JP4565350B2 - 半導体レーザ装置 - Google Patents

半導体レーザ装置 Download PDF

Info

Publication number
JP4565350B2
JP4565350B2 JP2007074074A JP2007074074A JP4565350B2 JP 4565350 B2 JP4565350 B2 JP 4565350B2 JP 2007074074 A JP2007074074 A JP 2007074074A JP 2007074074 A JP2007074074 A JP 2007074074A JP 4565350 B2 JP4565350 B2 JP 4565350B2
Authority
JP
Japan
Prior art keywords
semiconductor laser
layer
active layer
solder
laser device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007074074A
Other languages
English (en)
Other versions
JP2008235630A (ja
Inventor
大介 今西
滋樹 宮崎
香 長沼
由朗 滝口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2007074074A priority Critical patent/JP4565350B2/ja
Priority to US12/049,884 priority patent/US7693199B2/en
Publication of JP2008235630A publication Critical patent/JP2008235630A/ja
Application granted granted Critical
Publication of JP4565350B2 publication Critical patent/JP4565350B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34326Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer based on InGa(Al)P, e.g. red laser
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0235Method for mounting laser chips
    • H01S5/02355Fixing laser chips on mounts
    • H01S5/0237Fixing laser chips on mounts by soldering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/2004Confining in the direction perpendicular to the layer structure
    • H01S5/2009Confining in the direction perpendicular to the layer structure by using electron barrier layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/3201Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures incorporating bulkstrain effects, e.g. strain compensation, strain related to polarisation

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Semiconductor Lasers (AREA)

Description

本発明は、光ディスクや光通信、ディスプレイ用の光源などに用いられる半導体レーザ装置に関する。
近年、追記型のDVD(Digital Versatile Disk) 装置が急速に普及してきている。このDVD装置の読み出し・書き込みには、GaAs基板上にAlGaInP系の半導体を積層した赤色半導体LD(Laser Diode)が用いられている。この赤色半導体LDは、例えば、図11に示したように、GaAs基板110上に、AlInPからなる下部クラッド層111、AlGaInPからなる下部ガイド層112、GaInPからなる活性層113、AlGaInPからなる上部ガイド層114、AlInPからなる上部クラッド層115およびコンタクト層116をこの順に積層配置した構造を有しており、コンタクト層116上に上部電極117を、GaAs基板110の裏面側に下部電極118をそれぞれ有している(例えば特許文献1参照)。このような構造の赤色半導体LD100では、上部電極117および下部電極118の間に電圧を印加すると、例えば、下部電極118側から電子が、上部電極117側から正孔が活性層113へ注入される。そして、活性層113に注入された電子と正孔が再結合することにより光子が発生(発光)する。
特開平5−21894号公報
ところで、この赤色半導体LD100では、図12に示したように、活性層113における伝導帯の下端113Aとp型クラッド層115における伝導帯の下端115Aとの間のエネルギー差(電子障壁)ΔEcを大きくすることが容易ではない。そのため、高温になると、p型クラッド層115において、電子が電子障壁ΔEcを乗り越えて活性層14から漏れ出す、いわゆるキャリア・オーバーフローが発生する虞がある。
そこで、このような問題を克服するために、例えば、p型クラッド層115のキャリア濃度を高くして、p型クラッド層115におけるキャリア・オーバーフローを抑制する方法が考えられる。しかし、p型クラッド層115のキャリア濃度を高くすることは容易ではなく、また、あまりキャリア濃度を高くすると結晶性が低下して信頼性を損なう虞がある。
本発明はかかる問題点に鑑みてなされたものであり、その目的は、キャリア・オーバーフローを抑制することにより、高温動作を可能とする半導体レーザ装置を提供することにある。
本発明の半導体レーザ装置は、GaAs基板上に、少なくとも下部クラッド層、活性層および上部クラッド層をこの順に含むAlGaInP系積層構造を有する半導体レーザ素子を備えたものである。本発明の半導体レーザ装置は、さらに、実装基板を備えており、半導体レーザ素子と実装基板との間に、半導体レーザ素子を実装基板に直接固定する半田を備えている。ここで、活性層は、GaInPを含んでおり、活性層のGa組成比は、GaInPがGaAsと格子整合するときのGa組成比よりも小さくなっている。AlGaInP系積層構造は、半田を介して実装基板から圧縮応力を受けている。なお、基板とAlGaInP系積層構造との間、下部クラッド層と活性層との間、または活性層と上部クラッド層との間に、何らかの層が挿入されていてもよい。
本発明の半導体レーザ装置では、活性層のGa組成比が、GaInPがGaAsと格子整合するときのGa組成比よりも小さくなっている。また、AlGaInP系積層構造が、半田を介して実装基板から圧縮応力を受けている。
本発明の半導体レーザ装置によれば、電子障壁を大きくすることができるようにしたので、キャリア・オーバーフローを抑制することができる。これにより、高温動作を実現することができる。
以下、本発明の実施の形態について、図面を参照して詳細に説明する。
図1は、本発明の一実施の形態に係る半導体レーザ装置の断面構造を表したものである。この半導体レーザ装置は、基板10上にAlGaInP系の積層構造20を有する半導体レーザ素子1が半田3を介してヒートシンク4(実装基板)に実装されたものであり、半導体レーザ素子1から赤色のレーザ光を射出するものである。
この積層構造20は、下部クラッド層11、下部ガイド層12、活性層13、上部ガイド層14、上部クラッド層15およびコンタクト層16を基板10側からこの順に積層して形成されている。ここで、コンタクト層16および上部クラッド層15の一部には、レーザ光の射出方向(軸方向)に延在するストライプ状のリッジ部(突条部)17が形成されている。なお、以下では、上記各半導体層を積層した方向を縦方向と称し、軸方向および縦方向に垂直な方向を横方向と称する。
基板10は、例えば縦方向の厚さ(以下、単に厚さという)が100μmのn型GaAs基板である。ここで、n型不純物としては、例えばケイ素(Si)またはセレン(Se)などが挙げられる。下部クラッド層11は、例えば厚さ1μmのn型AlInPまたはn型AlGaInPなどからなる。下部ガイド層12は、例えば厚さ50nmのn型AlInPまたはn型AlGaInPなどからなる。
活性層13は、例えば厚さ5nm程度であり、アンドープのGaInPからなる。この活性層13は、リッジ部17に対向する領域に発光領域13Aを有している。この発光領域13Aは、対向するリッジ部17の底部(上部クラッド層15の部分)と同等の大きさのストライプ幅を有しており、リッジ部17で狭窄された電流が注入される電流注入領域に対応している。
上部ガイド層14は、例えば厚さ50nmのp型AlInPまたはp型AlGaInPなどからなる。ここで、p型不純物としては、亜鉛(Zn)、マグネシウム(Mg)、ベリリウム(Be)などが挙げられる。上部クラッド層15は、例えば厚さ1μmのp型AlInPまたはp型AlGaInPなどからなる。コンタクト層16は、例えば厚さ0.5μmのp型GaAsからなり、リッジ部17の上部に設けられている。
また、この半導体レーザ素子1には、コンタクト層17上に上部電極21が設けられており、基板10の裏面に下部電極22が設けられている。ここで、上部電極21は、例えば、チタン(Ti)層,白金(Pt)層および金(Au)層をコンタクト層17側からこの順に積層したものであり、コンタクト層17と電気的に接続されている。また、下部電極22は、例えば、Auとゲルマニウム(Ge)との合金層,ニッケル(Ni)層およびAu層とを基板10側からこの順に積層した構造を有しており、基板10と電気的に接続されている。
この半導体レーザ素子1は、例えば、下部電極22側において、半田2を介してヒートシンク3と接続されている。
半田2は、半導体レーザ素子1をヒートシンク3上に固定すると共に、ヒートシンク3からの応力を半導体レーザ素子1に効率良く伝達するためのものである。ここで、半田2は、高融点で、ぬれ性が良く、かつ作製し易い半田材料、例えば、AuSn(融点280度)、SnAg(融点221度)、SnAgCu(融点216〜220度)、AuGe(融点356〜680度)またはAuSb(融点360〜1020度)などの、融点が200度を超えるハードソルダからなる。
ヒートシンク3は、半導体レーザ素子1とは異なる熱膨張係数を有する材料からなり、例えば、半導体レーザ素子1よりも高い熱膨張係数を有する銅(Cu)またはアルミニウム(Al)からなる。ここで、基板10をGaAs基板とした場合に、ヒートシンク3をCuまたはAlで構成したときのボンディング温度と歪との関係を図2に示した。
ここで、図2の縦軸に示した歪量は、例えば、歪が加えられる方向と平行な方向の半導体レーザ素子1の幅における、歪が加えられる前と後との変化の割合で表され、例えば、以下の式1に示したように、製造工程において半導体レーザ素子1をチップ状に分割する前のバー状の素子の幅W1(リッジ部17の延在方向と直交する方向の厚さ)から、半田2を介してヒートシンク3に実装した後のバー状の素子の幅を減算した値W2を、幅W1で除算することにより得ることができる。なお、図2の縦軸に示した歪量は、上記以外の方法によっても求めることが可能であり、例えば、以下の式2に示したように、バー状の素子をヒートシンク3に実装しない状態で、そのバー状の素子に電流を印加して発光させたときの発光スポット間の幅W3から、半田2を介してヒートシンク3に実装した状態で、そのバー状の素子に電流を印加して発光させたときの発光スポット間の幅W4を減算した値を、幅W3で除算することにより得ることができる。
歪量=(W1−W2)/W1…(1)
歪量=(W3−W4)/W3…(2)
図2から、この場合に、半田2が750度を融点とする半田材料からなるときには、半導体レーザ素子1に高温による悪影響があまり及ばない750度において、12000ppm程度の圧縮歪を半導体レーザ素子1に与えることができるが、半導体レーザ素子1と、上部電極21および下部電極22との反応が始まらない程度の温度(500度)をボンディングの最高温度とすると、半田2が500度を融点とする半田材料からなるときには、500度において、8000ppm程度の圧縮歪を半導体レーザ素子1に与えることができる。また、半田2の融点をボンディングの最低温度とすると、半田2が216度を融点とする半田材料からなるときには、216度において、2200ppm程度の圧縮歪を半導体レーザ素子1に与えることができる。このように、半田2の融点が高いほど、半導体レーザ素子1に与える歪量を大きくすることができるので、半導体レーザ素子1に与える圧縮歪を大きくしたい場合には、半田2の融点を高くすればよいことがわかる。
このような構成を有する半導体レーザ装置は、例えば次のようにして製造することができる。
AlGaInP系の半導体レーザ素子1を製造するためには、基板10上の化合物半導体層を、例えば、MOCVD(Metal Organic Chemical Vapor Deposition ;有機金属化学気相成長)法により形成する。この際、III−V族化合物半導体の原料としては、例えば、トリメチルアルミニウム(TMA)、トリメチルガリウム(TMG)、トリメチルインジウム(TMIn)、フォスフィン(PH3 )を用い、ドナー不純物の原料としては、例えば、HSeを用い、アクセプタ不純物の原料としては、例えば、ジメチルジンク(DMZ)を用いる。
具体的には、まず、基板10上に、下部クラッド層11、下部ガイド層12、活性層13、上部ガイド層14、上部クラッド層15およびコンタクト層16をこの順に積層する。このとき、活性層13が、基板10に対して所定の格子不整合となるようにTMInおよびTMGの流量を調節すると共に、各層が、所定のAl組成となるようにTMAの流量を調節する。
次に、例えば、コンタクト層16の上にマスク層を形成し、例えば反応性イオンエッチング(Reactive Ion Etching;RIE)法により、コンタクト層16および上部クラッド層15を選択的に除去したのち、マスク層を除去する。これにより、活性層13の電流注入領域に対応して、コンタクト層16および上部クラッド層15の一部に、軸方向に延在するストライプ状のリッジ部17が形成される。
次に、例えば、基板10の裏面側をラッピングして基板10の厚さを100μmとし、その裏面側に下部電極22を順次形成する。また、コンタクト層16の上に上部電極21を形成する。このようにして、図1に示した半導体レーザ素子1が形成される。
次に、所定の温度に設定したのち、半導体レーザ素子1を、下部電極22側を下にして半田2を介してヒートシンク3と接合し、これらを接合した状態で冷却する。このようにして、本実施の形態の半導体レーザ装置が製造される。
次に、本実施の形態の半導体レーザ装置の作用および効果について説明する。
本実施の形態の半導体レーザ装置では、上部電極21と下部電極22との間に所定の電圧が印加されると、リッジ部17により電流狭窄され、活性層13の電流注入領域に電流が注入され、これにより電子と正孔の再結合による発光が生じる。この光は、一対の光射出側の端面と後側の端面とにより形成される反射鏡(図示せず)により反射され、所定の波長でレーザ発振を生じ、レーザビームとして外部に射出される。
さて、一般に、化合物半導体に含まれる元素の組成比を変化させると、それに伴ってバンドギャップも変化する。また、化合物半導体に外部応力を加えると、化合物半導体に歪が発生し、それによってバンドギャップが変化する。ここで、外部応力は、例えば、熱膨張率の互いに異なる材料同士を高温下で張り合わせたのち冷却することによって発生させることが可能であるが、基板上に、基板と格子不整合の材料を結晶成長させることによっても発生させることが可能である。
そのため、本実施の形態において、例えば、基板10をGaAs基板とし、活性層13をGaInPにより構成した場合に、活性層13が基板10と格子不整合となるように活性層13のGa組成比を設定したときには、活性層13のバンドギャップが、活性層13が基板10と格子整合するときの活性層13のバンドギャップとは異なる値となる(図3の一点鎖線A参照)だけでなく、活性層13に外部応力が働くことになる。このように活性層13に外部応力が働くと、この外部応力によって活性層13に歪が発生し、活性層13のバンドギャップが変化する(図3の二点鎖線B参照)。したがって、基板10上に、基板10と格子不整合の活性層13を形成した場合には、組成比に起因して活性層13のバンドギャップが変化するだけでなく、歪に起因して活性層13のバンドギャップが変化するので、活性層13におけるバンドギャップの変化量ΔEgは実際には、組成比に起因するバンドギャップの変化量と、歪に起因するバンドギャップの変化量とを足し合わせた値となる(図3および図5の実線C参照)。
同様に、本実施の形態において、例えば、基板10をGaAs基板とし、上部クラッド層15をAlInPにより構成した場合に、上部クラッド層15が基板10と格子不整合となるように上部クラッド層15のAl組成比を設定したときには、上部クラッド層15におけるバンドギャップの変化量ΔEgは実際には、組成比に起因するバンドギャップの変化量(図4の一点鎖線D参照)と、歪に起因するバンドギャップの変化量(図4の二点鎖線E参照)とを足し合わせた値となる(図4および図5の実線F参照)。
なお、図4および図5の実線Fにおける頂点Hは、Al組成比が大きくなる方向にAl組成比を変化させたときに直接遷移から間接遷移へ変化するAl組成比(0.448)に対応している。また、図5は、図3の実線Cおよび図4の実線Fの縦軸を絶対値に直したものである。
図3のBと、図4のEとを抜き出したものを図6に示す。図6から、圧縮方向(図6の右から左へ向かう方向)に歪が与えられると、AlInPにおけるバンドギャップの変化量の方がGaInPにおけるバンドギャップの変化量よりも緩やかであることがわかる。そのため、AlInPおよびGaInPの双方に対して圧縮方向に歪を与えると、AlInPとGaInPとのバンドギャップ差が徐々に縮んでしまう。なお、図6に示したBとEとの関係は、格子不整合による歪に起因してバンドギャップが変化する場合だけでなく、積層構造20の外部(例えばヒートシンク3など)から応力を受けたことによる歪に起因してバンドギャップが変化する場合においても成り立つ。
そこで、本実施の形態では、活性層13と上部クラッド層15とのバンドギャップ差、より具体的には、活性層13における伝導帯の下端(またはサブバンドの下端)13B(以下、単に「伝導帯の下端13B」と称する)と上部クラッド層15における伝導帯の下端(またはサブバンドの下端)15A(以下、単に「伝導帯の下端15A」と称する)との間のエネルギー差(電子障壁)ΔEc(図7参照)が、半導体レーザ素子1をヒートシンク3に実装する前に、あらかじめ大きくしてある。
電子障壁ΔEcをあらかじめ大きくしておく方策としては、例えば、上部クラッド層15における伝導帯の下端15Aのエネルギーを大きくすることが考えられる。しかし、III−V族化合物半導体において基板10と格子整合すると共に伝導帯の下端のエネルギーが大きな材料はAlInPやAlGaInPなどに限られており、下端15Aのエネルギーをあまり大きくすることができない。
この他の方策としては、例えば、活性層13のバンドギャップEg1を小さくすることが考えられる。ここで、活性層13のバンドギャップEg1を小さくするためには、図5の実線Cに示したように、活性層13に圧縮方向に歪を与えることが必要となる。しかし、活性層13に圧縮方向に歪を与えるために、例えばヒートシンク3を応力源として用いた場合には、応力源からの応力は活性層13だけでなく、上部クラッド層15にまで及んでしまう。その結果、図6に示したように、活性層13と上部クラッド層15との電子障壁ΔEcがむしろ小さくなってしまう。また、活性層13のバンドギャップEg1を変化させると、半導体レーザ素子1の発光波長まで変化してしまい、所望の発光波長を得ることが困難となってしまう。
一方、本実施の形態では、図3の二点鎖線Bに示したように、活性層13がGaInPからなる場合には、GaInPのGa組成比を小さくして、格子不整合による歪を圧縮方向(図3の右から左へ向かう方向)に変化させておき、そのあとに、ヒートシンク3を応力源として半導体レーザ素子1に圧縮応力を与える。
例えば、活性層13(GaInP)に対して−7000ppm程度の引っ張り歪を下部クラッド層11および上部クラッド層15から与え、ヒートシンク3から活性層13に対して歪を与えないように半導体レーザ素子1とヒートシンク3との間にサブマウントやソフトソルダを設けた従来の半導体レーザ装置では、例えば、図8の中央付近に黒丸で示したように、電子障壁ΔEcが323meVとなる。
このとき、サブマウントやソフトソルダの代わりに、上記したハードソルダからなる半田2を半導体レーザ素子1とヒートシンク3との間に設け、下部クラッド層11および上部クラッド層15から与えられる活性層13への歪量を一定(−7000ppm程度)にした状態で、ヒートシンク3から半導体レーザ素子1に対して応力を与えて活性層13の歪量を変化させると、ヒートシンク3から活性層13へ与えられた歪量と、電子障壁ΔEcの値との関係が図8の中央付近の黒丸を通過する線Iのようになる。
この線Iから、ヒートシンク3から活性層13に対して圧縮方向(図8の右から左へ向かう方向)に歪を与えると、電子障壁ΔEcの値が徐々に小さくなることがわかる。
また、半導体レーザ素子1とヒートシンク3との間にサブマウントやソフトソルダを設けた状態で、活性層13のGa組成比を小さくし、格子不整合による歪を圧縮方向(図8中の矢印Jの方向)に変化させると、図8の中央上付近の白丸で示したように、電子障壁ΔEcが323meVよりも大きくなる。
このとき、上記と同様に、サブマウントやソフトソルダの代わりに、上記したハードソルダからなる半田2を半導体レーザ素子1とヒートシンク3との間に設け、下部クラッド層11および上部クラッド層15から与えられる活性層13への歪量を一定にした状態で、ヒートシンク3から半導体レーザ素子1に対して応力を与えて活性層13の歪量を変化させると、ヒートシンク3から活性層13へ与えられた歪量と、電子障壁ΔEcの値との関係が図8の中央上付近の各白丸を通過する線Kのようになる。
線Kは、線Iと同様、ヒートシンク3から活性層13に対して圧縮方向(図8の右から左へ向かう方向)に歪が与えられると、電子障壁ΔEcの値が徐々に小さくなる傾向を有しているが、線Kにおいて線I上の黒丸と等しい発光波長となる箇所に黒四角を配置すると、全ての黒四角において、線I上の黒丸のときよりも電子障壁ΔEcの値が大きくなる。
つまり、活性層13がGaInPからなる場合に、GaInPのGa組成比を小さくして、格子不整合による歪を圧縮方向(図8の矢印Jの方向)に変化させておき、そのあとに、ヒートシンク3を応力源として半導体レーザ素子1に圧縮応力を与えることにより、発光波長を一定にした状態で、電子障壁ΔEcの値を大きくすることが可能である。
なお、図8には、格子不整合による歪を圧縮歪(+0ppm以上)とした場合についての記載がないが、そのようにした場合にも、格子不整合による歪が引っ張り歪となっている場合や、全くない場合と同様、発光波長を一定にした状態で、電子障壁ΔEcの値を大きくすることが可能である。また、発光波長を線I上の黒丸のときと等しくする必要がない場合には、線Kにおいて、線I上の黒丸のときよりも電子障壁ΔEcの値が大きくなる範囲内を選択することが可能である。
また、図9に示したように、上部ガイド層14と上部クラッド層15との間に、上部クラッド層15よりも伝導帯の下端のエネルギーが大きな材料(例えば、Al0.448In0.552P)を含む電子障壁層19を設けた場合には、図10に示したように、電子障壁ΔEcの値をさらに大きくすることが可能である。なお、上で例示したAl0.448In0.552Pは、基板10がGaAs基板である場合には、基板10と格子整合していないので、格子緩和が生じない程度に薄くしておくことが必要となる。
以上より、本実施の形態では、電子障壁ΔEcの値を大きくすることができるので、キャリア・オーバーフローを抑制することができる。これにより、高温動作を実現することができる。また、キャリア・オーバーフローが抑制されることにより、閾値電流の値を低くすることができる。さらに、熱の発生も抑制することができるので、熱に起因して発生する結晶欠陥の増殖をも抑制することができる。その結果、長期動作時の信頼性を向上させることができる。
以上、1つの実施の形態を挙げて本発明を説明したが、本発明は上記の実施の形態に限定されるものではなく、種々変形可能である。
本発明の一実施の形態における半導体レーザ装置の断面構成図である。 ボンディング温度と歪との関係を表す特性図である。 GaInPにおけるGa組成比と、バンドギャップの変化量との関係を表す特性図である。 AlInPにおけるAl組成比と、バンドギャップの変化量との関係を表す特性図である。 歪とバンドギャップとの関係を表す特性図である。 歪とバンドギャップの変化量との関係を表す特性図である。 図1の半導体レーザ素子のバンド構造を説明するための概念図である。 歪と電子障壁との関係の一例を表す特性図である。 図1の半導体レーザ装置の一変形例の断面構成図である。 図9の半導体レーザ装置における歪と電子障壁との関係の他の例を表す特性図である。 従来の半導体レーザ装置の断面構成図である。 図11の半導体レーザ素子のバンド構造を説明するための概念図である。
符号の説明
1…半導体レーザ素子、2…半田、3…ヒートシンク、10…基板、11…下部クラッド層、12…下部ガイド層、13…活性層、14…上部ガイド層、15…上部クラッド層、16…コンタクト層、17…リッジ部、19…電子障壁層、20…積層構造、21…上部電極、22…下部電極。

Claims (4)

  1. GaAs基板上に、少なくとも下部クラッド層、活性層および上部クラッド層をこの順に含むAlGaInP系積層構造を有する半導体レーザ素子と、
    実装基板と、
    前記半導体レーザ素子と前記実装基板との間に配置され、かつ前記半導体レーザ素子を前記実装基板に直接固定する半田と
    を備え、
    前記活性層は、GaInPを含み、
    前記活性層のGa組成比は、GaInPがGaAsと格子整合するときのGa組成比よりも小さくなっており、
    前記AlGaInP系積層構造は、前記活性層のGa組成比が、GaInPがGaAsと格子整合するときのGa組成比となっており、かつ前記AlGaInP系積層構造が前記実装基板から応力を受けていないときの発光波長と等しい発光波長となるような圧縮応力を、前記半田を介して前記実装基板から受けている
    半導体レーザ装置。
  2. 前記半田の融点は200度を超える
    請求項1に記載の半導体レーザ装置。
  3. 前記半田は、AuSn、SnAg、SnAgCu、AuGeまたはAuSbを含む
    請求項2に記載の半導体レーザ装置。
  4. 前記活性層と、前記下部クラッド層および前記上部クラッド層のいずれか一方との間に、前記下部クラッド層および前記上部クラッド層のバンドギャップよりも大きなバンドギャップを有する電子障壁層を備える
    請求項1に記載の半導体レーザ装置。
JP2007074074A 2007-03-22 2007-03-22 半導体レーザ装置 Expired - Fee Related JP4565350B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007074074A JP4565350B2 (ja) 2007-03-22 2007-03-22 半導体レーザ装置
US12/049,884 US7693199B2 (en) 2007-03-22 2008-03-17 Laser diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007074074A JP4565350B2 (ja) 2007-03-22 2007-03-22 半導体レーザ装置

Publications (2)

Publication Number Publication Date
JP2008235630A JP2008235630A (ja) 2008-10-02
JP4565350B2 true JP4565350B2 (ja) 2010-10-20

Family

ID=39774640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007074074A Expired - Fee Related JP4565350B2 (ja) 2007-03-22 2007-03-22 半導体レーザ装置

Country Status (2)

Country Link
US (1) US7693199B2 (ja)
JP (1) JP4565350B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5519355B2 (ja) * 2010-03-19 2014-06-11 スタンレー電気株式会社 半導体発光素子及びその製造方法
CN106134018A (zh) * 2014-03-31 2016-11-16 Ipg光子公司 高功率激光二极管封装方法和激光二极管模块
US11228160B2 (en) * 2018-11-15 2022-01-18 Sharp Kabushiki Kaisha AlGaInPAs-based semiconductor laser device and method for producing same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002261376A (ja) * 2001-03-02 2002-09-13 Sharp Corp 半導体発光装置
JP2006049420A (ja) * 2004-08-02 2006-02-16 Sony Corp 半導体レーザおよびこれを用いた光装置
JP2006286868A (ja) * 2005-03-31 2006-10-19 Fuji Photo Film Co Ltd 光通信伝送システム及び半導体レーザ装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5917292A (ja) * 1982-07-20 1984-01-28 Sharp Corp 半導体レ−ザ素子
US5276698A (en) * 1990-09-20 1994-01-04 Sumitomo Electric Ind., Ltd. Semiconductor laser having an optical waveguide layer including an AlGaInP active layer
JP3056813B2 (ja) * 1991-03-25 2000-06-26 株式会社半導体エネルギー研究所 薄膜トランジスタ及びその製造方法
JPH0521894A (ja) 1991-07-15 1993-01-29 Sumitomo Electric Ind Ltd 半導体レーザ
JP2007235107A (ja) * 2006-02-02 2007-09-13 Mitsubishi Electric Corp 半導体発光素子

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002261376A (ja) * 2001-03-02 2002-09-13 Sharp Corp 半導体発光装置
JP2006049420A (ja) * 2004-08-02 2006-02-16 Sony Corp 半導体レーザおよびこれを用いた光装置
JP2006286868A (ja) * 2005-03-31 2006-10-19 Fuji Photo Film Co Ltd 光通信伝送システム及び半導体レーザ装置

Also Published As

Publication number Publication date
US7693199B2 (en) 2010-04-06
US20080232415A1 (en) 2008-09-25
JP2008235630A (ja) 2008-10-02

Similar Documents

Publication Publication Date Title
JP4352337B2 (ja) 半導体レーザおよび半導体レーザ装置
JP5465514B2 (ja) 光半導体装置
JP5153769B2 (ja) 電子ブロック層を備えた窒化ガリウム・ベース半導体デバイス
JP2014003329A (ja) 応力低減電子ブロッキング層を有する窒化ガリウム・ベース半導体デバイス
JP2013191787A (ja) 半導体レーザアレイおよび半導体レーザ装置
US6873634B2 (en) Semiconductor laser diode
JP2006120923A (ja) 半導体レーザ装置
JP5877070B2 (ja) 半導体レーザ装置
JP4565350B2 (ja) 半導体レーザ装置
JP2002076502A (ja) 半導体レーザ素子
US20050190807A1 (en) Semiconductor laser
JP2010050362A (ja) マルチビーム半導体レーザ
JP4935676B2 (ja) 半導体発光素子
JPH10303459A (ja) 窒化ガリウム系半導体発光素子およびその製造方法
JP2009038408A (ja) 半導体発光素子
US20100238963A1 (en) Gallium nitride based semiconductor laser device
JP2007013207A (ja) 半導体発光素子
JP2008288256A (ja) 半導体レーザ素子の製造方法および半導体レーザ装置
JP2006012899A (ja) 半導体レーザ素子および半導体レーザ素子の製造方法
JP2010034267A (ja) ブロードエリア型半導体レーザ素子、ブロードエリア型半導体レーザアレイ、レーザディスプレイおよびレーザ照射装置
JP4091529B2 (ja) 半導体レーザ
JP2006339511A (ja) 半導体レーザ装置の製造方法および接合方法、並びに半導体レーザ装置
JP2000277862A (ja) 窒化物半導体素子
WO2015190171A1 (ja) 半導体光デバイス及びその製造方法並びに半導体光デバイス組立体
JP2010098001A (ja) 半導体レーザ装置およびその製造方法

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090423

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100708

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100721

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130813

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees