JPH01122167A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH01122167A
JPH01122167A JP27930887A JP27930887A JPH01122167A JP H01122167 A JPH01122167 A JP H01122167A JP 27930887 A JP27930887 A JP 27930887A JP 27930887 A JP27930887 A JP 27930887A JP H01122167 A JPH01122167 A JP H01122167A
Authority
JP
Japan
Prior art keywords
silicon layer
layer
silicon
resist
gate insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27930887A
Other languages
Japanese (ja)
Inventor
Seiichiro Kawamura
河村 誠一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP27930887A priority Critical patent/JPH01122167A/en
Publication of JPH01122167A publication Critical patent/JPH01122167A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To increase gate breakdown strength by thickly forming a gate insulating film at the peripheral end section of recrystallized silicon through a low temperature process. CONSTITUTION:An silicon layer 3 is shaped, and a resist pattern 4 coated so as to expose the peripheral end section 3a of the silicon layer is formed onto the silicon layer 3. Ions are implanted, using the resist 4 as a mask from the upper section of the silicon layer 3, the resist 4 is removed, and the surface of the silicon layer 3 is oxidized and a gate insulating layer 5 is shaped. Consequently, an oxide layer 5a is formed thickly at the external peripheral end section 3a of the recrystallized layer 3, and an internal section is oxidized at a normal silicon oxidizing rate. Accordingly, the gate insulating film 5 can be formed thickly through a low temperature process, thus the breakdown strength may be held.

Description

【発明の詳細な説明】 〔概 要〕 本発明は半導体装置の製造方法に係り、特にメサ型構造
の801/MO5FETにおけるゲート酸化膜耐圧を防
止する方法に関し、 本発明は800℃以下の低温プロセスでゲート耐圧が高
いメサ型SOI/MO3FETの製造方法を提供するこ
とを目的とし、 シリコン基板上に絶縁層を形成し、該絶縁層上にシリコ
ン層を形成し、該シリコン層上にゲート絶縁層を形成し
た後、ゲート金属層を形成する工程を含んでなる半導体
装置の製造方法において;前記シリコン層を形成した後
該シリコン層上に該シリコン層周縁端部を露出するよう
に被覆されたレジストパターンを形成し、該シリコン層
上方から該シリコン層に該レジストをマスクとしてイオ
ン注入を行ない、該レジストを除去した後、該シリコン
層表面を酸化することによって前記ゲート絶縁層を形成
することを構成とする。
Detailed Description of the Invention [Summary] The present invention relates to a method for manufacturing a semiconductor device, and in particular to a method for preventing gate oxide film breakdown voltage in an 801/MO5FET with a mesa structure. The purpose of the present invention is to provide a method for manufacturing a mesa type SOI/MO3FET with a high gate withstand voltage. A method for manufacturing a semiconductor device comprising the step of forming a gate metal layer after forming a silicon layer; a resist coated on the silicon layer so as to expose a peripheral edge of the silicon layer; forming a pattern, implanting ions into the silicon layer from above the silicon layer using the resist as a mask, removing the resist, and then oxidizing the surface of the silicon layer to form the gate insulating layer. shall be.

〔産業上の利用分野〕[Industrial application field]

本発明は半導体装置の製造方法に係り、特にメサ型構造
のSol/MOSFETにおけるゲート酸化膜耐圧を防
止する方法に関する。
The present invention relates to a method for manufacturing a semiconductor device, and particularly to a method for preventing gate oxide film breakdown voltage in a Sol/MOSFET having a mesa structure.

〔従来の技術及びその問題点〕[Conventional technology and its problems]

メサ型構造のS OI  (Silicon On I
nsulatingSubs tra te)上にMO
SFETを形成してなる半導体装置はLOGO5構造の
半導体装置に比し集積度は向上する。しかし該SOI/
MOSFETのゲート絶縁膜はLOGOS構造のそれと
比し耐圧が低くなる問題がある。この原因は例えば単結
晶シリコンからなるゲートの左右エツジ部において電界
が集中しやすくなり、ゲート絶縁膜耐圧が低下する問題
を有していた。
S OI (Silicon On I) with mesa-type structure
MO on nsulatingSubs rate)
A semiconductor device formed by forming an SFET has a higher degree of integration than a semiconductor device having a LOGO5 structure. However, the SOI/
There is a problem in that the gate insulating film of a MOSFET has a lower breakdown voltage than that of a LOGOS structure. The reason for this is that the electric field tends to concentrate at the left and right edge portions of the gate made of, for example, single crystal silicon, resulting in a problem that the breakdown voltage of the gate insulating film decreases.

このゲート絶縁膜耐圧の低下を防止するために(1)酸
化温度を例えば1000℃以上の高温にしてゲート酸化
膜を形成する。
In order to prevent the breakdown voltage of the gate insulating film from decreasing, (1) the gate oxide film is formed at a high oxidation temperature of, for example, 1000° C. or higher;

(2)マスク等を使用してFET等の半導体デバイス形
成領域周辺をLOGO5の様に酸化し周辺のみ酸化層を
厚く形成する; 等の方法が考えられる。
(2) Using a mask or the like, oxidize the periphery of a region where a semiconductor device such as an FET is to be formed, as shown in LOGO5, and form a thick oxide layer only in the periphery.

しかしながら(1)のようにゲート絶縁膜を形成する際
の酸化温度を高温にするとSo+の低温化プロセスの傾
向に逆行し3次元Solデバイスプロセスとしては適用
できない。また(2)のように半導体デバイス形成領域
周辺のみ厚くすると再結晶シリコンが上下から酸化され
るために第4図に示すように単結晶シリコン層7か細く
鋭く残り、酸化層が薄くなり、その部分において電界集
中がおこる可能性が高い。更に(2)の場合には長時間
の酸化時間を要し、これも3次元Solデバイスプロセ
スとしては不適当である。
However, if the oxidation temperature is set to a high temperature when forming the gate insulating film as in (1), it goes against the trend of lowering the temperature of So+ and cannot be applied as a three-dimensional Sol device process. Furthermore, as shown in (2), if the thickness is increased only around the semiconductor device forming area, the recrystallized silicon will be oxidized from above and below, and as shown in FIG. There is a high possibility that electric field concentration will occur. Furthermore, in case (2), a long oxidation time is required, which is also inappropriate for a three-dimensional Sol device process.

本発明は800℃以下の低温プロセスにてゲート耐圧が
高いメサ型SOI / MOSFETの製造方法を提供
することを目的とする。
An object of the present invention is to provide a method for manufacturing a mesa-type SOI/MOSFET with a high gate breakdown voltage using a low-temperature process of 800° C. or lower.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点は本発明によればシリコン基板上に絶縁層を
形成し、該絶縁層上にシリコン層を形成し、該シリコン
層上にゲート絶縁層を形成した後、ゲート金属層を形成
する工程を含んでなる半導体装置の製造方法において; 前記シリコン層を形成した後該シリコン層上に該シリコ
ン層周縁端部を露出するように被覆されたレジストパタ
ーンを形成し、該シリコン層上方から8亥シリコン層に
8亥レジストをマスクとしてイオン注入を行ない、該レ
ジストを除去した後、該シリコン層表面を酸化すること
によって前記ゲート絶縁層を形成することを特徴とする
半導体装置の製造方法によって解決される。
According to the present invention, the above problem is solved in the step of forming an insulating layer on a silicon substrate, forming a silicon layer on the insulating layer, forming a gate insulating layer on the silicon layer, and then forming a gate metal layer. A method for manufacturing a semiconductor device comprising: After forming the silicon layer, a resist pattern is formed on the silicon layer so as to expose the peripheral edge of the silicon layer, and a resist pattern is formed on the silicon layer for 8 minutes from above the silicon layer. The problem is solved by a method for manufacturing a semiconductor device, characterized in that the gate insulating layer is formed by implanting ions into a silicon layer using a resist as a mask, removing the resist, and then oxidizing the surface of the silicon layer. Ru.

〔作 用〕[For production]

本発明によればゲート絶縁膜を低温プロセスで厚く形成
することができるので耐圧を保持することができる。
According to the present invention, the gate insulating film can be formed thickly by a low-temperature process, so that breakdown voltage can be maintained.

〔実施例〕〔Example〕

以下本発明の実施例を図面に基づいて説明する。 Embodiments of the present invention will be described below based on the drawings.

第1A図、第1B図、第2図及び第3A図、第3B図は
本発明の一実施例を説明するための図である。
FIG. 1A, FIG. 1B, FIG. 2, FIG. 3A, and FIG. 3B are diagrams for explaining one embodiment of the present invention.

第1A図に示すように シリコン(100)基板1上に5iOzからなる絶縁層
2を熱酸化により厚さ約1μmに形成し、次に再結晶シ
リコン層3をメサ型に素子分離し、次に単結晶シリコン
3の半導体デバイス形成領域周辺約2μm幅(第1B図
)残すようにパターニングされたレジストパターン4で
あり、再結晶シリコン層3上方から高ドースイオン注入
を行なう。例えばnチャンネルSol/MOSFETの
場合はB9イオンを50KeVで約6 X 10 I4
/ctlの注入条件でイオン注入を行なう。その後レジ
スト4を除去して800’Cdryoz中で再結晶シリ
コン層3を酸化する。
As shown in FIG. 1A, an insulating layer 2 made of 5iOz is formed on a silicon (100) substrate 1 to a thickness of about 1 μm by thermal oxidation, then the recrystallized silicon layer 3 is separated into mesa shapes, and then A resist pattern 4 is patterned to leave a width of about 2 μm (FIG. 1B) around the semiconductor device formation region of the single crystal silicon 3, and high-dose ion implantation is performed from above the recrystallized silicon layer 3. For example, in the case of an n-channel Sol/MOSFET, the B9 ion is approximately 6 X 10 I4 at 50 KeV.
Ion implantation is performed under the implantation condition of /ctl. Thereafter, the resist 4 is removed and the recrystallized silicon layer 3 is oxidized in 800'C dryoz.

先に高濃度にイオン注入(ドープ)された再結晶層の外
周縁端部3aは厚く酸化層5a−が形成され、該外周縁
端部内側部分は通常のシリコン酸化レートで酸化される
(第2図)。
A thick oxide layer 5a- is formed on the outer peripheral edge part 3a of the recrystallized layer which has been ion-implanted (doped) at a high concentration, and the inner part of the outer peripheral edge part is oxidized at a normal silicon oxidation rate. Figure 2).

その後得られたゲート酸化膜上にCVD法を用いて多結
晶シリコンからなるゲート金属層6を形成して第3A図
及び第3B図に示すように3017MO5FETのプロ
セスによりS:ソース、Dニドレイン、G:ゲートの半
導体デバイスを形成する。すなわち第3B図に特に示す
ように再結晶層の外周縁端部に厚い酸化層5aが形成さ
れるので従来生じていたゲート耐圧不足を解消でき再結
晶シリコン層3とゲート金属層6とがゲート絶縁層5を
介して有効に分離される。
Thereafter, a gate metal layer 6 made of polycrystalline silicon is formed on the obtained gate oxide film using the CVD method, and as shown in FIGS. 3A and 3B, S: source, D ni dorain, G : Forming a gate semiconductor device. That is, as particularly shown in FIG. 3B, a thick oxide layer 5a is formed at the outer peripheral edge of the recrystallized layer, so that the lack of gate withstand voltage that has conventionally occurred can be solved, and the recrystallized silicon layer 3 and the gate metal layer 6 are connected to the gate. They are effectively separated via the insulating layer 5.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば再結晶シリコンの周
縁端部にゲート絶縁膜(SiOz)を厚く形成すること
ができるのでゲート耐圧が高いSOI/MO5FETを
作ることができ、多層にデバイスを積層する3次元S0
1/LSIのプロセスにも有効に適用でき汎用性がある
As explained above, according to the present invention, it is possible to form a thick gate insulating film (SiOz) on the peripheral edge of recrystallized silicon, so it is possible to make an SOI/MO5FET with a high gate breakdown voltage, and it is possible to stack devices in multiple layers. 3D S0
1/LSI process and has general versatility.

【図面の簡単な説明】[Brief explanation of the drawing]

第1A図、第1B図、第2図及び第3A図、第3B図は
本発明の一実施例を説明するための図であり、第4図は
従来例を説明するための図である。 1・・・シリコン基板、  2・・・絶縁層、3・・・
シリコン層、    4・・・レジストパターン、5・
・・ゲート絶縁層、   6・・・ゲート金属層、7・
・・シリコン層。 1 1 1 1B“ 第1B図 第2図 3パ・シリコン層 4・・・レノストパターン 5・・・ダート絶縁層
1A, 1B, 2, 3A, and 3B are diagrams for explaining an embodiment of the present invention, and FIG. 4 is a diagram for explaining a conventional example. 1... Silicon substrate, 2... Insulating layer, 3...
silicon layer, 4... resist pattern, 5...
...Gate insulating layer, 6...Gate metal layer, 7.
...Silicon layer. 1 1 1 1B" Fig. 1B Fig. 2 Fig. 3 Pa-silicon layer 4... Renost pattern 5... Dirt insulating layer

Claims (1)

【特許請求の範囲】[Claims] 1、シリコン基板(1)上に絶縁層(2)を形成し、該
絶縁層(2)上にシリコン層(3)を形成し、該シリコ
ン層(3)上にゲート絶縁層(5)を形成した後、ゲー
ト金属層(6)を形成する工程を含んでなる半導体装置
の製造方法において;前記シリコン層(3)を形成した
後該シリコン層(3)上に該シリコン層周縁端部を露出
するように被覆されたレジストパターン(4)を形成し
、該シリコン層上方から該シリコン層に該レジストをマ
スクとしてイオン注入を行ない、該レジストを除去した
後、該シリコン層(3)表面を酸化することによって前
記ゲート絶縁層を形成することを特徴とする半導体装置
の製造方法。
1. Form an insulating layer (2) on a silicon substrate (1), form a silicon layer (3) on the insulating layer (2), and form a gate insulating layer (5) on the silicon layer (3). After forming the silicon layer (3), a peripheral edge portion of the silicon layer (3) is formed on the silicon layer (3). A resist pattern (4) is formed so as to be exposed, and ions are implanted into the silicon layer from above the silicon layer using the resist as a mask. After removing the resist, the surface of the silicon layer (3) is A method for manufacturing a semiconductor device, characterized in that the gate insulating layer is formed by oxidation.
JP27930887A 1987-11-06 1987-11-06 Manufacture of semiconductor device Pending JPH01122167A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27930887A JPH01122167A (en) 1987-11-06 1987-11-06 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27930887A JPH01122167A (en) 1987-11-06 1987-11-06 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH01122167A true JPH01122167A (en) 1989-05-15

Family

ID=17609353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27930887A Pending JPH01122167A (en) 1987-11-06 1987-11-06 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH01122167A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5381029A (en) * 1991-03-01 1995-01-10 Mitsubishi Denki Kabushiki Kaisha Semiconductor device including semiconductor layer having impurity region and method of manufacturing the same
US5918116A (en) * 1994-11-30 1999-06-29 Lucent Technologies Inc. Process for forming gate oxides possessing different thicknesses on a semiconductor substrate

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62202559A (en) * 1986-02-07 1987-09-07 Fujitsu Ltd Semiconductor device and its manufacture

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62202559A (en) * 1986-02-07 1987-09-07 Fujitsu Ltd Semiconductor device and its manufacture

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5381029A (en) * 1991-03-01 1995-01-10 Mitsubishi Denki Kabushiki Kaisha Semiconductor device including semiconductor layer having impurity region and method of manufacturing the same
US5446301A (en) * 1991-03-01 1995-08-29 Mitsubishi Denki Kabushiki Kaisha Semiconductor device including semiconductor layer having impurity region and method of manufacturing the same
US5918116A (en) * 1994-11-30 1999-06-29 Lucent Technologies Inc. Process for forming gate oxides possessing different thicknesses on a semiconductor substrate

Similar Documents

Publication Publication Date Title
JPH04102317A (en) Manufacture of semiconductor device
JPS62130558A (en) Manufacture of integrated circuit device
JPS61247051A (en) Manufacture of semiconductor device
JPS61258475A (en) Manufacture of semiconductor device having ldd structure
JPH01122167A (en) Manufacture of semiconductor device
JPH04116846A (en) Semiconductor device and its manufacture
JPH0316150A (en) Manufacture of semiconductor element
JPS597228B2 (en) Zetsuen Gate Handout Taisouchino Seizouhouhou
JPS6072274A (en) Manufacture of semiconductor device
JPS61166154A (en) Manufacture of mis type semiconductor device
JPH0461497B2 (en)
JPS62263658A (en) Semiconductor device and manufacture thereof
JPS61180485A (en) Manufacture of mos semiconductor device
JPS61180484A (en) Manufacture of vertical field effect transistor
JPS62281351A (en) Manufacture of semiconductor device
JPS6149469A (en) Manufacture of semiconductor device
JPH0274042A (en) Manufacture of mis transistor
JPS5878437A (en) Manufature of semiconductor device
JPH022634A (en) Semiconductor device
JPS6266678A (en) Manufacture of semiconductor device
JPS62108573A (en) Manufacture of semiconductor device
JPS594171A (en) Manufacture of semiconductor device
JPH02240934A (en) Manufacture of mos semiconductor device
JPH01300563A (en) Manufacture of semiconductor device
JPS632349A (en) Manufacture of semiconductor device