JP4583726B2 - 量子半導体装置およびその作製方法 - Google Patents
量子半導体装置およびその作製方法 Download PDFInfo
- Publication number
- JP4583726B2 JP4583726B2 JP2003146177A JP2003146177A JP4583726B2 JP 4583726 B2 JP4583726 B2 JP 4583726B2 JP 2003146177 A JP2003146177 A JP 2003146177A JP 2003146177 A JP2003146177 A JP 2003146177A JP 4583726 B2 JP4583726 B2 JP 4583726B2
- Authority
- JP
- Japan
- Prior art keywords
- quantum
- layer
- semiconductor layer
- respect
- semiconductor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Semiconductor Lasers (AREA)
- Light Receiving Elements (AREA)
Description
【発明の属する技術分野】
本発明は、量子ドットで構成される量子半導体構造に関し、特に、下地半導体層に対して量子井戸となる濡れ層を排除した量子半導体構造を有する量子半導体装置とその作製方法に関する。
【0002】
【従来の技術】
情報のマルチメディア化や光通信の高速大容量化に伴い、小型、高密度、高機能なデバイスへの要望が高まる一方である。このような要望に対して、量子ドットの研究が注目を集めている。
【0003】
量子ドットは、半導体原子が数百個から数千個集まった10数ナノメートル程度のかたまりである。量子ドットでは、波動関数が3次元的に閉じ込められるため、状態密度がデルタ関数的に先鋭化する。キャリア閉じ込めのないバルク半導体では、キャリアの状態密度はエネルギとともに放物線的に連続して増大するが、キャリア閉じ込めの次元が高くなるほど、状態密度も離散的なものへと変化するからである。
【0004】
量子ドットは、半導体結晶の成長モードのひとつであるS−K(Stranski-Krastanow)型の成長モードを利用することによって形成される。S−Kモードでは、格子不整合系(たとえばGaAs上に成長するInAsなど)のヘテロエピタキシャル成長の初期において、下地半導体結晶上に、20nm〜40nm程度の成長島あるいは量子結晶が、互いに離間して出現する。
【0005】
たとえば、分子線結晶成長(MBE)法により、GaAs上に、これと3.5%程度の格子不整合を生じるInGaAsを2〜3分子相当成長すると、底面直径が30〜40nm、高さが3〜5nmの円錐形の成長島が形成されることが知られている(非特許文献1参照)。このように形成された成長島は、三次元的にキャリアが閉じ込められた状態、すなわち量子箱(量子ドット)と同じく離散的なエネルギ状態密度を持つ。
【0006】
量子ドットは、有機金属化学気相成長(MOCVD)法でも形成される。格子不整合の組み合わせとして、GaAs上のGaSb量子ドット、InP基板上のInAs量子ドット、InAlAs上に成長したInAs量子ドットなどが報告されている(非特許文献2参照)。
【0007】
図1(a)は、S−Kモードでの量子ドットの成長を示す模式図、図1(b)は、S−K成長したInAs量子ドットの断面の透過電子顕微鏡(TEM)像である。S−K成長モードでは、GaAs下地結晶層101上に、まず2次元的に1〜2分子程度の厚さの平坦なInAs層102が成長し、その後、3次元的な成長島103が互いに離間して自己形成される。1〜2分子程度の平坦なInAs層102は「濡れ層(WL:wetting layer)」とよばれ、量子ドット103の成長に先立って必然的に形成される。
【0008】
図2(a)は、図1に示すS−K成長で形成された量子ドットの断面模式図、図2(b)は平面模式図、図2(c)および2(d)は、図2(a)のA−A’断面およびB−B’断面におけるエネルギバンド図である。図2(a)に示すように、GaAs埋め込み層101と105の間に、InAs濡れ層(WL)102とInAs量子ドット(QD)103から成る量子構造が埋め込まれている。
図2(b)に示すように、InAs量子ドット103は、そのサイズにばらつきがある状態で、InAs濡れ層102上に散在する。
【0009】
図2(c)および2(d)に示すように、InAsは、埋め込み層材料であるGaAsに対してタイプI型のバンド不連続を示す。したがって、InAs濡れ層102の発光エネルギは、埋め込み層の材料であるGaAsよりも低エネルギ側にある。また、量子効果により、InAs濡れ層102は、InAs量子ドットよりも高エネルギ側に遷移エネルギを有する。
【0010】
S−Kモードで形成される量子ドットは、人工加工では得られない良好な界面特性を持つなど、すぐれた特徴があり、波長変換素子への適用(たとえば、特許文献1参照)、赤外線センサへの適用(たとえば、特許文献2参照)、光メモリへの適用(たとえば、特許文献3参照)、量子ドットレーザへの適用が知られている。
【0011】
【非特許文献1】
D. Leonard, et al., Appl. Phys. Lett., 63(1993) at 3203
【0012】
【非特許文献2】
S. Fafard, et al., Appl. Phys. Lett., 68(1996) at 991
【0013】
【特許文献1】
特開2000−275692号公報
【0014】
【特許文献2】
特開平10−256588号公報
【0015】
【特許文献3】
特開平9−179237号公報
【0016】
【発明が解決しようとする課題】
しかし、上述した従来の量子ドットの形成では、S−Kモード特有の濡れ層102の形成を必ず伴う。濡れ層102は、半導体レーザの発光効率の低下や、赤外線検出器の暗電流の増大、メモリや光増幅器の波長多重性の低下などを引き起こし、装置特性に悪影響を与える可能性がある。
【0017】
図3は、図1の手法でGaAs上に形成されたInAs量子ドット(QD)からの室温での光ルミネッセンス発光スペクトルである。図3に示すように、中心波長が約1.1μmで、スペクトル半値幅は100meV程度のブロードな発光を示すが、0.93μmあたりに、InAs濡れ層(WL)からの発光が観察される。これは、図2(c)に示すように、InAs濡れ層においても、電子と正孔が同じ空間内に閉じ込められ、再結合することに起因する。このような不必要な波長での発光は、レーザの発光効率、すなわち、注入キャリア数に対する出力光子数を低下させる原因のひとつになる。
【0018】
また、量子ドットを、量子ドット光メモリや量子ドット光増幅素子などの波長多重性を利用した素子に適用する場合、濡れ層の存在が、波長多重性を劣化させる原因となる。量子ドットの不均一幅を利用した波長多重素子は、互いに孤立した量子ドット間での相関(異なる量子ドット間でのキャリアの出し入れ)がないことを前提としている。しかし、埋め込み層GaAsに対して量子井戸を形成するInAs濡れ層にはキャリアが分布する。InAs濡れ層を介して量子ドットのキャリアが変動し、量子ドット間に相関が現われる。この結果、ある波長でホールバーニングを起こしても、他の量子ドットからキャリアが供給され、共鳴波長に変動を起こす。
【0019】
また、利用できる波長帯域が広いほどメモリの書き込み、読み出しに使用できる光の波長体が増えることになるが、濡れ層の存在により、利用可能な波長帯域が、濡れ層からの発光波長と抵触しない帯域(図3のスペクトルで言えば、濡れ層からのピーク波長よりも高波長側)に限定されてしまう。すなわち、量子ドットの不均一幅の高エネルギ側が、母材のエネルギギャップではなく、濡れ層のエネルギで制限され、波長多重性が損なわれる。
【0020】
さらに、量子ドットを赤外線検出器に適用する場合、量子ドットの直下にある濡れ層が量子井戸を構成するので、暗電流発生の原因となる。
【0021】
図4(a)は、量子ドットの状態密度とキャリア分布を、図4(b)は、量子ドットの赤外線照射による光電変換を示す模式図である。一方、図4(c)は濡れ層における2次元量子井戸の状態密度とキャリア分布を、図4(d)は、量子井戸の悪影響を示す模式図である。
【0022】
図4(a)に示すように、量子ドットでは状態密度が離散的であり、キャリア分布が先鋭的になっている。このため、図4(b)に示すように、赤外線の入射に対して所定のエネルギ準位にあるキャリアが励起され、光電流となる。状態密度が離散的なので、熱の影響による好ましくないキャリアの放出がなく、暗電流が抑制される。また、高温動作が可能になる。さらに、キャリアの緩和を遅くできるので、光電流が近隣の量子ドットで別の準位に緩和することがなく、光電変換効率を高く維持できる。
【0023】
これに対して、濡れ層の量子井戸内では、図4(c)に示すように、電子のエネルギ構造は、面内の2次元的な自由電子の分散が付随したサブバンド構造となる。このため、図4(d)の矢印▲1▼に示すように、熱の影響で高エネルギのキャリアが励起されて井戸から放出し、暗電流の原因となる。また、矢印▲3▼に示すようにキャリアの緩和が早く、緩和したキャリアが熱の影響でさらなる暗電流の原因となる。量子井戸から流れ出た電流が量子ドットで緩和した場合、理想的な量子ドットを想定した場合に比べて、量子ドットの光電変換効率や、暗電流抑制機能が阻害される。さらに、矢印▲2▼に示すように、熱の影響で高エネルギのキャリアがトンネリングして流れ出てしまう。
【0024】
そこで、本発明は、量子井戸型の濡れ層に起因する劣性要因を排除した量子ドット半導体構造を有する量子半導体装置を提供することを目的とする。
【0025】
また、このような量子半導体装置の作製方法を提供する。
【0026】
【課題を解決するための手段】
上記の目的を達成するために、まず、量子ドット(成長島)の形成に先立って形成される平坦な薄膜結晶層(いわゆる「濡れ層」)が、下地半導体層(埋め込み半導体層)に対して量子井戸とならない構成、すなわち、取り出したいキャリアの閉じ込めを生じさせない構成にする。このような構成は、たとえば濡れ層の伝導帯側の基底準位が、下地半導体材料の伝導帯側の基底準位より高くなるような結晶材料を選択することで実現される。一方、量子ドットは、下地半導体材料に対してキャリアの3次元閉じ込めが可能になる材料で構成する。
【0027】
一例として、S−Kモードの成長を利用した量子ドットの形成において、下地半導体(埋め込み半導体)材料に対するエネルギバンド不連続がタイプII型となる結晶材料で濡れ層を構成する。あるいは、下地半導体材料よりも大きなエネルギバンドギャップを有する結晶材料で濡れ層を構成する。そして、濡れ層の直上に、埋め込み半導体材料に対するエネルギバンド不連続がタイプI型となる結晶材料で、量子ドットのみを形成する。
【0028】
量子ドットの直下に量子井戸となる濡れ層を伴わないので、量子ドットの直下でのターゲットキャリアの分布を防止することができる。したがって、濡れ層を介した量子ドット間のキャリアの流出入や、暗電流の発生、濡れ層での再結合を防止でき、理想的な量子ドットの特性が維持される。
【0029】
より具体的には、本発明の第1の側面では、量子半導体装置は、(a)下地半導体層上に位置し、この下地半導体層に対して量子井戸を構成せず、かつ下地半導体層に対してS−Kモードでの成長が可能な材料で構成される薄膜結晶層(濡れ層)と、(b)薄膜結晶層の直上に位置し、下地半導体層に対してタイプI型のバンド不連続を構成する量子ドットとを有する量子半導体構造を有する。
【0030】
薄膜結晶層は、たとえば、下地半導体層に対してタイプII型のバンド不連続を構成する材料で構成される。あるいは、下地半導体層よりも大きなバンドギャップを有する材料で構成される。
【0031】
前者の場合、たとえば、下地半導体層が(Al)GaAs、薄膜結晶層がGa(As)Sb、量子ドットがIn(Ga)Asである。
【0032】
後者の場合、たとえば、下地半導体層がInP、薄膜結晶層が(Al)Ga(As)Sb、量子ドットがIn(Ga)Asである。
【0033】
本発明の第2の側面では、量子半導体装置の作製方法を提供する。量子半導体装置の作製方法は、
(a)下地半導体層上に、この下地半導体層に対してS−Kモードでの成長が可能であり、かつ下地半導体層に対して量子井戸を構成しない材料で濡れ層を成長する工程と、
(b)前記濡れ層上に、前記下地半導体層に対してタイプI型のエネルギバンド不連続となる材料で、自己形成的に量子ドットのみを形成する工程と
を含む。
【0034】
好ましくは、濡れ層を、下地半導体層に対してタイプII型のエネルギバンド不連続となる材料で形成する。あるいは、下地半導体層よりも大きなエネルギギャップを有する材料で形成する。
【0035】
濡れ層の成長は、S−Kモードで島状成長が起きる直前で終了するのが望ましい。あるいは、S−Kモードで島状成長へ遷移する時点以降、かつ転位生成が生じるより前に終了する。
【0036】
本発明の第3の側面では、量子半導体装置は、(a) 半導体基板と、(b) 前記半導体基板上に位置する埋め込み半導体層と、(c) 前記埋め込み半導体層上に位置し、この埋め込み半導体層に対して量子井戸を構成せず、かつS−Kモードでの成長が可能な材料で構成される薄膜結晶層と、当該薄膜結晶層の直上に位置し、前記埋め込み半導体層に対してタイプI型のエネルギバンド不連続を構成する量子ドットとで構成される量子半導体層とを備え、埋め込み半導体層と、量子半導体層との繰り返しを1層以上含む。
【0037】
薄膜結晶層の膜厚は、S−K成長モードで島状成長が開始する直前のいわゆる濡れ層の膜厚である。
【0038】
このような構造の量子半導体装置は、たとえば、量子ドットレーザ、量子ドット赤外線検出器、量子ドット光メモリ、量子ドット光増幅器などを含む。
【0039】
【発明の実施の形態】
以下で、図面を参照して本発明の実施形態を説明する。
【0040】
図5は、本発明の第1実施形態に係る量子半導体構造を示す。第1実施形態では、S−K成長により形成される量子ドットの直下に位置する濡れ層(薄膜結晶層)を、下地半導体層に対してタイプII型のエネルギバンド不連続となる材料で構成する。量子ドットには、下地半導体層に対してバンド不連続がタイプI型となる材料を用いる。これにより、濡れ層で量子井戸を形成することなく、量子ドットでのキャリアの3次元閉じ込めを確実にする。
【0041】
具体例として、量子半導体構造は、図5(a)に示すように、たとえばGaAs基板11上に形成したGaAs埋め込み層(下地半導体層)12上に、GaAsに対してタイプII型のバンド不連続を構成するGaSb濡れ層(薄膜結晶層)13を有する。GaSbの格子定数は、GaAsの格子定数よりも大きく、GaAsに対する格子不整合は約7.5%である。この濡れ層13の直上に、GaAsに対してタイプI型のバンド不連続となるInAs量子ドット14を有する。
GaAsに対するInAsの格子不整合は約7.2%である。GaSb濡れ層13の膜厚は、S−KモードでGaSbの成長を継続した場合に島状成長が開始する直前の膜厚、具体的には、1.3分子相当の膜厚とする。
【0042】
GaSb薄膜結晶層13とInAs量子ドット14で構成される量子半導体構造上に第2の埋め込み層15を配置して、量子半導体構造全体を埋め込む。
【0043】
図5(b)および5(c)は、図5(a)の量子半導体構造のA−A’断面とB−B’断面でのエネルギバンド図をそれぞれ示す。
【0044】
図5(a)および5(b)に示すように、濡れ層(薄膜結晶層)13の材料であるGaSbは、伝導帯の基底準位がGaAsの伝導帯側の基底準位よりも高く、電子に対して障壁を構成する。一方、荷電子帯側では、GaSbの基底準位は、GaAsの荷電子帯側基底準位よりも高く、正孔に対して井戸となるが、電子と正孔が同一半導体内に閉じ込められるような量子井戸は形成されない。
【0045】
一方、量子ドット14を構成するInAsは、埋め込み層12、15の材料であるGaAsに対して、タイプI型のバンド不連続となる。したがって、InAs量子ドット14内では、キャリアが3次元的に閉じ込められる。
【0046】
このような量子半導体構造は、分子線エピタキシ(MBE)法により作製することができる。MBE装置に入れた(001)GaAs基板11の表面をクリーニング後、基板温度600℃でGaAsを450nm成長し、基板温度を500℃まで下げながら、さらに50nm程度GaAsを連続的に成長してGaAs埋め込み層12を形成する。
【0047】
その後、GaおよびAsの分子線を遮断して、Sb分子線を2秒間照射する。
これにより、AsとSbを確実に切り替えるとともに、表面からAsが抜けるのを防止する。さらにSbを照射しながら、Gaの分子線を照射して、1.3分子層程度のGaSb濡れ層13を形成する。この時点で、GaAs埋め込み層12に対するGaSb濡れ層13の格子歪は相当量に達し、島状成長が開始する直前の状態にある。
【0048】
その後、SbとGaの分子線を遮断し、InとAsの分子線を照射して、1分子層程度成長する。InAsの格子定数は、GaSbの格子定数に比較的近い。
InAsは、すでに歪が相当量蓄積されているAsSb濡れ層13上に成長するので、もはや平坦な層にはならずにそのまま量子ドット14を形成する。In分子線を遮断して、As照射下で30秒程度保持し、その後同じ基板温度でGaAsを再度成長して、GaAs埋め込み層15を形成する。
【0049】
第1実施形態では、GaSb濡れ層13の成長を1.3分子程度、すなわち、GaSbが島状成長を開始する直前の膜厚で終了しているが、これ以上の膜厚にまで成長してもよい。この場合は、GaSb濡れ層13の成長は島状成長に遷移するので、量子ドットの底面部分をGaSbが占有することになる。この状態で、上述したように分子線を切り換えると、GaSbの円錐底面上にInAs量子ドットが形成されることになる。
【0050】
この場合、InAs量子ドットの実効体積が減少し、キャリア閉じ込めがさらに強くなる。ただし、島状成長に遷移した後のGaSbの成長は、転位生成の臨界膜厚未満で終了させるのが望ましい。
【0051】
図6は、第1実施形態の量子半導体構造において、S−K成長とリアルタイムで観察された反射高速電子解析(RHEED:reflection high energy electron diffraction)強度の変化を示すグラフである。まず、GaAs上にGaSbの成長が始めるまで、すなわち時間0までは、電子線回析(RHEED)像は平面からの2次元的な回析を示すストリーク像である。その後、GaSb濡れ層の形成によって、回析像の強度が変動するが、回析像は2次元平面からのストリークの様相を示す。GaAsへのGaSbの供給量が1.3分子層程度に達し、分子線ビームをInとAsに切り換えた直後から、電子線回析像は、3次元的な回析を示すスポット像へと急変する。これは、成長表面が、平面から微小な凹凸のある3次元形状に変化したことを示している。
【0052】
図6のRHEED観察結果から、(1)GaAs上に、これよりも格子定数が大きくS−Kモードでの成長が可能なGaSbを成長し、(2)GaAsに対するGaSbの歪量が限界に達する直前でGaSbの成長を終了して、InAsの成長を開始させることにより、GaAsとのエネルギバンド不連続がタイプII型である材料で濡れ層のみが形成され、GaAsとのエネルギバンド不連続がタイプI型である材料で量子ドットのみが形成されることが確認される。
【0053】
GaSb濡れ層13は、電子に対して障壁となり、濡れ層での2次元的な電子の閉じ込めは生じない。この結果、濡れ層での再結合や、濡れ層からの電子の流出入、流出した電子の量子ドットでの緩和などを防止することができる。
【0054】
図7は、本発明の第2実施形態に係る量子半導体構造を示す。第2実施形態では、量子ドット直下の濡れ層(薄膜結晶層)に、埋め込み層材料のエネルギバンドギャップよりも大きなバンドギャップを有する材料を用いる。量子ドットには、第1実施形態と同様に、埋め込み層材料に対してバンド不連続がタイプI型となる材料を用いる。
【0055】
具体例として、図7(a)に示すように、GaAs基板21上で、GaAs埋め込み層22上に、GaAsよりもバンドギャップが大きいAlSbの濡れ層(薄膜結晶層)23を配置する。AlSbの格子定数は、GaAsの格子定数よりも大きい。この濡れ層23の直上に、GaAsに対してタイプI型のバンド不連続となるInAsの量子ドット24を形成する。AaSb濡れ層23とInAs量子ドット24上に、第2の埋め込み層25を配置して、量子ドット24全体を埋め込む構成とする。
【0056】
AlSb濡れ層23の膜厚は、S−KモードでAlSbの成長を継続した場合に島状成長が開始する直前の膜厚、たとえば1.5分子相当の膜厚とする。
【0057】
図7(b)および7(c)は、図7(a)の量子半導体構造のA−A’断面とB−B’断面でのエネルギバンド図をそれぞれ示す。濡れ層(薄膜結晶層)23の材料であるAlSbは、伝導帯の基底準位がGaAsの伝導帯側の基底準位よりも高く、電子に対して障壁を構成する。また、価電子帯側では、AlSbの基底準位は、GaAsの荷電子帯側基底準位よりも低い。したがって、AlSb濡れ層23は、キャリアに対する障壁を構成し、埋め込み層22、25の材料GaAsに対して量子井戸にはならない。
【0058】
一方、量子ドット24を構成するInAsは、埋め込み層22、25の材料であるGaAsに対して、タイプI型のバンド不連続となる。したがって、InAs量子ドット14内では、キャリアが3次元的に閉じ込められる。
【0059】
このような量子半導体構造は、分子線エピタキシ(MBE)法により作製することができる。MBE装置に入れた(001)GaAs基板21の表面をクリーニング後、基板温度600℃でGaAsを450nm成長し、基板温度を500℃まで下げながら、さらに50nm程度GaAsを連続的に成長してGaAs埋め込み層22を形成する。
【0060】
その後、GaおよびAsの分子線を遮断して、Sb分子線を2秒間照射する。
これにより、AsとSbを確実に切り替えるとともに、表面からAsが抜けるのを防止する。さらにSbを照射しながら、Alの分子線を照射して、1.5分子層程度のAlSb濡れ層23を形成する。この時点で、GaAs埋め込み層22に対するAlSb濡れ層23の格子歪は相当量に達し、島状成長が開始する直前の状態にある。
【0061】
その後、SbとAlの分子線を遮断し、InとAsの分子線を照射して、1分子層程度成長する。InAsの格子定数は、AlSbの格子定数に比較的近い。
InAsは、すでに歪が相当量蓄積されているAlSb濡れ層23上に成長するので、もはや平坦な層にはならずに、そのまま量子ドット24を形成する。In分子線を遮断して、As照射下で30秒程度保持し、その後同じ基板温度でGaAsを再度成長して、GaAs埋め込み層25を形成する。
【0062】
第2実施形態でも、AlSbの成長を島状成長に遷移する直前で終了させる代わりに、その後しばらく継続してもよい。この場合、AlSbの円錐底面上にInAsの量子ドットが形成されることになり、閉じ込めがいっそう強くなる。ただし、転位生成の臨界膜厚に達する前にAlSbの成長は終了させる。
【0063】
図8〜10は、本発明の量子半導体構造を適用した量子半導体装置の具体例を示す。
【0064】
図8(a)は、図5に示す量子半導体構造を備える量子ドットレーザ30の断面模式図である。量子ドットレーザ30は、n型GaAs基板32上で、SCH(Separate Confinement Heterostructure:光閉じ込め)層34、36に挟まれた活性層35を有する。活性層35は、詳細は図示しないが、図5(a)に示すGaSb濡れ層と、InAs量子ドットを有する量子半導体層である。また、SCH層34、36はGaAsで構成される。活性層35とSCH層34、36の積層構造は、n型およびp型のAlGaAsクラッド層32、37で挟み込まれる。p型クラッド層37上には、p型コンタクト層39を介して、p電極40が設けられる。一方、n型基板32の裏面に、n電極31が設けられる。
【0065】
図8(b)は、図8(a)のE−E’断面におけるエネルギバンド図である。
活性層35を構成するInAs量子ドットは、サークルCで示すようにキャリア閉じ込め領域となる。従来の濡れ層とは異なり、GaSb濡れ層はGaAsに対して量子井戸とならないので、InAs量子ドットの中にだけキャリアを閉じ込める。したがって、たとえばp型電極40から電流が注入されると、GaSb濡れ層での再結合は抑制され、InAs量子ドットで効率的にキャリアが再結合する。
【0066】
発生した光は、GaAs光閉じ込め(SCH)層34、36と、AlGaAsクラッド層32、37との屈折率の差により、サークルDで示すように、SCH層34、36の内部に閉じ込められる。
【0067】
このような量子ドットレーザは、従来の量子ドットの生成に伴って必然的に形成されていた量子井戸型の濡れ層による劣性要因、たとえば濡れ層からの不要な発光が抑制され、発光効率が改善される。
【0068】
図9は、図5に示す量子半導体構造を備える量子ドット赤外線検出器50を示す。量子ドット赤外線検出器50は、GaAs基板51上に、GaAsコンタクトを介して、GaAs埋め込み層54と、量子半導体層53とを繰り返す積層構造58を有する。積層構造58上には、GaAsコンタクト55が設けられ、コンタクト52、55には、電極57、56がそれぞれ接続される。
【0069】
量子半導体層53は、図5に示す量子半導体構造を有し、量子ドット赤外線検出器50の活性層として機能する。すなわち、1.3分子相当程度の膜厚を有するGaSb濡れ層53bと、GaSb濡れ層53b上に散在するInAs量子ドット53aとで構成され、矢印で示すように赤外線が照射されると、InAs量子ドット53aにおいて赤外線の共鳴吸収が起きる。この結果、基底準位を占めていた電子が励起される。励起された電子は電位障壁を超えて光電流になる。GaSb濡れ層53bは、GaAs埋め込み層54に対してタイプII型のバンド不連続を示し、量子井戸を構成しない。したがって、赤外線の入射にともなう熱的な刺激による濡れ層53bでのキャリアの励起や、キャリアの緩和を防止することができる。このような赤外線検出器は、暗電流を低減し、高温動作が可能になる。
【0070】
図10は、図5に示す量子半導体構造を備える量子ドット光メモリ60の断面模式図である。量子ドット光メモリ60は、n型GaAs基板61上にn型GaAsバッファ層62を介して、GaAs埋め込み層64,66と、量子半導体層65を交互に5層繰り返す。量子半導体層65は、それぞれInAs量子ドット65aとGaSb濡れ層65bで構成され、量子ドット光メモリ60の活性層として機能する。最上層のGaAs埋め込み層66上に、AlAs層67、AlGaAs層68、GaAs層69、AlGaAs層70を積層し、p型GaAsコンタクト層71上にAs電極71を形成する。n型GaAs基板の裏面にもn電極61を設ける。
【0071】
InAs量子ドット65aは、そのサイズに揺らぎがあるため、電子・正孔間の遷移エネルギの異なる量子ドットが存在する。たとえば、第1の電子・正孔間遷移エネルギに対応する波長の第1書き込み光を照射すると、この遷移エネルギを有する量子ドット65a1 で共鳴が起こり、電子、正孔対が生成される。このうち、電子はトンネリングして外部に抜け出して電界中を移動し、正孔が量子ドットに残る。この正孔の存在をたとえば「1」で表す。第2の電子・正孔間遷移エネルギを有する量子ドット65a2 では、第1の書き込み光の吸収は起きず、「0」が書き込まれる。さらに第2の遷移エネルギに対応する第2の書き込み光を照射すると、量子ドット65a2 で電子、正孔対が生成され、電子が流れ出て「1」が書き込まれる。これにより、波長多重光メモリが実現される。なお、図示はしないが、膜厚方向に向かって(n電極61からp電極72に向かって)電界がかけられているものとする。
【0072】
次に、読み出し時には、波長可変読み出し光を照射する。このとき、「1」が書き込まれている量子ドットでは変化は生じないが、「0」が書き込まれている量子ドット、たとえば第3の電子・正孔間遷移エネルギを有する量子ドットでは、この遷移エネルギに対応する波長の光が照射されると電子・正孔対が発生し、電子が流れ出る。この電子の流出による電流変化を、たとえば電流検出器(不図示)で検知することによって、情報「0」が書き込まれていたことがわかる。
【0073】
図8〜図10に示す適用例では、図5の量子半導体構造を用いたが、図7に示す第2実施形態の量子半導体構造を適用しても同様の効果が得られる。
【0074】
第1および第2実施形態では、埋め込み材料としてGaAsを用い、濡れ層にGaAsに対してタイプII型のバンド不連続となるGaSb、または、GaAsよりもバンドギャップの大きいAlSbを用いた。自己形成的に得られる量子ドットは、GaAsに対してタイプI型のバンド不連続となるInAsを用いた。
しかし、本発明はこれらの例に限定されず、濡れ層が母材(埋め込み半導体層)に対して量子井戸とならない材料で、かつ、量子ドットが母材に対してキャリアの3次元閉じ込めが可能になる材料であれば、任意の組み合わせを採用することができる。
【0075】
たとえば、埋め込み層材料を(Al)GaAs、濡れ層(薄膜結晶層)をGa(As)Sb、自己形成的に得られる量子ドットをIn(Ga)Asで形成してもよい。
【0076】
また、埋め込み層材料をInP,濡れ層(薄膜結晶層)を(Al)Ga(As)Sb、自己形成的に得られる量子ドットをIn(Ga)Asで形成してもよい。いずれの場合も、濡れ層と量子ドットの双方の格子定数は、母材である埋め込み層の格子定数よりも大きい。
【0077】
さらに別の例として、埋め込み層材料をInP、濡れ層(薄膜結晶層)をAlAs、量子ドットをGaAsとしてもよい。単独の状態では、GaAsのバンドギャップは母材のInPよりも広い。しかし、InP上にAlAsを介してGaAsをヘテロ成長させた場合、GaAsの格子定数が母材のInPよりも小さいため、格子不整合による引っ張り歪によりGaAsのバンドギャップがシュリンクすると考えられる。結果として、GaAs量子ドットのバンドギャップは、母材のInPよりも狭くなり、キャリアの3次元閉じ込めが可能になる。
【0078】
最後に、以下の付記を開示する。
(付記1) 下地半導体層上に位置し、この下地半導体層に対して量子井戸を構成せず、かつ下地半導体層に対してS−Kモードでの成長が可能な材料で構成される薄膜結晶層と、
薄膜結晶層の直上に位置し、下地半導体層に対してタイプI型のエネルギバンド不連続を構成する量子ドットと
を備える量子半導体構造を有する量子半導体装置。
(付記2) 量子半導体構造の薄膜結晶層は、下地半導体層に対してタイプII型のバンド不連続を構成することを特徴とする付記1に記載の量子半導体装置。
(付記3) 量子半導体構造の薄膜結晶層は、下地半導体層よりも大きなバンドギャップを有する材料で構成されることを特徴とする付記1に記載の量子半導体装置。
(付記4) 量子半導体構造の薄膜結晶層の膜厚は、S−Kモード成長において島状成長が開始する直前の、いわゆる濡れ層の膜厚であることを特徴とする付記1〜3のいずれかに記載の量子半導体装置。
(付記5) 前記量子ドットの格子定数は、前記下地半導体層および薄膜結晶層の格子定数と異なり、前記薄膜結晶層と下地半導体層の格子定数の差は、薄膜結晶層と量子ドットの格子定数の差よりも大きいことを特徴とする付記1〜4のいずれかに記載の量子半導体装置。
(付記6) 下地半導体層上に、この下地半導体層に対してS−Kモードでの成長が可能であり、かつ下地半導体層に対して量子井戸を構成しない材料で濡れ層を成長する工程と、
濡れ層上に、下地半導体層に対してタイプI型のエネルギバンド不連続となる材料で、自己形成的に量子ドットのみを形成する工程と
を含むことを特徴とする量子半導体装置の作製方法。
(付記7) 濡れ層を、前記下地半導体層に対してタイプII型のエネルギバンド不連続となる材料で形成することを特徴とする付記6に記載の量子半導体装置の作製方法。
(付記8) 濡れ層を、前記下地半導体層よりもバンドギャップが大きい材料で形成することを特徴とする付記6に記載の量子半導体装置の作製方法。
(付記9) 濡れ層の成長を、S−K成長モードで島状成長が起きる直前で終了することを特徴とする付記6に記載の量子半導体装置の作製方法。
(付記10) 濡れ層の成長を、S−K成長モードで島状成長へ遷移する時点以降、かつ転位生成が生じるより前に終了することを特徴とする付記6に記載の量子半導体装置の作製方法。
(付記11) 半導体基板と、
半導体基板上に位置する埋め込み半導体層と、
埋め込み半導体層上に位置し、この下地半導体層に対して量子井戸を構成せず、かつ下地半導体層に対してS−Kモードでの成長が可能な材料で構成される薄膜結晶層と、薄膜結晶層の直上に位置し、埋め込み半導体層に対してタイプI型のエネルギバンド不連続を構成する量子ドットとで構成される量子半導体層と、を備え、埋め込み半導体層と、量子半導体層との繰り返しを1層以上含むことを特徴とする量子半導体装置。
(付記12) 前記薄膜結晶層の膜厚は、S−K成長モードで島状成長が開始する直前のいわゆる濡れ層の膜厚であることを特徴とする付記11に記載の量子半導体装置。
(付記13) 量子半導体装置は量子ドットレーザであり、前記量子半導体装置を挟み込む一対の光閉じ込め層をさらに有することを特徴とする付記11に記載の量子半導体装置。
(付記14) 量子半導体装置は量子ドット赤外線検出器であり、赤外線入射面を有し、前記量子ドットで入射赤外線に応じた光電流を生成し、前記濡れ層で暗電流を抑制することを特徴とする付記11に記載の量子半導体装置。
(付記15) 量子半導体装置は量子ドット光メモリであり、前記量子ドットで情報を記憶し、前記濡れ層で量子ドットにおけるキャリアの変動を抑制することを特徴とする付記11に記載の量子半導体装置。
【0079】
【発明の効果】
以上述べたように、本発明によれば、量子ドットの形成に伴う量子井戸型の濡れ層に起因する劣性要因を排除し、自己形成された量子ドットの優位性を確実に維持できる。
【0080】
このような量子半導体構造を量子半導体装置に適用すると、発光効率や波長多重性が改善され、暗電流の低減も可能になる。結果として、高感度、高性能の量子半導体装置が実現される。
【図面の簡単な説明】
【図1】従来のS−Kモードによる量子ドットの成長を示す図である。
【図2】従来のS−Kモードで形成された量子ドット構造と、エネルギバンド構造を示す図である。
【図3】従来のS−Kモードで形成された量子ドットから観察される発光スペクトルを示す図である。
【図4】量子ドットと量子井戸の状態密度とキャリア分布、およびその物性を説明するための図である。
【図5】本発明の第1実施形態に係る量子半導体構造の断面模式図とエネルギバンド図である。
【図6】第1実施形態の量子半導体構造におけるS−K成長時のRHEED(反射高速電子回析)像を示す図である。
【図7】本発明の第2実施形態に係る量子半導体構造の断面模式図とエネルギバンド図である。
【図8】本発明の量子半導体構造を適用した量子ドットレーザの模式図である。
【図9】本発明の量子半導体構造を適用した量子ドット赤外線検出器の模式図である。
【図10】本発明の量子半導体構造を適用した量子ドット光メモリの模式図である。
【符号の説明】
11、21、32、51、62 GaAs基板
12、22、54、64、GaAs層(下地半導体層)
13、63b、65b GaSb濡れ層
14、24,53a、65a InAs量子ドット
15、25、66 GaA埋め込み層
23 AlSb濡れ層
31、40、56、57、61、72 電極
35、65、53 活性層(量子半導体層)
34、36 SCH層
33、37 クラッド層
Claims (4)
- 下地半導体層上に位置し、この下地半導体層に対して量子井戸を構成せず、かつ下地半導体層に対してS−Kモードでの成長が可能な材料で構成される薄膜結晶層と、
前記薄膜結晶層の直上に位置し、前記下地半導体層に対してタイプI型のエネルギバンド不連続を構成する量子ドットと
を備える量子半導体構造を有する量子半導体装置において、
前記量子半導体構造の薄膜結晶層は、前記下地半導体層に対してタイプII型のバンド不連続を構成する量子半導体構造を有する量子半導体装置。 - 前記量子半導体構造の薄膜結晶層の膜厚は、S−Kモード成長において島状成長が開始される直前の、いわゆる濡れ層の膜厚であることを特徴とする請求項1に記載の量子半導体装置。
- 下地半導体層上に、この下地半導体層に対してS−Kモードでの成長が可能であり、かつ下地半導体層に対して量子井戸とならない材料で濡れ層を成長する工程と、
前記濡れ層上に、前記下地半導体層に対してタイプI型のエネルギバンド不連続となる材料で、自己形成的に量子ドットのみを形成する工程と
を含み、
前記濡れ層を形成する材料は、前記下地半導体層に対してタイプII型のバンド不連続を構成する
ことを特徴とする量子半導体装置の作製方法。 - 半導体基板と、
前記半導体基板上に位置する埋め込み半導体層と、
前記埋め込み半導体層上に位置し、当該埋め込み半導体層に対して量子井戸を構成せず、かつS−Kモードでの成長が可能な材料で構成される薄膜結晶層と、当該薄膜結晶層の直上に位置し、前記埋め込み半導体層に対してタイプI型のエネルギバンド不連続を構成する量子ドットとで構成される量子半導体層と、
を備え、
前記量子半導体層の薄膜結晶層は、前記埋め込み半導体層に対してタイプII型のバンド不連続を構成し、
前記埋め込み半導体層と、前記量子半導体層との繰り返しを1層以上含むことを特徴とする量子半導体装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003146177A JP4583726B2 (ja) | 2003-05-23 | 2003-05-23 | 量子半導体装置およびその作製方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003146177A JP4583726B2 (ja) | 2003-05-23 | 2003-05-23 | 量子半導体装置およびその作製方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004349542A JP2004349542A (ja) | 2004-12-09 |
JP4583726B2 true JP4583726B2 (ja) | 2010-11-17 |
Family
ID=33533106
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003146177A Expired - Lifetime JP4583726B2 (ja) | 2003-05-23 | 2003-05-23 | 量子半導体装置およびその作製方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4583726B2 (ja) |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006108641A (ja) * | 2004-09-08 | 2006-04-20 | Advanced Telecommunication Research Institute International | 半導体レーザおよびそれを用いた半導体レーザジャイロ |
JP4583194B2 (ja) * | 2005-02-03 | 2010-11-17 | 富士通株式会社 | 赤外線検知器 |
JP2006261589A (ja) * | 2005-03-18 | 2006-09-28 | Furukawa Electric Co Ltd:The | 光半導体装置、レーザモジュールおよび光半導体装置の製造方法 |
JP2006278850A (ja) * | 2005-03-30 | 2006-10-12 | Advanced Telecommunication Research Institute International | 半導体発光素子、その製造方法およびその半導体発光素子を用いた半導体レーザジャイロ |
JP5082233B2 (ja) * | 2005-12-08 | 2012-11-28 | 富士通株式会社 | 赤外線検知器の製造方法 |
US7750425B2 (en) * | 2005-12-16 | 2010-07-06 | The Trustees Of Princeton University | Intermediate-band photosensitive device with quantum dots embedded in energy fence barrier |
JP4809684B2 (ja) * | 2006-01-31 | 2011-11-09 | 富士通株式会社 | 半導体装置 |
JP5297519B2 (ja) * | 2006-05-15 | 2013-09-25 | 富士通株式会社 | 半導体装置の製造方法 |
JP4829809B2 (ja) * | 2007-02-14 | 2011-12-07 | 富士通株式会社 | 量子井戸型赤外線検出器 |
JP4812656B2 (ja) * | 2007-02-22 | 2011-11-09 | 富士通株式会社 | 量子ドット型光検知器及びその製造方法 |
JP5397929B2 (ja) * | 2008-01-22 | 2014-01-22 | 独立行政法人情報通信研究機構 | 半導体光デバイス及び光通信用半導体デバイス、並びにその製造方法 |
JP5222659B2 (ja) * | 2008-08-06 | 2013-06-26 | 富士通株式会社 | 半導体デバイス及びその製造方法、光通信システム |
JP4459286B2 (ja) * | 2008-08-08 | 2010-04-28 | 防衛省技術研究本部長 | 赤外線検知器 |
JP2009065142A (ja) * | 2008-08-08 | 2009-03-26 | Technical Research & Development Institute Ministry Of Defence | 量子ドット型赤外線検知器 |
JP6201286B2 (ja) * | 2012-09-19 | 2017-09-27 | 日本電気株式会社 | 量子ドット型赤外線検出器のバイアス電圧決定システムとその製造方法、バイアス電圧決定方法及び制御プログラム |
JP6137195B2 (ja) * | 2012-12-05 | 2017-05-31 | 日本電気株式会社 | 赤外線検出器 |
GB2531568B (en) * | 2014-10-22 | 2018-07-04 | Toshiba Res Europe Limited | An optical device and method of fabricating an optical device |
GB2549703B (en) * | 2016-04-19 | 2019-11-06 | Toshiba Kk | An optical device and method for its fabrication |
JP6916510B2 (ja) * | 2017-01-11 | 2021-08-11 | 国立大学法人 和歌山大学 | 光デバイスの製造方法 |
WO2019215903A1 (ja) | 2018-05-11 | 2019-11-14 | 日本電気株式会社 | 光検出素子 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09270508A (ja) * | 1996-03-29 | 1997-10-14 | Nec Corp | 半導体量子ドット素子とその製造方法 |
JPH11330606A (ja) * | 1998-05-20 | 1999-11-30 | Fujitsu Ltd | 光半導体装置 |
JP2000012961A (ja) * | 1998-06-23 | 2000-01-14 | Fujitsu Ltd | 半導体レーザ |
JP2000022130A (ja) * | 1998-07-02 | 2000-01-21 | Fujitsu Ltd | 半導体量子ドット素子の作製方法 |
JP2002084042A (ja) * | 2000-09-08 | 2002-03-22 | Mitsubishi Chemicals Corp | 量子ドット構造体及びそれを有する半導体デバイス装置 |
-
2003
- 2003-05-23 JP JP2003146177A patent/JP4583726B2/ja not_active Expired - Lifetime
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09270508A (ja) * | 1996-03-29 | 1997-10-14 | Nec Corp | 半導体量子ドット素子とその製造方法 |
JPH11330606A (ja) * | 1998-05-20 | 1999-11-30 | Fujitsu Ltd | 光半導体装置 |
JP2000012961A (ja) * | 1998-06-23 | 2000-01-14 | Fujitsu Ltd | 半導体レーザ |
JP2000022130A (ja) * | 1998-07-02 | 2000-01-21 | Fujitsu Ltd | 半導体量子ドット素子の作製方法 |
JP2002084042A (ja) * | 2000-09-08 | 2002-03-22 | Mitsubishi Chemicals Corp | 量子ドット構造体及びそれを有する半導体デバイス装置 |
Also Published As
Publication number | Publication date |
---|---|
JP2004349542A (ja) | 2004-12-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4583726B2 (ja) | 量子半導体装置およびその作製方法 | |
US8129710B2 (en) | Plasmon enhanced nanowire light emitting diode | |
JP5162016B1 (ja) | 半導体素子、ウェーハ、半導体素子の製造方法及びウェーハの製造方法 | |
US8030664B2 (en) | Light emitting device | |
JPH09326506A (ja) | 量子半導体装置およびその製造方法 | |
JP4903643B2 (ja) | 半導体発光素子 | |
KR101718067B1 (ko) | 발광소자 및 그 제조방법 | |
JP2007184512A (ja) | 赤外線検知器 | |
JPH11266004A (ja) | 量子半導体装置および量子半導体発光装置 | |
WO2012173162A1 (ja) | 量子ナノドット、二次元量子ナノドットアレイ及びこれを用いた半導体装置並びに製造方法 | |
JP2006114815A (ja) | 太陽電池 | |
JP3709486B2 (ja) | 半導体素子及びその製造方法 | |
JP2692563B2 (ja) | 半導体レーザ埋め込み構造 | |
JP2007042840A (ja) | 量子ドット光半導体素子の製造方法 | |
JP4791996B2 (ja) | 半導体光素子 | |
JP4930317B2 (ja) | 半導体光素子 | |
JP2008187022A (ja) | 赤外線検知器 | |
JPH04112584A (ja) | 半導体装置 | |
JP2947199B2 (ja) | 半導体量子ドット素子および該半導体量子ドット素子の製造方法 | |
JP2008147521A (ja) | 赤外線検出器及びその製造方法 | |
JP2012182335A (ja) | 量子光半導体装置 | |
JP2013122972A (ja) | 赤外線検知器及びその製造方法 | |
JP4284633B2 (ja) | 半導体発光装置の製造方法 | |
JP3737175B2 (ja) | 光メモリ素子 | |
JP4500963B2 (ja) | 量子半導体装置およびその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060425 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100420 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100614 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100824 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100901 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4583726 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130910 Year of fee payment: 3 |
|
EXPY | Cancellation because of completion of term |