JPH022634A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH022634A
JPH022634A JP14817888A JP14817888A JPH022634A JP H022634 A JPH022634 A JP H022634A JP 14817888 A JP14817888 A JP 14817888A JP 14817888 A JP14817888 A JP 14817888A JP H022634 A JPH022634 A JP H022634A
Authority
JP
Japan
Prior art keywords
film
gate
electrode
polysilicon
sio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14817888A
Other languages
Japanese (ja)
Inventor
Osamu Hataishi
畑石 治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu VLSI Ltd
Fujitsu Ltd
Original Assignee
Fujitsu VLSI Ltd
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu VLSI Ltd, Fujitsu Ltd filed Critical Fujitsu VLSI Ltd
Priority to JP14817888A priority Critical patent/JPH022634A/en
Publication of JPH022634A publication Critical patent/JPH022634A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To obtain a semiconductor device having an insulating film which is deposited on an electrode, that is, a gate and is formed so that an upper part of its film is thicker than that of conventional ones to avoid defective breakdown strength by causing an upper edge part of the electrode to be formed into a smooth projection shape. CONSTITUTION:In the case of a semiconductor device having a three-layer structure; electrode 13 - gate insulating film 12 semiconductor 11, an upper part of the electrode 13 is formed a smooth projection shape. For example, a gate oxide film 12 is formed on the semiconductor substrate 11 and doping is performed by forming a gate polysilicon film 13 on the above film 12. An SiO2 film 14 of a first layer, an Si3N4 film 15, and an SiO2 film 16 of a second layer are allowed to grow and they are etched so that the three-layer structure 17 corresponding to dimensions of the electrode may remain. Once its structure is thermally oxidized, outside gate polysilicon of the structure 17 forms an SiO2 film 18. Then, the SiO2 film 18, polysilicon 13, and the gate oxide film 12 are etched by the use of the three-layer structure 17 as a mask. After that, the Si3N4 film 15 is removed to grow an SiO2 film 19 and then, the SiO2 film 19 is etched by using a resist 20 as a mask.

Description

【発明の詳細な説明】 半導体装置、特に電極−ゲート絶縁膜−半導体(MOS
)の構造をもった半導体装置の電極構造に関し、 MO5構造において、電極(M)すなわちゲート上に被
着される絶縁膜の上方部分が耐圧不良となることのない
ように当該部分の絶縁膜を従来例の場合よりもより厚く
形成した半導体装置を提供することを目的とし、 電極−ゲート絶縁膜−半導体の構造をもった装(産業上
の利用分野〕 本発明は半導体装置、特に電極−ゲート絶縁膜半導体(
MOS)の構造をもった半導体装置の電極構造に関する
[Detailed description of the invention] Semiconductor devices, particularly electrode-gate insulating film-semiconductor (MOS)
Regarding the electrode structure of a semiconductor device having a structure of An object of the present invention is to provide a semiconductor device having a structure of electrode-gate insulating film-semiconductor (industrial application field). Insulating film semiconductor (
This invention relates to an electrode structure of a semiconductor device having a MOS (MOS) structure.

〔従来の技術] 近年、半導体装置の微細化に伴い自己整合技術が多用さ
れる傾向にある。従来技術を第3図を参照して説明する
と、先ず同図(a)に示される如く1、p型(100)
半導体(シリコン)基板1(抵抗10Ω・cm)に95
0°C1HCj2.45分のゲート酸化を行って250
人の膜厚のゲート酸化膜2を形成し、電極を形成するた
めのゲートポリシリコン3を3000人の厚さに成長し
、りん(P゛)を50KeVの加速電圧、8X1015
cm−2のドーズ量でイオン注入しポリシリコンのシー
ト抵抗を約30Ω/口にする。次いで化学気相成技法で
5iOz膜4を約2000人の厚さに成長し、ゲートポ
リシリコンをパターニングして電極を形成する。
[Prior Art] In recent years, self-alignment technology has been increasingly used as semiconductor devices become smaller. The conventional technology will be explained with reference to FIG. 3. First, as shown in FIG.
95 on semiconductor (silicon) substrate 1 (resistance 10Ω・cm)
Perform gate oxidation for 0°C1HCj2.45 minutes and
A gate oxide film 2 with a thickness of 3000 nm is formed, a gate polysilicon 3 for forming an electrode is grown to a thickness of 3000 nm, and phosphorus (P) is grown at an accelerating voltage of 50 KeV and 8×1015.
Ions are implanted at a dose of cm-2 to make the sheet resistance of polysilicon about 30Ω/hole. Next, a 5iOz film 4 is grown to a thickness of about 2000 nm by chemical vapor deposition, and the gate polysilicon is patterned to form electrodes.

次いで、同図(b)に示される如く基板1に砒素(八s
’)を加速電圧60KeV、ドーズff15 X101
5cm−2でイオン注入してソース/ドレイン5を形成
し、次に全面にCVO法で5in2膜6を約3000人
の厚さに成長し、それに電極コンタクト窓を開孔し、メ
タル配線7を形成する。
Next, arsenic (8s) was applied to the substrate 1 as shown in FIG.
') Accelerating voltage 60KeV, dose ff15X101
The source/drain 5 is formed by ion implantation at 5 cm-2, and then a 5-in2 film 6 is grown to a thickness of approximately 3000 nm on the entire surface by CVO method, an electrode contact window is opened in it, and a metal wiring 7 is formed. Form.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記した電極コンタクト窓の開孔は、5iO7膜6上に
レジスト膜8を形成し、それをパターニングして得られ
たレジストパターンをマスクにSiO□膜6をエンチン
グして電極コンタクト窓を開孔し、次いで配線メタルを
被着し、それをパターニングしてメタル配線7を形成す
る。
The electrode contact window described above is formed by forming a resist film 8 on the 5iO7 film 6, patterning it, etching the SiO□ film 6 using the obtained resist pattern as a mask, and opening the electrode contact window. Next, wiring metal is deposited and patterned to form metal wiring 7.

こ\で電極コンタクト窓を自己整合で形成するには、第
4図を参照すると、レジスト膜8をSiO□膜6上に形
成した後に、異方性のドライエツチングにより電極窓が
開孔するまでエツチングする。
In order to form the electrode contact window by self-alignment, referring to FIG. 4, after forming the resist film 8 on the SiO□ film 6, the electrode contact window is formed by anisotropic dry etching until the electrode window is opened. etching.

このような工程で電極コンタクト窓を開孔した後にメタ
ル配線(あるいはポリシリコン配線など)7を形成した
状態は第5図に示される。この構造においては、図に円
Aで囲んだ部分で絶縁膜(SiO□膜6)の膜厚が薄く
なり、耐圧不良となる問題が発生する。
FIG. 5 shows a state in which a metal wiring (or polysilicon wiring, etc.) 7 is formed after opening an electrode contact window in such a process. In this structure, the thickness of the insulating film (SiO□ film 6) becomes thinner in the area surrounded by circle A in the figure, causing a problem of poor breakdown voltage.

そこで本発明は、MO5構造において、電極(M)すな
わちゲート上に被着される絶縁膜の上方部分が耐圧不良
となることのないように当該部分の絶縁膜を従来例の場
合よりもより厚く形成した半導体装置を提供することを
目的とする。
Therefore, in the MO5 structure, the present invention aims to make the insulating film thicker in the upper part of the insulating film deposited on the electrode (M), that is, the gate, than in the conventional example, in order to prevent breakdown voltage failure in the upper part of the insulating film deposited on the electrode (M), that is, the gate. An object of the present invention is to provide a formed semiconductor device.

〔課題を解決するための手段] 上記課題は、電極−ゲート絶縁膜−半導体の構造をもっ
た装置にして、該電極の上方縁部が凸状に滑らかな形状
のものであることを特徴とする半導体装置によって解決
される。
[Means for Solving the Problem] The above problem is achieved by providing a device having an electrode-gate insulating film-semiconductor structure, characterized in that the upper edge of the electrode has a convex and smooth shape. The problem is solved by a semiconductor device that

〔作用〕[Effect]

すなわち本発明は、半導体基板表面に形成された電極(
ゲート)となるゲートポリシリコンをゲート形成部以外
は熱酸化によってSiO□となし、このSiO□を除去
してゲートを形成するが、前記熱酸化において電極(ゲ
ート)の上方縁部分はドーム状にその上方縁部が滑らか
な形状となり、次いで全面に堆積したSiO□を異方性
エツチングすることによって電極(ゲート)の両側部に
Sin、をサイドウオールとして残すので、電極(ゲー
ト)の全表面かはN均一なSiO□でお−われ、従来の
耐圧不良の問題が解決されるのである。
That is, the present invention provides an electrode (
The gate polysilicon that will become the electrode (gate) is thermally oxidized to SiO□ except for the gate formation area, and this SiO□ is removed to form the gate. The upper edge becomes a smooth shape, and then the SiO□ deposited on the entire surface is anisotropically etched to leave Sin as sidewalls on both sides of the electrode (gate), so that the entire surface of the electrode (gate) is is made of N-uniform SiO□, which solves the conventional problem of poor breakdown voltage.

(実施例] 以下、本発明を図示の実施例により具体的に説明する。(Example] Hereinafter, the present invention will be specifically explained with reference to illustrated embodiments.

第1図は本発明方法の工程を示す断面図である。FIG. 1 is a sectional view showing the steps of the method of the present invention.

第1図(a)参照: 半導体(シリコン)基板11に対して従来例の場合と同
様にゲート酸化を行なってゲート酸化膜12を250人
の膜厚に形成し、その上に電極(ゲート)を形成するた
めのポリシリコンを3000人の厚さに成長してゲート
ポリシリコン膜13を形成し、それを従来例の場合の如
くにシート抵抗が約30Ω/口になるようにドーピング
する。次いで第1層のSiO□膜14を約3000人の
厚さにCVD法で成長し、その上ニCVD法で窒化シリ
コン(Si3N4)膜15を約2000人の厚さに成長
し、その上に第2層の5i(h膜16を約3000人の
厚さに成長する。次いで、SiO□膜16.5iJn膜
15、SiO□I!114を、(CF4+Cl1F:l
)ガスを用いる電極(ゲート)の寸法に対応するSiO
□膜16/SiJ、膜15/5in2膜14の3層構造
体17が残るようエンチングする。
Refer to FIG. 1(a): Gate oxidation is performed on a semiconductor (silicon) substrate 11 in the same manner as in the conventional example to form a gate oxide film 12 with a thickness of 250 nm, and an electrode (gate) is formed on it. A gate polysilicon film 13 is formed by growing polysilicon to a thickness of 3000 nm, and doping the gate polysilicon film 13 so that the sheet resistance is about 30Ω/gate as in the conventional example. Next, a first layer of SiO□ film 14 is grown to a thickness of about 3,000 layers using the CVD method, and on top of that a silicon nitride (Si3N4) film 15 is grown to a thickness of about 2,000 layers using the CVD method. The second layer 5i(h film 16 is grown to a thickness of approximately 3000 nm. Next, the SiO□ film 16.5iJn film 15, the SiO□I!
) SiO corresponding to the dimensions of the electrode (gate) using gas
□ Etching is performed so that the three-layer structure 17 of film 16/SiJ and film 15/5in2 film 14 remains.

第1図(b)参照: 次にゲートポリシリコンを約3000人の厚さに熱酸化
する。そのときの条件は、例えば950’C、ウェット
雰囲気において約380分である。この熱酸化において
は、5iJ4膜15が耐酸化性をもつので、第1図に示
す3層構造体17の外方のゲートポリシリコンは酸化さ
れSin、膜18となるが、3層構造体17の下方部分
のポリシリコンは酸化されず、このポリシリコンが電極
(ゲート)となるのである。
See FIG. 1(b): Next, the gate polysilicon is thermally oxidized to a thickness of approximately 3000 nm. The conditions at that time are, for example, 950'C and about 380 minutes in a wet atmosphere. In this thermal oxidation, since the 5iJ4 film 15 has oxidation resistance, the outer gate polysilicon of the three-layer structure 17 shown in FIG. The polysilicon below is not oxidized and becomes the electrode (gate).

第1図(C)参照: 次に、例えば(SiCffi a +CJ22)ガスを
用い、3層構造体17をマスクに、5i02膜18とそ
の下のゲートポリシリコン13およびゲート酸化膜12
をエツチングする。このとき、5iJn膜15の上のS
iO□膜16もエンチングされる。
Refer to FIG. 1(C): Next, using (SiCffia +CJ22) gas, for example, and using the three-layer structure 17 as a mask, the 5i02 film 18, the gate polysilicon 13 under it, and the gate oxide film 12 are removed.
etching. At this time, S on the 5iJn film 15
The iO□ film 16 is also etched.

第1図(d)参照ニ リン酸を用いてS i :I N、膜15を除去し、C
VO法でSiO□膜19を約3000人の厚さに成長し
、全面に塗布したレジスト20を電極コンタクト窓を開
孔する如くにパターニングし、異方性エツチングでSi
O□膜19をエツチングすると、成長したSiO□の一
部は電極(ゲート)となるポリシリコン13の両側に残
ってサイドウオールとなる。
Refer to FIG. 1(d). Remove the Si:I N film 15 using diphosphoric acid, and remove the C
A SiO□ film 19 was grown to a thickness of approximately 3000 nm using the VO method, and the resist 20 coated on the entire surface was patterned to form electrode contact windows, and the SiO film 19 was grown using anisotropic etching.
When the O□ film 19 is etched, a portion of the grown SiO□ remains on both sides of the polysilicon 13 that will serve as the electrode (gate), forming sidewalls.

以後、従来例の場合と同様に配線図メタルを被着し、そ
れをパターニングしてソース/ドレイン電極(メタル配
線)を形成する。
Thereafter, wiring diagram metal is deposited and patterned to form source/drain electrodes (metal wiring) in the same manner as in the conventional example.

上記した第1図(b)を参照して説明した工程(ゲート
ポリシリコンの熱酸化)で、3層構造体17の下方では
熱酸化されない電極(ゲート)となるポリシリコンがド
ーム状になって残り、第1図(C)を参照して説明した
工程でSiO□膜18をエンチングしたときに、3層構
造体17の電極(ゲート)となるゲートポリシリコン1
3の上面の縁部分が凸状に滑らかな形状になっている。
In the step (thermal oxidation of the gate polysilicon) described above with reference to FIG. The remaining gate polysilicon 1, which will become the electrode (gate) of the three-layer structure 17, is formed when the SiO□ film 18 is etched in the step described with reference to FIG. 1(C).
3 has a smooth convex edge.

そして、このゲートポリシリコンの両側部にはSiO□
がサイドウオールとなって残っているので、ゲートポリ
シリコンの表面は全体にわたっては\均一な厚さのSi
O□でおおわれていて、従来例では第2図(a)に示さ
れるように電極(ゲート)の上方縁部でその上のSiO
□膜が薄くなったのに対し、本発明実施例では第2図[
有])に示されるように電極(ゲート)となるゲートポ
リシリコンの全表面上に滑らかには!均一に5i02膜
が存在するので、従来例のゲート耐圧不良の問題が解決
される。
And, on both sides of this gate polysilicon, SiO□
remains as a sidewall, so the entire surface of the gate polysilicon has a uniform thickness of Si.
In the conventional example, as shown in FIG. 2(a), the upper edge of the electrode (gate) is covered with SiO□.
□While the film became thinner, in the example of the present invention, the film became thinner, as shown in Fig. 2 [
]) As shown in Figure 1), it is smooth on the entire surface of the gate polysilicon that will become the electrode (gate)! Since the 5i02 film is uniformly present, the problem of poor gate breakdown voltage in the conventional example is solved.

[発明の効果] 以上のように本発明によれば、MO5構造において、メ
タルすなわちゲートポリシリコンの表面がその上方縁部
において滑らかにドーム状に形成され、その上に被着さ
れる絶縁膜(SiO□膜)はゲートポリシリコン上には
〜′均一な厚さで形成されているので、従来の自己整合
技術を安定に適用しえる効果があり、さらに本発明はM
O3構造をもったその他のすべての半導体装置に適用さ
れうるちのである。
[Effects of the Invention] As described above, according to the present invention, in the MO5 structure, the surface of the metal, that is, the gate polysilicon, is smoothly formed into a dome shape at its upper edge, and the insulating film ( Since the SiO□ film) is formed with a uniform thickness on the gate polysilicon, the conventional self-alignment technology can be stably applied.
This can be applied to all other semiconductor devices having the O3 structure.

15はSi3N4膜、 16は第2層SiO□膜、 17は3層構造体、 18はSiO□膜、 19はSiO□膜、 20はレジスト を示す。15 is a Si3N4 film, 16 is a second layer SiO□ film, 17 is a three-layer structure, 18 is a SiO□ film, 19 is a SiO□ film, 20 is resist shows.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(d)は本発明実施例断面図、第2図は
従来例と本発明実施例を対比する断面図、 第3図(a)と(b)は従来例断面図、第4図は従来例
断面図、 第5図は従来例の問題点を示す断面図である。 図中、 11は半導体基板、 12はゲート酸化膜、 13はゲートポリシリコン、 14は第1層SiO□膜、
Figures 1 (a) to (d) are cross-sectional views of the embodiment of the present invention, Figure 2 is a cross-sectional view comparing the conventional example and the embodiment of the present invention, and Figures 3 (a) and (b) are cross-sectional views of the conventional example. , FIG. 4 is a sectional view of a conventional example, and FIG. 5 is a sectional view showing problems in the conventional example. In the figure, 11 is a semiconductor substrate, 12 is a gate oxide film, 13 is a gate polysilicon, 14 is a first layer SiO□ film,

Claims (1)

【特許請求の範囲】 電極−ゲート絶縁膜−半導体の構造をもった装置にして
、 該電極の上方縁部が凸状に滑らかな形状のものであるこ
とを特徴とする半導体装置。
[Scope of Claim] A semiconductor device having an electrode-gate insulating film-semiconductor structure, characterized in that the upper edge of the electrode has a convex and smooth shape.
JP14817888A 1988-06-17 1988-06-17 Semiconductor device Pending JPH022634A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14817888A JPH022634A (en) 1988-06-17 1988-06-17 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14817888A JPH022634A (en) 1988-06-17 1988-06-17 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH022634A true JPH022634A (en) 1990-01-08

Family

ID=15446996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14817888A Pending JPH022634A (en) 1988-06-17 1988-06-17 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH022634A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002075907A (en) * 2000-08-30 2002-03-15 Fuji Electric Co Ltd Semiconductor device and its manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002075907A (en) * 2000-08-30 2002-03-15 Fuji Electric Co Ltd Semiconductor device and its manufacturing method
JP4639445B2 (en) * 2000-08-30 2011-02-23 富士電機システムズ株式会社 Manufacturing method of semiconductor device

Similar Documents

Publication Publication Date Title
JPS5946107B2 (en) Manufacturing method of MIS type semiconductor device
US4299862A (en) Etching windows in thick dielectric coatings overlying semiconductor device surfaces
JPS61247051A (en) Manufacture of semiconductor device
JP3125915B2 (en) Method for manufacturing semiconductor device
JP3173114B2 (en) Thin film transistor
JPH0415619B2 (en)
JPH022634A (en) Semiconductor device
JPS6251216A (en) Manufacture of semiconductor device
JP3067340B2 (en) Semiconductor device
JPH03116968A (en) Manufacture of semiconductor device
JPS61239671A (en) Manufacture of semiconductor memory device
KR100192538B1 (en) Method of manufacturing semiconductor device
JP2822463B2 (en) Method of forming multilayer wiring
JP3232161B2 (en) Method for manufacturing semiconductor device
JPH01122167A (en) Manufacture of semiconductor device
JPH1126756A (en) Manufacture of semiconductor device
JPH0267728A (en) Formation of element isolating oxide film
JPH02211633A (en) Semiconductor device and manufacture thereof
JPS60245250A (en) Manufacture of semiconductor device
JPS58102558A (en) Semiconductor device and manufacture thereof
JPS5817662A (en) Manufacture of semiconductor device
JPS641065B2 (en)
JPS6377156A (en) Manufacture of semiconductor device
JPH027432A (en) Manufacture of semiconductor device
JPH0298173A (en) Manufacture of semiconductor memory