JP4638534B2 - 減衰力可変ダンパの制御装置および制御方法 - Google Patents

減衰力可変ダンパの制御装置および制御方法 Download PDF

Info

Publication number
JP4638534B2
JP4638534B2 JP2008235976A JP2008235976A JP4638534B2 JP 4638534 B2 JP4638534 B2 JP 4638534B2 JP 2008235976 A JP2008235976 A JP 2008235976A JP 2008235976 A JP2008235976 A JP 2008235976A JP 4638534 B2 JP4638534 B2 JP 4638534B2
Authority
JP
Japan
Prior art keywords
damping force
damper
vehicle body
body part
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008235976A
Other languages
English (en)
Other versions
JP2010069897A (ja
Inventor
利充 加地
貴史 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2008235976A priority Critical patent/JP4638534B2/ja
Priority to DE602009001128T priority patent/DE602009001128D1/de
Priority to EP09154852A priority patent/EP2105330B1/en
Priority to US12/410,859 priority patent/US8086371B2/en
Publication of JP2010069897A publication Critical patent/JP2010069897A/ja
Application granted granted Critical
Publication of JP4638534B2 publication Critical patent/JP4638534B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Vehicle Body Suspensions (AREA)

Description

本発明は、自動車の挙動制御等に用いられる減衰力可変ダンパの制御装置に係り、路面からの入力などによる車体の姿勢変化を抑制する技術に関する。
路面からの入力などによって車体の姿勢が変化することを抑制するために、車両の運動状態に応じ、各車輪に対して設けられた減衰力可変ダンパによって減衰力を制御する技術が知られている。一般的な制御方法としては、各車輪に対して設けられたダンパ毎に、ダンパ近傍の車体部位の運動状態量を取得し、取得した運動状態量に基づいて各ダンパの減衰力を設定/制御するものがある。
ところが、各ダンパについて独立して減衰力を設定する場合、他のダンパの減衰力との間に相関関係がないため、複数のダンパの減衰力が干渉して過渡的に車体の姿勢制御の効果を低下させてしまう虞があった。前後または左右に配置された車輪について、減衰力を相関させて調整する減衰力可変ダンパとしては、減衰力調整機構を備えた減衰力調整式油圧ダンパを前後または左右の車輪についてそれぞれ設けるとともに、減衰力調整式油圧ダンパの油室を管路により連通させ、油室間の差圧によって減衰力を調整するように構成したものが提案されている(特許文献1参照)。
特開2002−1277275号公報
しかしながら、特許文献1の減衰力可変制御装置では、減衰力調整式油圧ダンパの油室が油路で連通されることにより、油室間の差圧および差圧による油液の移動量に依存して減衰力の調整が行われる。そのため、例えば、左右の減衰力の大きさが異なるように減衰力調整式油圧ダンパを制御したり、ダンパストロークが同相の場合に減衰力が大きくなるように制御したり、ダンパストロークが同相且つ入力の大きさが異なる場合に減衰力が小さくなるように制御することはできない。その結果、車両の運動状態や路面状態によっては適正な減衰力を発生させることができず、車体の姿勢変化を抑制できないことがあった。
本発明は、このような背景に鑑みなされたもので、様々な入力に対応することができ、且つ、各車輪に対して設けられたダンパ毎に独立して減衰力を制御するものに比べ、車体の姿勢変化を効果的に抑制することができる可変減衰力ダンパの制御装置および制御方法を提供することを目的とする。
上記課題を解決するために、第1の発明は、4輪車両(V)に設置され、車体(1)と各車輪(3)との間に配置されたダンパ(6)の減衰力を可変制御する減衰力可変ダンパの制御装置(50)であって、各ダンパに近接する車体部位(1a)にそれぞれ設けられ、当該車体部位の運動状態量(Vz)を検出する運動状態量検出手段(13)と、各運動状態量検出手段の検出結果に基づき、各運動状態量検出手段に近接するダンパの目標減衰力(Dt)をそれぞれ設定する目標減衰力設定手段(61)と、1つのダンパに対する減衰力補正値(Dc)を、他のダンパに近接する車体部位の運動状態量のうち少なくとも1つに基づいて設定する補正値設定手段(62)と、前記減衰力補正値に基づいて前記目標減衰力を補正する目標減衰力補正手段(63)とを備えたことを特徴とする。
これによれば、1つのダンパに発生させる目標減衰力は、当該ダンパ近傍の車体部位の運動状態に基づいて設定され、他のダンパ近傍の車体部位の運動状態を勘案して補正されるため、各ダンパ間に相関性が生まれる。したがって、ダンパ毎に独立して減衰力を制御するものに比べ、車体の姿勢変化の抑制効果を向上することができる。また、目標減衰力を適宜補正できるので、様々な入力に対して対応可能である。
また、第2の発明は、前記第1の発明に係る減衰力可変ダンパの制御装置において、前記補正値設定手段は、1つのダンパに対する減衰力補正値を他のダンパに近接する車体部位の運動状態量の平均値(Vza)に基づいて設定することを特徴とする。
これによれば、1つのダンパの補正値は、当該1つのダンパに対して車両前後方向、左右方向および対角方向のダンパに近接する車体部位の運動状態量の平均値に基づいて設定される。そのため、車体全体の運動状態を勘案して目標減衰力が補正されることとなり、その結果、車体の姿勢変化の抑制効果を一層向上することができる。
また、第3の発明は、前記第1の発明に係る減衰力可変ダンパの制御装置において、1つのダンパに対する減衰力補正値を他のダンパに近接する車体部位の運動状態量のうち、そのダンパが近接する車体部位の運動状態量との差が最も大きいもの(Vzm)に基づいて設定することを特徴とする。
これによれば、1つのダンパの補正値は、当該1つのダンパに対して最も運動状態の異なる車体部位の運動状態量を考慮して設定される。そのため、目標減衰力は適正な範囲で大きくなるように補正され、車体の姿勢変化の抑制効果が向上する。
また、第4の発明は、前記第1〜第3のいずれかの発明に係る減衰力可変ダンパの制御装置において、前記運動状態量は上下運動に係るものであり、前記目標減衰力補正手段は、前記1つのダンパに近接する車体部位の運動方向(Vzの符号)と前記他のダンパに近接する車体部位の運動方向とが異なる場合、前記目標減衰力の絶対値を大きくするように補正することを特徴とする。
これによれば、他のダンパに上下方向について逆相の入力がある場合に、例えば、補正値を減算することにより、目標減衰力はその絶対値が大きくなるように補正される。したがって、ダンパごとにスカイフック制御などを行っていた従来の制御方法に比べて目標減衰力の絶対値が大きくなる。これは、他のダンパに逆相の入力があること、すなわち、車両の姿勢変化が大きいことを勘案して目標減衰力が補正された結果であり、これにより、車体の姿勢変化の抑制効果がさらに向上する。
また、第5の発明は、前記第1〜第4のいずれかの発明に係る減衰力可変ダンパの制御装置において、前記運動状態量は上下運動に係るものであり、前記目標減衰力補正手段は、前記1つのダンパに近接する車体部位の運動方向と前記他のダンパに近接する車体部位の運動方向とが異なる場合にのみ、前記補正を行うことを特徴とする。
これによれば、他のダンパに上下方向について同相の入力がある場合、他のダンパに近接する車体部位の運動状態を勘案せずにダンパの目標減衰力が設定される。他のダンパへの同相の入力は車両の姿勢変化を抑制するものであり、この場合にはベース値が必要十分な値となるため、ダンパに必要以上の減衰力を発生させることなく、車両の姿勢変化の抑制が可能となる。
また、第6の発明は、前記第1〜第5のいずれかの発明に係る減衰力可変ダンパの制御装置において、1つのダンパに近接する車体部位は第1上下速度をもって上下運動し、他のダンパに近接する車体部位は第2上下速度をもって上下運動するものであり、前記目標減衰力設定手段は、前記1つのダンパの目標減衰力を前記第1上下速度に基づいて設定し、前記補正値設定手段は、前記1つのダンパの補正値を前記第2上下速度に基づいて設定することを特徴とする。
これによれば、ダンパの目標減衰力は、当該ダンパに近接する車体部位の上下速度と他のダンパに近接する車体部位の上下速度を勘案して設定される。車体部位の上下速度は例えば加速度センサから算出することができ、従来の制御装置用の機器を用いて容易に実現可能となる。
また、第7の発明は、4輪車両(V)における車体(1)と各車輪(3)との間に配置された減衰力可変ダンパ(6)の減衰力を可変制御する方法であって、各ダンパに近接する車体部位(1a)の運動状態量(Vz)を検出するステップと、検出した各車体部位の運動状態量に基づき、各車体部位に近接するダンパに発生させる目標減衰力(Dt)を設定するステップと、1つのダンパに対する減衰力補正値(Dc)を、他のダンパに近接する車体部位の運動状態量のうち少なくとも1つに基づいて設定するステップと、前記減衰力補正値に基づいて前記目標減衰力を補正するステップとを備えたことを特徴とする。
これによれば、第1の発明と同様に、1つのダンパに発生させる減衰力は、当該ダンパ近傍の車体部位の運動状態と、他のダンパ近傍の車体部位の運動状態とを勘案して設定されるため、各ダンパ間に相関性が生まれるように目標減衰力が設定される。したがって、車体の姿勢変化の抑制効果を向上できるとともに、様々な入力に対しても対応可能である。
本発明によれば、各ダンパ間に相関性が生まれるように目標減衰力が設定される。したがって、車体の姿勢変化の抑制効果を向上させるとともに、様々な入力に対して対応可能となる。
以下、本発明を4輪自動車に適用した一実施形態について、図面を参照して詳細に説明する。なお、説明にあたり、4本の車輪3やそれらに対して配置された部材、すなわち、タイヤ2やサスペンション7等については、それぞれ数字の符号に前後左右を示す添字を付して、例えば、車輪3fl(左前)、車輪3fr(右前)、車輪3rl(左後)、車輪3rr(右後)と記すとともに、総称する場合には、例えば、車輪3と記す。
先ず、図1を参照して、実施形態に係る自動車Vの概略構成について説明する。図示するように、自動車(4輪車両)Vの車体1にはタイヤ2が装着された車輪3が前後左右に設置されており、これら各車輪3がサスペンションアーム4や、スプリング5、減衰力可変式ダンパ(以下、単にダンパと記す)6等からなるサスペンション7によって車体1に懸架されている。自動車Vには、各種の制御に供されるECU(Electronic Control Unit)8の他、車速を検出する車速センサ9や、横加速度を検出する横Gセンサ10、前後加速度を検出する前後Gセンサ11、ヨーレイトを検出するヨーレイトセンサ12等が車体1の適所に設置されている。また、自動車Vには、ホイールハウスの上部を構成するダンパベース1a(車体部位)の上下加速度Gzを検出する上下Gセンサ13(運動状態量検出手段)と、ダンパ6のストローク量を検出するストロークセンサ14とが各車輪3fl〜3frrごとに設置されている。
ECU8は、マイクロコンピュータやROM、RAM、周辺回路、入出力インタフェース、各種ドライバ等から構成されており、通信回線(本実施形態では、CAN(Controller Area Network))を介して、各車輪3のダンパ6や各センサ9〜14と接続されている。
図2は実施形態に係るダンパ6の縦断面図を示している。同図に示すように、本実施形態のダンパ6は、モノチューブ式(ド・カルボン式)であり、MRF(Magneto-Rheological Fluid:磁気粘性流体)が充填された円筒状のシリンダ22と、このシリンダ22に対して軸方向に摺動するピストンロッド23と、ピストンロッド23の先端に装着されてシリンダ22内を上部油室24と下部油室25とに区画するピストン26と、シリンダ22の下部に高圧ガス室27を画成するフリーピストン28と、ピストンロッド23等への塵埃の付着を防ぐカバー29と、フルバウンド時における緩衝を行うバンプストップ30とを主要構成要素としている。
シリンダ22は、下端のアイピース22aに嵌挿されたボルト31を介して、車輪側部材であるサスペンションアーム4の上面に連結されている。また、ピストンロッド23は、上下一対のブッシュ32とナット33とを介して、その上端のスタッド23aが車体側部材であるダンパベース1aに連結されている。
ピストン26には、上部油室24と下部油室25とを連通する環状連通路41と、この環状連通路41の内側に位置するMLVコイル42とが設けられている。ECU8からMLVコイル42に電流が供給されると、環状連通路41を流通するMRFに磁界が印可されて強磁性微粒子が鎖状のクラスタを形成する。これにより、環状連通路41を通過するMRFの見かけ上の粘度(以下、単に粘度と記す)が上昇し、ダンパ6の伸長方向および収縮方向の減衰力が増大する。
図3は実施形態に係る減衰力制御装置50の概略構成を示すブロック図を示している。同図に示すように、ECU8には、ダンパ6の制御を行う減衰力制御装置50が内装されている。減衰力制御装置50は、上述した各センサ9〜14が接続する入力インタフェース51と、各センサ9〜13の検出信号から得られたロールモーメントやピッチモーメント、ばね上速度等に基づき各ダンパ6の目標減衰力を設定する減衰力設定部52と、減衰力設定部52から入力した目標減衰力に応じて各ダンパ6(MLVコイル42)への駆動電流を生成する駆動電流生成部53と、駆動電流生成部53が生成した駆動電流を各ダンパ6に出力する出力インタフェース54とから構成されている。なお、減衰力設定部52には、スカイフック制御に供されるスカイフック演算制御部55や、ロール制御に供されるロール演算制御部56、ピッチ制御に供されるピッチ演算制御部57、各車輪におけるばね上速度をそれぞれ推定するばね上速度推定部(ばね上速度推定手段)58等が収容されている。
図4は実施形態に係るスカイフック演算制御部55の概略構成を示すブロック図を示している。同図に示すように、スカイフック演算制御部55は、各車輪3fl〜3rrごとに設けられた目標減衰力設定部61fl〜61rrと、減衰力補正値設定部62と、目標減衰力補正部63とからなる。目標減衰力設定部61fl〜61rrは、各車輪3fl〜3rrに近接する上下Gセンサ13fl〜13rrの検出値である上下加速度Gzfl〜Gzrrに基づき、サスペンション7の作動特性を考慮して設定された1輪振動モデルを用いて、目標減衰力Dtfl〜Dtrrをそれぞれ設定する。また、減衰力補正値設定部62は、各目標減衰力Dtfl〜Dtrrを相互補間するために、上下加速度Gzfl〜Gzrrに基づき、後記する各実施例に詳細を示す減衰力補正値Dcfl〜Dcrrをそれぞれ設定する。目標減衰力補正部63は、減衰力補正値Dcfl〜Dcrrに基づき、目標減衰力Dtfl〜Dtrrをそれぞれ補正する。
次に、減衰力制御装置50が行う処理について図5を参照して説明する。自動車Vが走行を開始すると、減衰力制御装置50は、所定の処理インターバル(例えば、10ms)をもって、図5のフローチャートにその手順を示す減衰力制御を実行する。減衰力制御を開始すると、減衰力制御装置50は、車速センサ9から入力した車体速度や、横Gセンサ10、前後Gセンサ11、および上下Gセンサ13から得られた車体1の加速度、操舵角センサ(図示せず)から入力した操舵速度等に基づき自動車Vの運動状態を判定する。次に、減衰力制御装置50は、自動車Vの運動状態に基づき、実施例を挙げて詳細に後述するスカイフック演算処理により、各ダンパ6のスカイフック制御目標値Dshを算出し(ステップ2)、各ダンパ6のロール制御目標値Drを算出し(ステップ3)、各ダンパ6のピッチ制御目標値Dpを算出する(ステップ4)。
次に、減衰力制御装置50は、各ダンパ6のストローク速度Ssが正の値であるか否かを判定し(ステップ5)、この判定がYesであった場合(すなわち、ダンパ6が伸び側に作動している場合)、3つの制御目標値Dsh,Dr,Dpのうち値が最も大きいものを目標減衰力Dtgtに設定する(ステップ6)。また、減衰力制御装置50は、ステップS5の判定がNoであった場合(すなわち、ダンパ6が縮み側に作動している場合)、3つの制御目標値Dsh,Dr,Dpのうち値が最も小さいものを目標減衰力に設定する(ステップ7)。
目標減衰力Dtgtを設定すると、減衰力制御装置50は、図6の目標電流マップから目標電流を検索/設定する(ステップ8)。次に、減衰力制御装置50は、設定された目標電流に基づき、各ダンパ6のMLVコイル42に駆動電流を出力する(ステップ10)。
次に、スカイフック演算処理について詳細に説明する。なお、スカイフック演算制御部55は、各車輪3に対応するダンパ6についてそれぞれ同様のスカイフック演算処理を行うが、以下では左側前輪3flに対応するダンパ6flのみについて説明するものとする。
図7は、実施例1に係るスカイフック演算制御処理の手順を示すフローチャートである。スカイフック演算制御部55は、先ず、各車輪3に対応するダンパベース1aの上下加速度Gzfl,Gzfr,Gzrl,Gzrrの積分値から上下速度Vzfl,Vzfr,Vzrl,Vzrrを算出する(ステップS11)。次に、スカイフック演算制御部55は、目標減衰力設定部61flにおいて、左前のダンパベース1aflの上下速度Vzflに基づいて、所定のマップを参照することにより目標減衰力Dtflを設定する(ステップS12)。次に、スカイフック演算制御部55は、減衰力補正値設定部62flにおいて、右前、左後、右後のダンパベース1aの上下速度Vzfr,Vzrl,Vzrrの平均値Vzaを算出し(ステップS13)、平均値Vzaに基づいて所定のマップを参照することにより、減衰力補正値Dcflを設定する(ステップS14)。
スカイフック演算制御部55は、次に、目標減衰力補正部63flにおいて、左前のダンパベース1aflへの入力とそれ以外のダンパベース1afr,1arl,1arrへの入力とが同相であるか否か、すなわち、上下速度Vzflと平均値Vzaとが同一符号であるか否かを下式1により判定する(ステップS15)。
Vzfl・Vza>0 ・・・(1)
左前のダンパベース1aflへの入力とそれ以外のダンパベース1aへの入力とが同相である場合(ステップS15:Yes)、目標減衰力補正部63flは、目標減衰力Dtflから下式2によりスカイフック制御目標値Dshflを算出する(ステップS16)。
Dshfl=K1・Dtfl ・・・(2)
但し、K1:係数である。
一方、左前のダンパベース1aflへの入力とそれ以外のダンパベース1aへの入力とが逆相である場合(ステップS15:No)、目標減衰力補正部63flは、目標減衰力Dtflと減衰力補正値Dcflとから下式3によりスカイフック制御目標値Dshflを算出する(ステップS17)。
Dshfl=K1(Dtfl−K2・Dcfl) ・・・(3)
但し、K2:係数である。
そして、スカイフック制御目標値Dshflを減衰力設定部52に出力して(ステップS18)処理を終了する。
本実施例では、このような処理を行うことにより、左前のダンパ6flの減衰力補正値Dcflが、左前のダンパ6flに対して車両前後方向、左右方向および対角方向の3つのダンパ6rl,6fr,6rrに近接するダンパベース1arl,1afr,1arrの上下速度Vzrl,Vzfr,Vzrrの平均値Vzaに基づいて設定される。そして、3つのダンパベース1aに逆相の入力がある場合、自動車Vの姿勢変化が大きいものと捉え、目標減衰力Dtcflから減衰力補正値Dcflを減算することにより、目標減衰力Dtcfl(従来の目標減衰力)よりもその絶対値が大きくなるようにスカイフック制御目標値Dshflが設定される。そのため、車体1の姿勢変化が効率的に抑制される。
そして、3つのダンパベース1aに同相の入力がある場合、同相の入力が自動車Vの姿勢変化を抑制するものと捉え、これら3つのダンパベース1aの上下速度Vzの影響を受けることなくダンパ6flのスカイフック制御目標値Dshflが設定される。そのため、スカイフック制御目標値Dshflが目標減衰力Dtcに基づいてダンパ6flに必要以上の減衰力を発生させることなく設定され、自動車Vの姿勢変化が適正に抑制される。
次に、図8を参照して、実施例2に係るスカイフック演算制御処理の手順を説明する。なお、以下に示す実施例においては、実施例1と同一の処理については簡単に説明するものとする。図8のフローチャートに示すように、スカイフック演算制御部55は、先ず、上下速度Vzfl,Vzfr,Vzrl,Vzrrを算出し(ステップS21)、目標減衰力設定部61flにおいて、上下速度Vzflに基づいて所定のマップを参照することにより、目標減衰力Dtflを設定する(ステップS22)。次に、スカイフック演算制御部55は、減衰力補正値設定部62flにおいて、右前、左後、右後のダンパベース1aの上下速度Vzfr,Vzrl,Vzrrの中から、左前のダンパベース1aflの上下速度Vzflとの差が最大となるものを最大値Vzmとして選択し(ステップS23)、最大値Vzmに基づいて所定のマップを参照することにより、減衰力補正値Dcflを設定する(ステップS24)。
スカイフック演算制御部55は、次に、目標減衰力補正部63flにおいて、左前のダンパベース1aflへの入力と、最大値Vzmとして選択されたダンパベース1aへの入力とが同相であるか否か、すなわち、上下速度Vzflと最大値Vzmとが同一符号であるか否かを下式4により判定する(ステップS25)。
Vzfl・Vzm>0 ・・・(4)
左前のダンパベース1aflへの入力と最大値Vzmに係るダンパベース1aへの入力とが同相である場合(ステップS25:Yes)、目標減衰力補正部63flは、上記した式2によりスカイフック制御目標値Dshflを算出する(ステップS26)。一方、左前のダンパベース1aflへの入力と最大値Vzmに係るダンパベース1aへの入力とが逆相である場合(ステップS25:No)、目標減衰力補正部63flは、上記した式3によりスカイフック制御目標値Dshflを算出する(ステップS27)。そして、スカイフック制御目標値Dshflを減衰力設定部52に出力して(ステップS28)処理を終了する。
本実施例では、このような処理を行うことにより、左前のダンパ6flの減衰力補正値Dcflが、それ以外の3つのダンパ6rl,6fr,6rrに近接するダンパベース1arl,1afr,1arrの上下速度Vzrl,Vzfr,Vzrrの中から、その上下速度Vzflとの差が最大のものとして選択された最大値Vzmに基づいて設定される。そして、3つのダンパベース1aに逆相の入力がある場合、自動車Vの姿勢変化が大きいものと捉え、上下速度Vzが最も異なるダンパベース1aに基づく減衰力補正値Dcflを減算することにより、目標減衰力Dtcfl(従来の目標減衰力)よりもその絶対値が大きくなるようにスカイフック制御目標値Dshflが設定される。そのため、車体1の姿勢変化が効率的に抑制される。
そして実施例1と同様に、3つのダンパベース1aに同相の入力がある場合、ダンパ6flのスカイフック制御目標値Dshflは、3つのダンパベース1aの上下速度Vzの影響を受けずに必要以上の減衰力を発生させることなく設定されるため、自動車Vの姿勢変化が適正に抑制される。
次に、図9を参照して、実施例3に係るスカイフック演算制御処理の手順を説明する。図9のフローチャートに示すように、スカイフック演算制御部55は、先ず、上下速度Vzfl,Vzfr,Vzrl,Vzrrを算出し(ステップS31)、目標減衰力設定部61flにおいて、上下速度Vzflに基づいて所定のマップを参照することにより、目標減衰力Dtflを設定する(ステップS32)。次に、スカイフック演算制御部55は、減衰力補正値設定部62flにおいて、車体前部の左右のダンパベース1afl,1afrの上下速度Vzfl,Vzfrから下式5により平均値Vzfaを算出するとともに、車体後部の左右のダンパベース1arl,1arrの上下速度Vzrl,Vzrrから下式6により平均値Vzraを算出する(ステップ33)。
Vzfa=(Vzfl+Vzfr)/2 ・・・(5)
Vzra=(Vzrl+Vzrr)/2 ・・・(6)
そして、減衰力補正値設定部62flは、車体後部の上下速度の平均値Vzraに基づいて所定のマップを参照することにより、減衰力補正値Dcflを設定する(ステップS34)。
スカイフック演算制御部55は、次に、目標減衰力補正部63flにおいて、車体前部(ダンパベース1afl、ダンパベース1afr)への入力と車体後部(ダンパベース1arl、ダンパベース1arr)への入力とが同相であるか否か、すなわち、車体前部の平均値Vzfaと車体後部の平均値Vzraとが同一符号であるか否かを下式7により判定する(ステップS35)。
Vzfa・Vzra>0 ・・・(7)
車体前部への入力と車体後部への入力とが同相である場合(ステップS35:Yes)、目標減衰力補正部63flは、上記した式2によりスカイフック制御目標値Dshflを算出する(ステップS36)。一方、車体前部への入力と車体後部への入力とが逆相である場合(ステップS35:No)、目標減衰力補正部63flは、上記した式3によりスカイフック制御目標値Dshflを算出する(ステップS37)。そして、スカイフック制御目標値Dshflを減衰力設定部52に出力して(ステップS38)処理を終了する。
本実施例では、このような処理を行うことにより、左前のダンパ6flの減衰力補正値Dcflが車体後部の入力(車体後部の上下速度の平均値Vzra)に基づいて設定される。そして、車体後部に車体前部と逆相の入力がある場合、自動車Vのピッチ変化が大きいものと捉え、車体後部のダンパベース1arl,1arrに基づく減衰力補正値Dcflを減算することにより、目標減衰力Dtcfl(従来の目標減衰力)よりもその絶対値が大きくなるようにスカイフック制御目標値Dshflが設定される。そのため、車体1のピッチ変化が効率的に抑制される。
そして、車体後部に車体前部と同相の入力がある場合、ダンパ6flのスカイフック制御目標値Dshflは、車体後部のダンパベース1arl,1arrの上下速度の平均値Vzraの影響を受けずに、つまり必要以上の減衰力を発生させることなく設定されるため、自動車Vのピッチ変化が適正に抑制される。
さらに、図10を参照して、実施例4に係るスカイフック演算制御処理の手順を説明する。図10のフローチャートに示すように、スカイフック演算制御部55は、先ず、左側のダンパベース1afl,1arlの上下加速度Gzfl,Gzrlから上下速度Vzfl,Vzrlを算出し(ステップS41)、目標減衰力設定部61flにおいて、上下速度Vzflに基づいて所定のマップを参照することにより、目標減衰力Dtflを設定する(ステップS42)。そして、スカイフック演算制御部55は、減衰力補正値設定部62flにおいて、上下速度Vzrlに基づいて所定のマップを参照することにより、減衰力補正値Dcflを設定する(ステップS43)。
スカイフック演算制御部55は、次に、目標減衰力補正部63flにおいて、左前のダンパベース1aflへの入力と左後のダンパベース1arlの入力とが同相であるか否か、すなわち、上下速度Vzflと上下速度Vzrlとが同一符号であるか否かを下式8により判定する(ステップS44)。
Vzfl・Vzrl>0 ・・・(8)
左前のダンパベース1aflへの入力と左後のダンパベース1arlへの入力とが同相である場合(ステップS44:Yes)、目標減衰力補正部63flは、上記した式2によりスカイフック制御目標値Dshflを算出する(ステップS45)。一方、左前のダンパベース1aflへの入力と左後のダンパベース1arlへの入力とが逆相である場合(ステップS44:No)、目標減衰力補正部63flは、上記した式3によりスカイフック制御目標値Dshflを算出する(ステップS46)。そして、スカイフック制御目標値Dshflを減衰力設定部52に出力して(ステップS47)処理を終了する。
本実施例では、このような処理を行うことにより、左前のダンパ6flの減衰力補正値Dcflが左後のダンパベース1arlへの入力(上下速度Vzrl)に基づいて設定される。そして、左後のダンパベース1arlに左前のダンパベース1aflと逆相の入力がある場合、車体1の左側のピッチ変化が大きいものと捉え、左後のダンパベース1arlに基づく減衰力補正値Dcflを減算することにより、目標減衰力Dtcfl(従来の目標減衰力)よりもその絶対値が大きくなるようにスカイフック制御目標値Dshflが設定される。そのため、車体1のピッチ変化が効率的に抑制される。
そして、左後のダンパベース1arlに左前のダンパベース1aflと同相の入力がある場合、ダンパ6flのスカイフック制御目標値Dshflは、左後のダンパベース1arlの上下速度Vzrlの影響を受けずに、つまり必要以上の減衰力を発生させることなく設定されるため、自動車Vのピッチ変化が適正に抑制される。
ここで、1.2Hz、振幅7mm、前後の車輪3に対して180度異なる(逆相となる)振動を自動車Vに加えた際に、車体1のピッチレートについて従来技術(スカイフック制御目標値Dshfl=目標減衰力Dt)と実施例3,4(スカイフック制御目標値Dshfl=目標減衰力Dt−減衰力補正値Dc)とを比較したグラフを図11に示す。なお、実施例3は、各車輪3について、車体前部の上下速度の平均値Vzfaまたは車体後部の上下速度の平均値Vzraに基づいてそれぞれ減衰力補正値Dcをそれぞれ設定しており、実施例4は、各車輪3について、同一車幅方向の前方または後方の車輪3に対応するダンパベース1aの上下速度Vzに基づいてそれぞれ減衰力補正値Dcを設定している。また図中においては、グラフの判別が困難となることを避けるために、それぞれ時間軸をずらして示している。図11からわかるように、実施例3および実施例4ともに、逆相の入力があった際の車体1のピッチレートが従来技術に比べて低減されている。
さらに、図12を参照して、実施例5に係るスカイフック演算制御処理の手順を説明する。図12のフローチャートに示すように、スカイフック演算制御部55は、先ず、車体前部のダンパベース1afl,1afrの上下加速度Gzfl,Gzfrから上下速度Vzfl,Vzfrを算出し(ステップS51)、目標減衰力設定部61flにおいて、上下速度Vzflに基づいて所定のマップを参照することにより、目標減衰力Dtflを設定する(ステップS52)。そして、スカイフック演算制御部55は、減衰力補正値設定部62flにおいて、上下速度Vzfrに基づいて所定のマップを参照することにより、減衰力補正値Dcflを設定する(ステップS53)。
スカイフック演算制御部55は、次に、目標減衰力補正部63flにおいて、左前のダンパベース1aflへの入力と右前のダンパベース1afrの入力とが同相であるか否か、すなわち、上下速度Vzflと上下速度Vzfrとが同一符号であるか否かを下式9により判定する(ステップS54)。
Vzfl・Vzfr>0 ・・・(9)
左前のダンパベース1aflへの入力と右前のダンパベース1afrへの入力とが同相である場合(ステップS54:Yes)、目標減衰力補正部63flは、上記した式2によりスカイフック制御目標値Dshflを算出する(ステップS55)。一方、左前のダンパベース1aflへの入力と右前のダンパベース1afrへの入力とが逆相である場合(ステップS54:No)、目標減衰力補正部63flは、上記した式3によりスカイフック制御目標値Dshflを算出する(ステップS56)。そして、スカイフック制御目標値Dshflを減衰力設定部52に出力して(ステップS57)処理を終了する。
本実施例では、このような処理を行うことにより、左前のダンパ6flの減衰力補正値Dcflが右前のダンパベース1afrへの入力(上下速度Vzfr)に基づいて設定される。そして、右前のダンパベース1afrに左前のダンパベース1aflと逆相の入力がある場合、車体1の前部のロール変化が大きいものと捉え、右前のダンパベース1afrに基づく減衰力補正値Dcflを減算することにより、目標減衰力Dtcfl(従来の目標減衰力)よりもその絶対値が大きくなるようにスカイフック制御目標値Dshflが設定される。そのため、車体1のロール変化が効率的に抑制される。
そして、右前のダンパベース1arlに左前のダンパベース1aflと同相の入力がある場合、ダンパ6flのスカイフック制御目標値Dshflは、右前のダンパベース1arlの上下速度Vzrlの影響を受けずに、つまり必要以上の減衰力を発生させることなく設定されるため、自動車Vのロール変化が適正に抑制される。
ここで、1.2Hz、振幅7mm、左右の車輪3に対して180度異なる(逆相となる)振動を自動車Vに加えた際に、車体1のロールレートについて従来技術(スカイフック制御目標値Dshfl=目標減衰力Dt)と実施例5(スカイフック制御目標値Dshfl=目標減衰力Dt−減衰力補正値Dc)とを比較したグラフを図13に示す。なお、実施例5は、各車輪3について、その車輪3と対となる左側または右側の車輪3に対応するダンパベース1aの上下速度Vzに基づいてそれぞれ減衰力補正値Dcを設定している。図13からわかるように、実施例5では、逆相の入力があった際の車体1のロールレートが従来技術に比べて低減されている。
さらに、図14を参照して、実施例6に係るスカイフック演算制御処理の手順を説明する。図14のフローチャートに示すように、スカイフック演算制御部55は、先ず、左前のダンパベース1aflと対角に位置する右後のダンパベース1arrの上下加速度Gzfl,Gzrrから上下速度Vzfl,Vzrrを算出し(ステップS61)、目標減衰力設定部61flにおいて、上下速度Vzflに基づいて所定のマップを参照することにより、目標減衰力Dtflを設定する(ステップS62)。そして、スカイフック演算制御部55は、減衰力補正値設定部62flにおいて、上下速度Vzrrに基づいて所定のマップを参照することにより、減衰力補正値Dcflを設定する(ステップS63)。
スカイフック演算制御部55は、次に、目標減衰力補正部63flにおいて、左前のダンパベース1aflへの入力と右後のダンパベース1arrへの入力とが同相であるか否か、すなわち、上下速度Vzflと上下速度Vzrrとが同一符号であるか否かを下式9により判定する(ステップS64)。
Vzfl・Vzrr>0 ・・・(9)
左前のダンパベース1aflへの入力と右後のダンパベース1arrへの入力とが同相である場合(ステップS64:Yes)、目標減衰力補正部63flは、上記した式2によりスカイフック制御目標値Dshflを算出する(ステップS65)。一方、左前のダンパベース1aflへの入力と右後のダンパベース1arrへの入力とが逆相である場合(ステップS64:No)、目標減衰力補正部63flは、上記した式3によりスカイフック制御目標値Dshflを算出する(ステップS66)。そして、スカイフック制御目標値Dshflを減衰力設定部52に出力して(ステップS67)処理を終了する。
本実施例では、このような処理を行うことにより、左前のダンパ6flの減衰力補正値Dcflが右後のダンパベース1arrへの入力(上下速度Vzrr)に基づいて設定される。そして、右後のダンパベース1arrに左前のダンパベース1aflと逆相の入力がある場合、車体1のロール変化およびピッチ変化が大きいものと捉え、右後のダンパベース1arrに基づく減衰力補正値Dcflを減算することにより、目標減衰力Dtcfl(従来の目標減衰力)よりもその絶対値が大きくなるようにスカイフック制御目標値Dshflが設定される。そのため、車体1のロール変化およびピッチ変化がともに効率的に抑制される。
そして、右後のダンパベース1arlに左前のダンパベース1aflと同相の入力がある場合、ダンパ6flのスカイフック制御目標値Dshflは、右後のダンパベース1arlの上下速度Vzrlの影響を受けずに、つまり必要以上の減衰力を発生させることなく設定されるため、自動車Vのピッチ変化およびロール変化が適正に抑制される。
ここで、1.2Hz、振幅7mm、左右の車輪3に対して180度異なる(逆相となる)振動を自動車Vに加えた際に、車体1のロールレートについて従来技術(スカイフック制御目標値Dshfl=目標減衰力Dt)と実施例6(スカイフック制御目標値Dshfl=目標減衰力Dt−減衰力補正値Dc)とを比較したグラフを図15に示し、車体1のピッチレートについて従来技術と実施例6とを比較したグラフを図16に示す。なお、実施例6は、各車輪3について、その車輪3と対角位置にある車輪3に対応するダンパベース1aの上下速度Vzに基づいてそれぞれ減衰力補正値Dcを設定している。図15からわかるように、実施例6では、逆相の入力があった際の車体1のロールレートが従来技術に比べて低減されている。また、図16からわかるように、実施例6では、逆相の入力があった際の車体1のピッチレートも従来技術に比べて低減されている。
以上で具体的実施形態の説明を終えるが、本発明の態様は上記実施形態に限られるものではない。例えば、上記実施形態では状態量検出手段として上下Gセンサを用い、運動状態量として上下速度を採用したが、例えば、上下加速度に基づいて補正値を設定したり、各車体部位の横Gおよび前後Gに基づいて補正値を設定したりしてもよい。また、上記実施形態では、前後方向の車体部位のみに基づいて補正値を設定するものを実施例4に示し、車幅方向の車体部位のみ基づいて補正地を設定するものを実施例5にそれぞれ示したが、これらを併せて行うような実施例としてもよい。その他、制御装置の具体的構成や制御の具体的手順、設定方法あるいは算出方法等についても、本発明の趣旨を逸脱しない範囲であれば適宜変更可能である。
実施形態に係る4輪自動車の概略構成図 実施形態に係るダンパの縦断面図 実施形態に係る減衰力制御装置の概略構成を示すブロック図 実施形態に係るスカイフック演算制御部の概略構成を示すブロック図 実施形態に係る減衰力制御の手順を示すフローチャート 実施形態に係る駆動電流マップ 実施例1に係るスカイフック演算制御処理の手順を示すフローチャート 実施例2に係るスカイフック演算制御処理の手順を示すフローチャート 実施例3に係るスカイフック演算制御処理の手順を示すフローチャート 実施例4に係るスカイフック演算制御処理の手順を示すフローチャート 実施例3,4に係るスカイフック演算制御処理によるピッチレートの比較図 実施例5に係るスカイフック演算制御処理の手順を示すフローチャート 実施例5係るスカイフック演算制御処理によるロールレートの比較図 実施例6に係るスカイフック演算制御処理の手順を示すフローチャート 実施例6係るスカイフック演算制御処理によるロールレートの比較図 実施例6係るスカイフック演算制御処理によるピッチレートの比較図
符号の説明
1 車体
1a ダンパベース(車体部位)
3 車輪
6 ダンパ
7 サスペンション
13 上下Gセンサ(運動状態量検出手段)
50 減衰力制御装置
55 スカイフック演算制御部
61 目標減衰力設定部
62 減衰力補正値設定部
63 目標減衰力補正部
V 自動車
Dsh スカイフック制御目標値
Dt 目標減衰力
Dc 減衰力補正値
Vz 上下速度
Vza 上下速度の平均値
Vzm 上下速度の最大値

Claims (5)

  1. 4輪車両に設置され、車体と各車輪との間に配置されたダンパの減衰力を可変制御する減衰力可変ダンパの制御装置であって、
    各ダンパに近接する車体部位にそれぞれ設けられ、当該車体部位の運動状態量を検出する運動状態量検出手段と、
    各運動状態量検出手段の検出結果に基づき、各運動状態量検出手段に近接するダンパの目標減衰力をそれぞれ設定する目標減衰力設定手段と、
    1つのダンパに対する減衰力補正値を、他のダンパに近接する車体部位の運動状態量の平均値に基づいて設定する補正値設定手段と、
    前記減衰力補正値に基づいて前記目標減衰力を補正する目標減衰力補正手段と
    を備えたことを特徴とする減衰力可変ダンパの制御装置。
  2. 前記運動状態量は上下運動に係るものであり、
    前記目標減衰力補正手段は、前記1つのダンパに近接する車体部位の運動方向と前記他のダンパに近接する車体部位の平均値の運動方向とが異なる場合、前記目標減衰力の絶対値を大きくするように補正することを特徴とする、請求項1に記載の減衰力可変ダンパの制御装置。
  3. 前記運動状態量は上下運動に係るものであり、
    前記目標減衰力補正手段は、前記1つのダンパに近接する車体部位の運動方向と前記他のダンパに近接する車体部位の平均値の運動方向とが異なる場合にのみ、前記補正を行うことを特徴とする、請求項1または請求項2に記載の減衰力可変ダンパの制御装置。
  4. 1つのダンパに近接する車体部位は第1上下速度をもって上下運動し、他のダンパに近接する車体部位は第2上下速度の平均値をもって上下運動するものであり、
    前記目標減衰力設定手段は、前記1つのダンパの目標減衰力を前記第1上下速度に基づいて設定し、
    前記補正値設定手段は、前記1つのダンパの補正値を前記第2上下速度に基づいて設定することを特徴とする、請求項1〜請求項のいずれか一項に記載の減衰力可変ダンパの制御装置。
  5. 4輪車両における車体と各車輪との間に配置された減衰力可変ダンパの減衰力を可変制御する方法であって、
    各ダンパに近接する車体部位の運動状態量を検出するステップと、
    検出した各車体部位の運動状態量に基づき、各車体部位に近接するダンパに発生させる目標減衰力を設定するステップと、
    1つのダンパに対する減衰力補正値を、他のダンパに近接する車体部位の運動状態量の平均値に基づいて設定するステップと、
    前記減衰力補正値に基づいて前記目標減衰力を補正するステップと
    を備えたことを特徴とする減衰力可変ダンパの制御方法。
JP2008235976A 2008-03-26 2008-09-16 減衰力可変ダンパの制御装置および制御方法 Expired - Fee Related JP4638534B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2008235976A JP4638534B2 (ja) 2008-09-16 2008-09-16 減衰力可変ダンパの制御装置および制御方法
DE602009001128T DE602009001128D1 (de) 2008-03-26 2009-03-11 Vorrichtung zur Regelung einer Radaufhängung
EP09154852A EP2105330B1 (en) 2008-03-26 2009-03-11 Control device for a wheel suspension system
US12/410,859 US8086371B2 (en) 2008-03-26 2009-03-25 Control device for a wheel suspension system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008235976A JP4638534B2 (ja) 2008-09-16 2008-09-16 減衰力可変ダンパの制御装置および制御方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2010261807A Division JP5148679B2 (ja) 2010-11-24 2010-11-24 減衰力可変ダンパの制御装置および制御方法

Publications (2)

Publication Number Publication Date
JP2010069897A JP2010069897A (ja) 2010-04-02
JP4638534B2 true JP4638534B2 (ja) 2011-02-23

Family

ID=42202097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008235976A Expired - Fee Related JP4638534B2 (ja) 2008-03-26 2008-09-16 減衰力可変ダンパの制御装置および制御方法

Country Status (1)

Country Link
JP (1) JP4638534B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5571510B2 (ja) * 2010-08-31 2014-08-13 日立オートモティブシステムズ株式会社 サスペンション制御装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06115335A (ja) * 1992-10-07 1994-04-26 Toyota Motor Corp 車輌の車体姿勢制御装置
JPH08244434A (ja) * 1995-03-10 1996-09-24 Nissan Motor Co Ltd 車両のサスペンション制御装置
JPH1191328A (ja) * 1997-09-22 1999-04-06 Toyota Motor Corp 車両用減衰力制御装置
JP2002127727A (ja) * 2000-10-23 2002-05-08 Tokico Ltd サスペンション装置
JP2004189117A (ja) * 2002-12-12 2004-07-08 Toyota Motor Corp 車両旋回状態制御装置
JP2009120174A (ja) * 2007-10-26 2009-06-04 Honda Motor Co Ltd 減衰力可変ダンパの制御装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06115335A (ja) * 1992-10-07 1994-04-26 Toyota Motor Corp 車輌の車体姿勢制御装置
JPH08244434A (ja) * 1995-03-10 1996-09-24 Nissan Motor Co Ltd 車両のサスペンション制御装置
JPH1191328A (ja) * 1997-09-22 1999-04-06 Toyota Motor Corp 車両用減衰力制御装置
JP2002127727A (ja) * 2000-10-23 2002-05-08 Tokico Ltd サスペンション装置
JP2004189117A (ja) * 2002-12-12 2004-07-08 Toyota Motor Corp 車両旋回状態制御装置
JP2009120174A (ja) * 2007-10-26 2009-06-04 Honda Motor Co Ltd 減衰力可変ダンパの制御装置

Also Published As

Publication number Publication date
JP2010069897A (ja) 2010-04-02

Similar Documents

Publication Publication Date Title
JP4972440B2 (ja) 減衰力可変ダンパの制御装置
EP2052891B1 (en) Control device for a variable damper
JP5021348B2 (ja) 減衰力可変ダンパの制御装置
JP4427555B2 (ja) 減衰力可変ダンパの制御装置
CN111137096B (zh) 用于可变阻尼力阻尼器的控制系统
JP5038955B2 (ja) 可変減衰力ダンパの制御装置
JP5162283B2 (ja) 減衰力可変ダンパの制御装置および制御方法
JP5193629B2 (ja) 減衰力可変ダンパの制御装置
JP5148679B2 (ja) 減衰力可変ダンパの制御装置および制御方法
JP4638534B2 (ja) 減衰力可変ダンパの制御装置および制御方法
JP4486979B2 (ja) 減衰力可変ダンパの制御装置
JP5260480B2 (ja) 減衰力可変ダンパの制御装置
JP5135023B2 (ja) サスペンション特性制御装置
JP5131679B2 (ja) 減衰力可変ダンパの制御装置
JP4435303B2 (ja) 減衰力可変ダンパの制御装置
JP5090963B2 (ja) 減衰力可変ダンパの制御装置および制御方法
JP5154277B2 (ja) 減衰力可変ダンパの制御方法及び制御装置
JP4836648B2 (ja) 減衰力可変式ダンパ装着車両
JP5131682B2 (ja) 可変減衰力ダンパの制御装置
JP2009137342A (ja) 減衰力可変ダンパの制御装置
JP2019189228A (ja) サスペンション制御装置
JP5122342B2 (ja) サスペンションの制御装置
JP5131685B2 (ja) 減衰力可変ダンパの制御装置
JP5090977B2 (ja) 減衰力可変ダンパの制御装置
JP2021154995A (ja) サスペンションシステム

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101026

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101125

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131203

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4638534

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees