覆し、このレジスト56をパターニングし、パターニングされたレジスト56をマスクに第2ポリシリコン膜55をエッチングし、第2ポリシリコン膜55からなる転送電極を形成する(同図(d))。
つぎに、レジスト56を除去することで、第1ポリシリコン膜53/Si熱酸化膜54/第2ポリシリコン膜55の積層構造がp基板51上にゲート酸化膜52を介して形成される(同図(e))。尚、図5(a)は図4(b)の拡大図、図5(b)は図4(c)の拡大図である。
【0007】
【発明が解決しようとする課題】
しかし、前記の製造方法では、図5(a)の円Fに示すように、第1ポリシリコン膜53のエッジ部は直角となり鋭い。さらに、900℃程度の熱酸化工程後では、図5(b)の円Gに示すように、このエッジ部の形状はさらに鋭角57となる。これは、熱酸化工程では、応力開放が進まずエッジ部での酸化が遅くなるためである。また、このエッジ部が丸まった状態でなく、鋭角57の状態では、Si熱酸化膜54の膜厚は、エッジ部で薄くなる。そのため、積層構造に電圧が印加されると、このエッジ部のSi熱酸化膜54に電界集中が起こり、また、この箇所のSi熱酸化膜54が薄いこともあって、Si熱酸化膜54の信頼性は低下し、半導体装置の信頼性も低下する。
この発明の目的は、前記の課題を解決して、エッジ部のSi熱酸化膜内で電界集中が起こりにくい半導体装置を提供することにある。
【0008】
【課題を解決するための手段】
前記目的を達成するために、絶縁膜上に選択的にポリシリコン膜を形成し、該ポリシリコン膜の表面にシリコン熱酸化膜を形成した半導体装置の製造方法において、半導体基板上に絶縁膜を形成する工程と、該絶縁膜上にポリシリコン膜を全面に形成する工程と、前記半導体基板を酸素雰囲気中で熱処理を行い、続いて、窒素雰囲気中において熱処理を行い第1シリコン熱酸化膜を前記ポリシリコン膜上に形成する工程と、全面にレジストを被覆する工程と、該レジストを選択的に除去する工程と、該レジストをマスクに前記第1シリコン熱酸化膜をエッチングし、前記レジスト外周端部近傍の前記第1シリコン熱酸化膜の端部の形状をテーパー状に加工する工程と、前記の第1シリコン熱酸化膜をマスクに、前記ポリシリコン膜を異方性エッチングし、該ポリシリコン膜の表面の外周端部をテーパー状に加工する工程と、該テーパー状に加工する工程に続いて、熱酸化処理を行い、前記ポリシリコン膜のテーパー部を丸め、該ポリシリコン膜上に第2シリコン熱酸化膜を形成する工程と、を含む製造方法とする。
【0009】
また、絶縁膜上に選択的にポリシリコン膜を形成し、該ポリシリコン膜の表面にシリコン熱酸化膜を形成した半導体装置の製造方法において、半導体基板上に絶縁膜を形成する工程と、該絶縁膜上にポリシリコン膜を全面に形成する工程と、前記半導体基板を酸素雰囲気中で熱処理を行い、続いて、窒素雰囲気中において熱処理を行い第1シリコン熱酸化膜を前記ポリシリコン膜上に形成する工程と、全面にレジストを被覆する工程と、該レジストを選択的に除去する工程と、該レジストをマスクに前記第1シリコン熱酸化膜をエッチングし、前記レジスト外周端部近傍の前記第1シリコン熱酸化膜の端部の形状をテーパー状に加工する工程と、前記の第1シリコン熱酸化膜をマスクに、前記ポリシリコン膜を異方性エッチングし、該ポリシリコン膜の表面の外周端部をテーパー状に加工する工程と、該テーパー状に加工する工程に続いて、前記第1シリコン熱酸化膜を除去する工程と、熱酸化処理を行い、前記ポリシリコン膜のテーパー部を丸め、該ポリシリコン膜上に第2シリコン熱酸化膜を形成する工程と、を含む製造方法とする。
【0011】
【発明の実施の形態】
図1は、この発明の一実施例の半導体装置の製造方法で、同図(a)から同図(c)は工程順に示した要部工程断面図である。ここでは、積層構造の製造方法について説明する。
p基板1上に、ゲート酸化膜2を形成し、続いて、第1ポリシリコン膜3を形成し、その後、800℃から1100℃程度の温度で、1分から20分程度、数%の酸素雰囲気中で熱処理を行い、その後、800℃から1100℃程度の温度で、1分から20分程度、窒素雰囲気中において熱処理を行う。前者の短時間で数%の酸素雰囲気中の熱酸化処理により、第1ポリシリコン膜3上に、数nmから数十nm程度の第1Si熱酸化膜11が形成される(同図(a))。
【0012】
つぎに、レジスト13を被覆し、パターニングした後、このレジスト13をマスクにドライエッチャーで、第1Si熱酸化膜11をエッチングする。このエッチングで、第1Si熱酸化膜11の形状はテーパー状12になる(同図(b))。
つぎに、第1ポリシリコン膜3を、前記のレジスト13および第1Si熱酸化膜11をマスクに、ECR(Electron Cyclotron Resonance)エッチャーにて、異方性エッチングを行う。この異方性エッチングでは、SiとSiO2 のエッチング選択比を所定の値に設定すると、テーパー状となった第1Si熱酸化膜11が、第1ポリシリコン膜3をエッチングするときのマスクとして機能し、ゲート電極となる第1ポリシリコン膜3のエッジ部をテーパー状14に加工できる(同図(c))。同図(c)の円Aの拡大図が図2(a)である。
【0013】
つぎに、熱酸化工程を行うことで、第1ポリシリコン膜3のエッジ部は丸まった形状となり、この丸まった第1ポリシリコン膜3上に第2Si熱酸化膜4が形成される(同図(d))。丸まった第1ポリシリコン膜3上に第2Si熱酸化膜4が形成されるので、第1ポリシリコン膜3のエッジ部の第2Si熱酸化膜4が薄くなることがない。同図(d)の円Bの拡大図が図2(b)である。図2(b)に丸まった状態15に示される。尚、第2Si熱酸化膜4を形成する前に第1Si熱酸化膜11を除去しても、除去しなくてもよい。
【0014】
つぎに、転送電極となる第2ポリシリコン膜5を第1ポリシリコン膜3上に前記の第2Si熱酸化膜4を介して形成すると、積層構造が形成される(同図(e))。この積層構造は、第1ポリシリコン膜3のエッジ部が丸まっており、この箇所の第2Si熱酸化膜4の厚みも薄くならないので、積層構造に電圧を印加したとき、第2Si熱酸化膜中で電界集中が起こらず、半導体装置の信頼性が向上する。尚、図1(e)が、図3に相当する半導体装置となる。
【0015】
【発明の効果】
この発明において、第1ポリシリコン膜のエッジ部を丸くし、且つ、エッジ部でのSi熱酸化膜の薄膜化を防止することで、エッジ部でのSi熱酸化膜内の電界集中が起こらず、半導体装置の信頼性を向上させることができる。
【図面の簡単な説明】
【図1】この発明の一実施例の半導体装置の製造方法で、(a)から(e)は工程順に示した要部工程断面図
【図2】図1(c)、(d)の拡大図
【図3】CCDの電荷転送部の要部断面図
【図4】従来のCCDの電荷転送部の電極構造の製造方法で、(a)から(e)は工程順に示した要部工程断面図
【図5】図4(b)、(c)の拡大図
【符号の説明】
1 p基板
2 ゲート酸化膜
3 第1ポリシリコン膜
4 第2Si熱酸化膜
5 第2ポリシリコン膜
11 第1Si熱酸化膜
12、14 テーパー状
13 レジスト
15 丸まった状態
51 p基板
52 ゲート酸化膜
53 第1ポリシリコン膜
54 Si熱酸化膜
55 第2ポリシリコン膜
56 レジスト
57 鋭角
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a semiconductor device such as a CCD (Charge Coupled Device) and a method for manufacturing the same.
[0002]
[Prior art]
The electrode structure of the charge transfer portion of the CCD has a laminated structure of a polysilicon film that forms a gate electrode, a thermal oxide film that is an interlayer insulating film, and a polysilicon film that forms a transfer electrode.
FIG. 3 is a cross-sectional view of the main part of the charge transfer unit of the CCD. A gate oxide film 52 is formed on the p substrate 51, and a gate electrode is formed on the gate oxide film 52 with a first polysilicon film 53. A Si (silicon) thermal oxide film 54 to be an interlayer insulating film is formed on the first polysilicon film 53, and a transfer electrode is formed on the gate oxide film 52 and the Si thermal oxide film 54 with the second polysilicon film 55. Form. The electrode of the CCD has a laminated structure of a first polysilicon film 53 / Si thermal oxide film 54 / second polysilicon film 55 as indicated by a circle C. In the figure, V1, V3, and V5 are terminals connected to the gate electrode, and V2, V4, and V6 are terminals connected to the transfer electrode.
[0003]
Next, the operation will be briefly described. It is assumed that a signal such as light is converted into an amount of electrons on the left side (not shown), and the electrons are sent under V1. When a positive voltage is applied to V1, V3, and V5, the electrons are held under V1. Next, when V1, V3, and V5 are set to 0 V and a positive voltage is applied to V2, V4, and V6, electrons below V1 move below V2. When V2, V4, and V6 are set to 0 V and a positive voltage is applied to V1, V3, and V5 again, electrons below V2 move below V3. By repeating this, electrons can be moved from V1 to V2 and from V2 to V3. A signal can be transferred by this movement of electrons.
[0004]
FIG. 4 shows a conventional method for manufacturing an electrode structure of a charge transfer portion of a CCD. FIG. 4A to FIG.
A gate oxide film 52 is formed on a p substrate 51 (Si substrate), and then a first polysilicon film 53 is formed by a low pressure CVD (Chemical Vapor Deposition) method (FIG. 1A).
[0005]
Next, a resist (not shown) is coated, this resist is patterned, and the first polysilicon film 53 is etched using the patterned resist as a mask to form a gate electrode made of the first polysilicon film 53 (see FIG. (B)).
Next, the resist 53 is removed and thermal oxidation is performed at about 900 ° C. to form a Si thermal oxide film 54 (SiO 2 ) on the surface of the p substrate 51 and the surface of the first polysilicon film 53. The thickness of the Si thermal oxide film 54 is different from that of the oxidation rate (oxidation rate), so that the Si thermal oxide film 54 formed on the surface of the first polysilicon film 53 is formed on the surface of the gate oxide film 52. It is about 2 to 4 times thicker than the thermal oxide film ((c) in the figure). In FIG. 2C, the Si thermal oxide film formed on the gate oxide film 52 is included in the gate oxide film 52.
[0006]
Next, a second polysilicon film 55 is formed on the entire surface by a low pressure CVD method. Next, a resist 56 is coated, the resist 56 is patterned, and the second resist film 56 is patterned using the patterned resist 56 as a mask. 55 is etched to form a transfer electrode made of the second polysilicon film 55 (FIG. 4D).
Next, by removing the resist 56, a laminated structure of the first polysilicon film 53 / Si thermal oxide film 54 / second polysilicon film 55 is formed on the p substrate 51 via the gate oxide film 52 (see FIG. (E) in FIG. 5 (a) is an enlarged view of FIG. 4 (b), and FIG. 5 (b) is an enlarged view of FIG. 4 (c).
[0007]
[Problems to be solved by the invention]
However, in the above manufacturing method, as shown by a circle F in FIG. 5A, the edge portion of the first polysilicon film 53 is perpendicular and sharp. Further, after the thermal oxidation process at about 900 ° C., the shape of the edge portion becomes an acute angle 57 as shown by a circle G in FIG. This is because in the thermal oxidation process, stress release does not proceed and oxidation at the edge portion is delayed. In addition, when the edge portion is not rounded but at an acute angle 57, the thickness of the Si thermal oxide film 54 is reduced at the edge portion. Therefore, when a voltage is applied to the laminated structure, electric field concentration occurs in the Si thermal oxide film 54 at the edge portion, and the Si thermal oxide film 54 at this location may be thin. The reliability is lowered and the reliability of the semiconductor device is also lowered.
An object of the present invention is to solve the above-described problems and provide a semiconductor device in which electric field concentration is unlikely to occur in the Si thermal oxide film at the edge portion.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, in a method of manufacturing a semiconductor device in which a polysilicon film is selectively formed on an insulating film and a silicon thermal oxide film is formed on the surface of the polysilicon film , the insulating film is formed on the semiconductor substrate. Forming a polysilicon film on the entire surface of the insulating film, and subjecting the semiconductor substrate to a heat treatment in an oxygen atmosphere, followed by a heat treatment in a nitrogen atmosphere to form a first silicon thermal oxide film. Forming on the polysilicon film, covering the entire surface with a resist, selectively removing the resist, etching the first silicon thermal oxide film using the resist as a mask, and The step of processing the shape of the end portion of the first silicon thermal oxide film in the vicinity of the end portion into a tapered shape, and the polysilicon film as an anisotropic energy using the first silicon thermal oxide film as a mask. Following the step of processing the outer peripheral edge of the surface of the polysilicon film into a taper shape and the step of processing into the taper shape, thermal oxidation treatment is performed to round the taper portion of the polysilicon film, Forming a second silicon thermal oxide film on the polysilicon film.
[0009]
Further, in a method of manufacturing a semiconductor device in which a polysilicon film is selectively formed on an insulating film, and a silicon thermal oxide film is formed on the surface of the polysilicon film, the step of forming the insulating film on the semiconductor substrate; Forming a polysilicon film on the entire surface of the insulating film; and subjecting the semiconductor substrate to a heat treatment in an oxygen atmosphere, followed by a heat treatment in a nitrogen atmosphere to form a first silicon thermal oxide film on the polysilicon film. Forming a resist; covering the entire surface with a resist; removing the resist selectively; etching the first silicon thermal oxide film using the resist as a mask; and (1) processing the shape of the end of the silicon thermal oxide film into a taper shape, and anisotropically etching the polysilicon film using the first silicon thermal oxide film as a mask, A step of processing the outer peripheral edge portion of the surface of the con membrane tapered, following the step of processing the said tapered, and removing the first silicon thermal oxide film, by thermal oxidation process, the polysilicon Rounding the taper portion of the film and forming a second silicon thermal oxide film on the polysilicon film .
[0011]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows a method of manufacturing a semiconductor device according to an embodiment of the present invention, wherein FIG. 1A to FIG. Here, the manufacturing method of a laminated structure is demonstrated.
A gate oxide film 2 is formed on the p substrate 1, followed by a first polysilicon film 3, and then an oxygen atmosphere of several percent at a temperature of about 800 ° C. to 1100 ° C. for about 1 to 20 minutes. Then, heat treatment is performed in a nitrogen atmosphere at a temperature of about 800 ° C. to 1100 ° C. for about 1 to 20 minutes. A first Si thermal oxide film 11 having a thickness of several nanometers to several tens of nanometers is formed on the first polysilicon film 3 by thermal oxidation treatment in an oxygen atmosphere of several percent in the former short time (FIG. 2A). ).
[0012]
Next, after the resist 13 is coated and patterned, the first Si thermal oxide film 11 is etched by a dry etcher using the resist 13 as a mask. By this etching, the shape of the first Si thermal oxide film 11 becomes a tapered shape 12 ((b) in the figure).
Next, anisotropic etching is performed on the first polysilicon film 3 by an ECR (Electron Cyclotron Resonance) etcher using the resist 13 and the first Si thermal oxide film 11 as a mask. In this anisotropic etching, when the etching selectivity of Si and SiO 2 is set to a predetermined value, the tapered first Si thermal oxide film 11 functions as a mask when the first polysilicon film 3 is etched. Then, the edge portion of the first polysilicon film 3 to be the gate electrode can be processed into a tapered shape 14 (FIG. 3C). FIG. 2A is an enlarged view of a circle A in FIG.
[0013]
Next, by performing a thermal oxidation process, the edge portion of the first polysilicon film 3 becomes rounded, and a second Si thermal oxide film 4 is formed on the rounded first polysilicon film 3 (see FIG. (D)). Since the second Si thermal oxide film 4 is formed on the rounded first polysilicon film 3, the second Si thermal oxide film 4 at the edge of the first polysilicon film 3 is not thinned. FIG. 2B is an enlarged view of a circle B in FIG. It is shown in a rounded state 15 in FIG. Note that the first Si thermal oxide film 11 may or may not be removed before the second Si thermal oxide film 4 is formed.
[0014]
Next, when a second polysilicon film 5 serving as a transfer electrode is formed on the first polysilicon film 3 via the second Si thermal oxide film 4, a laminated structure is formed (FIG. 5E). In this laminated structure, the edge portion of the first polysilicon film 3 is rounded, and the thickness of the second Si thermal oxide film 4 at this location does not become thin. Therefore, when a voltage is applied to the laminated structure, As a result, electric field concentration does not occur and the reliability of the semiconductor device is improved. FIG. 1E shows a semiconductor device corresponding to FIG.
[0015]
【The invention's effect】
In this invention, the edge portion of the first polysilicon film is rounded and the Si thermal oxide film is prevented from being thinned at the edge portion, so that electric field concentration in the Si thermal oxide film at the edge portion does not occur. The reliability of the semiconductor device can be improved.
[Brief description of the drawings]
FIGS. 1A to 1E are cross-sectional views of essential steps shown in the order of steps in a method of manufacturing a semiconductor device according to an embodiment of the present invention. FIGS. 2A and 2B are enlarged views of FIGS. FIG. 3 is a cross-sectional view of a main part of a charge transfer unit of a CCD. FIG. 4 is a conventional method for manufacturing an electrode structure of a charge transfer unit of a CCD. Fig. 5 is an enlarged view of Figs. 4 (b) and 4 (c).
1 p substrate 2 gate oxide film 3 first polysilicon film 4 second Si thermal oxide film 5 second polysilicon film 11 first Si thermal oxide film 12, 14 tapered 13 resist 15 curled state 51 p substrate 52 gate oxide film 53 First polysilicon film 54 Si thermal oxide film 55 second polysilicon film 56 resist 57 acute angle

Claims (2)

絶縁膜上に選択的にポリシリコン膜を形成し、該ポリシリコン膜の表面にシリコン熱酸化膜を形成した半導体装置の製造方法において、
半導体基板上に絶縁膜を形成する工程と、該絶縁膜上にポリシリコン膜を全面に形成する工程と、前記半導体基板を酸素雰囲気中で熱処理を行い、続いて、窒素雰囲気中において熱処理を行い第1シリコン熱酸化膜を前記ポリシリコン膜上に形成する工程と、全面にレジストを被覆する工程と、該レジストを選択的に除去する工程と、該レジストをマスクに前記第1シリコン熱酸化膜をエッチングし、前記レジスト外周端部近傍の前記第1シリコン熱酸化膜の端部の形状をテーパー状に加工する工程と、前記の第1シリコン熱酸化膜をマスクに、前記ポリシリコン膜を異方性エッチングし、該ポリシリコン膜の表面の外周端部をテーパー状に加工する工程と、該テーパー状に加工する工程に続いて、熱酸化処理を行い、前記ポリシリコン膜のテーパー部を丸め、該ポリシリコン膜上に第2シリコン熱酸化膜を形成する工程と、を含むことを特徴とする半導体装置の製造方法。
In a method for manufacturing a semiconductor device in which a polysilicon film is selectively formed on an insulating film and a silicon thermal oxide film is formed on the surface of the polysilicon film,
A step of forming an insulating film on the semiconductor substrate; a step of forming a polysilicon film on the whole surface of the insulating film; and heat-treating the semiconductor substrate in an oxygen atmosphere, followed by a heat treatment in a nitrogen atmosphere. A step of forming a first silicon thermal oxide film on the polysilicon film, a step of covering the entire surface with a resist, a step of selectively removing the resist, and the first silicon thermal oxide film using the resist as a mask; And a step of processing the shape of the end portion of the first silicon thermal oxide film in the vicinity of the outer peripheral end portion of the resist into a taper shape, and the polysilicon film using the first silicon thermal oxide film as a mask. Following the steps of isotropic etching and processing the outer peripheral edge of the surface of the polysilicon film into a taper shape, and the step of processing into the taper shape, thermal oxidation treatment is performed to Rounded supermarkets portion, a method of manufacturing a semiconductor device which comprises a step of forming a second silicon thermal oxide film on the polysilicon film.
絶縁膜上に選択的にポリシリコン膜を形成し、該ポリシリコン膜の表面にシリコン熱酸化膜を形成した半導体装置の製造方法において、
半導体基板上に絶縁膜を形成する工程と、該絶縁膜上にポリシリコン膜を全面に形成する工程と、前記半導体基板を酸素雰囲気中で熱処理を行い、続いて、窒素雰囲気中において熱処理を行い第1シリコン熱酸化膜を前記ポリシリコン膜上に形成する工程と、全面にレジストを被覆する工程と、該レジストを選択的に除去する工程と、該レジストをマスクに前記第1シリコン熱酸化膜をエッチングし、前記レジスト外周端部近傍の前記第1シリコン熱酸化膜の端部の形状をテーパー状に加工する工程と、前記の第1シリコン熱酸化膜をマスクに、前記ポリシリコン膜を異方性エッチングし、該ポリシリコン膜の表面の外周端部をテーパー状に加工する工程と、該テーパー状に加工する工程に続いて、前記第1シリコン熱酸化膜を除去する工程と、熱酸化処理を行い、前記ポリシリコン膜のテーパー部を丸め、該ポリシリコン膜上に第2シリコン熱酸化膜を形成する工程と、を含むことを特徴とする半導体装置の製造方法。
In a method for manufacturing a semiconductor device in which a polysilicon film is selectively formed on an insulating film and a silicon thermal oxide film is formed on the surface of the polysilicon film,
A step of forming an insulating film on the semiconductor substrate; a step of forming a polysilicon film on the whole surface of the insulating film; and heat-treating the semiconductor substrate in an oxygen atmosphere, followed by a heat treatment in a nitrogen atmosphere. A step of forming a first silicon thermal oxide film on the polysilicon film, a step of covering the entire surface with a resist, a step of selectively removing the resist, and the first silicon thermal oxide film using the resist as a mask; And a step of processing the shape of the end portion of the first silicon thermal oxide film in the vicinity of the outer peripheral end portion of the resist into a taper shape, and the polysilicon film using the first silicon thermal oxide film as a mask. and anisotropic etching, the step of processing the outer peripheral edge portion of the surface of the polysilicon film into a tapered shape, following the step of processing the said tapered removing the first silicon thermal oxide film process , By thermal oxidation process, the rounded tapered portion of the polysilicon film, a method of manufacturing a semiconductor device which comprises forming a first silicon thermal oxide film on the polysilicon film.
JP2000260515A 2000-08-30 2000-08-30 Manufacturing method of semiconductor device Expired - Fee Related JP4639445B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000260515A JP4639445B2 (en) 2000-08-30 2000-08-30 Manufacturing method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000260515A JP4639445B2 (en) 2000-08-30 2000-08-30 Manufacturing method of semiconductor device

Publications (2)

Publication Number Publication Date
JP2002075907A JP2002075907A (en) 2002-03-15
JP4639445B2 true JP4639445B2 (en) 2011-02-23

Family

ID=18748508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000260515A Expired - Fee Related JP4639445B2 (en) 2000-08-30 2000-08-30 Manufacturing method of semiconductor device

Country Status (1)

Country Link
JP (1) JP4639445B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4970997B2 (en) * 2006-03-30 2012-07-11 パナソニック株式会社 Manufacturing method of nanowire transistor
US10608076B2 (en) * 2017-03-22 2020-03-31 Advanced Micro Devices, Inc. Oscillating capacitor architecture in polysilicon for improved capacitance

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH022634A (en) * 1988-06-17 1990-01-08 Fujitsu Ltd Semiconductor device
JPH03293724A (en) * 1990-04-12 1991-12-25 Oki Electric Ind Co Ltd Manufacture of semiconductor element
JPH0766421A (en) * 1993-08-31 1995-03-10 Ryoden Semiconductor Syst Eng Kk Thin-film transistor and its manufacture

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08181146A (en) * 1994-12-22 1996-07-12 Sony Corp Manufacture of semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH022634A (en) * 1988-06-17 1990-01-08 Fujitsu Ltd Semiconductor device
JPH03293724A (en) * 1990-04-12 1991-12-25 Oki Electric Ind Co Ltd Manufacture of semiconductor element
JPH0766421A (en) * 1993-08-31 1995-03-10 Ryoden Semiconductor Syst Eng Kk Thin-film transistor and its manufacture

Also Published As

Publication number Publication date
JP2002075907A (en) 2002-03-15

Similar Documents

Publication Publication Date Title
US6770540B2 (en) Method of fabricating semiconductor device having L-shaped spacer
JPH04123439A (en) Manufacture of semiconductor device
JP4639445B2 (en) Manufacturing method of semiconductor device
JP4192381B2 (en) Semiconductor device and manufacturing method thereof
JP2000277488A (en) Manufacture of semiconductor device
JP2000349287A (en) Semiconductor device and manufacture thereof
JP2794565B2 (en) Manufacturing method of groove type capacitor
JPH0196950A (en) Manufacture of semiconductor device
JP2000100747A (en) Semiconductor device and manufacture thereof
JPH08316466A (en) Mos semiconductor device and manufacture thereof
JP4511101B2 (en) Manufacturing method of semiconductor device
JPH09260664A (en) Manufacture of semiconductor device
JPH0330336A (en) Manufacture of semiconductor device with ldd structure
KR910007116B1 (en) Mosfet device
JP4982919B2 (en) Manufacturing method of semiconductor device
JPS6279625A (en) Manufacture of semiconductor device
US6268271B1 (en) Method for forming buried layer inside a semiconductor device
JPS6223134A (en) Manufacture of semiconductor integrated circuit device
TWI303458B (en) Method for forming a gate and etching a conductive layer
JPH09307096A (en) Silicon quantum fine line structure and its manufacture
JPH04321228A (en) Manufacture of semiconductor device
JPH1032264A (en) Semiconductor device and manufacture thereof
JPH10284716A (en) Manufacture of semiconductor device
JP2006173184A (en) Manufacturing method of semiconductor device
JPS59161070A (en) Manufacture of semiconductor device

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060703

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060704

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061017

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081216

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090219

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20091112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100525

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100715

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101102

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101115

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees