JP2000277488A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JP2000277488A
JP2000277488A JP11077672A JP7767299A JP2000277488A JP 2000277488 A JP2000277488 A JP 2000277488A JP 11077672 A JP11077672 A JP 11077672A JP 7767299 A JP7767299 A JP 7767299A JP 2000277488 A JP2000277488 A JP 2000277488A
Authority
JP
Japan
Prior art keywords
trench
etching
oxide film
gate
edge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP11077672A
Other languages
Japanese (ja)
Inventor
Yuichi Onozawa
勇一 小野澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP11077672A priority Critical patent/JP2000277488A/en
Publication of JP2000277488A publication Critical patent/JP2000277488A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Drying Of Semiconductors (AREA)
  • Element Separation (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a semiconductor device which is prevented from deteriorating in gate breakdown voltage and enhanced in reliability by a method wherein the edge of a trench opening is rounded so as to be large in curvature radius, and an electric field is prevented from concentrating on it. SOLUTION: An Si substrate is subjected to isotropic etching by the use of a dry etcher of down flow-type using an oxide film 2 as a mask, and an etching groove 3 is formed so as to round a point where the flat surface of the Si substrate intersects a trench opening that is formed in a following process or a part which becomes the edge of a trench opening. Thereafter, a trench groove is formed. The depth X of etching of the etching groove 3 is set at a prescribed range of 100 to 170 nm, by which the edge of a trench opening can be roounded large in a curvature radius.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、電力用スイッチ
ング素子で用いられるトレンチゲート構造を有する半導
体装置の製造方法に関する。
The present invention relates to a method for manufacturing a semiconductor device having a trench gate structure used in a power switching element.

【0002】[0002]

【従来の技術】近年、IGBT(絶縁ゲート型バイポー
ラトランジスタ)、MOSFET(MOSゲート電界効
果トランジスタ)およびMOSサイリスタ(MOSゲー
トサイリスタ)などのオン特性やオン抵抗を改善するた
めに、トレンチゲート構造が採用される場合が多くなっ
てきた。このトレンチゲート構造は、トレンチ溝を堀
り、このトレンチ溝内の表面をゲート酸化膜で被覆し、
このゲート酸化膜で覆われたトレンチ溝内にゲート電極
となるポリシリコンを充填して形成される。
2. Description of the Related Art In recent years, a trench gate structure has been adopted in order to improve the ON characteristics and ON resistance of IGBTs (insulated gate bipolar transistors), MOSFETs (MOS gate field effect transistors) and MOS thyristors (MOS gate thyristors). More and more. In this trench gate structure, a trench is dug, and the surface in the trench is covered with a gate oxide film.
It is formed by filling polysilicon serving as a gate electrode into a trench groove covered with the gate oxide film.

【0003】図13は、従来のトレンチを形成する製造
方法で、同図(a)から同図(c)は製造工程順に示し
た製造工程断面図である。同図(a)において、シリコ
ン基板21にトレンチ溝24を形成する。このとき、ト
レンチ溝24の表面層にダメージ層26が形成される。
その後、酸化膜22をエッチングして、トレンチ開口部
25(トレンチ溝の開口部のこと)の縁を露出させる。
同図(b)において、トレンチ溝24を形成するとき
に、シリコン基板21に導入されたダメージ層26をエ
ッチングで除去する。このとき、トレンチ開口部25は
広くなる。その後で、犠牲酸化膜27を形成して、トレ
ンチ開口部の縁(鈍角ではあるが鋭い箇所)を丸める。
同図(c)において、犠牲酸化膜27を除去し、その
後、ゲート酸化膜28を形成する。
FIG. 13 shows a conventional manufacturing method for forming a trench. FIGS. 13A to 13C are cross-sectional views showing the manufacturing steps in the order of the manufacturing steps. In FIG. 1A, a trench 24 is formed in a silicon substrate 21. At this time, the damage layer 26 is formed on the surface layer of the trench 24.
After that, the oxide film 22 is etched to expose the edge of the trench opening 25 (opening of the trench groove).
In FIG. 2B, when forming the trench 24, the damaged layer 26 introduced into the silicon substrate 21 is removed by etching. At this time, the trench opening 25 becomes wider. Thereafter, a sacrificial oxide film 27 is formed, and the edge of the trench opening (an obtuse but sharp portion) is rounded.
In FIG. 3C, the sacrificial oxide film 27 is removed, and then a gate oxide film 28 is formed.

【0004】前記において、トレンチ溝24を形成した
後、ダメージ層26をエッチングし、犠牲酸化膜27を
形成しないで、ゲート酸化膜28を形成すると、トレン
チ開口部25の縁の形状が鈍角ではあるが鋭くなり、ゲ
ート電圧を印加すると、同図(c)の鋭い箇所Dで電界
集中が起こり、ゲート耐圧が低下するという不具合が生
じる。 この鋭いトレンチ開口部25の縁を丸めるため
に、高温で犠牲酸化を行う。この犠牲酸化とは、シリコ
ン基板21上に犠牲酸化膜27を形成し、その犠牲酸化
膜を除去することである。鋭い箇所Dに厚い犠牲酸化膜
27を形成することで、鋭い箇所Dのシリコン表面を丸
め、その後で、この犠牲酸化膜27を除去することで鋭
い箇所Dのシリコン表面が丸まる訳である。また、犠牲
酸化工程は、残留ダメージを除去する働きもある。
In the above, if the gate oxide film 28 is formed without forming the sacrificial oxide film 27 by etching the damage layer 26 after forming the trench 24, the shape of the edge of the trench opening 25 is obtuse. Becomes sharp, and when a gate voltage is applied, electric field concentration occurs at a sharp portion D in FIG. 3C, which causes a problem that the gate breakdown voltage is reduced. In order to round the edge of the sharp trench opening 25, sacrificial oxidation is performed at a high temperature. This sacrificial oxidation is to form the sacrificial oxide film 27 on the silicon substrate 21 and remove the sacrificial oxide film. By forming a thick sacrificial oxide film 27 at the sharp portion D, the silicon surface at the sharp portion D is rounded, and thereafter, by removing the sacrificial oxide film 27, the silicon surface at the sharp portion D is rounded. The sacrificial oxidation step also has the function of removing residual damage.

【0005】[0005]

【発明が解決しようとする課題】しかし、この犠牲酸化
によっても、鋭い箇所Dのシリコン表面は十分大きな曲
率半径では丸まらず、この鋭い箇所Dで電界集中が起こ
り、ゲート耐圧の低下を招いていた。この発明の目的
は、前記の課題を解決して、トレンチ開口部の縁を大き
な曲率半径で丸みを付け、電界集中を防ぐことで、ゲー
ト耐圧の低下を防止し、信頼性の高い半導体装置の製造
方法を提供することにある。
However, even with this sacrificial oxidation, the silicon surface at the sharp portion D is not rounded with a sufficiently large radius of curvature, and electric field concentration occurs at the sharp portion D, resulting in a decrease in gate breakdown voltage. . SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems, to round the edge of a trench opening with a large radius of curvature, and to prevent electric field concentration, thereby preventing a decrease in gate withstand voltage and providing a highly reliable semiconductor device. It is to provide a manufacturing method.

【0006】[0006]

【課題を解決するための手段】前記の目的を達成するた
めに、トレンチゲート構造を有する半導体装置の製造方
法において、トレンチエッチング前に、トレンチ開口部
となる領域の表面層を、予め等方性のエッチングで除去
することとする。前記等方性のエッチングで除去する深
さをトレンチ開口部となる領域の表面から70nmない
し170nmとするとよい。
In order to achieve the above object, in a method of manufacturing a semiconductor device having a trench gate structure, a surface layer of a region to be a trench opening is preliminarily isotropic before trench etching. To be removed by etching. The depth to be removed by the isotropic etching is preferably 70 nm to 170 nm from the surface of the region to be the trench opening.

【0007】[0007]

【発明の実施の形態】図1から図10は、この発明の一
実施例の製造方法で、工程順に示した製造工程断面図で
ある。図1において、処理温度1100℃程度のパイロ
酸化により、厚さ400nm程度の酸化膜2をシリコン
基板1に形成する。パイロ酸化とは、水素と酸素を高温
で反応させ水蒸気をつくり、この水蒸気でシリコン表面
に酸化膜を形成する方法であり、スチーム酸化に比べて
クリーンな状態で酸化膜を形成できる。
FIG. 1 to FIG. 10 are cross-sectional views showing a manufacturing method according to an embodiment of the present invention in the order of steps. In FIG. 1, an oxide film 2 having a thickness of about 400 nm is formed on a silicon substrate 1 by pyro-oxidation at a processing temperature of about 1100 ° C. Pyro-oxidation is a method in which hydrogen and oxygen are reacted at a high temperature to form steam, and an oxide film is formed on the silicon surface using the steam. The oxide film can be formed in a cleaner state than steam oxidation.

【0008】図2において、図1につづいて、フォトリ
ソグラフィーによるパターニング後、反応性イオンエッ
チング(RIE)によるドライエッチングを行い、パタ
ーニングされた酸化膜2をトレンチエッチング用のマス
クとする。
In FIG. 2, following FIG. 1, after patterning by photolithography, dry etching by reactive ion etching (RIE) is performed to use the patterned oxide film 2 as a mask for trench etching.

【0009】図3において、図2につづいて、この酸化
膜2をマスクにして、ダウンフロー型のドライエッチャ
ーによる等方性のSiエッチングを行い、シリコンの平
坦な面とつぎの工程で形成されるトレンチの開口部とが
交わる箇所、つまり、トレンチ開口部の縁となる箇所を
予めエッチングして丸めるために、エッチング溝3を形
成する。このときのエッチング量Xを70nmから17
0nmの範囲の所定の値に設定する。
In FIG. 3, following FIG. 2, using this oxide film 2 as a mask, isotropic Si etching is performed by a down-flow type dry etcher to form a silicon flat surface and the next step. An etching groove 3 is formed in order to previously etch and round a portion where the opening portion of the trench intersects, that is, a portion which becomes an edge of the trench opening portion. The etching amount X at this time is changed from 70 nm to 17
It is set to a predetermined value in the range of 0 nm.

【0010】図4において、図3につづいて、トレンチ
エッチングを行い、トレンチ溝4を形成する。図5にお
いて、図4につづいて、前記のマスク用の酸化膜2をフ
ッ酸によるウエットエッチングで300nm程度後退さ
せ、この後退した酸化膜2aにして、トレンチ開口部5
の縁を露出させる。
In FIG. 4, following FIG. 3, trench etching is performed to form a trench 4. In FIG. 5, following FIG. 4, the mask oxide film 2 is retracted by about 300 nm by wet etching with hydrofluoric acid, and the recessed oxide film 2a is formed into the trench opening 5.
Expose the edge of

【0011】図6において、図5につづいて、ダウンフ
ロー型のドライエッチャーによるSiエッチングを10
0nm程度行い、図5に示すトレンチエッチングによっ
て生じたダメージ層6を除去する。このとき、トレンチ
開口部のBの箇所はテーパー状になる。図7において、
図6につづいて、マスク用の酸化膜2aをフッ酸を用い
て除去する。
In FIG. 6, following FIG. 5, the Si etching by the down-flow type dry etcher is performed for 10 minutes.
The process is performed to about 0 nm, and the damaged layer 6 caused by the trench etching shown in FIG. 5 is removed. At this time, the portion B of the trench opening has a tapered shape. In FIG.
As shown in FIG. 6, the mask oxide film 2a is removed using hydrofluoric acid.

【0012】図8において、図7につづいて、処理温度
1100℃程度の高温で、例えばドライ酸化などで酸化
することにより、厚さ100nm程度の犠牲酸化膜7を
形成し、トレンチ開口部の縁の鋭い箇所Cのシリコン面
を滑らかにする。ドライ酸化とは、酸素を供給し、高温
でシリコンと反応させて緻密な酸化膜を形成する方法で
ある。図9において、図8につづいて、この犠牲酸化膜
7をフッ酸で除去する。図10において、図9につづい
て、ゲート酸化膜8を形成する。
In FIG. 8, following FIG. 7, a sacrifice oxide film 7 having a thickness of about 100 nm is formed by oxidizing at a high processing temperature of about 1100 ° C., for example, by dry oxidation. The silicon surface at the sharp point C is smoothed. Dry oxidation is a method in which oxygen is supplied and reacted with silicon at a high temperature to form a dense oxide film. 9, following FIG. 8, the sacrificial oxide film 7 is removed with hydrofluoric acid. In FIG. 10, a gate oxide film 8 is formed following FIG.

【0013】前記の図3において、開口部の縁となる箇
所を丸めるためエッチングで、エッチング量を70nm
から170nmの範囲の所定の値に設定すると、トレン
チ開口部の曲率半径が大きくなり、ゲート電圧を印加し
たとき、この箇所での電界集中を防止できて、ゲート耐
圧が向上し、半導体装置の信頼性を高めることができ
る。
In FIG. 3 described above, an etching amount is set to 70 nm by rounding to round a portion to be an edge of the opening.
A predetermined value in the range from 170 nm to 170 nm, the radius of curvature of the trench opening becomes large, and when a gate voltage is applied, the electric field concentration at this location can be prevented, the gate breakdown voltage can be improved, and the reliability of the semiconductor device can be improved. Can be enhanced.

【0014】図11は、図3の工程でのエッチング量と
ゲート耐圧良品率の関係を実験で求めた結果を示す図で
ある。実験で用いたトレンチの諸元は、トレンチ溝4の
幅を0.8μm、深さを3.0μm、ダメージ層6の除
去量を100nmと固定し、エッチング量Xを0、10
0、150、200nmと可変にした。また、トレンチ
溝4を被覆するゲート酸化膜に印加する電界強度を9.
6MV/cmとして、この電界強度の耐える素子の割合
をゲート良品率で表した。
FIG. 11 is a graph showing the result of an experiment to determine the relationship between the amount of etching and the rate of good gate breakdown voltage in the step of FIG. The specifications of the trench used in the experiment were as follows: the width of the trench 4 was fixed at 0.8 μm, the depth was 3.0 μm, the removal amount of the damaged layer 6 was fixed at 100 nm, and the etching amount X was 0, 10
It was made variable to 0, 150, and 200 nm. In addition, the electric field intensity applied to the gate oxide film covering the trench groove 4 is set to 9.
6 MV / cm, the ratio of the element that withstands the electric field strength was expressed as the non-defective gate rate.

【0015】エッチング量Xの増加に伴って、ゲート良
品率は大きくなるが、エッチング量Xが150nmが最
大になり、200nmでは再度低下している。これは、
エッチング量Xを200nmと大きくすると、トレンチ
開口部の縁が逆テーパの形状(鋭角になる形状)となる
ために、電界集中が起こりやすくなるためである。
As the etching amount X increases, the gate non-defective rate increases, but the etching amount X reaches a maximum at 150 nm, and decreases again at 200 nm. this is,
This is because, when the etching amount X is increased to 200 nm, the edge of the trench opening has an inverted tapered shape (shape that becomes acute), so that electric field concentration is likely to occur.

【0016】この実験によると、エッチング量として
は、70nmから170nmの範囲が良好であり、15
0nm付近が最適である。尚、前記のトレンチ幅、深
さ、ダメージ層の除去量をそれぞれ0.5倍程度から2
倍程度に変化させても、前記とほぼ同じ結果が期待され
る。
According to this experiment, the etching amount is preferably in the range of 70 nm to 170 nm,
The optimum is around 0 nm. The trench width, the depth, and the removal amount of the damaged layer are each increased from about 0.5 times to 2 times.
Even if it is changed about twice, the same result as above is expected.

【0017】図12は、本発明の製造方法と従来の製造
方法で製作したトレンチを有する素子のゲート破壊電界
強度分布を示し、同図(a)本発明の製造方法による場
合の分布図、同図(b)は従来の製造方法による場合の
分布図である。
FIG. 12 shows the gate breakdown electric field intensity distribution of the device having the trench manufactured by the manufacturing method of the present invention and the conventional manufacturing method. FIG. 12 (a) is a distribution diagram in the case of the manufacturing method of the present invention. FIG. 2B is a distribution diagram in the case of the conventional manufacturing method.

【0018】従来の製造方法に比べて、本発明の製造方
法で製造した素子の方が、ゲート破壊電界強度はばらつ
きが小さく(標準偏差が小さい)、破壊電界強度も高く
なっている(平均値が大きい)。その結果、ゲート耐圧
が向上し、半導体装置の信頼性を高めることができる。
Compared with the conventional manufacturing method, the device manufactured by the manufacturing method of the present invention has a smaller variation in gate breakdown electric field strength (smaller standard deviation) and a higher breakdown electric field strength (average value). Is bigger). As a result, the gate breakdown voltage is improved, and the reliability of the semiconductor device can be improved.

【0019】[0019]

【発明の効果】この発明によれば、トレンチ開口部の縁
となる箇所を予めエッチングして丸めることで、トレン
チ開口部の縁を大きな曲率半径で丸めることができ、ゲ
ート電圧を印加したとき、この箇所での電界集中を防止
できる。そのため、ゲート耐圧を向上でき、半導体装置
の信頼性を高めることができる。
According to the present invention, the edge of the trench opening is etched and rounded in advance, whereby the edge of the trench opening can be rounded with a large radius of curvature. Electric field concentration at this location can be prevented. Therefore, the gate withstand voltage can be improved, and the reliability of the semiconductor device can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の一実施例の製造工程断面図FIG. 1 is a sectional view of a manufacturing process according to an embodiment of the present invention.

【図2】図1につづく、この発明の一実施例の製造工程
断面図
FIG. 2 is a sectional view showing a manufacturing step of the embodiment of the present invention, following FIG. 1;

【図3】図2につづく、この発明の一実施例の製造工程
断面図
FIG. 3 is a sectional view showing a manufacturing step of the embodiment of the present invention, following FIG. 2;

【図4】図3につづく、この発明の一実施例の製造工程
断面図
FIG. 4 is a sectional view showing a manufacturing step of the embodiment of the present invention, following FIG. 3;

【図5】図3につづく、この発明の一実施例の製造工程
断面図
FIG. 5 is a sectional view showing a manufacturing step of the embodiment of the present invention, following FIG. 3;

【図6】図4につづく、この発明の一実施例の製造工程
断面図
FIG. 6 is a sectional view showing a manufacturing step of the embodiment of the present invention, following FIG. 4;

【図7】図6につづく、この発明の一実施例の製造工程
断面図
FIG. 7 is a sectional view of a manufacturing step of the embodiment of the present invention, following FIG. 6;

【図8】図7につづく、この発明の一実施例の製造工程
断面図
FIG. 8 is a sectional view showing a manufacturing step of the embodiment of the present invention, following FIG. 7;

【図9】図8につづく、この発明の一実施例の製造工程
断面図
FIG. 9 is a sectional view showing a manufacturing step of the embodiment of the present invention, following FIG. 8;

【図10】図9につづく、この発明の一実施例の製造工
程断面図
FIG. 10 is a sectional view showing a manufacturing step of the embodiment of the present invention, following FIG. 9;

【図11】図3の工程でのエッチング量とゲート耐圧良
品率の関係を実験で求めた結果を示す図
FIG. 11 is a view showing a result obtained by an experiment on a relationship between an etching amount and a good ratio of gate withstand voltage in the process of FIG. 3;

【図12】本発明の製造方法と従来の製造方法で製作し
たトレンチを有する素子のゲート破壊電界強度分布を示
し、(a)本発明の製造方法による場合の分布図、
(b)は従来の製造方法による場合の分布図
FIG. 12 shows a gate breakdown electric field intensity distribution of a device having a trench manufactured by the manufacturing method of the present invention and a conventional manufacturing method, and (a) a distribution diagram according to the manufacturing method of the present invention;
(B) is a distribution diagram according to the conventional manufacturing method.

【図13】従来のトレンチを形成する製造方法で、
(a)から(c)は製造工程順に示した製造工程断面図
FIG. 13 shows a conventional method for forming a trench,
(A) to (c) are manufacturing process sectional views shown in a manufacturing process order.

【符号の説明】[Explanation of symbols]

1 シリコン基板 2 酸化膜 2a 後退した酸化膜 3 エッチング溝 4 トレンチ溝 5 トレンチ開口部 6 ダメージ層 7 犠牲酸化膜 8 ゲート酸化膜 21 シリコン基板 22 酸化膜 24 トレンチ溝 25 トレンチ開口部 26 ダメージ層 27 犠牲酸化膜 28 ゲート酸化膜 A 縁となる箇所 B テーパー状となる箇所 C、D 鋭い箇所 X エッチング量 Reference Signs List 1 silicon substrate 2 oxide film 2a recessed oxide film 3 etching groove 4 trench groove 5 trench opening 6 damage layer 7 sacrificial oxide film 8 gate oxide film 21 silicon substrate 22 oxide film 24 trench groove 25 trench opening 26 damage layer 27 sacrifice Oxide film 28 Gate oxide film A A portion to be an edge B A portion to be tapered C, D Sharp portion X Etching amount

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】トレンチゲート構造を有する半導体装置の
製造方法において、トレンチエッチング前に、トレンチ
開口部となる領域の表面層を、予め等方性のエッチング
で除去することを特徴とする半導体装置の製造方法。
In a method of manufacturing a semiconductor device having a trench gate structure, a surface layer in a region to be a trench opening is removed in advance by isotropic etching before trench etching. Production method.
【請求項2】前記等方性のエッチングで除去する深さを
トレンチ開口部となる領域の表面から70nmないし1
70nmとすることを特徴とする請求項1に記載の半導
体装置の製造方法。
2. The method according to claim 1, wherein the depth of the region to be removed by the isotropic etching is 70 nm to 1 nm from the surface of the region to be the trench opening.
2. The method according to claim 1, wherein the thickness is 70 nm.
JP11077672A 1999-03-23 1999-03-23 Manufacture of semiconductor device Withdrawn JP2000277488A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11077672A JP2000277488A (en) 1999-03-23 1999-03-23 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11077672A JP2000277488A (en) 1999-03-23 1999-03-23 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JP2000277488A true JP2000277488A (en) 2000-10-06

Family

ID=13640385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11077672A Withdrawn JP2000277488A (en) 1999-03-23 1999-03-23 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JP2000277488A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002141407A (en) * 2000-10-31 2002-05-17 Rohm Co Ltd Semiconductor device and method of manufacturing the same
WO2013042333A1 (en) * 2011-09-22 2013-03-28 パナソニック株式会社 Silicon carbide semiconductor element and method for manufacturing same
JP2013175871A (en) * 2012-02-24 2013-09-05 Audio Technica Corp Condenser microphone unit and manufacturing method of the same
WO2016031252A1 (en) * 2014-08-28 2016-03-03 Kabushiki Kaisha Toyota Chuo Kenkyusho Semiconductor device with trench gate
CN110993497A (en) * 2019-11-20 2020-04-10 上海华虹宏力半导体制造有限公司 Method for rounding top of trench
CN111106003A (en) * 2019-11-20 2020-05-05 上海华虹宏力半导体制造有限公司 Method for rounding top of trench
CN111244167A (en) * 2020-01-19 2020-06-05 上海华虹宏力半导体制造有限公司 Gate groove filling method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002141407A (en) * 2000-10-31 2002-05-17 Rohm Co Ltd Semiconductor device and method of manufacturing the same
WO2013042333A1 (en) * 2011-09-22 2013-03-28 パナソニック株式会社 Silicon carbide semiconductor element and method for manufacturing same
JP5209152B1 (en) * 2011-09-22 2013-06-12 パナソニック株式会社 Silicon carbide semiconductor device and manufacturing method thereof
US9018699B2 (en) 2011-09-22 2015-04-28 Panasonic Intellectual Property Management Co., Ltd. Silicon carbide semiconductor element and method for fabricating the same
JP2013175871A (en) * 2012-02-24 2013-09-05 Audio Technica Corp Condenser microphone unit and manufacturing method of the same
WO2016031252A1 (en) * 2014-08-28 2016-03-03 Kabushiki Kaisha Toyota Chuo Kenkyusho Semiconductor device with trench gate
CN110993497A (en) * 2019-11-20 2020-04-10 上海华虹宏力半导体制造有限公司 Method for rounding top of trench
CN111106003A (en) * 2019-11-20 2020-05-05 上海华虹宏力半导体制造有限公司 Method for rounding top of trench
CN111244167A (en) * 2020-01-19 2020-06-05 上海华虹宏力半导体制造有限公司 Gate groove filling method

Similar Documents

Publication Publication Date Title
US5945724A (en) Trench isolation region for semiconductor device
KR100394517B1 (en) A method for forming a trench isolation structure in an integrated circuit
JP4072308B2 (en) Trench element isolation method
US6524931B1 (en) Method for forming a trench isolation structure in an integrated circuit
US6251764B1 (en) Method to form an L-shaped silicon nitride sidewall spacer
JPH11289006A (en) Method for formation of trench isolation in integrated circuit
JP2001203218A (en) Method for increasing level of integration of trench of semiconductor device
JP4123961B2 (en) Manufacturing method of semiconductor device
JP2001015733A (en) Semiconductor device and manufacture thereof
KR100315841B1 (en) Methods for making high-aspect ratio holes in semiconductor and its application to a gate damascene process for sub-0.05 micrometer mosfets
US6110790A (en) Method for making a MOSFET with self-aligned source and drain contacts including forming an oxide liner on the gate, forming nitride spacers on the liner, etching the liner, and forming contacts in the gaps
JP2000277488A (en) Manufacture of semiconductor device
JP2002353446A (en) Trench-type semiconductor device and method of manufacturing the same
US6284624B1 (en) Semiconductor device and method of manufacturing the same
JP3053009B2 (en) Method for manufacturing semiconductor device
JPH0818054A (en) Semiconductor device and its manufacture
JP2010177474A (en) Production process of semiconductor device
JP2000031489A (en) Manufacturing semiconductor device
JPH03109739A (en) Manufacture of thin-film semiconductor device
JPS63229845A (en) Manufacture of semiconductor integrated circuit device
JPH09275134A (en) Manufacture of dielectric isolation type semiconductor device
JP4670198B2 (en) Manufacturing method of semiconductor device
JPH0794733A (en) Semiconductor device and its manufacturing method
KR100223586B1 (en) Rounding manufacturing process of lower part of trench
KR20050120574A (en) Method of forming gate pattern of semiconductor device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031225

A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20040312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040803

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20041004